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Neo-classical minimax problems,
thresholding and adaptive function
estimation

DAVID L. DONOHO* and IAIN M. JOHNSTONE
Department of Statistics, Stanford University, Stanford, CA 94305, USA

We study the problem of estimating & from data Y~ N(§, o) under squared-error loss. We define
three new scalar minimax problems in which the risk is weighted by the size of 8. Simple thresholding
gives asymptotically minimax estimates in all three problems. We indicate the relationships of the new
problems to each other and to 1wo other neo-classical problems: the problems of the bounded normal
mean and of the risk-constrained normal mean.

Via the wavelet transform, these resulis have implications for adaptive function estimation in two
settings: estimating functions of unknown type and degree of smoothness in a global # norm; and
estimating a function of unknown degree of local Holder smoothness at a fixed point. In the Jatter
seiting, the scalar minimax results imply: Lepskii’s results that it is not possible fully to adapt the
unknown degree of smoothness without incurring a performance cost; and that simple thresholding of
the empirical wavelet transform gives an estimate of a function at a fixed point which is, to within
constants, optimally adaptive to unknown degree of smoothness.
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1. Introduction

This paper illustrates the use of scalar minimax problems to study basic questions of
adaptive nonparametric function estimation. Consider a simple Gaussian nonparametric
regression model
d =f{t)+ oz, i=1,....,n

where the ¢; are equispaced on [-1/2, 1/2] and the z; are independently and identically
distributed (i.i.d.) as N(0, 1). We focus on two topics: estimating functions of unknown type
and degree of smoothness in a global #? norm; and estimating a function of unknown
degree of local Holder smoothness at a fixed point.

We show below that we can reduce the study of various adaptation questions to the study
of three new univariate Gaussian minimax estimation problems. The primary tools for the
reduction are the use of wavelet bases, choice of suitable symmetric subproblems (in the
global case) and hardest one-dimensional subproblems (in the local case). We show that
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various quantitative characteristics of the scalar minimax problems — such as logarithmic
asymptotics — are directly responsible for various quantitative characteristics of adaptive
estimation problems.

Sections 3—6 explore the three scalar minimax problems and their relationships to each
other, and show that simple thresholding rules are asymptotically minimax in these scalar
settings. The remainder of the paper ‘bootstraps’ these scalar results into simple derivations
of a variety of (mostly) previously known results in the global and local settings described
above.

For example, Section 7 shows that thresholding rules are asymptotically minimax over
strong and weak /7 balls, providing new and simpler proofs of the upper bound parts of
Donoho and Johnstone (1994b) and Johnstone (1994a). We also show that a single
threshold estimator has a universal near-minimax property over a wide class of function
spaces in the Besov scale (compare Donoho er al. 1995).

Section 8 applies the scalar minimax theorems to the local problem to recover Lepskii’s
(1991) result that it is not possible fully to adapt to unknown degree of smoothness —
adaptation imposes a performance cost. Secondly, we show that the same threshold estimator
as considered in the global problem gives an estimate of a function at a fixed point which is, to
within constants, optimally adaptive to an unknown degree of smoothness.

Section 2 begins with a detailed outline of the results and historical background.

2. Outline of results

Suppose we have normally distributed scalar data ¥ ~ N(9, %) and we wish to estimate 6,
measuring performance by squared-error E{(d — #)°}. The classical minimax theorem
(Wolfowitz 1950) says that, in the absence of prior information on 8, Y is optimal as an
estimator of # in a worst-case sense:

E{(Y — 8)*} = infsup E[{8(Y ) -~ 8}7]. (2.1)
[T 3

This theorem, via Le Camn’s theory of local asymptotic normality, lies at the heart of many
developments in asymptotic minimaxity in parametric and nonparametric statistics.

Recently, we have entered a neo-classical period, where modifications of the classical
minimax problem are studied, with applications to determining the precise constants in the
minimax risk of various curve estimation problems. We mention two specific examples. In
the first, the problem of estimating a bounded normal mean, one assumes that ¢ is known to
lie in a finite interval {—r, 7]. The study and evaluation of the minimax risk

inf sup E[{8(Y) ~ 6}’] (22)
§ be[-rr
was initiated and solved by Bickel (1981), Casella and Strawderman (1981} and Levit
(1981). By the method of hardest one-dimensional subproblems (initiated by Stein 1956)

and hardest Cartesian subproblems, this problem has been found to lie at the heart of
several important asymptotic minimaxity and near-minimaxity results in nonparametric
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statistics: for example, in minimax estimation of a linear functional (see, for example,
Ibragimov and Has’minskii 1984; Donoho and Liu 1991), and in minimax estimation of the
whole object (see Donoho et al. 1990).

In the second example, one searches for a minimax estimator subject to constraints on the
risk at a fixed point. Let ©y(p) denote the class of estimators with risk less than or equal to p
at the origin:

8(0) = {8 : Bo{B(Y )’} < p}, (23)
and consider
K%p)= inf supE,[{6(Y) -6} (2.4)
e ip) #eR

The study of preblems of this type was initiated by Bickel (1983) and continued by Brown
and Low (1992) and Low (1992). Results in this area apply to problems of estimating sparse
signals in Gaussian noise (Donoho et al. 1992; Johnstone 1994b).

In this paper we will introduce three (apparently) new neo-classical minimax problems,
derive asymptotically minimax rules, discuss their relations to the other neo-classical
problems above, and give applications to infinite-dimensional estimation problems such
as adaptive estimation of objects of unknown smoothness.

2.1. THREE PROBLEMS

The first problem, in the scalar case ¥ ~ N(8, 1), is to obtain the minimax value

E{4(Y) - 6)}

LP(6) = inf 2.5
SR e )
where 6§ > 0 and p € (0,2).
Theorem 1
LP(8) ~ {2log(6"H} P, §—0. (2.6)

An asymprotically minimax rule is the soft threshold rule

6'(Y) = n(Y) = (Y] - 0 sga(Y),

1= 1(6) = /2log(671). 2.7

The estimator 7,(Y} is a simple nonlinear shrinker (also called limited translation or
Efron—~Morris in other contexts).
The following strengthening of the L” problem is of particular importance to us and

with threshold
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provides the second new situation. Let 75 = /21log{(6~!) and let m4(8) = % min {(8/7;)*, 1}.
Define

: E{(Y) ~ 6}
M?(§) = infsup——-——H——,
R S A T)

For ¢ near 75, m4(8) = [6|7. However, away from 75, m%(6) behaves differently. Since
m3(8) < |67, M*(6) > LP(6).
Theorem 2

MP(8) ~ {2log(6HN} P2, 0. (2.8)
An asymptotically minimax procedure is of the form 6°(Y) = n,(Y) with t = \/21og(57").

The third new problem is the study of

K?(p) = inf supr” sup E[{4(Y) ~ 6}, (2.9)
detyplp) 721 B<r

where (p) is as in (2.3). Evidently, this is a mixture between the ‘subject to doing well at a
point” and ‘bounded normal mean’ problems, with the additional twist of the ‘sup,,, 7
weighting thrown in!

Theorem 3
k() ~ R2log(p ™)} *2, s 0. (2.10)
An asymptotically minimax procedure is of the form 8" (¥ ) = n,(Y) with t = /2 log(p™").

The proof of these theorems, in Sections 3—6 below, shows that these three results
are closely connected. In a certain sense, K% is smaller than L?, which is smaller than
M? so lower bounds on K?{6) and upper bounds on MF(§), both of size
{2 log(c‘i‘l)}l_"”z{l +0(1}}, combine to prove both theorems simultaneously.

2.2. TWO PHENOMENA

The above results expose two phenomena:

Phenomenon [UNI) )

If we calibrate é and p appropriately, a single estimator 8” is asymptotically minimax for all
three problems, and the form of the estimator does not depend on p. There is a single
‘universal® kind of estimator for all these probiems.

Phenomenon [L.OG]
The minimax values X?(8), L?() and M*(8) are all asymptotically equivalent, and they
behave as {2log(671)}1 772 as § — 0.

These phenomena may at first appear to concern only problems of estimating a one-
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dimensional parameter. Sections 7-8 of this paper will show that they cause similar
phenomena for estimation of infinite-dimensional parameters.

2.3. SEQUENCE SPACE

The significance of these scalar minimax problems comes, as usual, from applying the scalar
results coordinatewise to multivariate problems. Section 7 below develops applications to
two such problems. In both, we suppose that we have n noisy observations y; = 8; + ¢,2;,
i=1,...,n withthezild. N(0, 1), and that our goal is to estimate & with srnall squared ¢ 2

risk: E[16(y) - 6]l7:.
In the first, we suppose the parameter # belongs to an #-dimensional £7 ball, defined by
A(CY) = {GGR": |9,—1"§C"}.

i=1
Consider the minimax problem
Li(Cy€) = inf sup ENG(y) = 6117:; (2.12)
8 23C) i
and let n, = n~/2C, /¢, denote the normalized radius; we assume that 7, ~ 0 as n — 0.
For a full discussion, see Donoho and Johnstone (1994b). Let 4, —~ 0 be defined by
¥ ' = log{m?), and set §, = 7,77 and consider the estimator §; = (¢,6"(:/€,)); built up

coordinatewise out of the estimator which is asymptotically minimax for L?{1/n),
0<p<

Theorem 4 Let 0 < p < 2 and assume that n, — 0 and (€,/C,,)* log{n(e,/C,)*} — 0. Then
8, is an asymprotically minimax procedure, and

Lﬁ(cm En) ~ Lp(ﬂi)cﬁéikp‘ H— 0.

In the second problem we suppose again that we have observations y;, but now the
parameter § belongs to an n-dimensional weak #7 ball (Marcinkiewicz ball) defined as
follows. For a vector 8 let [8])y > 18]z > ... denote the ordered coordinate values, and put

mi(C) = {P e R : |8l < C-i7'P i},
(Note that #£{C) C m4(C).) Consider the minimax problem
ME(C.¢,) = inf sup E[8(y) — 6% (2.13)
f mi(C) "

ansider again the estimator 4} = (¢,0"(y:i/e,));, built coordinatewise out of estimators
with §, = ~,n4, which are asymptotically minimax for M?(é,),0 < p < 2.

Theorem 5 Lot 0<p<2 and assume that m,— 0 and (e,/C,) log{n(e,/C,)?} =
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O((logn)~*P). Then 6, is an asymprotically minimax procedure, and

2
MY(Cy €0) ~ EMP(??QC?%—P, n— 0.

In Theorems 4 and $, the threshold level of the asymptotic minimax estimator depends
on the radius, noise level and shape of ball through 7,. In the discussion in Section 2.4 of
estimation over certain function spaces, it is natural to fix C, = C, and to adept the
calibration ¢, = on™V/2. In this case, a single choice of threshold, based on § = 1 /n, comes
within a constant factor of asymptotic minimacxity, irrespective of the radius or type of ball:

Covollary 5 Let 0<p<2, e,=on '’ and §=1/n. Consider the estimator 6 =
(fn??r,,(yf/%)h- Then

. 1-p/2
sup EJf — 0l < (52} ZACon™ {141}
£5(C) 2

and a corresponding result holds with m% and M7 replacing /% and L%,

This is an instance of Phenomencn [UNI].

2.4. FUNCTION SPACE

It is now well known that orthogonal transformations can be employed to turn statements
about estimation over bodies in sequence space into statements about estimation over
classes of smooth functions in noisy data. Efromovich and Pinsker (1981; 1982) and
Nussbaum (1985) established this point with reference to the Fourier transform and
ellipsoids; here we employ instead the wavelet transform, and the ¢” and m? balls, which
lead to different applications. Background on the use of the wavelet transform in this way
can be found in De Vore and Lucier (1992), Donoho (1992; 1993a; 1993b), Donoho et ai.
(1995), Johnstone {1994a), Johnstone er al. (1992), and Kerkyacharian and Picard (1992).

2.4.1. Adapting to unknown type and degree of smoothness. Suppose we have nonparametric
regression observations

di=f(£f)+o—zh !‘:l:"'!ns (214)

where the 1, are equispaced on [—1/2, 1/2] and the z; are i.i.d. N(0, 1). Here is a method for
estimation of the whole object { f{#,), i =1,...,n), based on application of §" coordinate-
wise in a sequence space. Given n = 2/~ numbers (), for some integer j, take a discrete
wavelet transform (Section 8 below), giving empirical wavelet coefficients (y;) which we
treat as if they have §tandard deviation ¢, = ¢/+/n. Then apply the estimator 8, to these
coefficients and let (f}(¢;)); denote the inverse wavelet transform of the vector §;,.

This approach reduces problems of estimating the smooth function f to problems of
estimating the sequence of wavelet coefficients. If we are working with an orthogonal
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empirical wavelet transform we have an isometry of squared errors:

S ) @Y = Y- 0 @215)

!
In such a case, we also have that the empirical coefficients y; satisfy
y£=6i+£nzh i=1)---an

with z; iid. N(0, 1). (If we are working instead with a wavelet transform which is
simply quasi-orthogonal, then slightly weaker relations hold; for example, the transform ts
a quasi-isometry, where the two sides in (2.15) lie within fixed multiples of each other,
independently of n = 27 *+1)

The empirical wavelet transform turns minimax estunauon over classes of smooth
functions into minimax estimation over the coefficient bodies induced by the transforma-
tion of functions in the class. For example, suppose that W% (C) is a ball of functions
having W%, Sobolev norm less than or equal to C, for some fixed m and p. Let 8, dencte the
class of wavelet coefficient sequences {8;(f}} arising from functions f € W% {C). Then

mf sup E(n”'||f - f 1) = igfsupE(ilé—ﬂllz)‘
wiC) S,

Hence problems of estimating smooth functions reduce to problems of minimax estimation
over bodies €, in sequence space.

A remarkable fact about the wavelet transform and traditional smoothness spaces is that
the bodies 8, are nearty m? balls, for a certain p. By applying Donoho (1992), one can show
that with W%,(C) a W9, ball, the corresponding body ©, obeys, with a constant A
depending only on the wavelet transform,

0,Ccmi(4-C), n>ny, (2.16)

with p =2/(2Zm+ 1). Consequently, we have from Theorems 5, 2 and Corollary 5 the
following bound for the worst-case risk of the estimator 8*:

_ 2, 2 L1+r , .
sup E(n™'|l /7~ 1) < (z_) A7 - (logn) (a/ V) 7 {1 + 0(1}},
WE(C) -P

where r =1~ p/2 =2m/(2m+ 1}. It is known from a variety of simple lower-bound
arguments that

inf sup E(n'f - £12:) = (o/ Ay CH'7,
 we) i

and so the estimator f, is within logarithmic factors of optimal. We can interpret this
geometncally as saying that while the bodies 8, do not quite fill up the weak ¢7 balls, there
is not much gap; the near-minimaxity of * over the inscribed bodies implies a near-
minimaxity over the inscribing bodies.

This near-minimaxity is for a single estimator, defined without regard for p or C, and
valid for a range of m. Phenomenon [UNI], which implies the universality of #* as a nearly
minimax estimator for weak /¥ balls of arbitrary radius and arbitrary p € (0,2), therefore
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means that there is a kind of universal near-minimax estimator for estimating functions of
unknown type and degree of smoothness. In fact this holds much more generally than for
Sobolev balls; it holds for balls in the whole range of Besov and Triebel-Lizorkin spaces,
which includes Hélder classes; and it holds also for balls of functions of total variation.
Compare also Donoho (1993b) and Doncho er al. (1995).

2.4.2. Spatial adaptation. As an alternative to point samples, we might instead assume area
samples d; =ave{/(1):re [t ), 4]} +o0z; i=1,...,n, and choose, as our goal, the
denoising of the area samples, vielding risk

Rn(f: f) = n_l Z(ave {f|[ri—l$ ti]} —ave {fi[tf-ls Ii]})z'

We can apply the empirical wavelet transform to these samples and denoise them according
to the threshelding recipe given above. This has the following application. R.A, DeVore
and collaborators, in a series of papers, have proposed the use of certain special
approximation spaces A, to model the process of spatial adaptation. These spaces are
defined as collections of functions with the property that spatially adaptive methods, such
as splines with # optimally chosen free knots, or best rational approximation of degree n,
give an error which decays as n™, p = 2/(2m + 1). More precisely, if ¢,(f } denotes the L*
error of best approximation by such a spatially adaptive scheme, let 47/(C) denote the ball
of those functions where 3~,(e,n™)?r™" is less than or equal to C”. Roughly speaking, the
members in such a bail are all those which are equally easy to approximate using spatially
adaptive methods,

A remarkable fact about these balls from approximation-space theory is that, although
they are non-convex and seemingly rather exotic, they are equivalent to known objects in
the space of theoretical wavelet coefficient sequences, and those bails are #7 balls. This is a
result of DeVore and Popov (1988} and DeVore er al. (1990). By using this fact, and
arguments in Doncho (1993a), one can show that the empiricat wavelet coefficients obey,
with constants A; depending on the wavelet transform alone,

fﬁ(AOC) C 6” C fﬁ(AIC), n> Ry, (2-1?)

Now the estimator §* is asymptotically near-minimax for #2(A4;C), i = 0, 1; s0 we conclude
that /' is nearly minimax for A,{C). In fact the minimax risk differs from the worst-case
risk of A5 at most by the factor [2/(2 —~ p)I'(4,/4,)".

As wavelet shrinkage achieves the optimal rate performance over this class of functions —
a class defined by spatially adaptive methods — one can say that wavelet shrinkage is a kind
of optimally spatially adaptive method.

2.5, ADAPTATION AT A POINT

In Section 8 below, we trace two implications of Phenomenon [LOG]: first, that in
attempting to estimate a function at a point it is not possible to estimate as well when
the degree of smoothness is unknown as one could estimate if the degree of smoothness
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were known; and second, that one can adapt as well as it is possible to do by a simple
estimator — a coordinatewise application, in the wavelet transform domain, of the soft
threshold estimator 8,.

2.5.1. Impossibility of adaptation ‘for free’. Suppose that we again have observations (2.14),
and we are interested in estimating the single value f(0). We suspect that f obeys a
Hélder(-Zygmund) smoothness condition f € A(a, C), where

A, C) = {f : 1f7s) -0 < Cls — [},

with m = [a] — 1 and § = a — m. However, we are not sure of o and C.

If we did know o and C, then we could construct a linear minimax estimator /'
>, ci¥; where the ¢; are the solution of a quadratic programming problem depending on C,
a, o and 7 (compare Donoho 1994). This estimator has worst-case risk

FaC)

sup B[{/1*C) - 1(0))’] ~ A(e)(CH)'™ (22_) N

Ala,C} n

where A(a) is the value of a certain optimization problem, and the rate exponent satisfies

_ 2oy
T 2a+1

(Donoho and Low 1992), This behaviour is optimal among linear procedures and within a
factor 5/4 of the minimax risk over all measurable procedures.

Unfortunately, if @ and € are actually unknown and we misspecify the degree « of the
Hélder condition, the resulting estimator will achieve a worse rate of convergence than the
rate which would be optimal for a correctly specified condition.

Can we develop an est:mator which does not require knowledge of o and C and yet
performs essentially as well as /¢’ Lepskii (1991) and Brown and Low (1992) show that
the answer is no, even if we know that the correct Holder class is one of two specific classes.
Hence for 0 < ap < o < oc and 0 < €y, €) < o,

inf max Cf{"'_l)n"o'"z" sup E{{f, —7(0)}?] > const. (logn)"
S 1=0d A, C)

(2.18)

In short, we must gain an increase in risk in estimating a smooth function of unknown
degree of smoothness; when the risk attainable in estimnating at a point (smoothness known)
is #»~", the risk one must pay with smoothness unknown is at least proportional to
{log (n}/n}".

Section 8.1 below shows that this phenomenon can be traced to the asymptotics (2.9) for
K?(p). More specificaily, we have the lower bound given in the following theorem.

Theorem 6 Let p; = 2(1 - r;). Then with explicitly computable constants A,

inf max CHn=Npig™ sup E[{f, — F(O)}}] > Aq- KP (A, /n). (2.19)
i i= Ao C)
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The lower bound is based on a special one-dimensional subfamily argument. Phenomenon
[LOG] shows that this lower bound is (ignoring constants) the best possible among one-
dimensional subfamily arguments.

2.5.2. Adaptation with minimal cost Section 8.2 studies the estimator (£ 3(z,}) induced by
soft thresholding in the wavelet domain. The estimator /7 (0) makes no explicit assumptions
about the smoothness or lack of smoothness of ' of course the choice of wavelet makes an
implicit assumption that f has at most D derivatives.

Theorem 7 Suppose we use a wavelet transform with wavelets having D > 1 vanishing
moments. For each Hélder class Ala, C) with ) < o < D, we have

sup E{F3(0) =/ (O] < MP(1/)- 4(a) (€)' (f) {1+o)}.  (220)

Ale

Here r=2a/(2a + 1) is as in (2.18), and with §{a) = min{a, 1/2),

2
Ale) =2 (€Y' e (755m7) 21)

the C; being constants associated to the wavelet transform (see [WI1Jj~[W35] in Section 8.2
below).

Hence £(0) achieves, within a logarithmic factor, the minimax risk for every Haider
class in a broad range.

The logarithmic factor cannot be further reduced, because of Theorem 6. We have closed
the circle: because the lower bound of Theorem 6 derives from the X? problem, and the
upper bound of Theorem 7 derives from the M? problem, the fact that the K* problem and
the M? problem have identical asymptotics (i.e. Phenomenon [LOG]), means that no
estimator can improve on this one except perhaps at the level of constants.

The constructions of Lepskii (1991) and Efromovich and Low (1992) show that there
exist estimators attaining this level of performance over restricted collections of smoothness
classes; but the present estimator is simpler in construction and application, and the results
seem stronger. The present estimator is also, as we have seen above, near-minimax for
estimation in global risk over a wide range of smoothness assumptions. Fan et af. (1993)
have recently studied estimation at a point using wavelet threshold estimators, though not
from the adaptive minimax perspective we use here.

3. Upper bound on M?(5)

Let t=+/2log(6"T). We will argue that for this specific choice of 1, n, has risk
Rs(8) = El{n,(Y) — 8)°] satisfying

M(6) = sgpéf‘T% < 2Mog(87) {1 + o(1)}. | (3.1)
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This furnishes the upper bounds L?(8) < M?(8) < 2log(6™")!?/%{1 + o(1)}.

Lemma 1
Rs(8) < Rs(0) + 6 (3.2)
Rs(8) <P +1 (3.3)
R5(0) < (1) [%+§] (3.4)

Proof. All three relations derive from the identity
RiO)=1+1*+ (82— 2 = 1){d(t—0) — B(— - 0)}
~(t— )t +8) — (t + (1 — 8).

For details, see Lemma 1 of Donoho and Johnstone (1994a). a
We argue separately on the ranges [0,7) and [t,00). On [t,00), m{(6) = t* and we use
bound (3.3):

R® _£2+1 _ ,, . o
Baki MO SO e N e T
§4+tP " b4 19— +

On [0, 1], we have m2(8) = *~%¢°, and from bound (3.2)

R(8) 2| R(O)+6°
RO (RO R 3.6
Frrgr = (:Z-Pa T8 (36)

From bound (3.4) and the identity ¢(¢) = §¢(0), we notice that
R(0) < 66(0)t (4 +6:72) < 2778

for all § sufficiently small.
Thus (3.6) is bounded by 12, and so combining results from the two subintervals gives
the following strengthening of bound (3.1), valid for é sufficiently small:

M8y < 7F(1+172). (3.7)

4. Relation between K?(3) and L?(J)

Make temporarily the calibration p = L?(§) - 6. An estimator § attaining L”(6) has
R(6,0) < L*()(6 +07) = p.

Hence it satisfies 8 € 6,(p), and is eligible for competition in the problem associated with
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K?{p). In that problem its risk satisfies

sup 77 sup R(#,0) < supTPL?(8)(6 + 7)

2l |6+ Tzl

= LP(6) - sup{ér* + 1)
=1

=LP(& - (§+1).
In short
KP(p) < LP(8)(1 + 8),

so L? is ‘larger’ than X7,

5. Lower bound on K?(p)

In this section we will establish the lower bound

KP(p) 2 {2102l Y L +0(1)}, p—0. (5.1)

Together with the results of the last two sections, this will establish (2.6) and (2.9).

Qur approach will be by an argument on Bayes risks which shows that a certain three-
point prior is asymptotically least favorable. Let v, , denote the three-point symmetric
prior distribution

us,p=(1-—e)v0+%v#+%v_# (5.2)
where v, denotes Dirac mass at x. This family of priors has been used extensively in the
study of X°(p) by Bickel (1983) and Donoho and Johnstone (1992a; 1994b).

We make a particular choice of ¢ and u as follows. Let € > 0 be small and let a > 0.
Define p(e, a) as the solution to

@+ 2ap = ~2log (f/—z) (5.3)

and define a(¢) as the sohation to
Vaiugla+p) =¢  p=plea). (54)
Then set i(e} = ple, ale)) and
T = Ve (e (5.5)

In the appendix we prove the following lemma.

Lemma 2

file) ~ y/2log(e ),  €— 0. (5.6)
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Let B(w,) denote the Bayes risk of the prior 7, in the problem Y ~ N(6,1), 8 ~ =,. Then

B(r) ~eii{e’ €—0. (5.7

Let 8, denote the Bayes rule for prior .
( znu( )) ~ f-"{f) e—~0 (58)
R(B.,0)~e¢ e—0. (5.9)

It follows that there is a parametrization e = e(g) such that
ep)~p p—0 (5.10)
R(Bg(p)ao) =P 0< P < po-

Letd, = ‘6( 5 Then 8, is an estimator in 64(0). Moreover, if we define #, = =, then
B(i,) =p-{2loglp Y1 +o()} p—0.

Now let § be any estimator satisfying R(#,0) < p. By the definition of Bayes risk,
Ez{R(8,6)} > B(7,). Setting ji, = 1{e(p)), we may rewrite this as

(1 — &)R(4,0) + gR(é, i)+ %R(é, —i,) > (1 = OR(E,,0) + eR(D,. 3,),
= (1 - €)p+ eR(B,,ji,).
Hence, ) ) ) I — .
ave {R(0, ii,), RO, =i1,)} = R(B,, i) + — {p = R(6, 0)}
> R@,.5,)  (as 6, € By(p)).
It follows that
inf sup R(6,68) > R, ii,)

dedole) B1<4,
= R(Bey), it{e(0)))
= e {1 +0o(1)} o — 0y (5.7). (5.11)

{This is a lower bound for a hybrid minimax risk problem: worst-case risk over a bounded
interval, subject to doing well at 2 point.) Apply this to give (5.1):

inf supr sup R(4,6)
9690( ] =1 8| <r

> inf ji,” sup R(6,6) as jr, > 1
feBylp) 8l < 2,

2 i P(e(o)iale(p) {t +o(D}  p— 0 (by (5.11))
~ ple(p))*F ~ {2log(e(p) ™)}
~{2log(p™ Y} ??  ase— 0 (by (5.10)).
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6. Attainability of K?(p)

To complete the proof of Theorem 3, we now show that the estimator §* defined there is
asymptotically minimax. First, using (3.5),

R(87,0) = (1 4 t)28(—1) + 210(¢).
The asymptotic expansion
B(-u) = pw{u ' — v+ +O0W N}, w1,

gives R(8°,0) ~ 4t73¢(t) as p — 0. Hence p™' R(8°,0) ~ 4t 7> /v/Zm as p — 0. We conclude
that for all sufficiently small p > 0, R(8",0) < p, and that §" € B{p).

On the other hand, under the calibration p = §, we apply the analysis of Section 2; 6* is
asymptotically minimax for L? as § — 0, so

R(O*,0) < L*(§)(6+67), VoeR,
where L"* is a factor satisfying L*(6) = LP{6){1 + o(1)}. Thus
sup 77 sup R(§",8) < sup 72 L*(§)(6 +°)
21

>l 8 <
= L*(6)(1 + §)
= LP(8)(1 + §{1 + o{1)}
= KP(p){1 +o(1}}
under the calibration p = . We conclude that §* is asymptotically minimax for X?(p).

7. Sequence space
Turn now to the sequence space described in Section 1. We suppose that we have » noisy

observations y; = 6; + €,2z;, i = 1,...,n, with z; iid. N{0, 1}, where ¢, — 0, and that our
goal is to estimate # with small squared #2 risk: E|}4(y) — 9||iz.

7.1. MINIMAX RISK. OVER /7 BALLS

We recall that
E[{6*(Y) - 6}*] € L*(5,){6, + 1617},

where L'(6,) ~ L?(8,), n — 0. Now if § € ££(C,,),

E[16;0) ~0lF; < L(e)E Y (4 +
i=1

g,
€

)

< L*8,)(nexb, + €77 CE).
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By choice of 8, = v,nf, v = log(r;?), we have ne2b, = yy62 °C? = o(e2™7C?), and so
sup E||85(v) -8 ||§3 < IP(6,)CPE7P {1+ o(1)].

Pl )

ﬂ(#

We conclude from lower bounds in Doncho and Johnstone (1994b) that this behaviour is
optimal; Theorem 4 follows.

7.2. MINIMAX RISK OVER WEAK ¢? BALLS

We recall that
E[{8°(¥) - 6Y%] < M*(8,){8, + mL ()},
where M*(8,) ~ M?(8,), n — oc. Now if § € m(C),
BNG;0) - 01 < M (6)é 3 (84 mf (7)) 1)
1 7

Now a side calculation (reproduced in the Appendix) gives

n 3 2
sup{Zma (f—') g€ m,“,’(C,,)} <3 _pﬁ;‘on: (7.2)
i=1 n

which leads to a bound for the right-hand side of (7.1) given by

2
* 2 2-p .y
M8} (ne,,é‘,, + 35 g, FCk )

From M*(§,) ~ M”(6,), and ne2s, = o{ek~?C?),

M6 CEET {1+ o(1).

sup E|l67 () — 8% < 5
mf{C,)

We conclude from lower bounds in Johnstone (1994) that this behaviour is optimal;
Theorem 5 follows.

8. Adaptation to unknown smoothness: pointwise risk

8.1. THE COST OF ADAPTATION

In demonstrating Theorem 6, rather than work with the sampled white noise data model
(2.14), we begin with the continuous white noise mode!

Y(de) =1(1) + eW(ds), t€R.
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We will show that if an estimator f (0) satisfies

sup Ef{{f(o) - /O] < B () (Ch) " (8.1)

A(Cll
then that same estimator must necessarily satisfy

sup{ (Eyo(chHt—myt sup. E([{/(0) - F(0)}?) = Aok P (4, 7™y (8.2)
A

Theorem 6 follows by Remarks 1 and 2 below,

Consider the problem of estimating T(f) = f{0) when f is known to lie in A(ag, 1) and
the noise level ¢ = 1. There is a hardest one-dimensional subfamily for linear estimates, ie.
a segment {£y 1 : £ € {—1, 1]} with the property that the problem of estimating T'( f) over
this segment is equally as hard as estimating T'(f) over all of A(ag,1). We are really
interested in the hardest one-dimensional subfamily for estimating 7 f) over a particular
class A(ayg,vy) at noise level ¢, where v = Cy||+# 1];. By a renormalization argument
(Donoho and Low 1992), defining

Ve () = oty (1), ab®=n, abV=e (8.3)

gives the hardest one-dimensional subfamily in the form {£y, , : £ € [-1,1]}. Moreover,
the minimax linear risk for estimating T(f) over this family at noise level ¢ is
Alog) (YY) 77 - (€2Y°. Define

6= £" z.bl,l ”2! f\ﬂ = Ewc__'n 6 R

Consider now the problem of estimating f(0), for f in the unbounded one-dimensional
subfamily {f;}s.g. Note that

fﬂ € A(aﬂv 5’7)

so that this is a one-dimensional subproblem of the problem of estimating / which is known
io belong to some Alay, C), with C anknown. Moreover, note that

fo € Aoy, Cy).

The one-dimensionality of the family {/;} means that the unit-variance statistic

= (v rien) /vt

is a sufficient statistic for & and hence for T(f,). Hence, applying the Rao—Blackwell
process if necessary, we have a correspondence between (non-randomized) estimation FZ0)
of f(0) based on Y, and estimation of §, given by 80y} = (1911 ll2/%. A (ONE{(0) | ¥}.
Under this correspondence, we have

wf.‘r(o) : a _m2
G710 O] 2 (2 Ealid) - o))

Moreover, the renormalization principle (8.3} gives ¥Z.(0) = (¢)°(v*)' ~"%1 ,(0), and
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hence the lower bound
¥1,1(0) \

B0 — 01 2 (LX) @yt B -0 84

Now suppose we have an estimator f (0) satisfying (8.1); then applymg the above
correspondence, we obtain an estimator § satisfying Eg_o[{6(y) — 8}%] < p, where

_ PAPP N s (|3, 1"2 {n=ro),
p=BEY(Ch)! " Fg = i

say. Using (8.4) and the observation that f; € A{ayg, C) entails [8| < 7(C) = {4, [,C/7
we may bound the left-hand side of (8.2) from below via

a0 (2" sup E{(0-67Y.

1911115 €56 MC |9|<r

From the chcnce v =Cyf wl 1ll2, and the formula for 7(C), we have v/C = |4y i [l2/7.
Setting 4, = wl {0/, 1||2 , the previous expression becomes

Ap sup 77 sup E(f — 8)2 > 4gK™(p) = AgKP (4,1~ %),

21 [81<7

This proves (8.2). To get Theorem 6, we use the following two remarks.

Remark 1 Allowing B to vary

Instead of assuming that B is constant, we can retrace the above steps under the condition
B = B(e) in (8.1), where B(e) < ByKP (B, %) = O{(loge™')*). The formula for p
changes slightly; everything elso remains the same, and the conclusion is

CSl.llg ((62)"0 (Cz)(l —Fu))—lEf(f(O) _f(O)):’. 2 AFKPO (A” log(e‘])h (ei)r. __ru).

Owing to the logarithmic growth of K, the exira logarithmic term inside of X% in this
expression does not affect the leading asymptotics, which therefore turn out the same as
those of the right-hand side of (8.2}, so allowance for this extra logarithmic factor leads to
the same type of bound. In sum,

max sup {(€)"(CH' 7 sup E [{£(0) - £(0)}7] = AKP{ 4" ()77} -{(1 +
i=0.1 c>¢, Al ©)
(8.5)

Remark 2 Discretization

With data (2.14), calibrate ¢ = ¢/+/n and use the subfamily {/;} constructed in the proof of
(8.2). Then introduce the sufficient statistic

12
Ya= Zwe,'}(ri)yf/ (Varz¢e,7(ti)yi)
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and argue as above, bounding various approximation errors. One gets a conclusion just like
(8.5), only with o/+/n in place of ¢.

8.2. ADAPTING WITH MINIMAL COST

For Theorem 7, the wavelet transform will be based on periodized orthogonal wavelets,
although we could also use the boundary-corrected orthogonal wavelets of Meyer (1991) or
of Cohen et al. (1992). We fix D, the number of vanishing moments, and j, a ‘low-
resolution cutoff’. To make the proof simpler, we suppose that the low-resolution cutoff is
chosen finely enough that the boundary does not interact with zero; more precisely so that
any wavelet which is non-vanishing at zero is vanishing in a neighbourhood of the
boundary {-1/2,1/2}.

These choices determine a wavelet transform which takes n = 2 ™! numbers (d,), viewed
as samples at equispaced points ¢; € (—1/2,1/2], and delivers n wavelet coefficients (v; ;).
The coefficients yield the reconstruction formula

Zv} W k(‘)

where the vectors w; ; are ‘wavelets’. Here we use a double indexing scheme, where Jj refers
to scale, and k refers to position. j runs from jy to ji; the v 4, 0 <k < 20+ are low-
frequency terms. For J > Jos the v 5, 0 < k < 2/, represent terms of resolution = 2 ~ and
position s k/2/ — 1 This transform has a number of useful properties. The inequalities
below hold with finite positive constants C; that are independent of n = 2/ *! as soon as
jll > J.

[W1] Orthogonality. For all (y;} € R", n! [I{x:) ||§ = ||(uj__k)||§.

[W2] Noice. Let (z;) be ii.d. N(0,0%). Then the corresponding wavelet coefficients (zj.k)
have a joint normal distribution with var(zj W) =on

[W3] Height of wavelets. || w; i ||l < Cs - 202 5> .

[Wd] Width of wavelets. With Q(j, k) = sup(w;z), n r O K < Ca-27,) 2 o

{W3] Analysis of Holder classes. Suppose that f satisfies the Halder condition
f € Ala, €), a < D. Denote the wavelet coefficients (8; ;) of the samples ( f(#;));
let 7 denote the collection of indices of wavelets w; ; which are non-zero at 0. Then

6,61 < Cs-C-27T (jk)eT.

Before proceeding with the proof of Theorem 7, we make a few remarks about the M*
problem. Define

uE(E, € = mE, (/) - &
Setting r = (1 — p/2} we have pf(£, €} < |20 =7 ¢ in fact, with 7, = /2 logn we have

Elr T 21-r)
ermionsel (S () oo o
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Also, recalling definition and inequality (3.1) in the noise-level one problem, for an estimate
6 x we have
E{(07x - 6,.0°} < My (1/m){€ /n + pf (0,4, )}

where, of course, M, (1/n) ~ M?(1/n) as n — .
Our proof begins w1th a decomposmon of f,5(0) — f (0). With Q{ j, k) the support of w; ;
and, again, Z = {{j,k) : 0 € Q(j,k)}, then

f(0) - £(0) = Z( )w;x(0 ZX b
say. Applying our M* analysis of 6[," ¢ with € = % /n, p = 2(1 — r), and using {W3] we get

E(X?,) < My(1/m)C3 -2 { fn+ £ (6, 1, )}

Now if f € A(a, C), then by [W5] |8, ;| < Cs-C-271/2 for those coefficients having
influence at 0, and so for such coefficients

E(X7) < My (1/n)-C3 - {2 /m+ 2/ - p2(Cs-C- 27 )} (jk) e

In the appendix, we prove the following lemma.

Lemma3 Fora>0andj>1,

Jul(Cs-C 2—1’[&+1f3}‘ €) < R,,Z_%U_f"l, (8.7)
where § = min{a, 1}, r = ra) = 20/(20+ 1), p = 2(1 — 1),

Jn = {log2(CCs) — logylerm}}/(a + 1/2),

R, = (&) - (C3CH . (8.8)

This gives immediately the decisive inequality
E(X?) < M} (1/n) - C} (P /n + R272VR1), 8.9)

2 2
feflipmm)
and (@ + b)V/? < (a"? + b'72). Inequality (8.9) gives
; VEXE) < M (1/m' - Gy ;(zme/\/ﬁ + R2278 1),

Now at each level j there are at most 2C, different & such that (j, k) € I; hence

ZV ) € My (1/m)' 2.2 C5C; - [22""26/\/_-{—}21!222‘6“"'"}.

=io =i

We plan to use
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Now use n™!2 Y - 2772 < 2%2 and 32 2701/-i) < /(1 ~ 27%),

Z v (E(ka) = M;U/”)m 2-C3C,- [23;26 + R, 1_%2":&‘] :
= ~

Square both sides and apply (8.10);

2
E{ (;X) } < My (1/m)- R, (2-C5Ca)? [1 = +23”’*e/Ri*’2]2.

Comparing this with (2.20), taking into account inequality (3.7), the definition (8.8) of R,
the definitien (2.21) of A(a), leads to the following strengthening of the conclusion of
Theorern 7, valid for n > ng:

As(ug}[E{ﬁ:(O) — f(O)F] <(2logn) 4(a)(C*) () {1+ (2logn)™"}

l—r 2
> {l + 23’12C5 (‘&E—C) } 1
5

where Cs = 2/(1 — 27%).
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Appendix

Proof of Lemma 2
Note that (5.3) may be written in the form

(1-9¢(a+p) == 9(a).

Combining this with (5.4) shows that a(e) ~ /2log{u{a(e), €)}, and in particular,
= o(u), so that (5.6) foliows directly from (5.3). Since

B(r) = (1~ R(0..0) + 5{R(. i(0) + RB., i(e))),

(5.7) follows from (5.8) and (5.9), symmetry of R(é,, 1) about 0 and (5.6).
Let p(6|y) denote the posterior distribution of § under prior 7. Abbreviating ji(e) by 4,
we have the Bayes rule 8, = ug.(v), where g.(y) = p{g|y) ~ p(~x|y)- Thus

| RO, i€)) = MeVE, {1 — q(n+ 2},
where z ~ N(0, 1}. We have
€

Qc(y) = 2

1—¢ +§(e-w-ﬂ?f’2 +e—w—ﬁ2a’2) ’

(eyu-#zfz B w2 )

Using (5.3), we obtain
ehlz=a) _ o2’ —plz+a}

(A1)

gln+2) = |+ e#-0) 4 22— AE+a)

Since a(¢) T oo it follows that g (g + 2) foase— 0, which established (5.8) since |g,.| < 1.
For (5.9), we first write

R(,,0) = 242 j: 2)o() dy. (A2)
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The identity (A. 1) suggests that we consider first the above integral, 7, say, with g, replaced
by
ehlz-a)

3.y) = ge(u + 2) ST ee )

Laplace’s method leads to the following lemma.

Lemma A If a = o(u), then

00

=[" @easraa~Loarw,  woo

The proof of the lemma makes it clear that [, ~ ﬂ, and hence by substitution of its
conclusion into (A.2),

R(8,,0) ~ Vrupla+ u) =
by (5.4). This establishes (5.9).

Proof of Lemma 3
Now g2(1-r)}‘ = a+1/2. Hence 2/ = 27*+V/%r=1 and so with & = Cs-C-
2— fa+] 2}}/6

6{2(’— ]
f

]

2=R,-

Hence, using pf(6, €) = €ul{f/e, 1),
Yub(Cs-C-27 Y o = R, gV emf (£,
The indicated value of j, is the unique real solution of
Cs-C.27er i je =g
Hence /7, = 2~U=/@+1/2; applving (8.6),
g0V mp () < 274l

so that (8.7) follows and we are done.

Verification of (7.2)
We show that

g 2
— PGy . ? P
hY sup{ El mé(ﬁ,).éem,,(C)}sz_ C?.
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Set = 1/2log(6~) and ¢ = 7C ™!, and note from the definition of the weak #” ball that
S < sup{i e min{ﬁr{z, 1}:0<6, < Ck‘l“’}
1
= czrf’*imn{k-m,ﬁ}.
k=1
Now setting s, = ¢ 7, a simple calcuiation shows that
ik‘w AP < J:o sHP AL ds

=51 +Lsi_2“’
2-p

=277{1+p/(2-p)}

Hence




