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Let BH,K = {BH,K(t), t ∈ R+} be a bifractional Brownian motion in R
d . We prove that BH,K is strongly

locally non-deterministic. Applying this property and a stochastic integral representation of BH,K , we
establish Chung’s law of the iterated logarithm for BH,K , as well as sharp Hölder conditions and tail
probability estimates for the local times of BH,K .

We also consider the existence and regularity of the local times of the multiparameter bifractional Brown-

ian motion BH,K = {BH,K(t), t ∈ R
N+} in R

d using the Wiener–Itô chaos expansion.

Keywords: bifractional Brownian motion; chaos expansion; Chung’s law of the iterated logarithm;
Hausdorff dimension; level set; local times; multiple Wiener–Itô stochastic integrals; self-similar Gaussian
processes; small ball probability

1. Introduction

In recent years, there has been considerable interest in studying fractional Brownian motion
due to its applications in various scientific areas including telecommunications, turbulence, im-
age processing and finance. Many authors have also proposed using more general self-similar
Gaussian processes and random fields as stochastic models (see, e.g., Addie et al. [1], Anh et
al. [3], Benassi et al. [7], Mannersalo and Norros [30], Bonami and Estrade [12], Cheridito [13]
and Benson et al. [8]). Such applications have raised many interesting theoretical questions about
self-similar Gaussian processes and fields in general. However, in contrast to the extensive studies
on fractional Brownian motion, there has been little systematic investigation on other self-similar
Gaussian processes. The main reasons for this, in our opinion, are the complexity of dependence
structures and the lack of availability of convenient stochastic integral representations for self-
similar Gaussian processes that do not have stationary increments.

The objective of this paper is to fill this gap by developing systematic ways to study sample
path properties of self-similar Gaussian processes. Our main tools are the Lamperti transfor-
mation (which provides a powerful connection between self-similar processes and stationary
processes; see Lamperti [26]) and the strong local non-determinism of Gaussian processes (see
Xiao [45]). In particular, for any self-similar Gaussian process X = {X(t), t ∈ R}, the Lamperti
transformation leads to a stochastic integral representation for X. We will show the usefulness of
such a representation in studying sample path properties of X.
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To illustrate our methods, we only consider a rather special class of self-similar Gaussian
processes, namely, the bifractional Brownian motions introduced by Houdré and Villa [21].
Given constants H ∈ (0,1) and K ∈ (0,1], the bifractional Brownian motion (bi-fBm, in short)
in R is a centered Gaussian process B

H,K
0 = {BH,K

0 (t), t ∈ R+} with covariance function

RH,K(s, t) := R(s, t) = 1

2K
[(t2H + s2H )K − |t − s|2HK ] (1.1)

and B
H,K
0 (0) = 0.

Let B
H,K
1 , . . . ,B

H,K
d be independent copies of B

H,K
0 . We define the Gaussian process BH,K =

{BH,K(t), t ∈ R+} with values in R
d by

BH,K(t) = (B
H,K
1 (t), . . . ,B

H,K
d (t)) ∀t ∈ R+. (1.2)

By (1.1), we can easily verify that BH,K is a self-similar process with index HK , that is, for
every constant a > 0,

{BH,K(at), t ∈ R+} d= {aHKBH,K(t), t ∈ R+}, (1.3)

where X
d= Y means that the two processes have the same finite-dimensional distributions. Note

that when K = 1, BH,K is the ordinary fractional Brownian motion in R
d . However, if K �= 1,

BH,K does not have stationary increments. In fact, fractional Brownian motion is the only
Gaussian self-similar process with stationary increments (see Samorodnitsky and Taqqu [38]).

Russo and Tudor [37] established some properties concerning the strong variations, local times
and stochastic calculus of real-valued bifractional Brownian motion. An interesting property that
deserves to be recalled is the fact that when HK = 1

2 , the quadratic variation of this family of
stochastic processes (which includes the standard Brownian motion when K = 1 and HK = 1

2 )
on [0, t] is equal to a constant times t . This is really remarkable since, as far as we know, these are
the only Gaussian self-similar processes with this quadratic variation and besides the well-known
case of Brownian motion, the other members of this family are not semimartingale. Taking into
account this property, it is natural to ask if the bifractional Brownian motion BH,K with KH = 1

2
shares other properties with Brownian motion (from the sample path regularity point of view). As
can be seen from the rest of the paper, the answer is often positive: for example, the bi-fBm with
HK = 1

2 and Brownian motion satisfy the same forms of Chung’s laws of the iterated logarithm
and the Hölder conditions for their local times.

The rest of this paper is organized as follows. In Section 2, we apply the Lamperti transfor-
mation to prove the strong local non-determinism of B

H,K
0 . This property plays an essential role

in the proofs of most of our results. In Section 3, we derive small ball probability estimates
and a stochastic integral representation for B

H,K
0 . Applying these results, we prove a version of

Chung’s law of the iterated logarithm for bifractional Brownian motion.
Section 4 is devoted to the study of local times of one-parameter bifractional Brownian mo-

tion and the corresponding N -parameter fields. In general, there are mainly two methods for
studying local times of Gaussian processes: the Fourier analysis approach introduced by Berman
and the Malliavin calculus approach. It is known that the Fourier analysis approach, combined
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with various properties of local non-determinism, yields strong regularity properties such as the
joint continuity and sharp Hölder conditions for the local times (see Berman [10], Pitt [36], Ge-
man and Horowitz [20] and Xiao [44,45]), while the Malliavin calculus approach requires fewer
conditions on the process and establishes regularity of the local times in the sense of Sobolev–
Watanabe spaces (see Watanabe [42], Imkeller et al. [23], Coutin et al. [16], Hu and Oksendal
[22] and Eddahbi et al. [18]). In this paper, we make use of both approaches to obtain more
comprehensive results on local times of bifractional Brownian motion and fields.

Throughout this paper, an unspecified positive and finite constant is denoted by c, which
may not be the same in each occurrence. More specific constants in Section i are labeled as
ci,1, ci,2, . . . .

2. Strong local non-determinism

The following proposition is essential in this paper. From its proof, we see that the same conclu-
sion holds for quite general self-similar Gaussian processes.

Proposition 2.1. For all constants 0 < a < b, B
H,K
0 is strongly locally ϕ-non-deterministic on

I = [a, b] with ϕ(r) = r2HK . That is, there exist positive constants c2,1 and r0 such that for all
t ∈ I and all 0 < r ≤ min{t, r0},

Var
(
B

H,K
0 (t)|BH,K

0 (s) : s ∈ I, r ≤ |s − t | ≤ r0
) ≥ c2,1ϕ(r). (2.1)

Proof. We consider the centered stationary Gaussian process Y0 = {Y0(t), t ∈ R} defined
through Lamperti’s transformation (Lamperti [26]),

Y0(t) = e−HKtB
H,K
0 (et ) for every t ∈ R. (2.2)

The covariance function r(t) := E(Y0(0)Y0(t)) is given by

r(t) = 1

2K
e−HKt [(e2Ht + 1)K − |et − 1|2HK ]

= 1

2K
eHKt [(1 + e−2Ht )K − |1 − e−t |2HK ]. (2.3)

Hence, r(t) is an even function and, by (2.3) and the Taylor expansion, we verify that r(t) =
O(e−βt ) as t → ∞, where β = min{H(2 − K),1 − HK}. It follows that r(·) ∈ L1(R). Also, by
again using (2.3) and the Taylor expansion we have

r(t) ∼ 1 − 1

2K
|t |2HK as t → 0. (2.4)

The stationary Gaussian process Y0 is sometimes called the Ornstein–Uhlenbeck process as-
sociated with B

H,K
0 (note that it does not coincide with the solution of the fractional Langevin
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equation; see Cheridito et al. [14] for a proof in the case K = 1). By Bochner’s theorem, Y0 has
the stochastic integral representation

Y0(t) =
∫

R

eiλtW(dλ) ∀t ∈ R, (2.5)

where W is a complex Gaussian measure with control measure �, whose Fourier transform is
r(·). The measure � is called the spectral measure of Y .

Since r(·) ∈ L1(R), the spectral measure � of Y has a continuous density function f (λ) which
can be represented as the inverse Fourier transform of r(·):

f (λ) = 1

π

∫ ∞

0
r(t) cos(tλ)dt. (2.6)

We wish to prove that f has the asymptotic property

f (λ) ∼ c2,2|λ|−(1+2HK) as λ → ∞, (2.7)

where c2,2 > 0 is an explicit constant depending only on HK . Note that (2.4) and the Tauberian
theorem due to Pitman ([35], Theorem 5) only imply that

∫ ∞
λ

f (x)dx ∼ c|λ|−2HK as λ → ∞.
Some extra Tauberian condition on f is usually needed if we wish to obtain (2.7) by using the
Tauberian theorem; see Bingham et al. [11].

In the following, we give a direct proof of (2.7) by using (2.6) and an Abelian argument similar
to that used in the proof of Theorem 1 of Pitman [35]. Without loss of generality, we assume from
now on that λ > 0. Applying integration by parts to (2.6), we get

f (λ) = − 1

πλ

∫ ∞

0
r ′(t) sin(tλ)dt (2.8)

with

r ′(t) = HK

2K
eHKt [(1 + e−2Ht )K−1(1 − e−2Ht ) − (1 + e−t )(1 − e−t )2HK−1]. (2.9)

We need to distinguish three cases: 2HK < 1, 2HK = 1 and 2HK > 1. In the first case, it can
be verified from (2.9) that r ′(t) = O(e−βt ) as t → ∞, hence r ′(·) ∈ L1(R) and

r ′(t) ∼ −21−KHK|t |2HK−1 as t → 0. (2.10)

We will also make use of the properties of higher-order derivatives of r(t). It is elementary to
compute r ′′(t) and verify that, when 2HK < 1, we have

r ′′(t) ∼ −21−KHK(2HK − 1)|t |2HK−2 as t → 0 (2.11)

and r ′′(t) = O(e−βt ) as t → ∞, which implies that r ′′(·) ∈ L1(R). Moreover, we can show that
r ′′(t) > 0 for all sufficiently large t and that r ′′(t) is eventually monotone decreasing.
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The behavior of the derivatives of r(t) is slightly different when 2HK = 1. (2.9) becomes

r ′(t) = 1

2K+1
et/2[(1 + e−2Ht )K−1(1 − e−2Ht ) − 1 − e−t ] (2.12)

and

r ′′(t) = 1

2K+2
et/2[(1 + e−2Ht )K−2(1 + 2(4H − 1)e−2Ht + e−4Ht

) − 1 + e−t
]
. (2.13)

Hence, we have r ′(0) = −2−K , r ′′(0) = H/2 and both r ′(·) and r ′′(·) are in L1(R).
When 2HK > 1, it can be shown that (2.11) still holds, r ′′(t) = O(e−βt ) as t → ∞, r ′′(t) > 0

for all sufficiently large t and r ′′(t) is eventually monotone decreasing. We omit the details.
We now proceed to prove (2.7). First, we consider the case when 0 < 2HK < 1. By a change

of variable, we can write

f (λ) = − 1

πλ2

∫ ∞

0
r ′

(
t

λ

)
sin t dt. (2.14)

Hence,

f (λ)

−(πλ2)−1r ′(1/λ)
=

∫ ∞

0

r ′(t/λ)

r ′(1/λ)
sin t dt. (2.15)

Let p ∈ (0,∞) be a fixed constant such that r ′′(t) > 0 on [p,∞). It follows from (2.10) and the
dominated convergence theorem that

lim
λ→∞

∫ p

0

r ′(t/λ)

r ′(1/λ)
sin t dt =

∫ p

0
t2HK−1 sin t dt. (2.16)

On the other hand, integration by parts yields∫ ∞

p

r ′(t/λ) sin t dt = r ′(p/λ) cosp + 1

λ

∫ ∞

p

r ′′(t/λ) cos t dt. (2.17)

Using the fact that r ′′(t) > 0 on [p,∞) and the Riemann–Lebesgue lemma, we derive∣∣∣∣∫ ∞

p

r ′(t/λ) sin t dt

∣∣∣∣ ≤ |r ′(p/λ) cosp| +
∣∣∣∣1

λ

∫ ∞

p

r ′′(t/λ) cos t dt

∣∣∣∣ ≤ 2|r ′(p/λ)|. (2.18)

Hence, we have

lim sup
λ→∞

∣∣∣∣∫ ∞

p

r ′(t/λ)

r ′(1/λ)
sin t dt

∣∣∣∣ ≤ 2p2HK−1. (2.19)

Combining (2.15), (2.16), (2.19) and letting p → ∞, we see that when 0 < 2HK < 1, (2.7)
holds with c2,2 = 21−KHKπ−1

∫ ∞
0 t2HK−1 sin t dt .

Second, we consider the case 2HK = 1. Since r ′(t) is continuous and r ′(0) = −2−K , (2.16)
becomes

lim
λ→∞

∫ p

0
r ′(t/λ) sin t dt = r ′(0)

∫ p

0
sin t dt = r ′(0)(1 − cosp). (2.20)
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Using (2.17) and integration by parts again, we derive∫ ∞

p

r ′(t/λ) sin t dt = r ′(p/λ) cosp + 1

λ

∫ ∞

p

r ′′(t/λ) cos t dt. (2.21)

It follows from (2.21), (2.13) and the Riemann–Lebesgue lemma that

lim
λ→∞

∫ ∞

p

r ′(t/λ) sin t dt = r ′(0) cosp. (2.22)

We see from the above and (2.14) that

f (λ) ∼ 1

2Kπ
|λ|−2 as λ → ∞. (2.23)

This verifies that (4.10) holds when 2HK = 1.
Finally, we consider the case 1 < 2HK < 2. Note that (2.16) and (2.19) are no longer useful

and we must modify the above argument. By applying integration by parts to (2.8), we obtain

f (λ) = − 1

πλ2

∫ ∞

0
r ′′(t) cos(tλ)dt. (2.24)

Note that we have −1 < 2HK − 2 < 0. Hence, r ′′(t) is integrable in the neighborhood of t = 0.
Consequently, the proof for this case is very similar to that of the case 0 < 2HK < 1. From (2.24)
and (2.11), we can verify that (2.7) also holds and the constant c2,2 is explicitly determined by
H and K . Hence, we have proved (2.7) in general.

It follows from (2.7) and Lemma 1 of Cuzick and DuPreez [17] (see also Xiao [45] for more
general results) that Y0 = {Y0(t), t ∈ R} is strongly locally ϕ-non-deterministic on any interval
J = [−T ,T ] with ϕ(r) = r2HK in the following sense. There exist positive constants δ and c2,3
such that for all t ∈ [−T ,T ] and all r ∈ (0, |t | ∧ δ),

Var
(
Y0(t)|Y0(s) : s ∈ J, r ≤ |s − t | ≤ δ

) ≥ c2,3ϕ(r). (2.25)

We now prove the strong local non-determinism of B
H,K
0 on I . To this end, note that

B
H,K
0 (t) = tHKY0(log t) for all t > 0. We choose r0 = aδ. For all s, t ∈ I with r ≤ |s − t | ≤ r0,

we then have
r

b
≤ | log s − log t | ≤ δ. (2.26)

Hence, it follows from (2.25) and (2.26) that for all t ∈ [a, b] and r < r0,

Var
(
B

H,K
0 (t)|BH,K

0 (s) : s ∈ I, r ≤ |s − t | ≤ r0
)

= Var
(
tHKY0(log t)|sHKY0(log s) : s ∈ I, r ≤ |s − t | ≤ r0

)
≥ t2HK Var

(
Y0(log t)|Y0(log s) : s ∈ I, r ≤ |s − t | ≤ r0

)
≥ a2HK Var

(
Y0(log t)|Y0(log s) : s ∈ I, r/b ≤ | log s − log t | ≤ δ

)
≥ c2,3ϕ(r). (2.27)
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This proves Proposition 2.1. �

For use in next section, we now state two properties of the spectral density f (λ) of Y . They
follow from (2.7) or, more generally, from (2.4) and the truncation inequalities in Loéve [28],
page 209; see also Monrad and Rootzén [33].

Lemma 2.2. There exist positive constants c2,4 and c2,5 such that for u > 1,∫
|λ|<u

λ2f (λ)dλ ≤ c2,4u
2(1−HK) (2.28)

and ∫
|λ|≥u

f (λ)dλ ≤ c2,5u
−2HK. (2.29)

We will also need the following lemma from Houdré and Villa [21].

Lemma 2.3. There exist positive constants c2,6 and c2,7 such that for all s, t ∈ R+, we have

c2,6|t − s|2HK ≤ E
[(

B
H,K
0 (t) − B

H,K
0 (s)

)2] ≤ c2,7|t − s|2HK. (2.30)

3. Chung’s law of the iterated logarithm

As applications of small ball probability estimates, Monrad and Rootzén [33], Xiao [44] and Li
and Shao [27] established Chung-type laws of the iterated logarithm for fractional Brownian mo-
tion and other strongly locally non-deterministic Gaussian processes with stationary increments.
However, there have been no results on Chung’s LIL for self-similar Gaussian processes that do
not have stationary increments (recall that the class of self-similar Gaussian processes is large
and fBm is the only such process with stationary increments).

In this section, we prove the following Chung’s law of the iterated logarithm for bifractional
Brownian motion in R. It will be clear that our argument is applicable to a large class of self-
similar Gaussian processes.

Theorem 3.1. Let B
H,K
0 = {BH,K

0 (t), t ∈ R+} be a bifractional Brownian motion in R. There
then exists a positive and finite constant c3,1 such that

lim inf
r→0

maxt∈[0,r] |BH,K
0 (t)|

rHK/(log log(1/r))HK
= c3,1 a.s. (3.1)

In order to prove Theorem 3.1, we need several preliminary results. Lemma 3.2 gives estimates
on the small ball probability of B

H,K
0 .
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Lemma 3.2. There exist positive constants c3,2 and c3,3 such that for all t0 ∈ [0,1] and x ∈
(0,1),

exp

(
− c3,2

x1/(HK)

)
≤ P

{
max

t∈[0,1]
|BH,K

0 (t) − B
H,K
0 (t0)| ≤ x

}
≤ exp

(
− c3,3

x1/(HK)

)
. (3.2)

Proof. By Proposition 2.1 and Lemma 2.3, we see that B
H,K
0 satisfies conditions (C1) and (C2)

of Xiao [45]. Hence, this lemma follows from Theorem 3.1 of Xiao [45]. �

Proposition 3.3 provides a zero–one law for ergodic self-similar processes, which comple-
ments the results of Takashima [40]. In order to state it, we need to recall some definitions.

Let X = {X(t), t ∈ R} be a separable, self-similar process with index κ . For any constant
a > 0, the scaling transformation Sκ,a of X is defined by

(Sκ,aX)(t) = a−κX(at) ∀t ∈ R. (3.3)

Note that saying X is κ-self-similar is equivalent to saying that for every a > 0, the process
{(Sκ,aX)(t), t ∈ R} has the same finite-dimensional distributions as those of X. That is, for a
κ-self-similar process X, a scaling transformation Sκ,a preserves the distribution of X, so the no-
tions of ergodicity and mixing of Sκ,a can be defined in the usual way (cf. Cornfeld et al. [15]).
Following Takashima [40], we say that a κ-self-similar process X = {X(t), t ∈ R} is ergodic
(resp. strong mixing) if for every a > 0, a �= 1, the scaling transformation Sκ,a is ergodic (resp.
strong mixing). This, in turn, is equivalent to saying that the shift transformations for the corre-
sponding stationary process Y = {Y(t), t ∈ R} defined by Y(t) = e−κtX(et ) are ergodic (resp.
strong mixing).

Proposition 3.3. Let X = {X(t), t ∈ R} be a separable, self-similar process with index κ . We
assume that X(0) = 0 and that X is ergodic. Then, for any increasing function ψ : R+ → R+,
we have P(Eκ,ψ) = 0 or 1, where

Eκ,ψ =
{
ω : there exists δ > 0 such that sup

0≤s≤t

|X(s)| ≥ tκψ(t) for all 0 < t ≤ δ

}
. (3.4)

Proof. We will prove that for every a > 0, the event Eκ,ψ is invariant with respect to the trans-
formation Sκ,a . The conclusion then follows from the ergodicity of X.

Fix a constant a > 0 and a �= 1. We consider two cases: (i) a > 1 and (ii) a < 1. In the first
case, since ψ is increasing, we have ψ(au) ≥ ψ(u) for all u > 0. Assuming that a.s. there is a
δ > 0 such that

sup
0≤s≤t

|X(s)| ≥ tκψ(t) for all 0 < t ≤ δ, (3.5)

then

sup
0≤s≤t

|a−κX(as)| = a−κ sup
0≤s≤at

|X(s)| ≥ tκψ(t) for all 0 < t ≤ δ/a. (3.6)
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This implies that Eκ,ψ ⊂ S−1
κ,a(Eκ,ψ). By the self-similarity of X, these two events have the same

probability, so it follows that P{Eκ,ψ�S−1
κ,a(Eκ,ψ)} = 0. This proves that Eκ,ψ is Sκ,a-invariant

and, hence, has probability 0 or 1.
In case (ii), we have ψ(au) ≤ ψ(u) for all u > 0 and the proof is similar to the above. If

Sκ,aX ∈ Eκ,ψ , then we have X ∈ Eκ,ψ . This implies that S−1
κ,a(Eκ,ψ) ⊂ Eκ,ψ and, again, Eκ,ψ is

Sκ,a-invariant. This completes the proof. �

By a result of Maruyama [31] on ergodicity and mixing properties of stationary Gaussian
processes, we see that B

H,K
0 is mixing. Hence, we have the following corollary of Proposi-

tion 3.3.

Corollary 3.4. There exists a constant c3,4 ∈ [0,∞] such that

lim inf
t→0+

(log log 1/t)HK

tHK
max

0≤s≤t
|BH,K

0 (s)| = c3,4 a.s. (3.7)

Proof. We take ψc(t) = c(log log 1/t)−HK and define c3,4 = sup{c ≥ 0 : P{Eκ,ψc} = 1}. It can
be verified that (3.7) follows from Proposition 3.3. �

It follows from Corollary 3.4 that Theorem 3.1 will be established if we show c3,4 ∈ (0,∞).
This is where Lemma 3.2 and the following lemma from Talagrand [41] are needed.

Lemma 3.5. Let X = {X(t), t ∈ R} be a centered Gaussian process in R and let S ⊂ R be a
closed set equipped with the canonical metric defined by

d(s, t) = [
E

(
X(s) − X(t)

)2]1/2
.

There then exists a positive constant c3,5 such that for all u > 0,

P

{
sup
s,t∈S

|X(s) − X(t)| ≥ c3,5

(
u +

∫ D

0

√
logNd(S, ε)dε

)}
≤ exp

(
− u2

D2

)
, (3.8)

where Nd(S, ε) denotes the smallest number of open d-balls of radius ε needed to cover S and
where D = sup{d(s, t) : s, t ∈ S} is the diameter of S.

We now proceed to prove Theorem 3.1.

Proof of Theorem 3.1. We prove the lower bound first. For any integer n ≥ 1, let rn = e−n. Let
0 < γ < c3,3 be a constant and consider the event

An =
{

max
0≤s≤rn

|BH,K
0 (s)| ≤ γ HKrHK

n /(log log 1/rn)
HK

}
.
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The self-similarity of B
H,K
0 and Lemma 3.2 then imply that

P {An} ≤ exp

(
−c3,3

γ
logn

)
= n−c3,3/γ . (3.9)

Since
∑∞

n=1 P {An} < ∞, the Borel–Cantelli lemma implies that

lim inf
n→∞

maxs∈[0,rn] |BH,K
0 (s)|

rHK
n /(log log(1/rn))HK

≥ c3,3 a.s. (3.10)

It follows from (3.10) and a standard monotonicity argument that

lim inf
r→0

maxt∈[0,r] |BH,K
0 (t)|

rHK/(log log(1/r))HK
≥ c3,6 a.s. (3.11)

The upper bound is a little more difficult to prove, due to the dependence structure of B
H,K
0 . In

order to create independence, we will make use of the following stochastic integral representation
of B

H,K
0 . For every t > 0,

B
H,K
0 (t) = tHK

∫
R

eiλ log tW(dλ). (3.12)

This follows from the spectral representation (2.5) of Y and its connection with B
H,K
0 .

For every integer n ≥ 1, we take

tn = n−n and dn = nβ, (3.13)

where β > 0 is a constant whose value will be determined later. It is sufficient to prove that there
exists a finite constant c3,7 such that

lim inf
n→∞

maxs∈[0,tn] |BH,K
0 (s)|

tHK
n /(log log(1/tn))HK

≤ c3,7 a.s. (3.14)

Let us define two Gaussian processes, Xn and X̃n, by

Xn(t) = tHK

∫
|λ|∈(dn−1,dn]

eiλ log tW(dλ) (3.15)

and

X̃n(t) = tHK

∫
|λ|/∈(dn−1,dn]

eiλ log tW(dλ), (3.16)

respectively. Clearly, B
H,K
0 (t) = Xn(t) + X̃n(t) for all t ≥ 0. It is important to note that the

Gaussian processes Xn (n = 1,2, . . .) are independent and, moreover, for every n ≥ 1, the
processes Xn and X̃n are also independent.

Let h(r) = rHK(log log 1/r)−HK . We make the following two claims:
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(i) there is a constant γ > 0 such that

∞∑
n=1

P

{
max

s∈[0,tn]
|Xn(s)| ≤ γ HKh(tn)

}
= ∞; (3.17)

(ii) for every ε > 0,

∞∑
n=1

P

{
max

s∈[0,tn]
|X̃n(s)| > εh(tn)

}
< ∞. (3.18)

Since the events in (3.17) are independent, we see that (3.14) follows from (3.17), (3.18) and a
standard Borel–Cantelli argument.

It remains to verify the claims (i) and (ii) above. By Lemma 3.2 and Anderson’s inequality
(see Anderson [2]), we have

P

{
max

s∈[0,tn]
|Xn(s)| ≤ γ HKh(tn)

}
≥ P

{
max

s∈[0,tn]
|BH,K

0 (s)| ≤ γ HKh(tn)

}
≥ exp

(
−c3,2

γ
log(n logn)

)
= (n logn)−c3,2/γ . (3.19)

Hence, (i) holds for γ ≥ c3,2.
In order to prove (ii), we divide [0, tn] into pn + 1 non-overlapping subintervals Jn,j =

[an,j−1, an,j ], j = 0,1, . . . , pn, and then apply Lemma 3.5 to X̃n on each of Jn,j . Let β > 0
be the constant in (3.13) and take Jn,0 = [0, tnn

−β ]. After Jn,j has been defined, we take
an,j+1 = an,j (1 + n−β). It can be verified that the number of such subintervals of [0, tn] sat-
isfies the following bound:

pn + 1 ≤ cnβ logn. (3.20)

Moreover, for every j ≥ 1, if s, t ∈ Jn,j and s < t , then we have t/s − 1 ≤ n−β and this yields

t − s ≤ sn−β and log

(
t

s

)
≤ n−β. (3.21)

Lemma 2.3 implies that the canonical metric d for the process X̃n satisfies

d(s, t) ≤ c|s − t |HK for all s, t > 0 (3.22)

and d(0, s) ≤ ctHK
n n−βHK for every s ∈ Jn,0. It follows that D0 := sup{d(s, t); s, t ∈ Jn,0} ≤

ctHK
n n−βHK and

Nd(Jn,0, ε) ≤ c
tnn

−β

ε1/(HK)
. (3.23)
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Some simple calculation yields∫ D0

0

√
logNd(Jn,0, ε)dε ≤

∫ tHK
n n−βHK

0

√
log

(
tnn−β

ε1/(HK)

)
dε

= tHK
n n−βHK

∫ 1

0

√
log

(
1

u

)
du

= c3,8t
HK
n n−βHK. (3.24)

It follows from Lemma 3.5 and (3.24) that

P

{
max
s∈Jn,0

|X̃n(s)| > εh(tn)

}
≤ exp

(
−c

n2βHK

(log(n logn))2HK

)
. (3.25)

For every 1 ≤ j ≤ pn, we estimate the d-diameter of Jn,j . It follows from (3.16) that for any
s, t ∈ Jn,j with s < t ,

E
(
X̃n(s) − X̃n(t)

)2 =
∫

|λ|≤dn−1

|tHKeiλ log t − sHKeiλ log s |2f (λ)dλ

+
∫

|λ|>dn

|tHKeiλ log t − sHKeiλ log s |2f (λ)dλ (3.26)

:= I1 + I2.

The second term is easy to estimate: for all s, t ∈ Jn,j ,

I2 ≤ 4t2HK
n

∫
|λ|>dn

f (λ)dλ ≤ c3,9t
2HK
n n−2βHK, (3.27)

where the last inequality follows from (2.29).
For the first term I1, we use the elementary inequality 1 − cosx ≤ x2 to derive that for all

s, t ∈ Jn,j with s < t ,

I1 =
∫

|λ|≤dn−1

[
(tHK − sHK)2 + 2tHKsHK

(
1 − cos

(
λ log

t

s

))]
f (λ)dλ

≤ s2HK

(
t

s
− 1

)2HK ∫
R

f (λ)dλ + 2t2HK log2
(

t

s

)∫
|λ|≤dn−1

λ2f (λ)dλ (3.28)

≤ c3,10t
2HK
n n−2βHK,

where, in deriving the last inequality, we have used (3.21) and (2.28), respectively.
It follows from (3.26), (3.27) and (3.28) that the d-diameter of Jn,j satisfies

Dj ≤ c3,11t
HK
n n−βHK. (3.29)
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Hence, similar to (3.25), we use Lemma 3.5 and (3.29) to derive

P

{
max
s∈Jn,j

|X̃n(s)| > εh(tn)

}
≤ exp

(
−c

n2βHK

(log(n logn))2HK

)
. (3.30)

By combining (3.20), (3.25) and (3.30), we derive that for every ε > 0,

∞∑
n=1

P

{
max

s∈[0,tn]
|X̃n(s)| > εh(tn)

}
≤

∞∑
n=1

pn∑
j=0

P

{
max
s∈Jn,j

|X̃n(s)| > εh(tn)

}

≤ c

∞∑
n=1

nβ logn exp

(
−c

n2βHK

(log(n logn))2HK

)
< ∞. (3.31)

This proves (3.18) and hence the theorem. �

Remark 3.6. Let t0 ∈ [0,1] be fixed and consider the process X = {X(t), t ∈ R+} defined by
X(t) = B

H,K
0 (t + t0) − B

H,K
0 (t0). By applying Lemma 3.2 and modifying the proof of Theo-

rem 3.1, we can show that

c−1
3,12 ≤ lim inf

r→0

maxt∈[0,r] |BH,K
0 (t + t0) − B

H,K
0 (t0)|

rHK/(log log(1/r))HK
≤ c3,12 a.s., (3.32)

where c3,12 > 1 is a constant depending only on HK .

Corresponding to Lemma 3.2, we can also consider the small ball probability of B
H,K
0 under

the Hölder-type norm. For α ∈ (0,1) and any function y ∈ C0([0,1]), we consider the α-Hölder
norm of y defined by

‖y‖α = sup
s,t∈[0,1],s �=t

|y(s) − y(t)|
|s − t |α . (3.33)

The following proposition extends the results of Stolz [39] and Theorem 2.1 of Kuelbs, Li and
Shao [25] to bifractional Brownian motion.

Proposition 3.7. Let B
H,K
0 be a bifractional Brownian motion in R and α ∈ (0,HK). There

exist positive constants c3,13 and c3,14 such that for all ε ∈ (0,1),

exp
(−c3,13ε

−1/(HK−α)
) ≤ P{‖BH,K

0 ‖α ≤ ε} ≤ exp
(−c3,14ε

−1/(HK−α)
)
. (3.34)

Proof. The result follows from Theorem 3.4 of Xiao [45]. �
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4. Local times of bifractional Brownian motion

This section is devoted to the study of the local times of the bi-fBm, both in the one-parameter
and multiparameter cases. As was pointed out in the Introduction, there are essentially two ways
to prove the existence and regularity properties of local times for Gaussian processes: the first is
related to Fourier analysis and the local nondeterminism property; the second is based on Malli-
avin calculus and the Wiener–Itô chaos expansion. We will apply the Fourier analysis approach
to the one-parameter case and the Malliavin calculus approach to the multiparameter case.

4.1. The one-parameter case

Let BH,K = {BH,K(t), t ∈ R+} be a bifractional Brownian motion with indices H and K in R
d .

For any closed interval I ⊂ R+ and for any x ∈ R
d , the local time L(x, I ) of BH,K is defined as

the density of the occupation measure µI defined by

µI (A) =
∫

I

1A(BH,K(s))ds, A ∈ B(Rd).

It can be shown (cf. Geman and Horowitz [20], Theorem 6.4) that the following occupation
density formula holds. For every Borel function g(t, x) ≥ 0 on I × R

d ,∫
I

g(t,BH,K(t))dt =
∫

Rd

∫
I

g(t, x)L(x, dt)dx. (4.1)

Lemma 2.3 and Theorem 21.9 of Geman and Horowitz [20] together imply that if 1/(HK) >

d , then BH,K has a local time L(x, t) := L(x, [0, t]), where (x, t) ∈ R
d × [0,∞). In fact, more

regularity properties of L(x, t) can be derived from Theorem 3.14 of Xiao [45], which we sum-
marize in the following theorem. Besides being of interest in their own right, such results are also
useful in studying the fractal properties of the sample paths of BH,K .

Theorem 4.1. Let BH,K = {BH,K(t), t ∈ R} be a bifractional Brownian motion with indices H

and K in R
d . If 1/(HK) > d , then the following properties hold:

(i) BH,K has a local time L(x, t) that is jointly continuous in (x, t) almost surely.
(ii) [Local Hölder condition] For every B ∈ B(R), let L∗(B) = supx∈Rd L(x,B) be the max-

imum local time. There then exists a positive constant c4,1 such that for all t0 ∈ R+,

lim sup
r→0

L∗(B(t0, r))

ϕ1(r)
≤ c4,1 a.s. (4.2)

Here and in the sequel, B(t, r) = (t − r, t + r) and ϕ1(r) = r1−HKd(log log 1/r)HKd .
(iii) [Uniform Hölder condition] For every finite interval I ⊆ R, there exists a positive finite

constant c4,2 such that

lim sup
r→0

sup
t0∈I

L∗(B(t0, r))

ϕ2(r)
≤ c4,2 a.s., (4.3)
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where ϕ2(r) = r1−HKd(log 1/r)HKd.

Proof. By Proposition 2.1 and Lemma 2.3, we see that the conditions of Theorem 3.14 of Xiao
[45] are satisfied. Hence, the results follow. �

The following states that the local Hölder condition for the maximum local time is sharp.

Remark 4.2. By the definition of local times, we have that for every interval Q ⊆ R+,

|Q| =
∫

BH,K(Q)

L(x,Q)dx ≤ L∗(Q) ·
(

max
s,t∈Q

|BH,K(s) − BH,K(t)|
)d

. (4.4)

By taking Q = B(t0, r) in (4.4) and using (3.32) in Remark 3.6, we derive the lower bound in
the following

c4,3 ≤ lim sup
r→0

L∗(B(t0, r))

ϕ1(r)
≤ c4,4 a.s., (4.5)

where c4,3 > 0 is a constant independent of t0 and the upper bound is given by (4.2). A similar
lower bound for (4.3) could also be established by using (4.4), if we were to prove that for every
interval I ⊆ R+,

lim inf
r→0

inf
t∈I

max
s∈B(t,r)

|BH,K(s) − BH,K(t)|
rHk/(log 1/r)HK

≤ c4,5 a. s. (4.6)

Theorem 4.1 can be applied to determine the Hausdorff dimension and Hausdorff measure of
the level set Zx = {t ∈ R+ :BH,K(t) = x}, where x ∈ R

d ; see Berman [9], Monrad and Pitt [32]
and Xiao [44,45]. In the following theorem, we prove a uniform Hausdorff dimension result for
the level sets of BH,K .

Theorem 4.3. If 1/(HK) > d , then, with probability one,

dimH Zx = 1 − HKd for all x ∈ R
d, (4.7)

where dimH denotes Hausdorff dimension.

Proof. It follows from Theorem 3.19 of Xiao [45] that, with probability one,

dimH Zx = 1 − HKd for all x ∈O, (4.8)

where O is the random open set defined by

O =
⋃

s,t∈Q;s<t

{x ∈ R
d :L(x, [s, t]) > 0}.
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Hence, it only remains to show that O = R
d a.s. For this purpose, we consider the station-

ary Gaussian process Y = {Y(t), t ∈ R} defined by Y(t) = e−HKtBH,K(et ), using the Lamperti
transformation.

Note that the component processes of Y are independent and, as shown in the proof of Proposi-
tion 2.1, they are strongly locally ϕ-non-deterministic, with ϕ(r) = r2HK . It follows from Theo-
rem 3.14 of Xiao [45] that Y has a jointly continuous local time LY (x, t), where (x, t) ∈ R

d ×R.
From the proof of Proposition 2.1, it can be verified that Y satisfies the conditions of Theorem 2
of Monrad and Pitt [32] and it follows that, almost surely for every y ∈ R

d , there exists a finite
interval J ⊂ R such that LY (y, J ) > 0.

On the other hand, by using the occupation density formula (4.1), we can verify that the local
times of BH,K and Y are related by the following equation. For all x ∈ R

d and any finite interval
I = [a, b] ⊂ [0,∞),

L(x, I ) =
∫

[loga,logb]
e(1−HK)sLY (e−HKsx,ds). (4.9)

Hence, there exists a.s. a finite interval I such that L(0, I ) > 0. The continuity of L(x, I )

implies the a.s. existence of δ > 0 such that L(y, I ) > 0 for all y ∈ R
d with |y| ≤ δ. Ob-

serve that the scaling property of BH,K implies that for all constants c > 0, the scaled local
time c−(1−HKd)L(x, ct) is a version of L(c−HKx, t). It follows that, a.s. for every x ∈ R

d ,
L(x,J ) > 0 for some finite interval J ⊂ [0,∞). �

Since there is little knowledge on the explicit distribution of L(0,1), it is of interest to estimate
the tail probability P{L(0,1) > x} as x → ∞. This problem has been considered by Kasahara et
al. [24] for certain fractional Brownian motions and by Xiao [45] for a large class of Gaussian
processes. Our next result is a consequence of Theorem 3.20 of Xiao [45].

Theorem 4.4. Let BH,K = {BH,K(t), t ∈ R} be a bifractional Brownian motion in R
d with

indices H and K . If 1/(HK) > d , then for x > 0 sufficiently large,

− log P{L(0,1) > x} � xHK, (4.10)

where a(x) � b(x) means that a(x)/b(x) is bounded from below and above by positive and finite
constants for all sufficiently large x.

Proof. By Proposition 2.1 and Lemma 2.3, we see that the conditions of Theorem 3.20 in Xiao
[45] are satisfied. This proves (4.10). �

Let us also note that the existence of the jointly continuous version of the local time and the
self-similarity allow us to prove the following renormalization result. The case d = 1 has been
proven in Russo and Tudor [37].

Proposition 4.5. If 1/(HK) > d , then for any integrable function F : Rd → R,

tHKd−1
∫

[0,t]
F(BH,K(u))du

(d)−→ F̃L(0,1) as t → ∞, (4.11)
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where F̃ = ∫
Rd F (x)dx.

Proof. It holds that∫
[0,t]

F(BH,K(u))du = t

∫
[0,1]

F(BH,K(tv))dv
d= t

∫
[0,1]

F(tHKBH,K(v))dv. (4.12)

By using the occupation density formula, we derive∫
[0,t]

F(BH,K(u))du = t

∫
Rd

F (tHKx)L(x,1)dx

= t1−HKd

∫
Rd

F (y)L(yt−HK,1)dy. (4.13)

Since the function y �→ L(y,1) is almost surely continuous and bounded, the dominated conver-
gence theorem implies that, as t → ∞, the last integral in (4.13) tends to F̃L(0,1) almost surely.
This and (4.12) together yield (4.11). �

4.2. Oscillation of bifractional Brownian motion

The oscillations of certain classes of stochastic processes, especially Gaussian processes, in the
measure space ([0,1], λ1), where λ1 is the Lebesgue measure on R, have been studied by, among
others, Wschebor [43] and Azaïs and Wschebor [6]. The following is an analogous result for
bifractional Brownian motion.

Proposition 4.6. Let BH,K be a bi-fBm in R with indices H ∈ (0,1) and K ∈ (0,1]. For every
t ∈ [0,1], let

Zε(t) = BH,K(t + ε) − BH,K(t)

εHK
.

Then the following statements hold:

(i) for every integer k ≥ 1, almost surely,∫ 1

0
(Zε(t))

k dt → E(ρk) as ε → 0,

where ρ is a centered normal random variable with variance σ 2 = 21−K ;
(ii) for every interval J ⊂ [0,1], almost surely, for every x ∈ R

λ1{t ∈ J :Zε(t) ≤ x} → λ1(J )P(ρ ≤ x) as ε → 0.

Proof. Let us define

Y ε,k =
∫ 1

0
(Zε(t))

k dt.
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It is sufficient to prove that

Var(Y ε,k) ≤ c(k)εβ for some c(k) and β > 0. (4.14)

The conclusions (i) and (ii) will then follow, as in Azaïs and Wschebor [6], by means of a Borel–
Cantelli argument.

Note that

Var(Y ε,k) =
∫ 1

0

∫ 1

0
Cov(Zε(u)k,Zε(u)k)dudv.

We will make use of the fact that for a centered Gaussian vector (U,V ),

Cov(Uk,V k) =
∑

1≤p≤k

c(p, k)[Cov(U,V )]p[Var(U)Var(V )]k−p.

Since the random variable Zε has clearly bounded variance (cf. Lemma 2.3), it suffices to show
that for every 1 ≤ p ≤ k, ∫ 1

0

∫ 1

0
[E(Zε(u)Zε(v))]p dudv ≤ c4,6ε

β. (4.15)

We can write∫ 1

0

∫ 1

0
[E(Zε(u)Zε(v))]p dv du = 2

∫ 1

0

∫ u

0
1(u−v<ε)[E(Zε(u)Zε(v))]p dv du

+ 2
∫ 1

0

∫ u

0
1(u−v≥ε)[E(Zε(u)Zε(v))]p dv du

:= A + B.

Clearly, A ≤ cε, hence it suffices to bound the term B . Note that

E(Zε(u)Zε(v)) = 1

ε2HK

∫ u

u−ε

∫ v

v−ε

∂2R

∂a ∂b
db da.

Since

∂2R

∂a ∂b
(a, b) = 2HK

2K
[(a2H + b2H )K−2a2H−1b2H−1 − (2HK − 1)|a − b|2HK−2],

we have

B ≤ c(p,H,K)

∫ 1

0

∫ u−ε

0

[
1

ε2HK

∫ u

u−ε

∫ v

v−ε

(a2H + b2H )K−2a2H−1b2H−1 db da

]p

dv du

+ c(p,H,K)

∫ 1

0

∫ u−ε

0

[
1

ε2HK

∫ u

u−ε

∫ v

v−ε

|a − b|2HK−2 db da

]p

dv du

:= B1 + B2.
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The term B2 can be treated as in the fBm case (see Azaïs and Wschebor [6], Proposition 2.1)
and we get B2 ≤ cεβ for some constant β > 0. Finally, since a2HK + b2HK ≥ aHKbHK , we can
write

B1 ≤ c(p,H,K)

∫ 1

0

∫ u−ε

0

[
1

ε2HK

∫ u

u−ε

∫ v

v−ε

aHK−1bHK−1 db da

]p

dv du

= c(p,H,K)

∫ 1

0

∫ u−ε

0

(
uHK − (u − ε)HK

εHK

)p(
vHK − (v − ε)HK

εHK

)p

dv du

≤ c

[∫ 1

0

(
uHK − (u − ε)HK

εHK

)p

dv du

]2

.

A change of variable shows that B1 ≤ cε2(1−HK). Combining the above yields (4.15). Therefore,
we have proven (4.14) and thereby the proposition is proved. �

The above result can be extended to obtain the almost sure weak approximation of the oc-
cupation measure of the bi-fBm BH,K by means of the normalized number of crossing of
BH,K

ε , where BH,K
ε represents the convolution of BH,K with an approximation of the identity

�ε(t) = 1
ε
�( t

ε
) with � = 1[−1,0]. If g is a real-valued function defined on an interval I , then the

number of crossing of level u is

Nu(g, I ) = #{t ∈ I :g(t) = u},
where #E denotes the cardinality of E.

Proposition 4.7. Almost surely for every continuous function f and for every bounded interval
I ⊂ R+,(

π

2

)1/2

ε1−HK

∫ ∞

−∞
f (u)Nu(B

H,K
ε , I )du →

∫ ∞

−∞
f (u)L(u, I )du as ε → 0.

Proof. The arguments in Azaïs and Wschebor [6], Section 5, apply. Details are left to the
reader. �

4.3. The multiparameter case

For any given vectors H = (H1, . . . ,HN) ∈ (0,1)N and K = (K1, . . . ,KN) ∈ (0,1]N , an
(N,d)-bifractional Brownian sheet BH,K = {BH,K(t), t ∈ R

N+} is a centered Gaussian random
field in R

d with i.i.d. components whose covariance functions are given by

E(B
H,K
1 (s)B

H,K
1 (t)) =

N∏
j=1

1

2Kj
[(s2Hj

j + t
2Hj

j )Kj − |tj − sj |2Hj Kj ]. (4.16)
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It follows from (4.16) that, similarly to an (N,d)-fractional Brownian sheet (cf. Xiao and Zhang
[46] and Ayache and Xiao [5]), BH,K is operator-self-similar. However, it does not have conve-
nient stochastic integral representations, which have played essential roles in the study of frac-
tional Brownian sheets. Nevertheless, we will prove that the sample path properties of BH,K are
very similar to those of fractional Brownian sheets and we can describe the anisotropic properties
of BH,K in terms of the vectors H and K .

We start with the following useful lemma.

Lemma 4.8. For any ε > 0, there exist positive and finite constants c4,7 and c4,8 such that for
all s, t ∈ [ε,1]N ,

c4,7

N∑
j=1

|sj − tj |2Hj Kj ≤ E
[(

B
H,K
1 (s) − B

H,K
1 (t)

)2] ≤ c4,8

N∑
j=1

|sj − tj |2Hj Kj (4.17)

and

c4,7

N∑
j=1

|sj − tj |2Hj Kj ≤ det Cov(B
H,K
1 (s),B

H,K
1 (t)) ≤ c4,8

N∑
j=1

|sj − tj |2Hj Kj . (4.18)

Here and in the sequel, det Cov denotes determinant of the covariance matrix.

Proof. We will make use of the following, easily verifiable, fact. For any Gaussian random vector
(Z1,Z2),

det Cov(Z1,Z2) = Var(Z1)Var(Z2|Z1), (4.19)

where Var(Z1) and Var(Z2|Z1) denote the variance of Z1 and the conditional variance of Z2,
given Z1, respectively.

By (4.19), we see that for all s, t ∈ [ε,1]N ,

det Cov(B
H,K
1 (s),B

H,K
1 (t)) = E[BH,K

1 (s)2]Var(BH,K
1 (t)|BH,K

1 (s))

≤ E[BH,K
1 (s)2]E[(

B
H,K
1 (s) − B

H,K
1 (t)

)2]
. (4.20)

Since Var(BH,K
1 (s)) is bounded from above and below by positive and finite constants, it is

sufficient to prove the upper bound in (4.17) and the lower bound in (4.18).
When N = 1, Lemma 2.3, Proposition 2.1 and (4.19) collectively imply that both (4.17)

and (4.18) hold. Next, we show that if the lemma holds for any BH,K with at most n parameters,
then it holds for BH,K with n + 1 parameters.

We first verify the upper bound in (4.17). For any s, t ∈ [ε,1]n+1, let s′ = (s1, . . . , sn, tn+1).
We then have

E
[(

B
H,K
1 (s) − B

H,K
1 (t)

)2] ≤ 2E
[(

B
H,K
1 (s) − B

H,K
1 (s′)

)2]
+ 2E

[(
B

H,K
1 (s′) − B

H,K
1 (t)

)2]
. (4.21)
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For the first term, we note that whenever s1, . . . , sn ∈ [ε,1] are fixed, BH,K is a (rescaled) bifrac-
tional Brownian motion in sn+1. Hence, Lemma 2.3 implies that the first term in the right-
hand side of (4.21) is bounded by c|tn − sn|2Hn+1Kn+1 , where the constant c is independent of
s1, . . . , sn ∈ [ε,1]. On the other hand, when tn+1 ∈ [ε,1] is fixed, BH,K is a (rescaled) (N,d)-
bifractional Brownian sheet. Hence, the induction hypothesis implies that the second term in the
right-hand side of (4.21) is bounded by c

∑n
j=1 |tj − sj |2Hj Kj . This and (4.21) together prove

the upper bound in (4.17).
Suppose that the lower bound in (4.18) holds for any BH,K with at most n parameters. For

N = n + 1, we write det Cov(B
H,K
1 (s),B

H,K
1 (t)) as

n+1∏
j=1

t
2Hj Kj

j s
2Hj Kj

j −
n+1∏
j=1

1

22Kj
[(t2Hj

j + s
2Hj

j )Kj − |tj − sj |2Hj Kj ]2

=
n+1∏
j=2

t
2Hj Kj

j s
2Hj Kj

j

{
s

2H1K1
1 t

2H1K1
1 − 1

22K1
[(t2H1

1 + s
2H1
1 )K1 − |t1 − s1|2H1K1]2

}

+ 1

22K1
[(t2H1

1 + s
2H1
1 )K1 − |t1 − s1|2H1K1 ]2

×
{

n+1∏
j=2

t
2Hj Kj

j s
2Hj Kj

j −
n+1∏
j=2

1

22Kj
[(t2Hj

j + s
2Hj

j )Kj − |tj − sj |2Hj Kj ]2

}

≥ c

n+1∑
j=1

|sj − tj |2Hj Kj , (4.22)

where the last inequality follows from the induction hypothesis. This proves the lower bound
in (4.18). �

Applying Lemma 4.8, we can prove that many results in Xiao and Zhang [46] and Ayache and
Xiao [5] on sample path properties of fractional Brownian sheet also hold for BH,K . Theorem 4.9
is concerned with the existence of local times of BH,K .

Theorem 4.9. Let BH,K = {BH,K(t), t ∈ R
N+} be an (N,d)-bifractional Brownian sheet with

parameters H ∈ (0,1)N and K ∈ (0,1]N . If d <
∑N

j=1
1

Hj Kj
, then for any N -dimensional closed

interval I ⊂ (0,∞)N , BH,K has a local time L(x, I ), x ∈ R
d . Moreover, the local time admits

the following L2-representation:

L(x, I ) = (2π)−d

∫
Rd

e−i〈y,x〉
∫

I

ei〈y,BH,K(s)〉 ds dy, x ∈ R
d . (4.23)

Remark 4.10. Although the existence of local times can also be proven by using the Malliavin
calculus (see Proposition 4.15 below), we prefer to provide a Fourier analytic proof because
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(1) we can compare the two methods in this way and (2) the above theorem also gives the repre-
sentation (4.23).

Proof of Theorem 4.9. Without loss of generality, we may assume that I = [ε,1]N , where
ε > 0. Let λN be the Lebesgue measure on I . We denote by µ the image measure of λN under
the mapping t �→ BH,K(t). The Fourier transform of µ is then

µ̂(ξ) =
∫

I

ei〈ξ,BH,K(t)〉 dt. (4.24)

It follows from Fubini’s theorem and (4.17) that

E

∫
Rd

|µ̂(ξ)|2 dξ =
∫

I

∫
I

∫
Rd

E
(
ei〈ξ,BH,K(s)−BH,K(t)〉)dξ ds dt

= c

∫
I

∫
I

1

[E(B
H,K
1 (s) − B

H,K
1 (t))2]d/2

ds dt

≤ c

∫
I

∫
I

1

[∑N
j=1 |sj − tj |2Hj Kj ]d/2

ds dt. (4.25)

The same argument on page 214 of Xiao and Zhang [46] shows that the last integral is finite
whenever d <

∑N
j=1

1
Hj Kj

. Hence, in this case, µ̂ ∈ L2(Rd) a.s. and Theorem 4.9 follows from
the Plancherel theorem. �

Remark 4.11. Recently, Ayache, Wu and Xiao [4] have shown that fractional Brownian sheets
have jointly continuous local times based on “sectorial local non-determinism.” It would be inter-
esting to prove that BH,K is sectorially locally non-deterministic and to establish joint continuity
and sharp Hölder conditions for the local times of BH,K .

We now consider the Hausdorff and packing dimensions of the image, graph and level set of
BH,K . In order to state our theorems conveniently, we assume that

0 < H1K1 ≤ · · · ≤ HNKN < 1. (4.26)

We denote packing dimension by dimP; see Falconer [19] for its definition and properties. The
following theorems can be proven by using Lemma 4.8 and the same arguments as in Section 3
of Ayache and Xiao [5]. We leave the details to the interested reader.

Theorem 4.12. With probability 1,

dimH BH,K([0,1]N) = dimP BH,K([0,1]N) = min

{
d;

N∑
j=1

1

HjKj

}
(4.27)
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and

dimH GrBH,K([0,1]N)

= dimP GrBH,K([0,1]N) (4.28)

=



N∑
j=1

1

HjKj

, if
N∑

j=1

1

HjKj

≤ d ,

k∑
j=1

HkKk

HjKj

+ N − k + (1 − HkKk)d, if
k−1∑
j=1

1

HjKj

≤ d <

k∑
j=1

1

HjKj

,

where
∑0

j=1
1

Hj Kj
:= 0.

Theorem 4.13. Let Lx = {t ∈ (0,∞)N :BH,K(t) = x} be the level set of BH,K . The following
statements hold:

(i) if
∑N

j=1
1

Hj
< d , then for every x ∈ R

d , we have Lx = ∅ a.s.;

(ii) if
∑N

j=1
1

Hj
> d , then for every x ∈ R

d and 0 < ε < 1, with positive probability,

dimH(Lx ∩ [ε,1]N) = dimP(Lx ∩ [ε,1]N)

= min

{
k∑

j=1

Hk

Hj

+ N − k − Hkd,1 ≤ k ≤ N

}

=
k∑

j=1

Hk

Hj

+ N − k − Hkd, if
k−1∑
j=1

1

Hj

≤ d <

k∑
j=1

1

Hj

. (4.29)

4.4. A Malliavin calculus approach

Using the Malliavin calculus approach, we can study the local times of more general bifractional
Brownian sheets. Consider the (N × d)-matrices

H = (H 1, . . . ,Hd) and K = (K1, . . . ,Kd),

where for any i = 1, . . . , d ,

Hi = (Hi,1, . . . ,Hi,N ) and Ki = (Ki,1, . . . ,Ki,N ),

with Hi,j ∈ (0,1) and Ki,j ∈ (0,1] for every i = 1, . . . , d and j = 1, . . . ,N .

We will say that the Gaussian field BH,K is an (N,d)-bifractional Brownian sheet with indices
H and K if

BH,K(t) = (BH 1(t), . . . ,BHd (t)), t ∈ [0,∞)N ,
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and for every i = 1, . . . , d , the random field {BHi (t), t ∈ R
N+} is centered and has covariance

function

E(BHi,Ki (t)BHi,Ki (s)) = RHi,Ki (s, t) =
N∏

j=1

RHi,j ,Ki,j (sj , tj ).

As in Section 4.1, the local time L(x, t) (t ∈ R
N+ and x ∈ R

d ) of BH,K is defined as the density
of the occupation measure µt , defined by

µt(A) =
∫

[0,t]
1A(BH,K(s))ds, A ∈ B(Rd).

Formally, we can write

L(x, t) =
∫

[0,t]
δx(B

H,K(s))ds,

where δx denotes the Dirac function and δx(B
H,K
s ) is therefore a distribution in the Watanabe

sense (see Watanabe [42]).
We require some notation. For x ∈ R, let pσ (x) be the centered Gaussian kernel with variance

σ > 0. Also, consider the Gaussian kernel on R
d given by

pd
σ (x) =

d∏
i=1

pσ (xi), x = (x1, . . . , xd) ∈ R
d .

Denote by Hn(x) the nth Hermite polynomial defined by H0(x) = 1 and, for n ≥ 1,

Hn(x) = (−1)n

n! exp

(
x2

2

)
dn

dxn
exp

(
−x2

2

)
, x ∈ R.

We will make use of the following technical lemma.

Lemma 4.14. For any H ∈ (0,1) and K ∈ (0,1], let us define the function

QH,K(z) = RH,K(1, z)

zHK
, z ∈ (0,1],

and QH,K(0) = 0. The function QH,K then takes values in [0,1], QH,K(1) = 1 and it is strictly
increasing. Moreover, there exists a constant δ > 0 such that for all z ∈ (1 − δ,1),

(QH,K(z))n ≤ exp
(−c(δ,H,K)n(1 − z)2HK

)
. (4.30)

Proof. Clearly, the Cauchy–Schwarz inequality implies that 0 ≤ QH,K(z) ≤ 1. Let us prove that
the function QH,K is strictly increasing. By computing the derivative Q′

H,K(z) and multiplying

this by zHK+1, we observe that it is sufficient to show that

(1 − z)2HK−1(1 + z) − (1 + z2H )K−1(1 − z2H ) > 0 for all z ∈ (0,1). (4.31)
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If HK ≤ 1
2 , since (1 + z2H )K−1 ≤ 1 + z, the left-hand side of (4.31) can be minorized by

(1 + z2H )K((1 − z)2HK−1 − 1 + z2H ) and this is positive since (1 − z)2HK−1 ≥ 1.
If HK > 1

2 , we note that

(1 − z)2HK−1(1 + z) + (1 + z2H )K−1z2H

≥ (1 − z)(1 + z) + (1 + z2H )K−1z2

≥ (1 + z2H )K−1(1 − z2) + (1 + z2H )K−1z2

≥ (1 + z2H )K−1

and this implies (4.31). Concerning inequality (4.30), we note that

QH,K(z)n = exp(n logQH,K(z)) ≥ exp
(−n

(
1 − QH,K(z)

))
.

Now, by Taylor’s formula,

(1 + z2H )Kz−HK ≤ 2K + c(H,K, δ)(1 − z)2

and therefore

QH,K(z) ≤ 1 + c(H,K, δ)(1 − z)2 − 1

2K
(1 − z)2HK

≤ 1 + c(H,K, δ)(1 − z)2HKδ2−2HK − 1

2K
(1 − z)2HK.

The conclusion follows as in the proof of Lemma 2 of Eddahbi et al. [18] since

1 − QH,K(z) ≥ 1

2K
(1 − z)2HK

(
1 − c(H,K, δ)

)
for any z ∈ (1 − δ,1) with δ close to zero and with c(H,K, δ) tending to zero as δ → 0. �

The following proposition gives a chaotic expansion of the local time of the (N,d)-bifractional
Brownian sheet. The stochastic integral In(h) which appears below is the multiple Wiener–Itô in-
tegral of order n of the function h of nN variables with respect to an (N,1)-bifractional Brownian
motion with parameters H = (H1, . . . ,HN) and K = (K1, . . . ,KN). Recall that such integrals
can be constructed in general on a Gaussian space; see, for example, Major [29] or Nualart [34].
We will only need the following isometry formula:

E
(
In

(
I
⊗n
[0,t]

)
Im

(
I⊗m
[0,s]

)) = n!RH,K(t, s)n1(n=m)
(4.32)

= n!
N∏

j=1

(RHj ,Kj (tj , sj ))
n1(n=m)

for all s, t ∈ R
N+ .
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Proposition 4.15. For any x ∈ R
d and t ∈ (0,∞)N , the local time L(x, t) admits the following

chaotic expansion

L(x, t) =
∑

n1,...,nd≥0

∫
[0,t]

d∏
i=1

p
s2Hi Ki

(xi)

sniH iKi

Hni

(
xi

sHi

)
I i
ni

(
1[0,s](·)⊗ni

)
ds, (4.33)

where s = s1 · · · sN and sHiKi = ∏N
j=1 s

Hi,j Ki,j

j . The I i
ni

denote the multiple Wiener–Itô stochas-

tic integrals with respect to the independent N -parameter bifractional Brownian motion BHi,Ki .
Moreover, if

∑N
j=1

1
H ∗

j K∗
j

> d , where H ∗
j = max{Hi,j : i = 1, . . . , d} and K∗

j = max{Ki,j : i =
1, . . . , d}, then L(x, t) is a random variable in L2(�).

Proof. The chaotic expression (4.33) can be obtained similarly as in Eddahbi et al. [18] or Russo
and Tudor [37]. It is based on the approximation of the Dirac delta function by Gaussian kernels
with variance converging to zero. Let us evaluate the L2(�) norm of L(x, t). By the indepen-
dence of components and the isometry of multiple stochastic integrals, we obtain

‖L(x, t)‖2
2 =

∑
m≥0

∑
n1+···+nd=m

∫
[0,t]

du

∫
[0,t]

dv

d∏
i=1

βni
(u)βni

(v)RHi,Ki (u, v)ni , (4.34)

where

βni
(u) =

p
s2Hi Ki

(xi)

sniH iKi

Hni

(
xi

sHiKi

)
.

By Propositions 3 and 6 of Imkeller et al. [23] (see also Lemma 11 of Eddahbi et al. [18]), we
have the bound

βni
(u)βni

(v) ≤ c4,9
1

(ni ∨ 1)(8β−1)/6

1

uniH iKi vniH iKi

(4.35)

for any β ∈ [ 1
4 , 1

2 ). Using inequality (4.35), we derive from (4.34) that ‖L(x, t)‖2
2 is at most

c
∑
m≥0

∑
n1+···+nd=m

(
d∏

i=1

1

(ni ∨ 1)(8β−1)/6

)∫
[0,t]

du

∫
[0,u]

dv

d∏
i=1

N∏
j=1

RHi,j ,Ki,j (uj , vj )
ni

(uj vj )
niHi,j Ki,j

= c
∑
m≥0

∑
n1+···+nd=m

(
d∏

i=1

1

(ni ∨ 1)(8β−1)/6

)
N∏

j=1

∫ tj

0
uj duj

∫ 1

0

(
d∏

i=1

QHi,j ,Ki,j
(z)ni

)
dz

= c4,10t
2
∑
m≥0

∑
n1+···+nd=m

(
d∏

i=1

1

(ni ∨ 1)(8β−1)/6

)
N∏

j=1

∫ 1

0

(
d∏

i=1

QHi,j ,Ki,j
(z)ni

)
dz, (4.36)
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where we have used the changes of variable uj = uj and vj = zjuj . Using the above lemma and
following along the lines of the proof of Lemma 2 of Eddahbi et al. [18], we can prove the bound

∫ 1

0

(
d∏

i=1

QHi,j ,Ki,j
(z)ni

)
dz ≤ c4,11m

−1/(2H ∗
j K∗

j )
. (4.37)

Here, c4,11 = c4,11(H,K) depends on H and K . Finally, (4.37) implies that

‖L(x, t)‖2
2 ≤ c4,12

∑
m≥1

(
N∏

j=1

m
−1/(2H ∗

j K∗
j )

) ∑
n1+···+nd=m

(
d∏

i=1

1

(ni ∨ 1)(8β−1)/6

)

≤ c4,13

∑
m≥1

m
−∑N

j=1 1/(2H ∗
j K∗

j )+d(1−(8β−1)/6)−1
, (4.38)

where c4,12 and c4,13 depend only on H,K and t . The last series in (4.38) converges if

N∑
j=1

1

2H ∗
j K∗

j

> d

(
1 − 8β − 1

6

)
. (4.39)

To conclude, observe that by choosing β close to 1
2 ,

∑N
j=1

1
H ∗

j K∗
j

> d implies the required con-

dition (4.39). �

We recall that a random variable F = ∑
n In(fn) belongs to the Watanabe space D

α,2 if

‖F‖2
α,2 :=

∑
n≥0

(1 + m)α‖In(fn)‖2
2 < ∞.

Corollary 4.16. For every t ∈ (0,∞)N and x ∈ R
d , the local time L(x, t) of the (N,d)-bi-

fractional Brownian sheet BH,K belongs to the Watanabe space D
α,2 for every 0 < α <∑N

j=1
1

2H ∗
j K∗

j
− d

2 .

Proof. This is a consequence of the proof of Proposition 4.15. Using the computation contained
there, we obtain, for any β ∈ [ 1

4 , 1
2 ),

‖L(x, t)‖2
α,2 ≤ c4,14(H,K,d, t)

∑
m≥1

(1 + m)αm
d(1−(8β−1)/6)−1−∑N

j=1 1/(2H ∗
j K∗

j )
,

which is convergent if α <
∑N

j=1
1

2H ∗
j K∗

j
− d(1 − 8β−1

6 ) − 1 − ∑N
j=1

1
2H ∗

j K∗
j

. Choosing β close

to 1
2 , we obtain the conclusion. �
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