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periodic and almost periodic structure

RAFAL SYNOWIECKI

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059
Krakow, Poland. E-mail: rsynowie @agh.edu.pl

The aim of this paper it to establish sufficient conditions for consistency of moving block bootstrap for non-
stationary time series with periodic and almost periodic structure. The parameter of the study is the mean
value of the expectation function. Consistency holds in quite general situations: if all joint distributions
of the series are periodic, then it suffices to assume the central limit theorem and strong mixing property,
together with summability of the autocovariance function. In the case where the mean function is almost
periodic, we additionally need uniform boundedness of the fourth moments of the root statistics. It is shown
that these theoretical results can be applied in statistical inference concerning the Fourier coefficients of
periodically (PC) and almost periodically (APC) correlated time series. A simulation example shows how
to use a graphical diagnostic test for significant frequencies and stationarity within these classes of time
series.
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property

1. Introduction

Moving block bootstrap (MBB), introduced by Kiinsch [18] and Liu and Singh [22], is a nonpara-
metric bootstrap procedure that can be applied to dependent observations, that is, time series. It
consists of calculating the estimator over replicated series obtained by drawing with replacement
from the blocks of consecutive data. By means of this resampling procedure, we obtain approx-
imations of unknown distributions of root statistics. Then, on the basis of these approximations,
we may construct confidence intervals and test different practical problems. It seems that the
MBB procedure is quite well investigated in the case of strictly stationary strong mixing time
series (see, e.g., Kiinsch [18], Radulovi¢ [25] and Lahiri [20]) and sufficient conditions for con-
sistency were formulated under quite general conditions for this set-up. As for the non-stationary
case, some results have recently been obtained. Fitzenberger [9] and Politis et al. [24] give con-
ditions for MBB consistency for the univariate mean without stationarity assumption, whereas
the results of Lahiri [19] and Gongalves and White [13] concern the general heterogeneous time
series.

In this paper, we concentrate on a special case of non-stationarity, that is, periodic and almost
periodic time series. We develop techniques, presented in Arcones and Giné [2] and Radulovi¢
[25], that are based on a general central limit theorem (CLT) for infinitesimal arrays (Araujo
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and Giné [1]). Our parameter of interest will be the mean value of non-constant, almost periodic
mean function EX;, and it is estimated by the estimator X, = /n) Z;‘:l X;. Having results
concerning this parameter, we can derive results regarding higher-order moments or correspond-
ing Fourier coefficients (see Section 4). Let us argue that the results concerning the univariate
mean do not apply here; neither do Theorems 2.2 and 2.1 from Gongalves and White [13], in
which it is required that the time series satisfy the following condition:

2
1 n 1 n
Z;<EX,—;;EX, —~0  forn— oo.

However,
l & l & P l & 2
_ 2
d(ex i gen) =S (13

and this does not tend to zero if the expectation is a non-constant, almost periodic function (see
Lemma A.1 in the Appendix). Finally, the results of Lahiri [19] are very restrictive.

Chan et al. [5] and Politis [23] found modifications of the MBB procedure that are applicable to
some specific time series with periodic structure. Unfortunately, their procedures require that we
know the exact length of the period. Therefore, we cannot use them in the problem of determining
significant frequencies. Moreover, these procedures do not generalize to the almost periodic case.
Moving block bootstrap itself does not have these restrictions: we do not have to know the period
and the procedure can also be easily performed in the almost periodic case.

Statistical inference in the aforementioned special case of non-stationarity is of great practical
importance. Many time series data in economics, telecommunications or climatology possess
such structure. For examples, we refer the reader to Gardner el al. [10] and references therein.
Let us add that if we have a series with periodic mean, the period can usually be easily guessed
from the plot of the series and we may extract seasonal means to obtain zero-mean time series.
However, this cannot be done for higher-order periodicity. Moreover, in the almost periodic case,
we are usually unable to extract the mean, which is an almost periodic function. The only solution
is to estimate the Fourier coefficients and in order to do this, the significant frequencies should be
known. As will be shown in Section 4, the MBB procedure is of considerable help in detecting
these significant frequencies.

Section 2 of this paper includes formal definitions of the time series classes that are under
consideration. Section 3 presents a description of the MBB algorithm and new results regarding
its consistency for strictly periodic and then for almost periodic structured time series. The next
section contains the application of MBB in the detection of the significant frequencies for second-
order periodically (PC) and almost periodically (APC) correlated time series. All proofs are
deferred to the Appendix.

2. Classes of time series to be considered

To begin, we give definitions of the time series classes that will be studied in this paper. The
order parameter r and the length of the period T are assumed to be positive integers.
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Definition 2.1. The time series {X;:t € Z} is called strictly periodic of order r (SP(r)) with
period T if, forany t, 7|, 02,...,Tr—1 €Z,

d
Xe, Xegops ooy Xigoo ) = Ko, Xidoy475 -+ Xepr,_47)-

Definition 2.2. The time series {X; :t € Z} is called strictly periodic (SP) with period T if it is
SP(r) with period T for any r € N.

A large class of SP models are time series of the form (Synowiecki [27])

Xt =F(Z, f(1)),

where the time series {Z;} is strictly stationary, the function f(-) is periodic and the function
F (-, f(t)) is measurable for any ¢ € Z.

Definition 2.3. The time series {X,:t € Z} is called weakly periodic of order r (WP(r)) with
period T if E|X,|" < oo and, for any t, 11,12, ..., 7,—1 € Z,

EXiXi4r -+ Xigr, ) = EQXuqr Xy 47 - X,y 47)-

Before we introduce another definition, we will briefly recall the concept of almost periodic
functions. A real- or complex-valued function f is called almost periodic if for every € > 0,
there exists a number /. such that for any interval of length greater than /., there exists a number
De in this interval such that

sup| f (1 + pe) — f()] <€

teZ
(see Corduneanu [6]). Almost periodic functions generalize periodic functions. They possess
similar properties, such as boundedness and Fourier representation. As an example, consider the
following function:

f(t) =cos(At).

If t € R, this function is periodic with period T = 2nt/A. However, if t € Z and A # 21t/ m, where
m € Z, the function f is not periodic, but is almost periodic. The following fact characterizes
almost periodic sequences (Corduneanu [6]): the sequence {a,} is almost periodic if and only if
there exists an almost periodic function f defined on R such that f(n) = a, for all n € N. The
space of almost periodic functions is closed with respect to products, sums and uniform limits.
Moreover, for any function f belonging to this class, its mean value, that is, the quantity

s+n—1

1
Mi(f@)= lim — 3 f()),

j=s

exists, uniformly with respect to the number s. The subscript ¢ in the symbol M; is included to
emphasize the averaging over the variable ¢.
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The next important fact regarding almost periodic functions is that the set
Ap=1{rel0,2m): M,(f(1)e ™) # 0}

is countable. If, beyond this, the set A s is finite, then the function f has some further desired
properties. First, there exists a finite constant C, independent of s and 7, such that

s+n—1

C
= O =M(f)] <=, (1)
n t=s n

which is implied by the discrete counterpart of Lemma 2 from Cambanis ef al. [4]. Second, the
Fourier representation becomes equality (Corduneanu [6]), that is,

f) = Z a(Ve ™M,

AEAf

This identity is very important in statistical inference of the time series defined below. Note that
for a purely periodic function with period 7', we have

2nk
AfC Tk:(),,T—l ,

so this set is always finite. In contradistinction, when the set A ¢ is not finite, then it must contain
cluster points. Such a situation causes trouble in statistical reasoning (see, e.g., Hurd [14] and
Dehay and Leskow [7]).

Definition 2.4. The time series {X; :t € Z} is called weakly almost periodic of order r (WAP(r))
if E|X;|" < oo and, foranyt, 1y, 12,..., r—1 € Z, the function

E(XtXt+rl e Xl+r,,1)
is almost periodic in the variable t.

As an example, we could consider amplitude-modulated series of the form X; = f(¢)Z;,
which are WAP(r) provided that the series {Z;:t € Z} is WP(r) and the function f is almost
periodic.

It is easy to see that WP(r) C WAP(r) and, for any two positive integers such that r| < r,
we have that SP(r1) C SP(r2) C SP. Moreover, each weak periodicity is implied by the corre-
sponding strict periodicity, provided that the appropriate moments exist. Let us add that the class
of series that are both WP(1) and WP(2) is identical to the class of periodically correlated (PC)
time series in the sense of Gladyshev [12]. A series that is both WAP(1) and WAP(2) is almost
periodically correlated (APC) in the sense of Hurd [14]. For statistical inference within these
classes, we refer the reader to Hurd and Leskow [15] and Dehay and Leskow [7].
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3. Results regarding MBB for time series with periodic and
almost periodic structure

Our aim is to investigate the mean value u = M, (E X;) of the real-valued time series {X; :t € Z}
that is (almost) periodic in the first or higher order. The standard estimator obtained from the
sample (X1, ..., X,) is of the form X,=( /n) Z:’zl X;. We wish to determine sufficient con-
ditions for the moving block bootstrap which would enable us to calculate approximations of the
quantiles without using the form of asymptotic variance. In order to present the MBB procedure,
let us denote the block of b = b(n) consecutive observations as B; , = (X, ..., X;45—1) and
k = k(n) = n/b(n) which, without loss of generality, is assumed to be integer-valued through-
out the whole paper. Let iy, 7, ..., i; be i.i.d. random variables with uniform distribution on
the set {1,2,...,n — b+ 1}. By joining the blocks B;, p, ..., B;, », we obtain the MBB sample
(X*, ..., X*) and the MBB version of the estimator takes the form X, = (1/n) Y.7_, X*. In the
following, the P*, E* and Var* denote quantities obtained from replicated series conditioned on
the sample (X1, ..., X,,). The asymptotic variance o2 is always assumed to be positive.

Theorem 3.1. Let {X;:t € Z} be a strictly periodic with period T, a-mixing time series and let
X[ be generated by the MBB procedure with b = o(n) but b — 0o. Assume that:

(i) the autocovariance function is summable, that is,

oo
D 1Cov(Xy, Xp4o)| < 00

=0
forallt=1,...,T;
(ii) the CLT holds, that is,
— d
VX, — w) = N(©,0%), )

where i@ = M;(EX;).
Then, MBB is consistent, that is,

sup |P(Vn(X, — ) <x)—P*(ﬁ(Y:—E*Y:) <x)|—P>0. 3)

xeR

We can say that the above theorem is a generalization of Theorem 2 of Radulovié¢ [25] from
the case of strictly stationary to non-stationary strictly periodic time series. We assume periodic
structure of all joint distributions and no rate of convergence of «-mixing function.

Corollary 3.1. Let {X;:t € Z} be a strictly periodic with period T, o-mixing time series and let
X} be generated by the MBB procedure with b = o(n), but b — 00. Assume that for some § > 0:

() E|X;*?P <ocofort=1,...,T;



1156 R. Synowiecki

.. 5/ (248
(ii) Z:ozlax/( + )(r) < 00.

Then, CLT (2) holds and the MBB procedure is consistent, in the sense of (3).

The next step will be to formulate a general theorem regarding consistency of moving block
bootstrap for non-stationary time series with almost periodic mean.

Theorem 3.2. Let {X;:t € Z} be an APC, a-mixing time series and let X} be generated by the
MBB procedure with b = o(n), but b — 0o. Assume that:

(1) the set A ={)\ €[0,2m): M, (E X, e i) # 0} is finite;

(ii) the autocovariance function is uniformly summable, that is, | Cov(X;, Xt4+)| < ¢, where

the sequence {c;}22 , is summable;

(iii) there exists a finite constant K that does not depend on b = b(n) <n and n, such that

| Sttt 4
sup E[— (X;—EX)) ) =K; 4)
s=1,n—bt1 (\/B ; t t

(iv) the CLT holds, that is,

VX, — 1) -5 N0, 62), )

where u = M;(EX,).

Then, the MBB is consistent, that is,

sup | P (Vi (X, — 1) < x) — P*(Va(Xs — E*X) < x)| —> 0. 6)
xeR

We will now describe two specific situations in which Theorem 3.2 is satisfied. Assump-
tions (ii) and (iii) can be guaranteed by an appropriate mixing rate and uniform boundedness
of moments of the series.

Corollary 3.2. Let {X,:t € Z} be an APC, a-mixing time series and let X} be generated by the
MBB procedure with b = o(n), but b — co. Assume that:

(i) the set A =1{)€[0,2m): Mt(EX,e_i)") # 0} is finite;
(i) sup,cz E|X,|**® < 0o for some § > 0,
(i) Y07, rai/(4+8)(r) < o0
(iv) the CLT holds (i.e., (5) is satisfied).

Then, the MBB procedure is consistent, in the sense of (6).

First, note that (5) can be obtained by, for example, Theorem B.0.1 of Politis er al. [24]. We
can easily verify its condition (B.2) by means of Lemma A.6. A slightly stronger mixing rate
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should be assumed, that is,

o0
Z(r + l)zag+6)/(10+6)(r) < 00,
=0

where the parameter § is defined in Corollary 3.2. Second, we can take a constant expectation
function and the series for which, instead of WAP(2) assumption,

1 s+b—1
2
sup Var(— Z Xt) —0 for n — oo.
Vb =

s=1,...n—b+1

Then, Corollary 3.2 can be viewed as a generalization of Theorem 4.4.2 (the univariate mean
case) from Politis et al. [24] since the assumption regarding the mixing rate is weaker.
The last result of this section concerns uniformly bounded time series.

Corollary 3.3. Let {X,:t € Z} be an APC, a-mixing time series and let X be generated by the
MBB procedure with b = o(n), but b — 00. Assume that:

(i) the set A ={) € [0, 2m): M, (E X e~ i*) # 0} is finite;
(1) the series {X;} is a.s. uniformly bounded,
(i) ax () =0(x"?);
(iii) the CLT holds (i.e., (5) is satisfied).

Then the MBB procedure is consistent, in the sense of (6).

Therefore, in the case of uniformly bounded random variables, further relaxation regarding the
mixing rate can be allowed.

4. Application to the Fourier coefficients of the autocovariance
function

In the case of periodically (PC) and almost periodically (APC) correlated time series, statis-
tical inference focuses mainly on second-order properties of the series. If no assumption re-
garding the APC model is made, it is based on the Fourier representation of the function
B(t,7) = E(X;X;4+.) (Hurd and Leskow [15], Dehay and Leskow [7]), that is

Bt.)= Y a(r ).
reAL
We let
a(h, ) = My(B(t, t)e )

and the set Ay = {A:a(A, 7) # 0} is assumed to be finite. In the engineering literature, a(X, 7)
is called a cyclic autocorrelation function, while the elements of the set A; are called cyclic
[frequencies.
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If we observe the real-valued series {X; :t € Z} fort =1, ..., n, the estimator of the parameter
a(A, ) is of the form

n—max{t,0}

Z X Xgpee M,

t=1—min{z,0}

an()"a T) =

n—|t|

Its properties, such as strong consistency and asymptotic normality, were studied for the case of
@-mixing stochastic processes in Hurd and Leskow [15] and Dehay and Leskow [7]. Recently,
these results have been generalized to the case of «-mixing APC time series (Leskow and Syn-
owiecki [21]). The aforementioned sufficient conditions for the CLT for the estimator a, (A, T)
require the mixing rate

o
Y+ 1% () <0,

=1

provided that sup, E|X; |4+43 < 00 and that the series is also WAP(4). Unfortunately, the form of
asymptotic variance is quite complicated and depends on fourth-order mean values, so it is not
applicable in practice. This justifies why it is important to develop resampling methods such as
MBB within the class of PC and APC time series.

Remark 4.1. Without loss of generality, assume that t > 0. For the APC time series {X; : t € Z},
define the time series
Wik, 7) = X Xppre .

Its expectation function is almost periodic and, in fact, for all A € [0, 2x), apart from at most a
finite number of them, not purely periodic. It is easy to see that

1 i
M(EW, (0, 0) = lim —3 (X Xie™™) =a(, 1)
t=1

and

o | =t
Wy_t(A, 1) = —— W, =a,(\, 7).
n—t (A, T) n—tz r=an(A, T)

t=1

Therefore, it will be possible of use the results regarding MBB for the expectation function of
the estimator a, (A, 7). Let (W (A, 7),..., Wy__ (X, 7)) be an MBB sample obtained from the
sample

WiA, 1)y, Wyt (A, 7)) = (XIXH-re_i)La cees Xn—ane_i)L(n_T))~

The MBB version of the estimator a, (A, 7) is defined as

A . 1 n—t
=W, (A1) = — > WEOLT).
=1
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We now provide a theorem regarding the consistency of the MBB estimator 4 (A, 7). The in-
equalities between complex numbers involving a(A, t), a, (A, 7) and (x, y) are to be understood
componentwise.

Theorem 4.1. Let {X;:t € Z} be an APC and WAP(4) time series that satisfies the following
conditions:

(i) the set Ay = {1 € [0,2m): M,(B(t, T)e ") # 0} is finite;
(i) sup,cz E|X, 3% < o0;
(i) Y po, ta?{(4+8)(r) < o0;
(iv) the CLT for the estimator a, (A, T) holds, that is,

V(an(n 1) — a0 1) -5 NG (0.8)  forn— oo
and det(X) # 0.

Then, MBB with b = o(n), but b — o0, for the estimator a, (A, T) is consistent, that is,

sup | P(Vn(an(h, 1) —a(r, 1)) < (x,y))

(x,y)ER2
— PX(V(a (0 T) — E*@ (1)) < (6 9) | —> 0.

The MBB procedure for the estimator a, (A, T) that is described above may be used in the
problem of determining significant frequencies (i.e., the frequencies that belong to the set A),
which, in the PC case, is equivalent to the identification of the period. In practical applications
(see, e.g., Yeung and Gardner [28], Dehay and Leskow [8] and Gardner et al. [10]), one cal-
culates the values of the estimator a, (A, t) for A € [0, 2r). The frequencies for which spikes
are obtained are then chosen to be significant. Unfortunately, this choice is made arbitrarily, as
it is not possible to construct reasonable confidence intervals based on the asymptotic distrib-
ution; see Dehay and Leskow [7] and Leskow and Synowiecki [21] for the exact form of the
asymptotic variance. Therefore, we propose to use MBB, which provides an easy way to obtain
the pointwise consistent confidence intervals. Certainly, it would be most desirable to conduct
simultaneous inference with respect to A for a(A, t). The research of Dehay and Leskow [7]
presents a functional CLT in t for the root statistics. However, thus far, no such result exists in
the argument A.

5. Simulation example
We will use the series simulated from the PAR(1) model
Xy =a X1+ e,

where

2+1 . [ 2mt
= — —Sin| —
=373 3
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20 20

15

10

(b) (©)

Figure 1. Unsuccessful detection of significant frequencies for the simulated series. (a) The PAR(1) series,
the sample size here being n = 300. (b) The values of Re(a, (A, 1)) with respect to 0 < A < 7. (c) The values
of Im(ay, (A, 1)) with respect to 0 < A < 7.

and €1, €y, ... are i.i.d. with the standard normal distribution. This model is PC with period
T = 3 (see Bloomfield et al. [3]) and o-mixing with a geometrically decaying mixing function.
Figure 1(a) depicts the series itself. Note that it is not possible to guess the second-order period
from this plot. Figure 1(b) shows the values of the real part of the estimator a, (A, 1) with respect
to A € [0, w]. Since @, (27 — A, T) = a, (X, T), we do not have to plot the values for the interval
(m, 2m). Finally, Figure 1(c) corresponds to the imaginary part of the estimator. At this stage, we
are unable to tell which frequencies are significant. We can observe several spikes, none of which
seems to dominate.
Consider the following testing problem:

Hy: a(h,t)=0;
Hi:a(h, t)#0.
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20¢
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15¢

10

(b)

Figure 2. Successful MBB-based detection of significant frequencies for the simulated series. (a) The
values of Re(dy (A, 1)) (dotted line) and MBB confidence intervals (solid lines) with respect to 0 < A < T.
(b) The values of Im(ay, (A, 1)) (dotted line) and MBB confidence intervals (solid lines) with respect to
0O<A<Tm.
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To verify Hy, we will use T,, (A, T) = /% a, (A, T), which, under Hy, has zero-mean asymptotic
normal distribution. The quantiles of 7,,(X, v) are obtained by means of the MBB procedure,
that is, we approximate the quantiles of 7,"(X, v) via Monte Carlo simulation. We used the block
size b = 30. Figure 2 depicts the values of the estimator a, (), 1) (dotted lines) compared to
this quantiles (rescaled by /n) of orders 0.05 and 0.95 (solid lines). The fact that the dotted
lines cross the solid line means that, at this point, we reject the hypothesis Hy. The only points
at which this happens are A ~ 2.1 ~ 2n/3 and A & 0. Therefore, we conclude that our series
has period T = 3 because, in this case, A; C {0,2n/3,4n/3}. Let us add that if there were
not any significant spikes for any t, we might conclude that the series is stationary. Therefore,
this graphical test can also be viewed as a stationarity test within the class of APC time se-
ries.

6. Conclusions

The aim of this paper was to show that the classical MBB procedure works well for those non-
stationary time series that have periodic or almost periodic structure. For the time series that have
all joint distributions periodic, consistency holds under very general conditions; for the almost
periodic case, we need some more stringent assumptions regarding moments of the series and the
mixing rate. As for further research, it would be very desirable to estimate within these classes
of models the rate of optimal block size b, as well as to compare (theoretically) performance of
MBB with that of the procedures proposed by Chan et al. [5] and Politis [23] for the case of
periodic series.

Appendix

Lemma A.1. Let the real-valued function f be almost periodic. Assume that the set Ay = {A €
[0, 21) : M; (f (t)e™*) £ 0} is finite. If we have

M (f2(1)) = MZ(f (1)),

then the function f is constant.

Proof. Using the Fourier representation of almost periodic functions, we have that

f0=Y" a(e™.

AEAf

Therefore,

Mi(f20)= ) aG)a@u—5).

AEAf
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Since a(2m — A) = a(), the assumption implies that a*(0) = Y, _» ; la)|?,s0 Ay ={0}. O

Lemma A.2. Let (X1,...,X,) be a sample from the time series {X;:t € 7} that is strictly
periodic with period T. Then, the triangular array {Y,;:t =1,...,n —b + 1}, where Y, ; =
X+ -+ Xigp—1, is row-wise strictly periodic with the same period T for any sequence of
positive integers b = b(n) <n.

Proof. Since, foranyr e N, ¢, 11,..., 7,1 € Z,
(X1, Xet1s - os Xevo—15 Xebop, Xery+1s o0 Xebry+b—15
oo Xitr_ s Xebru_y41s oo o0 Xedro_+b-1)
d
=(Xe41s oo s X T40—15 Xtdry 475 -+ s Xedtry +T+6—15
con Xt 4T s Xidgp 4T 4+0—1),

calculating the values of these vectors under the Borel measurable mapping that sums b succes-
sive elements of an rb-dimensional vector, we obtain

d
(Yn,t» Yn,H—rl DR Yn,t-i—tr,l) = (Yn,t+Ts Yn,t+r1+T7 ceey Yn,t+rr,1+T)- O

Lemma A.3. [f the time series {X,:t € Z} is strictly periodic (or SP(r)) with period T and the
function f:R — R is Borel measurable, then the time series {f(X;):t € Z} is also strictly
periodic (or SP(r)) with the same period T .

Proof. For any r € N, define the function g:R" — R” as

g(.xl,...,xr)=(f(x]),...,f(xr)).

Knowing that for any ¢, 71, ..., 7,—1 € Z,

d
(Xta Xt-‘r‘[] y ey Xt-l—‘[,_]): (Xt-i—Tv Xt+‘[]+Ta LRI Xt+‘[r_1+T)a

calculating the values of these vectors under the measurable mapping g, we obtain

XD f Kigr)e oo f K, D EF Kisr)s f Kt e)s oo f Ky 47))-

O

Lemma A4. Let {X, :t=1,...,d,}, where d,, — 00, be a triangular array of real random
variables, which is row-wise SP(1) with the same period T . Assume that:

() fort=1,..., T, the series {X, ;}oc, are uniformly integrable (we denote by X, ,, the

n=n;
first element in column t of the array {X, ;});
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(ii) the following limits exist and are finite

ur= lim EX, 1,

n—oo

n2 = lim EXyp,
n—00

wr = lim EX, 1;
n—od
(iii) there exists a triangular array of non-negative real numbers {a, :t =0, ...,d, — 1}
such that

1 d,—1
—Zan,r—>0 forn — oo
dn =0

and, forevery AcR,t=1,...,Tandt=0,1,...,d, — ¢,

2
Cov(Xn i 11x,,1<As XnsteLiX,,1<A) < A%anc.

We then have

where u = (1/T) ZzT=1 s

Proof. The technique to be used here is a modification of the proof of Lemma 1 from Radulovié
[25]. Let Y, s = Xyt — E Xyt Due to the periodicity of E X, ;, it suffices to prove that

1 P
d—ZYn‘t—>0.
=1

Letting Yn,, =Yu 1y, <4, and 7,,,, = Yu 1y, |>4,, the above convergence follows from

d,
1 &K~ ~ P

T > Fpi— EYp ) —0 )

t=1
and

dy

1 — - P

— Y (Vi — EYp1) —0. ®)
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To prove (7), note that, for any € > 0,

( 1 & 1 n
Pl|— >e>< Va( (Yos E?n,)>
<— ,
dn =1 dn€ =1
d,

> Fni — EVy)

) d, d,—t
< 4 22 |C0V(Yn,tv o)
n € t=1 =0
2 dy, d,—1 d,—1
2 2
23N M= 2 Y A
n €21 =0 =0

Letting

it is easy to see that A,, — oo and we therefore obtain that

dp—1 172
( >e> ( Zan,) -0 for n — oo.

In order to prove (8), note that, by Lemma A.3 with the function f(x) =x1|x>~4, we have, for

Z(Yn (= EY,))

nll

any € > 0,
1 dy dn
P( =2 Vs —EVnp)| > e) <—E|Y (Yni—EYy,)
" =1 =1
dn
ENY .l
2(1da/TI+ 1)
< e Y E X, 124,
dye —
By uniform integrability of the sequences {X, };2,, for z =1,...,T, we obtain the desired
convergence to zero. ]

Lemma A.5. Let (X1,..., Xy,) be a sample from the time series {X;:t € Z} that is WAP(1).
Assume that

() the set A = {L: M;(EX,e~"*) =0} is finite;
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(ii) there exists a finite constant K that does not depend on b = b(n) < n and n, such that

1 s+b—1 4
sup E<— Z (X,—EXI)> <K.
Vb S

There then exists a finite constant K' that does not depend on b and n, such that

where u = M;(EX;).

Proof. We have

Due to (1), we have

Therefore,

| Sl 4
E(— X, —
(ﬁt;(t u))
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1 s+b—1 1 1 s+b—1 3
:E(\/E Z (X; — EX,)) —I—O(E)E(ﬁ ; (Xt—EX,))
IRy 2
ol o on) wof)

The first term is uniformly bounded, by assumption (ii). For the second and third terms, we have

e | Sl "1z
(f Z (X, — EX») :E(ﬁ > (Xt—EX») }
t=s

and
1 s+b—1 3
El—= > (X - EX»)
(ﬁ 1=s
s+b—1 4y1/2 1 s+b—1 24172
Z (X; — EX») } {E(— > (X,—EXo) }
{ ( N
] St 4y3/4
<{El— Z(X,—EX,)> } :
{ <~/5 =r
by the Cauchy—Schwarz inequality. O

Lemma A.6 (Leskow and Synowiecki [21]). Let (X1,..., X,) be a sample from the time se-
ries {X;:t € Z} that is real-valued and APC. Assume that the autocovariance function is uni-
formly summable, that is, there exists a summable sequence {c;}72, of real numbers such that
|Cov(X¢, Xi41)| < c. There then exists a number o2 such that, for any sequence b =b(n) <n

tending to infinity,
s+b—1
Var( Z Xz) —o?

sup
=1,....n—b+1

—0 forn — oo.

Proof. We refer the reader to Leskow and Synowiecki [21]. (Il

Proof of Theorem 3.1. The following proof develops the techniques presented in Radulovié
[25] and Giné [11]. We can assume, without loss of generality, that = 0; note that this does
not mean that EX;, =0. Foreachn e Nandr=1,...,n — b + 1 (recall that b = b(n)), we let
Zip =X+ -+ X;4p—1. The random variables Z;" , are conditionally independent (given the
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sample) with common distribution

1
P*(Z;’b:Zt’b)zm fort:l,...,n—b+l.
By Corollary 2.4.8 on page 63 of Araujo and Giné [1], the conclusion of the theorem is implied
by the fact that for any § > 0,

k
1 P
;P*<ﬁ|zjb| - 5) .o, ©)
k 1 1 P
E(—Z 1, )— —E"Z;p)—0 (10)
; N 125 ,1<v/né ;ﬁ J
and
k
* 1 * P 2
> Var ﬁzj’bllzj,b‘sﬁg 2, (11)

j=1
where 15 denotes the indicator function of the statement S.
In order to prove (9), observe that

n—b+1

k
I 1
ZP*<E|Z}%| > 5) =1 2 iz v
j=1

t=1
Let
Unit =kliz, 1> /s

and consider the array {U,;:t =1,...,n — b + 1}. By Lemmas A.2 and A.3 with f(x) =
k1x|>c, we obtain that this array is row-wise strictly periodic. In order to show that {U,, ,} satis-

fies the assumptions of Lemma A.4, define the triangular array {V,, ;:t=1,...,n —b + 1} as
1 s
Vn,t == EZt,b.

Observe that for any fixedr=1,..., T,

LZ L= Zipyi-1 Nb+t1—1  Zy11
Vo T bxi—1 b Vb

L N, o?)

and

E(122> V(lz>+E2(1z)

— =Var| —=Z;» —Zip ).

b t.b \/Z_) t \/Z_) t

Since u = 0, the convergence E 2((1/+/b) Z; p) — 01is implied by the inequality (1), whereas the
convergence Var((1/ Vb) Zip) = o2 results from Lemma A.6. Therefore, the sequences

{‘/n,l};.lo:nl LRI ) {Vn,T})?o:nT
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are uniformly integrable. Moreover, since th b > né? for U, ; # 0, we obtain the estimation

7?2 1
t.,b
0<|Up.l =k1|z,’b|>\/ﬁa = %1|Zx,b|>«/55 . 8_2|Vn,t|»
which implies that the sequences
{U}’l,l }Zoznl’ sy {Ui’l,T}ZO:nT

are also uniformly integrable. Next, due to uniform integrability of {V,, ;},

0 < E|Un| = E(Klz, 1~ /i)

2
Zt,bl _ 1 1
=E 52b |Zp|>/n8 | = 8_2E|Vn,t| Vit |>k82 = 0,

so EU,; — Oforn — oo and fixedt =1, ..., T.Itis easy to see that the triangular array {U, ;}
is row-wise o-mixing with ay, () = ax(max{t —b(n)+ 1, 0}), where ax is the mixing function
of the underlying series {X;}. By the inequality

CoV(Un,i iy, 1<A: Unt+e MUy 140 1<A) < 4A%ay, (1)

(Lemma A.0.2 from Politis et al. [24]) and the estimation

1 n—>b b 1 n—>b
- < 0 fi ,
n—b—i-l;)au"(r)_n—b—i—l+n—b+1§)aX(T)_> orn — oo

we obtain that condition (iii) of Lemma A .4 is satisfied with a,, ; = 4ay, (7).
In order to prove (10), observe that

k k
1 1
S ( i g iem) - 2o
j=1 j=1

1 n—b+1

=T 2 Kl Nz
n—b+1 = Jn ,
denote
1
Ur,l,t = kﬁzt’bllzt,b|>ﬁ5
and consider the array {U,’,,, t=1,...,n — b+ 1}. By Lemmas A.2 and A.3 with f(x) =
(k//n)x1jx|>c, we have that this array is row-wise strictly periodic.Moreover, since Zi »> ns?
for Ut”b #0,
1

1 1
0= |U,/,,t| =kﬁ|zt,b|1|z,,b|>ﬁ5 = k%Zib =35 gVn,z,
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so we have that the sequences

/o0 /00
{Un,l}n=n1 LA {Un,T}n=nT

are uniformly integrable. Since

1 1
0=FIU t| N < ﬁ'zl’b|l|zr,bl>ﬁ‘s) = EE(|V"’Z|1|Vn,:I>k62) -0,

EU,,— 0forn— oo andfixeds=1,...,T. By the same considerations as at the end of the
proof of (9), we can apply Lemma A .4 to the array {U, ,} to obtain that (10) is satisfied.
In order to prove (11), observe that

k
1
Zvar*<ﬁ27,b127,h|sﬁa>
j=1

(12)
1 n—b+1 1

1 n—b+1 1 2
— 2
— " _b+ I Z Ezt,b1|zt,b|§ﬁ5 - (l’l _b +1 Z ﬁZt’b1|Z[’b|§ﬁ5) .
t=1

We will treat the terms separately. For the first, we have

1 n—b+1 1
2
n—b+1 Z EZtJ?llzr,hIS«/ﬁ5
t=1

—b+ 1 1 n—b+1 1
— 2 2
_n—b—l- Z b Zin~ n—b+1 Z gzz,b1|z,,b|>ﬁa
t=1
—b+ 1 n—b+1

- Z g D DR

=1 t=1

where
(Vigit=1,....n—b+1}= {%zﬁblzmbﬁg:z: 1,...,n—b+1}.
We have shown uniform integrability of the sequences
Vadnzns - Va2,
and that for any fixedt =1,..., T, EV,; — o2. Due to this, and the fact that
Vit = VL, 1=k

we also have the convergence E V’ — 0 for fixed ¢t and n — oco. By Lemma A.4 applied to
triangular arrays {V, ;} and {V, z} We obtain that the first term of the right-hand side of (12)
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tends in probability to 2. For the second term, we have

n—b+1
n_b+1 Z fztblwztbkﬂ

1 1" 1
- Ty — —Zp1
n—b+1 b T b 2:: N e

Consider the arrays
{Tn,t:tzl,...,n—b+1}={—Zt,;,:tzl,...,n—b+1}

and

1
{ nt- t—l n—b+1}={—Zt’bllzt,b|>ﬁ5:t=1,...,n—b+1}.

Vb

Since it is assumed that i« = 0 and that inequality (1) holds, we have

1 1
E(Tn,t):E(X,+~--+Xt+b_1):0(ﬁ>—>0 for n — oo.
By the Cauchy—Schwarz inequality, the sequences
{Tn,l}zinl 5 e {Tn,T}ZinT,
{Tr:,l }l(zo=n1 IR {TIZ,T}Zo:nT

are uniformly integrable. Applying Lemma A.4, we obtain that

1 n—b+1 1

P
Y =Ziliz, ey — 0.
n—b+1 p— Vb !
This completes the proof of (11).

Proof of Corollary 3.1. We can write that

—Z WTJ{I( L4 X )

1

+ ?(X(Ln/ijl)TJrl +o 4 XLn/TJT)} +op(1),

where
ln/T|T

a, = —1 for n — oo.
n

1171
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It is easy to see that the time series Y; = (X741 + -+ X41y7)/ T is strictly stationary. There-
fore, we may apply conditions for the CLT for the sample mean of strictly stationary sequences
(Ibragimov and Linnik [16]) to see that under assumptions (i) and (ii), asymptotic normality
holds. Now, note that, due to periodicity, we have

sup E|X,1*70 = My, 5 < 0
teZ

and, by Lemma A.0.1 from Politis et al. [24],
o0 o0
2/(2+5 8/(2+8
Y 1Cov(Xe, Xipo) < 8MYST S oA (1) < 0.
=0 =0

By Theorem 3.1, the proof is completed. ]

Proof of Theorem 3.2. Using the same steps as in the proof of Theorem 3.1, we must show the
following laws of large numbers:

: nfl Ups 250
- - o
n—b+1 &= "

{ n—b+1 .
b1 2 U0
t=1

1 n_frl v _P> 02+M2'
n—b+1 = m

1 n—b+1 / p
= brl Voir — 0;

t=1

] n—b+1 s .
n—b+1 p w

{ n—b+1 o
P —— T,, — 0,

where all of the arrays were defined in the proof of Theorem 3.1. Take {Y}, ; :t =1,...,n —b+1}
to be any of these arrays. Due to the mixing condition of the underlying series {X,}, we have the
estimation

2
Cov Yn,tl Yorl<As Yn,t-i—rl Yoiiel<A) = A dan,t
, +
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forr=1,2,...,t=0,1,...,.n—b+1—1tand

n—b
1 n
7261,!,1—)0 for n — oo.
n—b—i—lr:O

We must show that
1 n P
» Z Yp:—> L,
where L is 0, i or o> + 12, depending on the array, and, in the sequel of the proof without loss

of generality, we assume that u = 0. Letting Y,, ¢ = Yn 1y, <4, and Yn t = Yu 1y, >4,, the
above convergence follows from

d,
1 n ~ ~ P
=2 (ui = E¥, ) =0, (13)
n
dn
- Z(Yn (— E¥p) —> 0 (14)
n =1
and
| &
d—ZEYn,, — L. (15)

t=1

Taking A, as in the proof of Lemma A.4, condition (14) is satisfied due to the same considera-
tions as in the proof of (7). Therefore, it suffices to show that conditions (14) and (15) hold.
‘We have that, for any € > 0,

1 dn _ _ 1 _ _
Pl (Ypi—EYn)|>€)|<—E ni = EYny)
d, P dy€
dy
E|Yu;—EY,,|
2
- ZE|Ynt|
6

In the following, we will carefully use the Cauchy—Schwarz and Chebyshev inequalities. For the
array {U, }, we have

1 n—b+1 1 n—b+1

P ; E(|Un,t|1|U,L,\3An)f—n_b+l ; E(k1,z, 1~ ms)
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—b+

=n_b+1 Z P(1Z:15| > v/né)

—b+1
- Z E1Zol
- n—b+1 — n2s4

1 1 n—b+1 1
=1 E(=z4 )1
k64{n—b+1 2 (b2 ”’)}

=1

For the array {U, ,} we have

1 n—b+1 1 n—b+1

k
ot 2 F ) = o 3 E( G el )

t=1 t=1

1 n—b+1
e Z «/—E1/2< )P1/2(|zt,,,|>\/ﬁa)

1 1 n—b+1 1
PRy E E¥ =z )t
—ﬁaz{n—b+1 p (b2 )}
For the array {V}, }, we have

1 n—b+1

1 n—b+1 1
Pyt 21: E(|Vn,t|1\vn,t|zAn)=7n_b+1 21: E(b bl(l/b)Zth_ )
= =

1 n—b+1 1 1
- - El2 Z4 pl2(ly2 S 4
“n—b+1 2 <b2 porb ="

t=1

—b+1 1/2 2\ 74
_ ”Z g L e \EZQ/BHZE,)
Tn—b+1 = p2 b Ay

1 1 n—b+1 1
ey G— E(=z )}
_An{n—b—i—l ; <b2 ”’)}
For the array {V, t} we have
1 n—b+1

1 n—b+1 1
2
n—b+1 > E(Viilly,i2a,) < b1 > E(zzz,b1|z,,b|>ﬁa>

=1 =1
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1 1 n—b+1 1
< El=2z4 )},
_k82{n—b+l 2 <b2 ””>}

For the array {7, ;}, we have

1 n—b+1 1 n—b+1 1
n—br1 > E( Tl 2a,) = — Iy > E(ﬁ|Zf’b|1(1/\/5>|zr,b|zAn>

=1 t=1

1 n—b+1 1 1
<—— Y EV77, )P —=1Zpl = A
_n—b+1 <b t.b \/El t,bl_ n

=1

1 1 n—b+1 1
<—1— B =z )L
—Agin—bﬂ 2 <b2 t.b

t=1
For the array {7, ,}, we have

1 n—b+1 1 n—b+1

1
A—bel > E(|Tri,tI1|T,:,,|zAn)§m > E(E|Zt,b|1|z,,b|>ﬁ6>

t=1 t=1

1 n—b+1

1
12 L 52 1/2
ST Z E <bz,’b>P (1Z1.] > +/né)

t=1

1 1 n—b+1 1
) 3/4( = -4
k82{n—b—|—1 Z E <b2zt,b)}'

t=1

Applying assumption (iii), Lemma A.5 and the fact that both k — oo and A, — oo, we obtain
that condition (14) is satisfied for all of the arrays. As for condition (15), from the above, we
immediately obtain that for n — oo,

1 n—b+1
———— ) EUwn—0,
n—>b+1 p
n—b+1

1 /
ha1 2 FU 0
t=1

1 n—b+1
p—— > EV,, —0,
t=1
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1 n—b+1
TThTT X ETu—o
=1

Moreover,

1 n—b+1 1 n—b+1
- ETp = ——— —EZ,,—0,
n—b+1 ; T b1 ; N

which follows from inequality (1). As for the remaining array {V, ;}, we have

1 n—b+1 1 nber]l
S EV, = — —EZ?
n—>b+1 ; T b+ 1 ; po b

n—b+1
1 1
= m E {VHI'(E(X;"'""FXH_},_]))

t=1

1
+ o (EX 4 Ext+h_1>2} — 02,

which is implied by Lemma A.6 and inequality (1). This remark completes the proof of Theo-
rem 3.2. ]

Proof of Corollaries 3.2 and 3.3. We use Theorem 3.2. By the same reasoning as in the proof
of Corollary 3.1, we obtain that the autocovariance function is uniformly summable. Assump-
tion (iii) of Theorem 3.2 is implied by Theorem 5 from Kim [17] for Corollary 3.2 and by the
reasoning of Annexe C from Rio [26] for Corollary 3.3. ]

Proof of Theorem 4.1. This is straightforwardly implied by the Cramér—Wold device, Corol-
lary 3.2 and Remark 4.1. We simply note than any linear combination of the real and imaginary
parts of the series {W; (X, t)} also satisfies the assumptions of Corollary 3.2. O
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