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The sequence of α-trimmings of empirical probabilities is shown to converge, in the Painlevé–Kuratowski
sense, on the class of probability measures endowed with the weak topology, to the α-trimming of the
population probability. Such a result is applied to the study of the asymptotic behaviour of central regions
based on the trimming of a probability.
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1. Introduction

Depth-trimmed regions are sets of central points with respect to a multivariate probability distri-
bution or a data cloud. Given a mapping that associates each point with its degree of centrality,
which is traditionally called depth, the set of all points whose depth is at least a given value
constitutes a central or depth-trimmed region. Therefore, central regions are set-valued location
estimates. Their applications range from simple descriptive statistics to multivariate general-
izations of univariate quantile-based techniques. Numerous proposals of depth-trimmed regions
have been considered in the statistical literature in recent years; see, for instance, Massé and
Theodorescu [8] for half-space trimmed regions, Koshevoy and Mosler [7] for zonoid trimmed
regions, Cascos and López-Díaz [3] for integral trimmed regions and Zuo and Serfling [12] for a
unifying treatment of several notions of central regions.

Cascos and López-Díaz [3] introduce the integral trimmed regions as a family of depth-
trimmed regions that is generated by a set (or family of sets) of functions. Several classi-
cal families of depth-trimmed regions like the zonoid or the halfspace regions can be ob-
tained in the framework of integral trimmed regions for suitable families of functions. Integral
trimmed regions have been used, among other families of depth-trimmed regions, by Cascos and
Molchanov [4] to assess the financial risk of a vector portfolio. The concept of the α-trimming
of a probability plays a crucial role in the construction of integral trimmed regions and thus a
comprehensive study of its properties would constitute a significant advance in the theoretical
study of depth-trimmed regions. In particular, the analysis of the behaviour of the α-trimming of
empirical probabilities is necessary for the study of empirical integral trimmed regions.

Motivated by this, the problem of the consistency of the α-trimming of a sequence of empirical
probabilities is analyzed in this paper. On the basis of such a consistency, applications to integral
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trimmed regions and to other trimmed regions based on the trimming of a probability will be
developed.

Throughout the paper, the symbol P will stand for the class of probability measures on
(Rd,Bd), where Bd denotes the Borel σ -algebra on Rd . This class will be endowed with the
weak topology.

As has already been mentioned, the main results of the paper are focused on the concept of
α-trimming of a probability of P, which can be defined as follows.

Definition 1. Given P ∈ P and α ∈ (0,1], the α-trimming of P, denoted by P α, is given by
P α = {Q ∈ P :Q ≤ α−1P }, that is, the set of all probability measures Q on (Rd,Bd) such that
Q(B) ≤ α−1P(B) for all B ∈ Bd .

This set of probabilities was formally introduced by Cascos and López-Díaz [3] analyzing
several properties of such a set. Sets of probabilities that are bounded by a transformation of
another probability have been studied by, among others, Huber and Strassen [6] in the field of
robust statistics and Artzner et al. [1] in the field of financial mathematics.

From now on, given P ∈P, {Xi}i will be a sequence of independent and identically distributed
random vectors, where X1 induces the probability P. Let {Pn}n ⊂ P be the sequence of empirical
probabilities generated by {Xi}i .

Given P ∈ P, {Pn}n a sequence of empirical probabilities and α ∈ (0,1], this paper analyzes
the behaviour of the sequence of probability sets {P α

n }n in relation to the set P α. Namely, it is
proved that the sequence {P α

n }n converges (almost surely) to P α .
The usual concepts of lower limit and upper limit of sequences of subsets of a space with

a convergence criterion will be considered. Limits of sequences of sets are understood in the
Painlevé–Kuratowski sense, that is, a sequence of sets converges if its lower and upper limit
coincide, this being equal to the limit.

Since P is endowed with the convergence of the weak topology, we have

lim sup
n

P α
n =

{
Q ∈ P :∃{Qnk

}k,Qnk
∈ P α

nk
∀k ∈ N with lim

k
Qnk

= Q

}

and

lim inf
n

P α
n =

{
Q ∈ P : ∃{Qn}n with Qn ∈ P α

n ∀n ∈ N, and lim
n

Qn = Q

}
,

where the limits inside the brackets are considered in the convergence of the weak topology.
The structure of the paper is as follows. Section 2 is devoted to study of the limit behaviour

of the α-trimming of an empirical probability and applications of this limit behaviour to depth-
trimmed regions are derived in Section 3.

2. Trimming of empirical probabilities

The aim of this section is to show that given a probability P ∈ P and α ∈ (0,1], the set of
probabilities P α is the limit (almost surely) of the sequence of the sets of probabilities {P α

n }n.
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More specifically, the main result will conclude that

lim inf
n

P α
n = P α = lim sup

n
P α

n a.s.

This section contains three parts. First, we analyze some supporting properties in relation
to the topological structure of the trimming of a probability. The second part contains some
key technical results for the main purpose of the section. Finally, the study of sequences of the
trimming of empirical probabilities is developed.

We will now state some results about topological properties of the trimming of a probability.
A family of probabilities � ⊂ P is said to be tight if, for each ε > 0, there exists a compact set

K ⊂ Rd such that P(K) > 1 − ε for all P ∈ �. It is well known that if P ∈ P, then the family
{P } is tight.

Lemma 2. Let � ⊂ P be a tight family and α ∈ (0,1]. Then, {Q ∈ Hα : H ∈ �} is tight.

Proof. Since � is tight, given ε > 0, there exists a compact set K ⊂ Rd such that H(Rd \ K) <

εα for all H ∈ �. So, for any Q ∈ Hα , we have that Q(Rd \ K) ≤ α−1H(Rd \ K) < ε, which
implies the result. �

Lemma 3. For all α ∈ (0,1] and P ∈P , the family P α is compact for the weak topology.

Proof. By Lemma 2, the family P α is tight, so its closure in the weak topology clP α is compact
(see, e.g., Billingsley [2]). Thus, it is sufficient to prove that clP α = P α .

Let Q ∈ clP α . There then exists {Qn}n ⊂ P α with limn Qn = Q in the convergence of the
weak topology.

Let G be an open set in Rd , so Q(G) ≤ lim infn Qn(G) ≤ α−1P(G). If A ∈ Bd , we can take a
decreasing sequence {Gn}n of open sets in Rd with A ⊂ Gn and P(Gn \ A) < 1/n (observe that
P is regular), so Q(A) ≤ Q(Gn) ≤ α−1P(Gn) for all n ∈ N . Then, Q(A) ≤ α−1P(A), which
implies that Q ∈ P α, so P α is compact. �

Lemma 4. Let P ∈ P and α ∈ (0,1]. There then exists a countable set D ⊂ P α such that D is
dense in P α in the weak topology.

Proof. Note that the weak topology is metrizable, for instance, by means of the Prohorov metric
and P α is compact in such a topology, which trivially implies the result. �

In order to obtain the main result of this section, some essential technical results are stated
below.

The following proposition shows how to construct an element of the class P α
n+1 by means of

a probability of the class P α
n . This result will play a crucial role in posterior constructions of

sequences of probabilities.

Proposition 5. Let P ∈ P and α ∈ (0,1]. If Qn ∈ P α
n , then the probability Qn+1 given by

Qn+1 = n

n + 1
Qn + 1

n + 1

(
(n + 1)Pn+1 − nPn

)
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belongs to the class P α
n+1.

Proof. It should be pointed out that the mapping (n + 1)Pn+1 − nPn :Bd → R satisfies ((n +
1)Pn+1 − nPn)(B) = IB(Xn+1) for all B ∈ Bd and is therefore a probability. As a consequence,
Qn+1 belongs to P .

Further, (n + 1)Pn+1 − nPn is a discrete probability. Since Qn ∈ P α
n , it follows that Qn is

absolutely continuous with respect to Pn, which implies that Qn is also discrete and so the same
holds for Qn+1.

Thus, in order to check that Qn+1 ∈ P α
n+1, it is sufficient to prove that Qn+1({x}) ≤

α−1Pn+1({x}) for all x ∈ Rd.

Let x ∈ Rd . If x �= Xn+1, then ((n + 1)Pn+1 − nPn)({x}) = 0, so

Qn+1({x}) = n

n + 1
Qn({x}) ≤ α−1 n

n + 1
Pn({x}) = α−1Pn+1({x}).

If x = Xn+1, then ((n + 1)Pn+1 − nPn)({x}) = 1, which implies that

Qn+1({x}) = n

n + 1
Qn({x}) + 1

n + 1
≤ α−1 n

n + 1
Pn({x}) + 1

n + 1

≤ α−1 nPn({x}) + 1

n + 1
= α−1Pn+1({x})

and this finishes the proof. �

Note that, given Qn ∈ P α
n , the reiteration of the construction of probabilities described in the

statement of the above proposition leads to the probability

Qn+k(·) = n

n + k
Qn(·) + 1

n + k

(
I(·)(Xn+1) + I(·)(Xn+2) + · · · + I(·)(Xn+k)

)
(1)

for all k ∈ {1,2, . . .}.
A technical lemma on stopping times that will be applied in posterior results is stated below.

Lemma 6. Let {Zi}i be a sequence of independent and identically distributed random variables
with EZ1 = 0. For all n ∈ N, let Sn = ∑n

1 Zi. We define Y1 = min{n ∈ N :Sn ≥ 0} and for k ≥ 1,

let Yk+1 = min{n > Yk :Sn ≥ 0}.
Then,

lim
k

Yk+1 − Yk

Yk

= 0 a.s.

Proof. Given Z1, . . . ,Zn, the smallest σ -field which makes these mappings measurable will be
denoted by σ(Z1, . . . ,Zn).

In the first place, we should point out that the probability that the event
∑n

1 Zi ≥ 0 occurs
infinitely often is equal to 1.

We define W0 = 0, W1 = min{n > 0 :
∑n

1 Zi ≥ 0} and, for k ≥ 1, let Wk+1 = min{n >

0 :
∑n

Wk+1 Zi ≥ 0}.
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Note that Wk is a stopping time since, for all k ∈ N , it holds that Wk is σ(Z1, . . . ,ZWk
)-

measurable. Also, Wk ∈ N a.s. for all k ∈ N.

Moreover, the random variables {Wk+1 − Wk}k are independent since Wk+1 − Wk is
σ(ZWk+1, . . . ,ZWk+1)-measurable for all k ∈ N and is obviously identically distributed.

Well-known results on stopping times state that EW1 < ∞ since EZ1 ∈ R (see, e.g., Wijsman
[11] or Durrett [5]), so E(Wk+1 − Wk) = E(W1 − W0) = EW1 < ∞.

The strong law of large numbers applied to the sequence {Wk+1 − Wk}k leads to

lim
n

Wn+1

n
= EW1 a.s., hence lim

n

Wn+1 − Wn

n
= 0 a.s.

On the other hand, it can immediately be seen that for each l ∈ N , there exists kl ∈ N such that
Yl+1 − Yl ≤ Wkl+1 − Wkl

.

It is enough to consider kl with kl = sup{n :Wn ≤ Yl}. Observe that such a kl exists a.s.
since W1 = Y1. In accordance with the definitions of {Wi}i , {Yi}i and kl, we obviously have
Wkl+1 > Yl.

Moreover, Yl+1 − Yl ≤ Wkl+1 − Wkl
, otherwise SWkl+1 ≥ 0, which contradicts the definition

of Yl+1. In fact, Wkl+1 ≥ Yl+1.

Trivially, {Yi}i is a non-decreasing sequence, Yn ≥ n, Wn ≥ n for all n ∈ N and {kl}l is non-
decreasing, so liml kl = ∞ a.s. Then,

0 ≤ lim sup
l

Yl+1 − Yl

Yl

≤ lim sup
l

Wkl+1 − Wkl

Wkl

≤ lim sup
l

Wkl+1 − Wkl

kl

= 0 a.s.,

which proves the lemma. �

Cascos and López-Díaz [3] prove the following result in relation to the trimming of a proba-
bility.

Lemma 7. Let α ∈ (0,1] and Q ∈ P α. There then exists a.s. a sequence {Qnk
}k ⊂ P such that

Qnk
∈ P α

nk
for all k ∈ N and limk Qnk

= Q in the weak topology.

This result is proved by constructing a particular sequence {Qnk
}k satisfying the above condi-

tions. Since we will make use of such a sequence, it will be described below.
If Q ∈ P α , then Q is absolutely continuous with respect to P. Therefore, there exists a map-

ping g :Rd −→ [0,∞) of class L1(P ) such that for all B ∈ Bd , it holds that Q(B) = ∫
B

g dP ,
that is, g is a Radon–Nikodym derivative of Q with respect to P .

If g is a Radon–Nikodym derivative of Q with respect to P , we can explicitly give a sequence
{Qnk

}k satisfying the conditions of Lemma 7 as

Qnk
(B) = 1

‖g‖L1(Pnk
)

∫
B

g dPnk
for all B ∈ Bd, (2)

where nk must satisfy ‖g‖L1(Pnk
) ≥ 1.
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That is, if we denote by NQ the set of indexes of the above subsequence, then

n ∈ NQ if and only if
1

n

n∑
i=1

(|g(Xi)| − 1
) ≥ 0. (3)

Note that the probability that the event n−1 ∑n
1(|g(Xi)| − 1) ≥ 0 occurs infinitely often is

equal to 1.
We should indicate that the a.s. existence of a converging subsequence with limit Q in

Lemma 7 depends on g, a Radon–Nikodym derivative of Q with respect to P and it thus de-
pends on probability Q. For a detailed explanation of this construction, we refer to Cascos and
López-Díaz [3].

Proposition 8. Let {Xi}i be a sequence of independent and identically distributed random vec-
tors, where X1 induces the probability P. Let g be a Radon–Nikodym derivative of Q with re-
spect to P. Let {nk}k be defined by n1 = min{n ∈ N :n−1 ∑n

1(|g(Xi)| − 1) ≥ 0} and for k ≥ 1,

let nk+1 = min{n > nk :n−1 ∑n
1(|g(Xi)| − 1) ≥ 0}. It then holds that

lim
k

nk+1 − nk

nk

= 0 a.s.

Proof. Note that the random variables {|g(Xi)|−1}i are independent and identically distributed.
Since E|g(Xi)| = ∫

Rd g dP = Q(R) = 1, their expected values are equal to 0, thus the result is
a direct consequence of Lemma 6. �

It is now proved that any probability of the class P α belongs almost surely to the inferior limit
of the sequence {P α

n }n.

Proposition 9. Let P ∈P, α ∈ (0,1] and Q ∈ P α . Then.

Q ∈ lim inf
n

P α
n a.s.

Proof. Lemma 7 states that Q ∈ lim supP α
n a.s. In fact, we have a specific sequence {Qnk

}k with
Qnk

∈ P α
nk

for all k ∈ N such that limk Qnk
= Q a.s. in the weak topology. We recall that NQ is

the set of indices of this sequence which was already characterized in (3).

We will complete this subsequence in the following way. Given n1 ∈ NQ, if n1 + 1 /∈ NQ, we
define the probability Qn1+1 ∈ P α

n1+1 by means of Proposition 5, that is,

Qn1+1 = n1

n1 + 1
Qn1 + 1

n1 + 1

(
(n1 + 1)Pn1+1 − n1Pn1

)
,

continue until n1 + k ∈ NQ and let n1 + k = n2 (note that Qn2 has already been defined). We
then reiterate this process with n2 and so forth with successive indexes.

In this way, for all n ≥ n1, we have a probability Qn ∈ P α
n such that if l ∈ NQ, then Ql belongs

to the subsequence described in (2). In order to finish the proof, we must show that limn Qn = Q

a.s in the weak topology.
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Since limn Pn = P a.s. in the weak topology, {P1,P2, . . .} is tight a.s. (see, e.g., Billingsley [2])
and so Lemma 2 implies that the family

⋃∞
n=1 P α

n satisfies the same property. Hence {Qn}n≥n1 ⊂⋃∞
n=n1

P α
n is also tight a.s.

As a consequence, in order to prove that limn Qn = Q a.s., it is enough to show that a.s., given
any subsequence {Qlk }k ⊂ {Qn}n with limk Qlk = Q′ for some Q′ ∈P, we have Q′ = Q.

Let us consider a subsequence satisfying the above conditions and let NQ′ be the set of indexes
of such a subsequence.

Clearly, if |NQ′ ∩ NQ| = ∞, the uniqueness of the limit implies that Q′ = Q.

Suppose now that |NQ′ ∩NQ| < ∞. Then, given nk ∈ NQ, we define (whenever it exists) l′k =
inf{lk ∈ NQ′ :nk < lk < nk+1} (note that there exist infinite values of l′k). Observe that {Ql′k }k ⊂
{Qlk }k, and so limk Ql′k = Q′.

In accordance with (1), it is trivial that

Ql′k (·) = nk

l′k
Qnk

(·) + 1

l′k

(
I(·)(Xnk+1) + I(·)(Xnk+2) + · · · + I(·)(Xl′k )

)
.

Moreover,

0 ≤ 1

l′k

(
I(·)(Xnk+1) + I(·)(Xnk+2) + · · · + I(·)(Xl′k )

) ≤ l′k − nk

l′k
≤ nk+1 − nk

nk

.

Proposition 8 then implies that

lim
k

1

l′k

(
I(·)(Xnk+1) + I(·)(Xnk+2) + · · · + I(·)(Xl′k )

) = 0 a.s.

On the other hand,

lim
k

nk

l′k
= lim

k

nk − l′k
l′k

+ 1 = 1 a.s.

and so

lim
k

Ql′k = lim
k

Qnk
= Q a.s.

in the weak topology. Then, Q = Q′ a.s., which proves the theorem. �

The α-trimming of P is (almost surely) contained in the lower limit of the α-trimmings of the
empirical probabilities, as shown below.

Theorem 10. Let P ∈P and α ∈ (0,1]. Then,

P α ⊂ lim inf
n

P α
n a.s.

Proof. Lemma 4 proves that there exists a countable set D ⊂ P α such that D is dense in P α in
the weak topology. Given any Q ∈ D, Proposition 9 implies that Q ∈ lim infn P α

n a.s. and since
D is countable, D ⊂ lim infn P α

n a.s.
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Finally, lim infn P α
n is closed in the weak topology, thus clD ⊂ lim infn P α

n a.s., where cl stands
for the closure in such a topology.

Since P α ⊂ clD, we have P α ⊂ lim infn P α
n a.s. and this trivially concludes the proof. �

The next result refers to the upper limit of the sequence {P α
n }n.

Theorem 11. Let P ∈ P and α ∈ (0,1]. Then,

lim sup
n

P α
n ⊂ P α a.s.

Proof. Let Q ∈ lim supn P α
n . There then exists a sequence {Qnk

}k ⊂ P with Qnk
∈ P α

nk
for all

k ∈ N such that limk Qnk
= Q in the weak topology.

Since limn Pn = P a.s. in the weak topology, for any open set G in Rd ,

Q(G) ≤ lim inf
k

Qnk
(G) ≤ lim inf

k
α−1Pnk

(G)

≤ lim sup
k

α−1Pnk
(clG) ≤ α−1P(clG) a.s.,

where clG stands for the usual closure of the set G.

If F is any closed set in Rd , consider Gm = {x ∈ Rd :d(x,F ) < 1/m}, where d(x,F ) =
inf{‖x − y‖ :y ∈ F } and m ∈ N.

For all m ∈ N, it then holds that Q(F) ≤ Q(Gm) ≤ α−1P(clGm) a.s. and so Q(F) ≤
α−1P(F) a.s.

Since this inequality holds for all closed sets in Rd , given A ∈ Bd we have only to con-
sider an increasing sequence {Fm}m of closed sets in Rd with Fm ⊂ A, P(A \ Fm) < 1/m and
Q(A \ Fm) < 1/m for all m ∈ N. Note that this is always possible since P and Q are regular
probabilities. Therefore, Q(A) ≤ α−1P(A) for all A ∈ Bd a.s. and so Q ∈ P α a.s. �

Finally, the main result of this section is obtained as a consequence of Theorems 10 and 11.

Theorem 12. Let P ∈ P and {Pn}n ⊂ P be a sequence of empirical probabilities of P. Then, for
all α ∈ (0,1], it holds that the sequence {P α

n }n converges a.s. in the Painlevé–Kuratowski sense
to the set P α, that is,

lim
n

P α
n = P α a.s.

3. Applications to depth-trimmed regions

Applications of the preceding results to depth-trimmed regions are developed in this section. In
the first place, we introduce a new family of depth-trimmed regions based on the trimming of a
probability and study its empirical counterpart by means of the results in Section 2. The analysis
of empirical integral trimmed regions is then developed.
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For each centrality degree α, a depth-trimmed region of level α is a set-valued location es-
timate. Given any (point-valued) location estimate associated with a probability measure, we
will build α-trimmed regions for each probability P ∈ P as the set of all location estimates of
the probabilities in the α-trimming of P . Formally, these regions, which we will call location
trimmed regions, can be defined as follows.

Definition 13. Let α ∈ (0,1], let L be a location estimate on the class P and let P ∈ P . The
location α-trimmed region of P induced by L, denoted by Dα

L(P ), is defined as

Dα
L(P ) = {L(Q) :Q ∈ P α}.

Note that some well-established trimmed regions can be obtained by means of location
trimmed regions, taking appropriate location estimates.

For instance, consider the zonoid trimmed regions defined by Koshevoy and Mosler [7] as

ZDα(P ) =
{∫

xg(x)dP,g :Rd → [0, α−1] measurable with
∫

g(x)dP = 1

}

for any α ∈ (0,1] and P ∈P .
It is easy to see that if we consider the expected value as location estimate, that is, L stands

for the expected value, then it holds that ZDα(P ) = Dα
L(P ).

The following proposition concerns, under mild conditions, the consistency of empirical loca-
tion trimmed regions.

Theorem 14. Let L be a location estimate that is continuous with respect to the weak topology.
Then, for any P ∈P and α ∈ (0,1], the empirical location trimmed regions tend, in the Painlevé–
Kuratowski sense, to the population trimmed region, that is,

Dα
L(P ) = lim

n
Dα

L(Pn) a.s.

Proof. Let x ∈ Dα
L(P ). There then exists Q ∈ P α such that x = L(Q). Theorem 12 states that

Q ∈ limn P α
n a.s., so there exists a.s. a sequence {Qn}n ⊂ P with Qn ∈ P α

n for all n ∈ N such
that limn Qn = Q in the convergence of the weak topology.

Since L is continuous when such a topology is considered, then x = L(Q) = limn L(Qn) and
thus Dα

L(P ) ⊂ lim infn Dα
L(Pn) a.s.

Conversely, let x ∈ lim supn Dα
L(Pn). There then exists a sequence {xnk

}k with xnk
∈ Dα

L(Pnk
)

such that x = limk xnk
. Therefore, there exists Qnk

∈ P α
nk

with xnk
= L(Qnk

) for all k ∈ N.

Since {Qnk
}k ⊂ ⋃∞

n=1 P α
n and this set is tight, there exists a subsequence {Qnkl

}l ⊂ {Qnk
}k

converging in the weak topology to a certain Q ∈ P . Theorem 11 implies that Q ∈ P α a.s.,
hence x = liml xnkl

= liml L(Qnkl
) = L(Q) ∈ Dα

L(P ) a.s., which proves that lim supn Dα
L(Pn) ⊂

Dα
L(P ) a.s., so the result holds. �

The definition of the integral trimmed regions is based on the concept of α-trimming of a
probability. Formally, they are defined as follows.
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Definition 15. Given α ∈ (0,1] and a set of measurable functions F from Rd into R, the integral
α-trimmed region of P with respect to the set F , denoted by Dα

F (P ), is defined as

Dα
F (P ) =

{
x ∈ Rd :∃Qx ∈ P α with f (x) ≤

∫
f dQx for all f ∈F

}

=
⋃

Q∈Pα

⋂
f ∈F

f −1
((

−∞,

∫
f dQ

])
.

Integral trimmed regions satisfy, under mild conditions in the generating families of functions,
some convenient properties for general trimmed regions, such as being nested, affine invariant,
closed or bounded (see Cascos and López-Díaz [3]).

We will obtain a result for the empirical version of integral trimmed regions.
Some concepts which appear in this study are briefly described, in particular the concepts of a

Glivenko–Cantelli class for a probability and the concept of an envelope of a family of functions.
Given P ∈ P, a family of measurable functions (from Rd into R) F ⊂ L1(P ) is said to be a

Glivenko–Cantelli class for P if

lim
n

(
sup
f ∈F

∣∣∣∣
∫

f dPn −
∫

f dP

∣∣∣∣
)

= 0 a.s.

A measurable mapping fF is said to be an envelope of the family of functions F if |f | ≤ fF
for all f ∈F .

For a more detailed explanation on these concepts and their applications see, for instance,
Talagrand [9] and van der Vaart [10].

Theorem 16. If F is a Glivenko–Cantelli class for P of continuous and bounded functions with
an envelope fF ∈ L1(P ), then for all α ∈ (0,1], it holds that⋂

ε>0

lim inf
n

Dα,ε
F (Pn) = Dα

F (P ) a.s.,

where

Dα,ε
F (P ) =

{
x ∈ Rd :∃Qx ∈ P α with f (x) − ε ≤

∫
f dQx for all f ∈F

}
.

Proof. Theorem 27 in Cascos and López-Díaz [3] states that under the conditions of the theorem
it holds that ⋂

ε>0

lim sup
n

Dα,ε
F (Pn) = Dα

F (P ) a.s.

Therefore, ⋂
ε>0

lim inf
n

Dα,ε
F (Pn) ⊂ Dα

F (P ) a.s.
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and only the other inclusion remains to be proven.
Let D be a countable and dense subset of Dα

F (P ) and x ∈ D. There then exists Q ∈ P α with
f (x) ≤ ∫

f dQ for all f ∈ F .
Let us take the sequence {Qn}n≥n1 constructed in Proposition 9.
We split the set {n ∈ N : n ≥ n1} into two sets, namely NQ (see expression (3)) and {n ∈

N :n ≥ n1} \ NQ.
In Cascos and López-Díaz [3], it is proved that for the subsequence determined by NQ, it holds

that

lim
k

(
sup
f ∈F

∣∣∣∣
∫

f dQnk
−

∫
f dQ

∣∣∣∣
)

= 0 a.s.

Now, consider the subsequence determined by {n ∈ N :n ≥ n1} \ NQ.
Given n in this set, then nk < n < nk+1 for some k with nk,nk+1 ∈ NQ. From (1), we have

Qn(·) = nk

n
Qnk

(·) + 1

n

(
I(·)(Xnk+1) + I(·)(Xnk+2) + · · · + I(·)(Xn)

)
,

which implies that ∫
f dQn =

∫
nk

n
f dQnk

+ 1

n

n∑
j=nk+1

f (Xj ).

Since nk ∈ NQ, equation (2) implies that∫
f dQnk

=
∫

fg

‖g‖L1(Pnk
)

dPnk
.

Hence, we obtain that

sup
f ∈F

∣∣∣∣
∫

f dQn −
∫

f dQ

∣∣∣∣
= sup

f ∈F

∣∣∣∣∣nk

n

∫
fg

‖g‖L1(Pnk
)

dPnk
+ 1

n

n∑
j=nk+1

f (Xj ) −
∫

fg dP

∣∣∣∣∣
≤ sup

f ∈F

(∣∣∣∣nk

n

∫
fg

‖g‖L1(Pnk
)

dPnk
−

∫
fg dP

∣∣∣∣
)

+ 1

n

n∑
j=nk+1

fF (Xj ).

When n tends to ∞, since nk < n < nk+1, nk also tends to ∞ and, in accordance with (4), we
obtain that

lim
n

(
sup
f ∈F

∣∣∣∣nk

n

∫
fg

‖g‖L1(Pnk
)

dPnk
−

∫
fg dP

∣∣∣∣
)

= lim
n

(
sup
f ∈F

∣∣∣∣nk

n

∫
f dQnk

−
∫

f dQ

∣∣∣∣
)

= 0 a.s.
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Note that nk/nk+1 ≤ nk/n ≤ 1 and from Proposition 8, it follows that limk nk/nk+1 = 1 a.s.,
so limk nk/n = 1 a.s.

Regarding the term n−1 ∑n
j=nk+1 fF (Xj ), we trivially obtain that

1

n

n∑
j=nk+1

fF (Xj ) = 1

n

n∑
j=1

fF (Xj ) − 1

n

nk∑
j=1

fF (Xj )

= 1

n

n∑
j=1

fF (Xj ) − nk

n

1

nk

nk∑
j=1

fF (Xj ).

On the other hand, fF ∈ L1(P ) and since
∫

fF dP = E(fF (X1)), the strong law of large
numbers implies that

lim
k

(
1

n

n∑
j=1

fF (Xj ) − nk

n

1

nk

nk∑
j=1

fF (Xj )

)
= E(fF (X1)) − E(fF (X1)) = 0 a.s.

As a consequence, we conclude that the sequence {Qn}n≥n1 satisfies

lim
n

(
sup
f ∈F

∣∣∣∣
∫

f dQn −
∫

f dQ

∣∣∣∣
)

= 0 a.s.

So, we have a.s. that for all ε > 0, there exists n0 ∈ N such that for all n ≥ n0, it holds that

sup
f ∈F

∣∣∣∣
∫

f dQn −
∫

f dQ

∣∣∣∣ ≤ ε

2
.

This implies that for all f ∈ F , we have f (x) − ε ≤ ∫
f dQn, so it holds a.s. that for all ε > 0,

the point x satisfies

x ∈ lim inf
n

Dα,ε
F (Pn).

Since the lower limit is closed and D is countable, its topological closure satisfies

clD ⊂
⋂
ε>0

lim inf
n

Dα,ε
F (Pn) a.s.

and, finally,

Dα
F (P ) ⊂

⋂
ε>0

lim inf
n

Dα,ε
F (Pn) a.s.,

which implies the desired result. �
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