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Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83–109] prove an extension of Itô’s formula for
F(Xt , t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity con-
dition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying
certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisen-
baum [Potential Anal. 13 (2000) 303–328] concerning Brownian motion, we show that one can re-express
this formula using integration over space and time with respect to local times in place of quadratic covaria-
tion. We also show that when the function F has a locally integrable derivative in t , we can avoid the mild
continuity condition in t for the derivative of F in x.
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1. Introduction

Itô’s formula is one of the most important results in the theory of stochastic processes because it
plays the role of the theorem of change of variable for stochastic integration.

Itô [11] obtained this result in 1944 for a standard Brownian motion W = (Wt )t≥0 and a C2,1

function F : R × R+ −→ R. Precisely, he proved that

F(Wt , t) = F(W0,0) +
∫ t

0

∂F

∂t
(Ws, s)ds +

∫ t

0

∂F

∂x
(Ws, s)dWs + 1

2

∫ t

0

∂2F

∂x2
(Ws, s)ds.

Since then, many extensions of this result have been obtained, in two directions: proving that
the formula is also valid for other types of processes and weakening the conditions on the func-
tion F .

In the first direction, Kunita and Watanabe [12] proved the result for continuous semimartin-
gales X and functions F ∈ C2,1. The first appearance of local time in an Itô formula is due to
Tanaka [15] in 1963, but in 1981, Bouleau and Yor [3] obtained an extension of Itô’s formula
where the additional term turns up as an integral in space with respect to the local time.

In 1995, Föllmer et al. [9] made one of the more remarkable contributions to the theory in the
sense of weakening the conditions on the function F . Their Itô formula is for F(Wt , t), where
F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition
in t , and W is a standard Brownian motion.
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Eisenbaum [5,6] defined an integral in time and space with respect to the local time of the
Brownian motion. Using this integral, the quadratic covariation in the formula given in Föllmer
et al. can be expressed as an integral with respect to the local time.

Bardina and Jolis [2] extended the results of Föllmer et al. [9] to the case of elliptic diffusions.
In this paper, our goal is to generalize the results obtained by Eisenbaum to this case.

Other extensions of Itô’s formula include Errami et al. [8], Dupoiron et al. [4], Peskir [14],
Ghomrasni and Peskir [10] and Eisenbaum [7].

The paper is organized as follows. In Section 2, we recall the basic results obtained in Bardina
and Jolis [2], where the authors obtain an Itô formula for elliptic diffusion processes. In Section 3,
we define the space where we are able to construct an integral in the plane with respect to the
local time of a diffusion process. Section 4 is devoted to presenting the extension of Itô’s formula.
Finally, in Section 5, we recall some examples of diffusions satisfying the hypotheses considered
in Section 4.

2. Preliminaries

Bardina and Jolis [2] prove an extension of Itô’s formula for F(Xt , t), where F(x, t) has a locally
square-integrable derivative in x that satisfies a mild continuity condition in t , and X is a one-
dimensional diffusion process such that the law of Xt has a density satisfying certain properties.

Following the ideas of Föllmer et al. [9], where they prove an analogous extension when X is
Brownian motion, the proof is based on the existence of the quadratic covariation [f (X, ·),X]t
defined as the limit uniformly in probability of

∑
ti∈Dn,ti≤t

(
f (Xti+1 , ti+1) − f (Xti , ti )

)
(Xti+1 − Xti ),

where (Dn)n denotes a sequence of partitions of [0,1], each composed of intervals with the norm
tending to zero and all having the same order of convergence. More precisely, they prove that the
limit uniformly in probability of

∑
ti∈Dn,ti≤t

f (Xti , ti )(Xti+1 − Xti )

exists and coincides with the forward stochastic integral
∫ t

0 f (Xs, s)dXs and that the limit uni-
formly in probability of ∑

ti∈Dn,ti≤t

f (Xti+1 , ti+1)(Xti+1 − Xti )

exists and coincides with the backward stochastic integral
∫ t

0 f (Xs, s)d∗Xs . The backward inte-
gral is defined as a forward stochastic integral of f (X̄s,1 − s) with respect to the time-reversed
process X̄ = {X̄t ≡ X1−t ,0 ≤ t ≤ 1}:

∫ t

0
f (Xs, s)d∗Xs = −

∫ 1

1−t

f (X̄s,1 − s)dX̄s .
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The backward integral is well defined when the reversed process satisfies certain integrator prop-
erties. For diffusion processes, there are results that guarantee that the reversed process is also a
diffusion and therefore a semimartingale.

Assume that our process satisfies the stochastic integral equation

Xt = X0 +
∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs,

where W = {Wt,Ft ;0 ≤ t ≤ 1} is a standard Brownian motion, and σ and b satisfy the usual
conditions (H) of Lipschitz and linear growth: there exists a constant K > 0 such that for any
x, y ∈ R,

sup
t

[|σ(t, x) − σ(t, y)| + |b(t, x) − b(t, y)|] ≤ K|x − y|,

sup
t

[|σ(t, x)| + |b(t, x)|] ≤ K(1 + |x|).

The reversibility of the diffusion property has been studied by several authors; see, for instance,
Millet et al. [13]. The extension of Itô’s formula obtained for Bardina and Jolis is as follows.

Theorem 2.1 (Bardina and Jolis [2]).
(H1) Hypotheses on the function:

1. Let F(x, t) be an absolutely continuous function with respect to the coordinate x and let
f (·, t) be its derivative ∂F

∂x
(·, t).

2. Suppose that f (·, t) ∈ L2
loc(R) and that for all compact subsets T of R,

∫
T

f 2(x, t)dx is a
continuous function of t in [0,1].

(H2) Hypotheses on the diffusion:

1. Assume that Xt is a diffusion process that satisfies hypotheses (H).
2. Suppose that for all t > 0, Xt has a density pt(x) that satisfies the two conditions

sup
x

pt (x) ≤ r(t),

(∫
R

1

pt (x)

(
d

dx
(σ 2(t, x)pt (x))

)2

dx

)1/2

≤ u(t),

where r(t), u(t), t ∈ (0,1] are continuous non-increasing integrable functions. (The deriv-
ative d

dx
(σ 2(t, x)pt (x)) must be interpreted in the distributional sense and, by convention,

(pt (x))−1 = 0 if pt (x) = 0.)
3. Assume that (r)1/2u ∈ L1[0,1].
Then, the quadratic covariation exists, as a limit uniformly in probability, and

[f (X, ·),X]t =
∫ t

0
f (Xs, s)d∗Xs −

∫ t

0
f (Xs, s)dXs.
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Moreover,

F(Xt , t) = F(X0,0) +
∫ t

0
f (Xs, s)dXs + 1

2 [f (X, ·),X]t +
∫ t

0
F(Xs,ds),

where ∫ t

0
F(Xs,ds) ≡ lim

n→+∞
∑

ti∈Dn,ti≤t

(
F(Xti+1 , ti+1) − F(Xti+1 , ti)

)
,

exists uniformly in probability.

Remark 2.2. Notice that in Theorem 2.1, if we assume stronger conditions on the function,
we can weaken the hypotheses on the diffusion. Particularly, when f is bounded, the condition
(r)1/2u ∈ L1[0,1] is not necessary.

Remark 2.3. In Theorem 2.1, if F is of class C1 in t , then the term
∫ 1

0 F(Xs,ds) equals∫ t

0
∂F
∂s

(Xs, s)ds. On the other hand, if F is of class C2 in x, then [f (X, ·),X]t = ∫ t

0
∂f
∂x

(Xs,

s)d〈X,X〉s .

Remark 2.4. Under hypotheses (H2) (see Theorem 2.1) and using Theorem 2.3 of Millet et al.
[13] (also see Remarks 1.2, 1.3 and Theorem 2.2 of Bardina and Jolis [2]), we have the following
semimartingale expression of X̄ for 0 ≤ t ≤ 1:

X̄t = X̄0 +
∫ t

0
b̄(s, X̄s)ds +

∫ t

0
σ̄ (s, X̄s)dW̄s,

where {W̄t ,0 ≤ t ≤ 1} is another standard Brownian motion defined in the same probability space
as W and where

σ̄ (1 − t, x) = σ(t, x),

b̄(1 − t, x) = −b(t, x) + 1

pt(x)

d

dx
(σ 2(t, x)pt (x)),

with the convention that (pt (x))−1 = 0 if pt(x) = 0.

Finally, we will represent by K the constants that will appear, although they may vary from
occurrence to occurrence.

3. Stochastic integration with respect to local time of the
diffusion process

Following the ideas of Eisenbaum [5], we first consider the space of functions for whose elements
we can define a stochastic integration with respect to local time.
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Let us consider X, a diffusion process satisfying the stochastic integral equation

Xt = X0 +
∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs.

Note that we need the coefficients σ and b to satisfy the hypotheses in order for the reversed
time process to also be a martingale. In fact, we will suppose a little more and we will assume
statements 1 and 2 of (H2).

Let f be a measurable function from R × [0,1] to R. We define the seminorm ‖ · ‖∗ by

‖f ‖∗ = 2
∫ 1

0

∫
R

|f (x, s)b(s, x)|ps(x)dx ds + 2

(∫ 1

0

∫
R

f 2(x, s)σ 2(s, x)ps(x)dx ds

)1/2

+
∫ 1

0

∫
R

∣∣∣∣f (x, s)
d

dx
(σ 2(s, x)ps(x))

∣∣∣∣dx ds,

where the derivative of σ 2(s, x)ps(x) must be interpreted in the distributional sense.
We also assume some hypotheses on the diffusion in order to ensure that the seminorm ‖ · ‖∗

is a norm, that is,
(H3) ps(x) �= 0 a.s. and λ{(x, t) :σ(x, t) = b(x, t) = 0} = 0, where λ denotes the Lebesgue

measure.
Consider the set of functions

H = {f :‖f ‖∗ < +∞}.
It is easy to check that H is a Banach space.

In Remark 3.3, we will show how to define the norm and the space when (H3) is not satisfied,
in order to be able to construct the stochastic integration with respect to the local time.

Remark 3.1. Note that for Brownian motion, that is, when b ≡ 0 and σ ≡ 1, we obtain the norm
and the space given by Eisenbaum [5].

Let us now show how to define a stochastic integration over the plane with respect to the local
time L of the diffusion process X for the elements of H.

Let f� be an elementary function,

f�(x, s) =
∑

(xi ,sj )∈�

fij I(xi ,xi+1](x)I(sj ,sj+1](s),

where (xi)1≤i≤n is a finite sequence of real numbers, (sj )1≤j≤m is a subdivision of [0,1],
(fij )1≤i≤n;1≤j≤m is a sequence of real numbers and, finally, � = {(xi, sj ),1 ≤ i ≤ n,
1 ≤ j ≤ m}. It is easy to check that the elementary functions are dense in H.

We define the integration of the elementary function f� with respect to the local time L of the
diffusion X as follows:∫ 1

0

∫
R

f�(x, s)dLx
s =

∑
(xi ,sj )∈�

fij (L
xi+1
sj+1 − L

xi+1
sj − Lxi

sj+1
+ Lxi

sj
).
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Let f be a function of H. Let us consider (fn)n∈N, a sequence of elementary functions con-
verging to f in H. We will check that the sequence (

∫ 1
0

∫
R

fn(x, s)dLx
s )n∈N converges in L1 and

that the limit does not depend on the choice of sequence (fn)n∈N. We will thus use this limit as
the definition of the integral

∫ 1
0

∫
R

f (x, s)dLx
s .

Theorem 3.2. Let f be a function of H. Then the integral
∫ t

0

∫
R

f (x, s)dLx
s exists and

∫ t

0

∫
R

f (x, s)dLx
s =

∫ t

0
f (Xs, s)dXs −

∫ t

0
f (Xs, s)d∗Xs,

for any t ∈ [0,1].
Proof. Let f� be an elementary function. Following the ideas of the proof of Theorem 3.1 of
Eisenbaum [5], it is easy to show that

∫ t

0

∫
R

f�(x, s)dLx
s =

∫ t

0
f�(Xs, s)dXs −

∫ t

0
f�(Xs, s)d∗Xs.

Using the semimartingale expression of the reversed process X̄ given in Remark 2.4, we can
write∫ t

0
f�(Xs, s)d∗Xs =

∫ 1

1−t

f�(X̄s,1 − s)b(1 − s, X̄s)ds

−
∫ 1

1−t

f�(X̄s,1 − s)
1

p1−s(X̄s)

d

dx

(
σ 2(1 − s, X̄s)p1−s(X̄s)

)
ds

−
∫ 1

1−t

f�(X̄s,1 − s)σ (1 − s, X̄s)dW̄s

and then

E

(∣∣∣∣
∫ t

0

∫
R

f�(x, s)dLx
s

∣∣∣∣
)

≤ ‖f�‖∗. (1)

Now, given f ∈ H, let us consider {fn}n∈N, a sequence of elementary functions converging to
f in H, and define

∫ t

0

∫
R

f (x, s)dLx
s = L1 − lim

n→∞

(∫ t

0

∫
R

fn(x, s)dLx
s

)
.

Using inequality (1), it is clear that this limit exists and that the definition does not depend on
the choice of sequence (fn).

On the other hand, for any f ∈ H, it is easy to check that f (X·, ·) is forward and backward
integrable with respect to X (see Remark 2.4). Finally, from the uniqueness of the extension, we
have ∫ t

0

∫
R

f (x, s)dLx
s =

∫ t

0
f (Xs, s)dXs −

∫ t

0
f (Xs, s)d∗Xs. �
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Remark 3.3. When (H3) is not satisfied, ‖ · ‖∗ is only a seminorm (not a norm). In this case, we
should restrict our results to f ∈ L2(R × [0,1]). Let us consider the space

H = {f ∈ L2(R × [0,1]) :‖f ‖∗ < +∞}
with the norm

‖ · ‖ = ‖ · ‖∗ + ‖ · ‖2.

The results given in Theorem 3.2 are then true with this new norm and this space.
That is, we are able to define the integral for functions that are not L2, but we then need more

regularity over the diffusion.

Remark 3.4. Under the hypotheses of Theorem 2.1, if f ∈H then, for any t ∈ [0,1],
∫ 1

0

∫
R

f (x, s)dLx
s = −[f (X, ·),X]t .

4. Itô’s formula extension

Our main result states the following:

Theorem 4.1. Assume that Xt is a diffusion process that satisfies statements 1 and 2 of the
hypotheses (H2).

Let F be a function defined on R × [0,1] such that F admits first order Radon–Nikodym
derivatives with respect to each parameter and assume that these derivatives satisfy, for every
A ∈ R,

∫ 1

0

∫ A

−A

∣∣∣∣∂F

∂t
(x, s)

∣∣∣∣dx r(s)ds < +∞,

∫ 1

0

∫ A

−A

(
∂F

∂x
(x, s)

)2

dx r(s)ds < +∞.

Then, for all t ∈ [0,1],

F(Xt , t) = F(X0,0) +
∫ t

0

∂F

∂x
(Xs, s)dXs +

∫ t

0

∂F

∂t
(Xs, s)ds − 1

2

∫ t

0

∫
R

∂F

∂x
(x, s)dLx

s .

Proof. Using localization arguments, we can assume that σ and b are bounded, F has compact
support and

∫ 1

0

∫
R

∣∣∣∣∂F

∂t
(x, s)

∣∣∣∣dx r(s)ds < +∞,

∫ 1

0

∫
R

(
∂F

∂x
(x, s)

)2

dx r(s)ds < +∞.
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Also, note that we can suppose, without any loss of generality, that r(1) �= 0.
Let g ∈ C∞ be a function with compact support from R to R

+ such that
∫

R
g(s)ds = 1. We

define, for any n ∈ N, gn(s) = ng(ns) and

Fn(x, t) =
∫ 1

0

∫
R

F(y, s)gn(t − s)gn(x − y)dy ds.

Then Fn ∈ C∞(R × [0,1]). Hence, by the usual Itô formula, for every ε > 0, we can write

Fn(Xt , t) = Fn(Xε, ε) +
∫ t

ε

∂Fn

∂x
(Xs, s)dXs +

∫ t

ε

∂Fn

∂t
(Xs, s)ds

(2)

+ 1

2

∫ t

ε

σ 2(s,Xs)
∂2Fn

∂x2
(Xs, s)ds.

Using the arguments of Azéma et al. [1], we will study the convergence of (2).
Since F is a continuous function with compact support, it is easy to check that (Fn(Xt , t))n∈N

converges in probability to F(Xt , t).
On the other hand,

∫ 1

0

∫
R

(
∂F

∂x
(x, s)

)2

dx ds ≤ 1

r(1)

∫ 1

0

∫
R

(
∂F

∂x
(x, s)

)2

dx r(s)ds < +∞.

Hence, ∂F
∂x

∈ L2(R × [0,1]). Therefore, (
∫ t

ε
∂Fn

∂x
(Xs, s)dXs)n∈N converges in probability to

(
∫ t

ε
∂F
∂x

(Xs, s)dXs). Indeed, using the boundedness of b,

E

(∣∣∣∣
∫ t

ε

(
∂Fn

∂x
(Xs, s) − ∂F

∂x
(Xs, s)

)
b(s,Xs)ds

∣∣∣∣
)

(3)

≤ Kr(ε)

∫ t

ε

∫
R

∣∣∣∣∂Fn

∂x
(x, s) − ∂F

∂x
(x, s)

∣∣∣∣dx ds

and the right-hand side goes to zero when n tends to infinity, since ∂F
∂x

∈ L2(R × [0,1]) and

∂Fn

∂x
(x, t) =

∫ 1

0

∫
R

∂F

∂x
(y, s)gn(t − s)gn(x − y)dy ds.

Moreover, using the fact that σ is a bounded function, we have

E

((∫ t

ε

(
∂Fn

∂x
(Xs, s) − ∂F

∂x
(Xs, s)

)
σ(s,Xs)dWs

)2)

= E

(∫ t

ε

(
∂Fn

∂x
(Xs, s) − ∂F

∂x
(Xs, s)

)2

σ 2(s,Xs)ds

)
(4)

≤ Kr(ε)

∫ t

ε

∫
R

(
∂Fn

∂x
(x, s) − ∂F

∂x
(x, s)

)2

dx ds
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and the final expression converges to zero when n tends to infinity.
Similarly, we obtain that ∂F

∂t
∈ L1(R × [0,1]) and we prove that (

∫ t

ε
∂Fn

∂t
(Xs, s)ds)n∈N con-

verges in probability to (
∫ t

ε
∂F
∂t

(Xs, s)ds).
So, letting n tend to infinity in (2), we get that the sequence

(
1

2

∫ t

ε

σ 2(s,Xs)
∂2Fn

∂x2
(Xs, s)ds

)
n∈N

converges in probability to

F(Xt , t) − F(Xε, ε) −
∫ t

ε

∂F

∂x
(Xs, s)dXs −

∫ t

ε

∂F

∂t
(Xs, s)ds.

Note that by using Theorem 2.1 (see also Remarks 2.2 and 2.3) and Theorem 3.2, we can write

∫ t

ε

σ 2(s,Xs)
∂2Fn

∂x2
(Xs, s)ds

=
[
∂Fn

∂x
(X, ·),X

]
t

−
[
∂Fn

∂x
(X, ·),X

]
ε

=
∫ 1

0

∂Fn

∂x
(Xs, s)I(ε,t)(s)d∗Xs −

∫ 1

0

∂Fn

∂x
(Xs, s)I(ε,t)(s)dXs

= −
∫ 1

0

∫
R

∂Fn

∂x
(x, s)I(ε,t)(s)dLx

s ,

since ∂Fn

∂x
(x, s)I(ε,t)(s) ∈H.

Moreover, ( ∂Fn

∂x
(x, s)I(ε,t)(s), x ∈ R, s ∈ [0,1])n∈N converges in H to ( ∂F

∂x
(x, s)I(ε,t)(s),

x ∈ R, s ∈ [0,1]). Indeed, we will use the space H defined in Remark 3.3. Since ∂Fn

∂x
and ∂F

∂x

belong to L2(R × [0,1]), it suffices to check the convergence using the seminorm ‖ · ‖∗. Now,
observe that in (3) and (4), we have proved the convergence to zero of two of the terms appearing
in the definition of the seminorm. Hence, it is enough to check that

∫ t

ε

∫
R

∣∣∣∣∂Fn

∂x
(x, s) − ∂F

∂x
(x, s)

∣∣∣∣
∣∣∣∣ d

dx
(σ 2(s, x)ps(x))

∣∣∣∣dx ds

converges to zero. But this term can be written as

E

∫ t

ε

∣∣∣∣∂Fn

∂x
(Xs, s) − ∂F

∂x
(Xs, s)

∣∣∣∣ 1

ps(Xs)

∣∣∣∣ d

dx
(σ 2(s,Xs)ps(Xs))

∣∣∣∣ds

≤
(

E

∫ t

ε

(
∂Fn

∂x
(Xs, s) − ∂F

∂x
(Xs, s)

)2

ds

)1/2

×
(

E

∫ t

ε

1

p2
s (Xs)

(
d

dx
(σ 2(s,Xs)ps(Xs))

)2

ds

)1/2
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≤ (r(ε))1/2(t − ε)1/2u(ε)

(∫
R

∫ t

ε

(
∂Fn

∂x
(x, s) − ∂F

∂x
(x, s)

)2

ds dx

)1/2

,

the final expression converging to zero when n tends to infinity.
So, we have proved that ( ∂Fn

∂x
(x, s)I(ε,t)(s), x ∈ R, s ∈ [0,1])n∈N converges in H to

( ∂F
∂x

(x, s)I(ε,t)(s), x ∈ R, s ∈ [0,1]) and that clearly yields that

(∫ 1

0

∫
R

∂Fn

∂x
(x, s)I(ε,t)(s)dLx

s

)
n∈N

converges in L1 to
∫ 1

0

∫
R

∂F
∂x

(x, s)I(ε,t)(s)dLx
s .

Now, we have that for any ε > 0,

F(Xt , t) = F(Xε, ε) +
∫ t

ε

∂F

∂x
(Xs, s)dXs +

∫ t

ε

∂F

∂t
(Xs, s)ds

(5)

− 1

2

∫ 1

0

∫
R

∂F

∂x
(x, s)I(ε,t)(s)dLx

s .

Letting ε tend to zero, the proof is completed. �

Remark 4.2. Note that under the hypotheses of Theorem 4.1, it is possible that ∂F
∂x

does not
belong to the space H established in Remark 3.3. In this case, using localization arguments, we
can always assume that ( ∂F

∂x
(x, s)I(ε,t)(s), x ∈ R, s ∈ [0,1]) belongs to H for any ε > 0 and can

define ∫ t

0

∫
R

∂F

∂x
(x, s)dLx

s = lim
ε→0

∫ 1

0

∫
R

∂F

∂x
(x, s)I(ε,t)(s)dLx

s .

This limit exists in probability since all the other limits in (5) exist.

5. Examples

Bardina and Jolis [2] gave conditions on the coefficients which ensure that the hypotheses of
Theorem 4.1 over the diffusion are satisfied. For more precise details see Theorems 3.7 and 3.10
of Bardina and Jolis [2] for strongly elliptic diffusions and Theorem 3.9 for elliptic diffusions.
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