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In this paper, we give quantitative bounds on the f -total variation distance from convergence of a Harris
recurrent Markov chain on a given state space under drift and minorization conditions implying ergodicity
at a subgeometric rate. These bounds are then specialized to the stochastically monotone case, covering
the case where there is no minimal reachable element. The results are illustrated with two examples, from
queueing theory and Markov Chain Monte Carlo theory.
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1. Introduction

Let P be a Markov transition kernel on a state space X equipped with a countably generated
σ -field X . For a control function f : X → [1,∞), the f -total variation or f -norm of a signed
measure µ on X is defined as ‖µ‖f := sup|g|≤f |µ(g)|. When f ≡ 1, the f -norm is the total
variation norm, which is denoted ‖µ‖TV. We assume that P is aperiodic positive Harris recurrent
with stationary distribution π . Our goal is to obtain quantitative bounds on convergence rates,
that is,

r(n)‖P n(x, ·) − π‖f ≤ g(x) for all x ∈ X, (1.1)

where f : X → [1,∞) is a control function, {r(n)}n≥0 is a non-decreasing sequence and g : X →
[0,∞] is a function which can be computed explicitly. As emphasized in (Roberts and Rosen-
thal [18], Section 3.5), quantitative bounds have a substantial history in Markov chain the-
ory. Applications are numerous, including convergence analysis of Markov Chain Monte Carlo
(MCMC) methods, transient analysis of queueing systems or storage models, etc. These re-
sults have since been extended, using similar techniques, by Klokov and Veretennikov [10].
In their work, the authors consider truly subgeometric sequences that is, {r(n)}n≥0 ∈ � satis-
fying limn→∞ r(n)n−κ = ∞ for any κ > 0, for a more general class of functional autoregressive
process.

In this paper, we study conditions under which (1.1) holds for sequences in the set � of sub-
geometric rate functions from Nummelin and Tuominen [17], defined as the family of sequences
{r(n)}n≥0 such that r(n) is non-decreasing and log r(n)/n ↓ 0 as n → ∞. Without loss of gen-
erality, we assume that r(0) = 1 whenever r ∈ �. These rates of convergence have seldom been
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considered in the literature. Let us briefly summarize the results available for convergence at
subgeometric rate for general state-space chains. To the best of our knowledge, the first result
for subgeometric sequences was obtained by Nummelin and Tuominen [17], who derived suf-
ficient conditions for ‖P n(x, ·) − π‖TV to be of order o(r−1(n)). The basic condition involved
in this work is the existence of a petite set B satisfying supx∈B Ex[∑τB−1

k=0 r(k)] < ∞, where

τB
def= inf{n ≥ 1,Xn ∈ B} (with the convention that inf ∅ = ∞) is the return time to B . These

results were later extended by Tuominen and Tweedie [25] and Dai and Meyn [2] to f -norms
for general control functions f : X → [1,∞) under the assumption of the existence of a petite
set B satisfying supx∈B Ex[∑τB−1

k=0 r(k)f (Xk)] < ∞. These contributions do not provide com-
putable expressions for the bounds in (1.1). A direct route to obtaining quantitative bounds for
subgeometric sequences has been established by Veretennikov [26,27], based on coupling tech-
niques (see Gulinsky and Veretennikov [8] and Rosenthal [21] for the coupling construction of
Harris recurrent Markov chains). This method consists of relating the bounds (1.1) to a moment
of the coupling time through Lindvall’s inequality; see Lindvall [11,12]. Veretennikov [26,27]
focus on a particular class of Markov chains, the so-called functional autoregressive processes,
defined as Xn+1 = g(Xn) + Wn+1, where g : Rd → R

d is a Borel function and (Wn)n≥0 is an
i.i.d. sequence, and provides expressions for the bounds in (1.1) with the total variation dis-
tance (f ≡ 1) and polynomial rate functions r(n) = nβ , n ≥ 1. These results have since been
extended, using similar techniques, to truly subgeometric sequences that is, {r(n)}n≥0 ∈ � satis-
fying limn→∞ r(n)n−κ = ∞ for any κ > 0, in Klokov and Veretennikov [10], for a more general
class of functional autoregressive process.

Fort and Moulines [7] derived quantitative bounds of the form (1.1) for possibly unbounded
control functions and polynomial rate functions, also using the coupling method. The bound
for the modulated moment of the coupling time is obtained from a particular drift condition
introduced by Fort and Moulines [6], later extended by Jarner and Roberts [9]. These results are
tailored to the polynomial rate and cannot be adapted to general subgeometric rates (see Fort [5]
for comments).

The objective of this paper is to generalize the results mentioned above in two directions. We
consider Markov chains over general state spaces and we study general subgeometric rates of
convergence instead of polynomial rates. We establish a family of convergence bounds, extend-
ing to the subgeometric case the computable bounds obtained in the geometric case by Rosen-
thal [21] and later refined by Roberts and Tweedie [19] and Douc, Moulines and Rosenthal [4]
(see Roberts and Rosenthal [18], Theorem 12, and the references therein). The method, based on
coupling techniques, provides a short and nearly self-contained proof of the results presented in
Nummelin and Tuominen [17] and Tuominen and Tweedie [25].

This paper is organized as follows. In Section 2, we present our assumptions and state our
main results. In Section 2.1, we specialize our results to stochastically monotone Markov chains.
Examples from queueing theory and MCMC theory are discussed in Section 3.

2. Statement of the results

The proof is based on the coupling construction (briefly recalled in Section 4). It is assumed that
the chain admits a small set:
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(A1) There exists a set C ∈ X , a constant ε > 0 and a probability measure ν such that, for all
x ∈ C, P(x, ·) ≥ εν(·).

For simplicity, only one-step minorization is considered in this paper. Adaptations to m-step
minorization can be carried out, as in Rosenthal [21]. Let P̌ be a Markov transition kernel on
X × X such that, for all A ∈X ,

P̌ (x, x′,A × X) = P(x,A)1(C×C)c (x, x′) + Q(x,A)1C×C(x, x′), (2.1)

P̌ (x, x′,X × A) = P(x′,A)1(C×C)c (x, x′) + Q(x′,A)1C×C(x, x′), (2.2)

where Ac denotes the complement of the subset A and Q is the so-called residual kernel defined,
for x ∈ C and A ∈ X , by

Q(x,A) =
{

(1 − ε)−1
(
P(x,A) − εν(A)

)
, 0 < ε < 1,

ν(A), ε = 1.
(2.3)

One may, for example, set

P̌ (x, x′;A × A′) = P(x,A)P (x′,A′)1(C×C)c (x, x′) + Q(x,A)Q(x′,A)1C×C(x, x′), (2.4)

but, as seen below, this choice is not always the most suitable. For (x, x′) ∈ X×X, denote by P̌x,x′

and Ěx,x′ the law and the expectation, respectively, of a Markov chain with initial distribution
δx ⊗ δx′ and transition kernel P̌ .

Our second condition is a bound on the moment of the hitting time of the bivariate chain to

C × C under the probability P̌x,x′ . Let {r(n)} ∈ � be a subgeometric sequence and let R(n)
def=∑n−1

k=0 r(k). Let σC×C
def= inf{n ≥ 0, (Xn,X

′
n) ∈ C × C} and τC×C

def= inf{n ≥ 1, (Xn,X
′
n) ∈ C ×

C} (the first hitting and return time to C × C) and let

U(x,x′) def= Ěx,x′

[
σC×C∑
k=0

r(k)

]
. (2.5)

Let v : X × X → [0,∞) be a measurable function and set

V (x, x′) = Ěx,x′

[
σC×C∑
k=0

v(Xk,X
′
k)

]
. (2.6)

(A2) For any (x, x′) ∈ X × X, U(x,x′) < ∞ and bU < ∞ where

bU
def= sup

(x,x′)∈C×C

P̌U(x, x′) = sup
(x,x′)∈C×C

Ěx,x′

[
τC×C−1∑

k=0

r(k)

]
. (2.7)

(A3) For any (x, x′) ∈ X × X, V (x, x′) < ∞ and bV < ∞ where

bV = sup
(x,x′)∈C×C

P̌V (x, x′) = sup
(x,x′)∈C×C

Ěx,x′

[
τC×C∑
k=1

v(Xk,X
′
k)

]
. (2.8)
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We will establish that R is the rate of convergence associated with the total variation norm. On
the other hand, we will show that the difference P(x, ·) − P(x′, ·) remains bounded in f -norm
for any function f satisfying f (x)+ f (x′) ≤ V (x, x′) for any (x, x′) ∈ X × X. Using an interpo-
lation technique, we will derive a rate of convergence 1 ≤ s ≤ r associated with some g-norm,
0 ≤ g ≤ f . To construct such an interpolation, we consider a pair of positive functions (α,β)

satisfying, for some 0 ≤ ρ ≤ 1,

α(u)β(v) ≤ ρu + (1 − ρ)v for all (u, v) ∈ R
+ × R

+. (2.9)

Theorem 2.1. Assume (A1), (A2) and (A3). Define

MU
def= sup

k∈N

{(
bUr(k)

1 − ε

ε
− R(k + 1)

)
+

}
and MV

def= bV

1 − ε

ε
, (2.10)

where (x)+
def= max(x,0). Then, for any (x, x′) ∈ X × X,

‖P n(x, ·) − P n(x′, ·)‖TV ≤ U(x,x′) + MU

R(n) + MU

, (2.11)

‖P n(x, ·) − P n(x′, ·)‖f ≤ V (x, x′) + MV , (2.12)

for any non-negative function f satisfying, for any (x, x′) ∈ X × X, f (x) + f (x′) ≤ V (x, x′) +
MV . Let (α,β) be two positive functions satisfying (2.9) for some 0 ≤ ρ ≤ 1. Then, for any
(x, x′) ∈ X × X and n ≥ 1,

‖P n(x, ·) − P n(x′, ·)‖g ≤ ρ(U(x, x′) + MU) + (1 − ρ)(V (x, x′) + MV )

α ◦ {R(n) + MU } , (2.13)

for any non-negative function g satisfying, for any (x, x′) ∈ X×X, g(x)+g(x′) ≤ β ◦{V (x, x′)+
MV }.

The proof is postponed to Section 4.

Remark 1. Because the sequence {r(k)} is subgeometric, limk→∞ r(k)/R(k+1) = 0. Therefore,
the sequence {bUr(k)(1−ε)/ε−R(k)} has only finitely many non-negative terms, which implies
that MU < ∞.

Remark 2. When assumption (A2) holds, (A3) is automatically satisfied for some function v.
Note that

Ěx,x′

[
σC×C∑
k=0

r(k)

]
= Ěx,x′

[
σC×C∑
k=0

r(σC×C − k)

]
.

On the other hand, for all (x, x′) ∈ X × X,

Ěx,x′
[
r(σC×C − k)1{σC×C≥k}

]
= Ěx,x′

[
ĚXk,X

′
k
[r(σC×C)]1{σC×C≥k}

] = Ěx,x′
[
vr(Xk,X

′
k)1{σC×C≥k}

]
,
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where vr(x, x′) def= Ěx,x′ [r(σC×C)]. This relation implies that

Ěx,x′

[
σC×C∑
k=0

r(k)

]
= Ěx,x′

[
σC×C∑
k=0

vr(Xk,X
′
k)

]
for all (x, x′) ∈ X × X.

To check assumptions (A2) and (A3), it is often useful to use drift conditions. Drift conditions
implying convergence at polynomial rates were recently proposed in Jarner and Roberts [9].
These conditions have since been extended to general subgeometric rates by Douc et al. [3].
Define by C the set of functions

C def=
{
φ : [1,∞) → R

+, φ is concave, differentiable and

φ(1) > 0, lim
v→∞φ(v) = ∞, lim

v→∞φ′(v) = 0

}
. (2.14)

For φ ∈ C, define Hφ(v)
def= ∫ v

1 (1/φ(x))dx. Since φ is non-decreasing, Hφ is a non-decreasing
concave differentiable function on [1,∞) and limv→∞ Hφ(v) = ∞. The inverse, H−1

φ : [0,

∞) → [1,∞), is also an increasing and differentiable function, with derivative (H−1
φ )′ =

φ ◦ H−1
φ . Note that (log{φ ◦ H−1

φ })′ = φ′ ◦ H−1
φ . Since Hφ is increasing and φ′ is decreasing,

φ ◦ H−1
φ is log-concave, which implies that the sequence

rφ(n)
def= φ ◦ H−1

φ (n)/φ ◦ H−1
φ (0) (2.15)

belongs to the set of subgeometric sequences �. Consider the following assumption:

(A4) There exist functions W : X × X → [1,∞) and φ ∈ C such that P̌W(x, x′) ≤ W(x,x′)−
φ ◦ W(x,x′) for (x, x′) /∈ C × C and sup(x,x′)∈C×C P̌W(x, x′) < ∞.

It is shown in Douc et al. [3] that under assumption (A4), assumptions (A2) and (A3) are satisfied
with the rate sequence rφ and the control function v = φ ◦ W . More precisely, we have the
following.

Proposition 2.2. Assume (A4). Then (A2) and (A3) hold with v = φ ◦ W , r = rφ and

U(x,x′) ≤ 1 + rφ(1)

φ(1)
{W(x,x′) − 1}1(C×C)c (x, x′), (2.16)

V (x, x′) ≤ sup
C×C

φ ◦ W + W(x,x′)1(C×C)c (x, x′), (2.17)

bU ≤ 1 + rφ(1)

φ(1)

{
sup
C×C

P̌W − 1

}
, (2.18)

bV ≤ sup
C×C

φ ◦ W + sup
C×C

P̌W. (2.19)
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The proof is in Section 5. Proposition 2.2 is only partially satisfactory because assumption (A4)
is formulated on the bivariate kernel P̌ . It is, in general, easier to directly establish the drift
condition on the kernel P and to deduce from this condition a drift condition for an appropri-
ately defined kernel P̌ (see Roberts and Rosenthal [18], Proposition 11). Consider the following
assumption:

(A5) There exist a function W0 : X → [1,∞), a function φ0 ∈ C and a constant b0 such that
PW0 ≤ W0 − φ0 ◦ W0 + b01C .

Theorem 2.3. Suppose that (A1) and (A5) are satisfied. Let d0
def= infx /∈C W0(x). Then, if

φ0(d0) > b0, the kernel P̌ defined in (2.4) satisfies the bivariate drift condition (A4) with

W(x,x′) = W0(x) + W0(x
′) − 1, (2.20)

φ = λφ0, for any λ, 0 < λ < 1 − b0/φ0(d0), (2.21)

sup
C×C

P̌W ≤ 2(1 − ε)−1
{

sup
C

PW0 − εν(W0)

}
− 1, (2.22)

where the kernel Q is defined in (2.3).

The proof is postponed to the Appendix.

2.1. Stochastically ordered chains

Let X be a totally ordered set and denote by � the order relation. For a ∈ X, denote by (−∞, a]
the set {x ∈ X :x � a} and by [a,+∞) the set {x ∈ X :a � x}. A transition kernel P on X is called
stochastically monotone if for all a ∈ X, P(·, (−∞, a]) is non-increasing. Stochastic monotonic-
ity has been seen to be crucial in the analysis of queuing networks, Markov Chain Monte Carlo
methods, storage models, etc. Stochastically ordered Markov chains have been considered in
Lund and Tweedie [14], Lund et al. [13], Scott and Tweedie [23] and Roberts and Tweedie [20].
In the first two of these papers, it is assumed that there exists an atom at the bottom of the state
space. Lund et al. [13] cover only geometric convergence; subgeometric rates of convergence
are considered in Scott and Tweedie [23]. Roberts and Tweedie [20] covers the case where the
bottom of the space is a small set but restricts its attention to conditions implying a geometric
rate of convergence.

For a general stochastically monotone Markov kernel P , it is always possible to define the
bivariate kernel P̌ (see (2.1)) so that the two components {Xn}n≥0 and {X′

n}n≥0 are pathwise
ordered, that is, their initial order is preserved at all times.

The construction goes as follows. For x ∈ X, u ∈ [0,1] and K a transition kernel on X, denote
by G−

K(x,u) the quantile function associated with the probability measure K(x, ·):

G−
K(x,u) = inf{y ∈ X,K(x, (−∞, y]) ≥ u}. (2.23)
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Assume that (A1) holds. For (x, x′) ∈ X × X and A ∈X ⊗X , define the transition kernel P̌ by

1(C×C)c(x,x′)P̌ (x, x′;A) =
∫ 1

0
1A(G−

P (x,u),G−
P (x′, u))du

+ 1C×C(x, x′)
∫ 1

0
1A(G−

Q(x,u),G−
Q(x′, u))du,

where Q is the residual kernel defined in 2.3. It is easily seen that, by construction, the set
{(x, x′) ∈ X × X :x � x′} is absorbing for the kernel P̌ .

In the sequel, we assume that (A1) holds for some C
def= (−∞, x0] (i.e., that there is a small

set at the bottom of the space). Let v0 : X → [1,∞) be a measurable function and define

U0(x)
def= Ex

[
σC∑
k=0

r(k)

]
and V0(x) = Ex

[
σC∑
k=0

v0(Xk)

]
. (2.24)

Consider the following assumptions:

(B1) For any x ∈ X, U0(x) < ∞ and supC QU0 = bU0 < ∞.
(B2) For any x ∈ X, V0(x) < ∞ and supC QV0 = bV0 < ∞.

Theorem 2.4. Assume that (A1), (B2) and (B3) hold for some set C
def= (−∞, x0]. Then (A2) and

(A3) hold with U(x,x′) = U0(x ∨ x′), V (x, x′) = V0(x ∨ x′), v(x, x′) = v0(x ∨ x′), bU = bU0

and bV = bV0 .

The proof is omitted for brevity. As mentioned above, drift conditions often provide an easy
means to establish (B2) and (B3). Consider the following assumption:

(B4) There exists a non-negative function W0 : X → [1,∞) and a function φ ∈ C such that for
x /∈ C, PW0 ≤ W0 − φ ◦ W0 and supC PW0 < ∞.

Using, as above, Douc et al. [3], it may be shown that this assumption implies (B2) and (B3) and
allows the constants to be computed explicitly.

Theorem 2.5. Assume (A1) and (B4). Then (B2) and (B3) hold with v0 = φ ◦ W0, r = rφ and

U0(x) ≤ 1 + rφ(1)

φ(1)
{W0(x) − 1}1Cc(x), (2.25)

V0(x) ≤ sup
C

φ ◦ W0 + W0(x)1Cc(x), (2.26)

bU0 ≤ 1 + rφ(1)

φ(1)

(
(1 − ε)−1

{
sup
C

PW0 − εν(W0)

}
− 1

)
, (2.27)

bV0 ≤ sup
C

φ ◦ W0 + (1 − ε)−1
{

sup
C

PW0 − εν(W0)

}
. (2.28)

The proof is analogous to that of Proposition 2.2 and is hence omitted.
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3. Applications

3.1. M/G/1 queue

In an M/G/1 queue, customers arrive into a service operation according to a Poisson process with
parameter λ. Customers bring jobs requiring service times which are independent of each other
and of the inter-arrival time with common distribution B concentrated on (0,∞) (we assume
that the service time distribution has no probability mass at 0). Consider the random variable Xn

which counts customers immediately after each service time ends. {Xn}n≥0 is a Markov chain
on integers with transition matrix

P =




a0 a1 a2 a3 . . .

a0 a1 a2 a3 . . .

0 a0 a1 a2 . . .

0 0 a0 a1 . . .
...

. . .
. . .

. . .
. . .


 , (3.1)

where for each j ≥ 0, aj
def= ∫ ∞

0 {e−λt (λt)j /j !}dB(t) (see Meyn and Tweedie [15], Proposi-

tion 3.3.2). It is known that P is irreducible, aperiodic and positive recurrent if ρ
def= λm1 =∑∞

j=1 jaj < 1, where for u > 0, mu
def= ∫

tu dB(t). Applying the results derived above, we will
compute explicit bounds (depending on λ, x and the moments of the service time distribution)
for the convergence bound ‖P n(x, ·) − π‖f for some appropriately defined function f .

Because the chain is irreducible and positive recurrent, τ0 < ∞ Px -a.s. for x ∈ N. By construc-
tion, for all x = 1,2, . . . , τx−1 ≤ τ0, Px -a.s., which implies that Ex[τ0] = Ex[τx−1] + Ex−1[τ0]
and, for any s ∈ C such that |s| ≤ 1, Ex[sτ0 ] = Ex[sτx−1 ]Ex−1[sτ0 ], where τx−1 is the first return
time of the state x − 1. For all x = 1,2, . . . , we have Px{τx−1 ∈ ·} = P1{τ0 ∈ ·}, which shows

that Ex[τ0] = xE1[τ0] and Ex[sτ0 ] = ex(s), where e(s)
def= E1[sτ0 ]. This relation implies that

e(s) = sa0 +
∞∑

y=1

aye
y(s) = s

∫ ∞

0
eλ(e(s)−1)t dB(t).

By differentiating the previous relation with respect tos and taking the limit as s → 1, we have
E1[τ0] = (1 −ρ)−1. Since {0,1} is an atom, we may use Theorem 2.4 with C = {0,1}, r ≡ 1 and
v0 ≡ 1. In this case,

U0(x) = V0(x) = 1 + Ex[σC] = 1 + Ex−1[τ0]1{x≥2} = 1 + (1 − ρ)−1(x − 1)1{x≥2}.

Theorem 2.1 shows that for any (x, x′) ∈ N × N and any functions α and β satisfying (2.9),

α(n)‖P n(x, ·) − P n(x′, ·)‖β ≤ 1 + (1 − ρ)−1(x ∨ x′ − 1)1{x∨x′≥2}.

Convergence bounds α(n)‖P n(x, ·) − π‖β can be obtained by integrating the previous relation
in x′ with respect to the stationary distribution π (which can be computed using the Pollaczek–
Khinchine formula).
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It is possible to choose the set C in a different way, leading to different bounds. One may
set, for example, C = {0, . . . , x0}, for some x0 ≥ 2. For simplicity, assume that the sequence
{aj }j≥0 is non-decreasing. In this case, for all x ∈ C and y ∈ N, P(x, y) = ay−x+11{y≥x−1} ≥
ay1{y≥x0−1} and the set C satisfies (A1) with ε

def= ∑∞
y=x0−1 ay and ν(y) = ε−1ay1{y≥x0−1}.

Again taking r(k) ≡ 1 and v0(x) ≡ 1, we have

U0(x) = V0(x) = 1 + Ex[τC]1Cc(x) = 1 + Ex[τx0]1Cc(x)

= 1 + Ex−x0 [τ0]1Cc(x) = 1 + (1 − ρ)−1(x − x0)1Cc(x).

To apply the results of Theorem 2.4, we finally compute a bound for bU0 = supC QU0 =
(1 − ε)−1[supC PU0 − εν(U0)], which can be obtained by combining a bound for supC PU0
and the expression for ν(U0). An expression for ν(U0) is computed by a direct application of
the definitions. The bound for supC PU0 is obtained by noting that for all y > x0 and x ∈ C,
P(x, y) ≤ P(x0, y) = ay−x0+1, which implies that

PU0(x) = Ex[τC] = 1 + Ex

[
EX1[τC]1{τC>1}

] = 1 + Ex

[
EX1[τx0 ]1{X1 /∈C}

]
= 1 + (1 − ρ)−1

∞∑
y=x0+1

(y − x0)P (x, y) ≤ 1 + (1 − ρ)−1
∞∑

y=x0+1

(y − x0)ay−x0+1.

We provide some numerical illustrations of the bounds described above. We use the distribution
of service times suggested in Roughan et al. [22] and given by

b(x) =
{

αB−1e−(α)/Bx, x ≤ B,
αBαe−αx−α+1, x > B,

(3.2)

where B marks where the tail begins. The mean of the service distribution is m1 = B{1 +
e−α/(α − 1)}/α and its Laplace transform, G(s) = ∫ ∞

0 e−st dB(t), s ∈ C, Re(s) ≥ 0, is given
by

G(s) = α
1 − e−(sB+α)

sB + α
+ αBαRe−αsα�(−α, sB),

where �(x, z) is the incomplete � function. The probability generating function Pπ(z) of the
stationary distribution is given by the Pollaczek–Khinchine formula

P(z) = (1 − ρ)(z − 1)G(λ(1 − z))

z − G(λ(1 − z))
.

In Figure 1, we display the convergence bound ‖P n(x, ·) − π‖TV as a function of the iteration
index n, for x = 10, α = 2.5, different choices of the small set upper limit x0 = 1,3,6 and two
different values of the traffic, ρ = 0.5 (light traffic) and ρ = 0.9 (heavy traffic). Perhaps sur-
prisingly, the bound computed using the atom C = {0,1} is not uniformly better in the iteration
index n. There is a trade-off between the number of visits to the small set where coupling might
occur and the probability that coupling is successful. In the heavy traffic case (ρ = 0.9), the
queue is not very often empty, so the atom is not frequently visited, explaining why deriving
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Figure 1. Convergence bound for the total variation distance. Bottom panel: light-traffic case: ρ = 0.5,
α = 2.5; Top panel: heavy-traffic case: ρ = 0.9, α = 2.5.



Computable convergence rates for Markov chains 841

the convergence bound from a larger coupling set improves the bound (this effect is even more
noticeable for a critically loaded system).

3.2. The independence sampler

This second example is borrowed from Jarner and Roberts [9]. It is an example of a Markov
chain which is stochastically monotone with respect to a non-standard ordering of the state and
which does not have an atom at the bottom of the state space.

The purpose of the Metropolis–Hastings independence sampler is to sample from a probability
density π (with respect to some σ -finite measure µ on X), which is known only up to a scale
factor. At each iteration, a move is proposed according to a distribution with density q with

respect to µ. The move is accepted with probability a(x, y)
def= q(x)

π(x)
π(y)
q(y)

∧1. The transition kernel
of the algorithm is thus given by

P(x,A) =
∫

A

a(x, y)q(y)µ(dy) + 1A(x)

∫
X

(
1 − a(x, y)

)
q(y)µ(dy), x ∈ X,A ∈X .

It is well known that the independence sampler is stochastically monotone with respect to the
ordering x′ � x ⇔ q(x)

π(x)
≤ q(x′)

π(x′) . Without loss of generality, it is assumed that π(x) > 0 for all
x ∈ X and that q > 0 π -a.s. For all η > 0, define the set

Cη
def=

{
x ∈ X :

q(x)

π(x)
≥ η

}
. (3.3)

For any η > 0, we assume that 0 < π(Cη) < 1 and denote by νη(·) the probability measure
νη(·) = π(· ∩ Cη)/π(Cη). For any x ∈ Cη,

P(x,A) ≥
∫

A

(
q(x)

π(x)
∧ q(y)

π(y)

)
π(y)µ(dy)

≥
∫

A∩Cη

(
q(x)

π(x)
∧ q(y)

π(y)

)
π(y)µ(dy) ≥ ηπ(A ∩ Cη) = ηπ(Cη)νη(A),

showing that the set Cη satisfies (A1) with ν = νη and ε = ηπ(Cη).

Proposition 3.1. Assume that there exists a decreasing differentiable function K : (0,∞) →
(1,∞), whose inverse is denoted by K−1, satisfying the following conditions:

(1) the function φ(v) = vK−1(v) is differentiable, increasing and concave on [1,∞),
limv→∞ φ(v) = ∞ and limv→∞ φ′(v) = 0;

(2)
∫ +∞

0 uK(u)dψ(u) < ∞, where for η > 0, ψ(η)
def= 1 − π(Cη).

Then, for any η� satisfying {1 − ψ(η�)}φ(1) >
∫ ∞

0 (u ∧ η�)K(u)dψ(u), (B4) is satisfied with
W0 = K ◦ (q/π), C = Cη� and φ0(v) = {1−ψ(η�)}φ(v)−∫ ∞

0 (u∧η�)K(u)dψ(u). In addition,

supx∈Cη� PW0 ≤ ∫ +∞
0 uK(u)dψ(u) + K(η�).
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To illustrate our results, we evaluate the convergence bounds in the case where the target den-
sity π is the uniform distribution on [0,1] and the proposal density is q(x) = (r + 1)xr1[0,1](x).
Proposition 3.1 provides a means to derive a drift condition of the form PW0 ≤ W0 − φ ◦ W0
outside some small set C for functions φ ∈ C of the form φ(v) = cv1−1/α + d for any
α ∈ [1,1 + 1/r). In this case, the function ψ is given by ψ(η) = (η/(r + 1))1/r for η ∈
[0, r + 1] and ψ(η) = 1 otherwise. We set, for u ∈ [0, r + 1], K(u) = (u/(r + 1))−α . The in-
tegral

∫
uK(u)dψ(u) = (r+1)−α

r(−α+1/r+1)
is finite provided that α < 1 + 1/r . The function φ(u) =

uK−1(u) = u1−1/α(r + 1) belongs to C provided that α > 1.
Using these results, it is now straightforward to evaluate the constants in Theorem 2.1; this

approach can be employed to calculate a bound on exactly how many iterations are necessary
to get within a prespecified total variation distance of the target distribution. In Figure 2, we
have displayed the total variation bounds to convergence for the instrumental densities q(x) =
3x2 (r = 2) and q(x) = (3/2)

√
x. We have taken α = 1.1 and η� = 0.25 for r = 2 and taken

α = 1.5 and η� = 0.5 for r = 1/2. When r = 2 and α = 1.1, the convergence to stationarity is
quite slow, which is not surprising since the instrumental density does not match well the target
density at x = 0: according to our computable bounds, 500 iterations are required to bring the
total variation to the stationary distribution below 0.1. When r = 1/2, the degeneracy of the
instrumental density at zero is milder and the convergence rate is significantly faster. Less than
50 iterations are required to reach the same bound.

4. Proof of Theorem 2.1

The proof is based on the pathwise coupling construction. For (x, x′) ∈ X × X and A ∈ X ⊗ X ,
define P̄ , the coupling kernel, as follows:

P̄ (x, x′,0;A × {0}) = (
1 − ε1C×C(x, x′)

)
P̌ (x, x′,A),

P̄ (x, x′,0;A × {1}) = ε1C×C(x, x′)ν
(
A ∩ {(x, x′) ∈ X × X, x = x′}),

P̄ (x, x′,1;A × {0}) = 0,

P̄ (x, x′,1;A × {1}) =
∫

P(x,dy)1A(y, y).

For any (x, x′) ∈ X × X, denote by P̄x,x′ and Ēx,x′ the probability measure and the expectation,
respectively, associated to the Markov chain {(Xn,X

′
n, dn)}n≥0 with transition kernel P̄ starting

from (X0,X
′
0,0) = (x, x′,0). By construction, for any n, (x, x′) ∈ X × X and (A,A′) ∈ X ×X ,

we have

P̄x,x′,0(Zn ∈ A × X × {0,1}) = P̄x,x′,0(Xn ∈ A) = P n(x,A)

and

P̄x,x′,0(Zn ∈ X × A′ × {0,1}) = P̄x,x′,0(X
′
n ∈ A′) = P n(x′,A′).

By Douc et al. [4], Lemma 1 we may relate the expectations of functionals under the two prob-
ability measures P̄x,x′,0 and P̌x,x′ , where P̌x,x′ is defined in (2.1): for any non-negative adapted



Computable convergence rates for Markov chains 843

Figure 2. Convergence bound for the total variation distance for the independence sampler. Bottom panel:
q(x) = 3x2. Top panel: q(x) = 1.5

√
x.

process (χk)k≥0 and (x, x′) ∈ X × X,

Ēx,x′,0
[
χn1{T >n}

] = Ěx,x′ [χn(1 − ε)Nn−1], (4.1)
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where T
def= inf{n ≥ 1 :dn = 1} and Nn

def= ∑n
i=0 1C×C(Xi,X

′
i ) is the number of visits to the set

C × C before time n. Let f : X → [0,∞) and let g : X → R be any Borel function such that
supx∈X |g(x)|/f (x) < ∞. The classical coupling inequality (see, e.g., Thorisson [24], Chapter 2,
Section 3) implies that

|P n(x, g) − P n(x′, g)| = |Ēx,x′,0[g(Xn) − g(X′
n)]|

≤ sup
x∈X

|g(x)|/f (x)Ēx,x′,0
[(

f (Xn) + f (X′
n)

)
1{dn = 0}]

and (4.1) implies the following key coupling inequality:

‖P n(x, ·) − P n(x′, ·)‖f ≤ Ěx,x′
{(

f (Xn) + f (X′
n)

)
(1 − ε)Nn−1

}
. (4.2)

Because α(u)β(v) ≤ ρu + (1 − ρ)v for all (u, v) ∈ R
+ × R

+, for any non-negative function f

satisfying f (x)+f (x′) ≤ β ◦V (x, x′) for all (x, x′) ∈ X×X, the coupling inequality (4.2) shows
that

α ◦ {R(n) + MU }‖P n(x, ·) − P n(x′, ·)‖f

≤ α ◦ {R(n) + MU }Ěx,x′ [{f (Xn) + f (X′
n)}(1 − ε)Nn−1]

≤ ρ{R(n) + MU }Ěx,x′ [(1 − ε)Nn−1] + (1 − ρ)Ěx,x′ [V (Xn,X
′
n)(1 − ε)Nn−1].

For any n ≥ 0, let Un(x, x′) = Ěx,x′ [∑σC×C

k=0 r(n+ k)]. It is well known that {Un}n≥0 satisfies the
sequence of drift inequalities

P̌Un+1 ≤ Un − r(n) + bUr(n)1C×C. (4.3)

Similarly, P̌ V ≤ V − v + bV 1C×C . Define, for n ≥ 0,

W(0)
n

def= Un(Xn,X
′
n) +

n−1∑
k=0

r(k) + MU, W(1)
n

def= V (Xn,X
′
n) +

n−1∑
k=0

v(Xk,X
′
k) + MV ,

with the convention that
∑v

u = 0 when u > v. Since, by construction, for any n ≥ 1, W(0)
n ≥ R(n)

and W
(1)
n ≥ V (Xn,X

′
n), the previous inequality implies that

α ◦ R(n)‖P n(x, ·) − P n(x′, ·)‖f

≤ ρĚx,x′
[
W(0)

n (1 − ε)Nn−1
] + (1 − ρ)Ěx,x′

[
W(1)

n (1 − ε)Nn−1
]
.

We must now compute bounds for Ěx,x′ [W(i)
n (1 − ε)Nn−1 ], i = 0,1. Define

T (0)
n

def=
n−1∏
i=0

W
(0)
i + bUr(i)1C×C(Xi,X

′
i )

W
(0)
i

and

(4.4)

T (1)
n

def=
n−1∏
i=0

W
(1)
i + bV 1C×C(Xi,X

′
i )

W
(1)
i

.
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If ε = 1, (1 − ε)Nn−1 = 1{σ0≥n}, where σ0 = inf{n ≥ 0 | (Xn,X
′
n) ∈ C × C} is the first hitting

time of the set C × C: T
(i)
n 1{σ0≥n} = 1{σ0≥n} ≤ 1. Now consider the case ε < 1. By construction,

for Nn−1 = 0, T
(i)
n = 1 and for Nn−1 > 0,

T (0)
n =

Nn−1−1∏
i=0

W
(0)
σi

+ bUr(σi)

W
(0)
σi

and T (1)
n =

Nn−1−1∏
i=0

W
(1)
σi

+ bV

W
(1)
σi

, (4.5)

where σi are the successive hitting times of the set C × C recursively defined by σj+1 = inf{n >

σj | (Xn,X
′
n) ∈ C × C}. Because W

(0)
n ≥ R(n + 1) + MU and 1 + bUr(n)/{R(n + 1) + MU } ≤

1/(1 − ε), for Nn−1 > 0, we have

T (0)
n (1 − ε)Nn−1 ≤

Nn−1−1∏
i=0

({
1 + bUr(σi)

R(σi + 1) + MU

}
(1 − ε)

)
≤ 1. (4.6)

Similarly, because W
(1)
n ≥ MV and 1+bV /MV ≤ 1/(1−ε), we have T

(1)
n (1−ε)Nn−1 ≤ 1. These

two relations imply, for i = 0,1, that

Ěx,x′
[
W(0)

n (1 − ε)Nn−1
] ≤ Ěx,x′

[
W(0)

n

{
T (0)

n

}−1]
,

Ěx,x′
[
W(1)

n (1 − ε)Nn−1
] ≤ Ěx,x′

[
W(1)

n

{
T (1)

n

}−1]
.

It now remains to compute a bound for Ěx,x′ [W(i)
n {T (i)

n }−1]. By construction, we have, for n ≥ 1,

Ěx,x′
[
W(0)

n

{
T (0)

n

}−1 | Fn−1
]

= Ěx,x′
[
W(0)

n |Fn−1
] W

(0)
n−1

W
(0)
n−1 + bUr(n − 1)1C×C(Xn−1,X

′
n−1)

{
T

(0)
n−1

}−1
, (4.7)

where Fn = σ {(X0,X
′
0), . . . , (Xn,X

′
n)}. Now, (4.3) yields

Ěx,x′
[
W(0)

n | Fn−1
] ≤ W

(0)
n−1 + bUr(n − 1)1C×C(Xn−1,X

′
n−1). (4.8)

Combining (4.7) and (4.8) shows that {W(0)
n {T (0)

n }−1}n≥0 is an F -supermartingale. Thus,

Ěx,x′
[
W(0)

n (1 − ε)Nn−1
] ≤ Ěx,x′

[
W(0)

n

{
T (0)

n

}−1] ≤ Ěx,x′
[
W

(0)
0

] = U0(x, x′) + MU.

Similarly, Ěx,x′ [W(1)
n (1 − ε)Nn−1 ] ≤ V (x, x′) + MV , which concludes the proof of Theo-

rem 2.1. �
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5. Proof of Proposition 2.2, Theorem 2.3

Proof of Proposition 2.2. By applying the comparison theorem (Meyn and Tweedie [15]) and
(Douc et al. [3], Proposition 2.2) we obtain the following inequalities. For all (x, x′) ∈ X × X,

Ěx,x′

[
τC×C−1∑

k=0

φ ◦ H−1
φ (k)

]
≤ W(x,x′) − 1 + b

φ ◦ H−1
φ (1)

φ ◦ H−1
φ (0)

1C×C(x, x′), (5.1)

Ěx,x′

[
τC×C−1∑

k=0

φ ◦ W(Xk,X
′
k)

]
≤ W(x,x′) + b1C×C(x, x′). (5.2)

The sequence {φ ◦ H−1
φ (k)}k≥0 is log-concave. Therefore, for any k ≥ 0, φ ◦ H−1

φ (k + 1)/φ ◦
H−1

φ (k) ≤ φ ◦ H−1
φ (1)/φ ◦ H−1

φ (0). Then, applying (5.1), we obtain

Ěx,x′

[
σC×C∑
k=0

φ ◦ H−1
φ (k)

]

= φ ◦ H−1
φ (0) + Ěx,x′

[
τC×C∑
k=1

φ ◦ H−1
φ (k)

]
1(C×C)c (x, x′)

≤ φ ◦ H−1
φ (0) + φ ◦ H−1

φ (1)

φ ◦ H−1
φ (0)

Ěx,x′

[
τC×C∑
k=1

φ ◦ H−1
φ (k − 1)

]
1(C×C)c (x, x′),

showing (2.16). The proof of (2.17) is along the same lines. �

Proof of Theorem 2.3. Since d0 = infx /∈C W0(x), if (x, x′) /∈ C × C, then W(x,x′) ≥ d0 and
1C(x)+1C(x′) ≤ 1 since either x /∈ C, x′ /∈ C (or both). The definition of the kernel P̌ therefore
implies that

P̌W(x, x′) ≤ W0(x) + W0(x
′) − 1 − φ0 ◦ W0(x

′) − φ0 ◦ W0(x
′) + b0{1C(x) + 1C(x′)}

≤ W(x,x′) − φ0 ◦ W(x,x′) + b0,

where we have used the following inequality: for any u ≥ 1 and v ≥ 1, φ0(u + v − 1) − φ0(u) ≤
φ0(v) − φ0(1). For (x, x′) /∈ C, b0 ≤ (1 − λ)φ0(d) ≤ (1 − λ)φ0 ◦ W(x,x′) and the previous
inequality implies that P̌W(x, x′) ≤ W(x,x′) − φ ◦ W(x,x′). �

Appendix A: Proof of Proposition 3.1

Let W be any measurable non-negative function on X. Then, for η > 0 and x /∈ Cη, we have

PW(x) − W(x) ≤
∫

X

(
η ∧ q(y)

π(y)

)
W(y)π(y)µ(dy) − W(x)

∫
X
a(x, y)q(y)µ(dy).
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If x /∈ Cη and y ∈ Cη , then y � x and a(x, y)q(y) = (q(x)/π(x))π(y). Thus,∫
X
a(x, y)q(y)µ(dy) ≥

∫
Cη

a(x, y)q(y)µ(dy) = q(x)

π(x)
π(Cη) = q(x)

π(x)

(
1 − ψ(η)

)
.

Altogether, we obtain, for all x /∈ Cη ,

PW(x) − W(x) ≤
∫

X

(
η ∧ q(y)

π(y)

)
W(y)π(y)µ(dy) − {1 − ψ(η)} q(x)

π(x)
W(x). (A.1)

The definition of W0 implies that∫
X

(
η ∧ q(y)

π(y)

)
W0(y)π(y)µ(dy) =

∫ ∞

0
(η ∧ u)K(u)dψ(u) < ∞.

By Lebesgue’s bounded convergence theorem, limη→0
∫ ∞

0 (η ∧u)K(u)dψ(u) = 0. Since, more-
over, limη→0 ψ(η) = 0, it follows that for sufficiently small η, {1 − ψ(η)}φ(M) >

∫ ∞
0 (η ∧

u)K(u)dψ(u), hence η� is well defined. Now, (A.1) and (A) yield, for all x /∈ Cη� ,

PW0(x) − W0(x) ≤
∫ ∞

0
(η� ∧ u)K(u)dψ(u) − (

1 − ψ(η�)
)
W0(x)K−1 ◦ W0(x)

= −φ0(W0(x)).

For x ∈ Cη� , we have W0(x) ≤ K(η�). Finally, we have, for any x ∈ Cη� ,

PW0(x) ≤
∫

X
q(y)W0(y)µ(dy) + W0(x)

=
∫

X

q(y)

π(y)
K

(
q(y)

π(y)

)
π(y)µ(dy) + W0(x)

≤
∫ ∞

0
uK(u)dψ(u) + K(η�).
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