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Let X 1, X 2, . . . be a sequence of independent and identically distributed random variables. Let X be

an independent copy of X 1. Define Tn ¼
ffiffiffi
n

p
X=S, where X and S2 are the sample mean and the

sample variance, respectively. We refer to Tn as the central or non-central (Student’s) t-statistic,

depending on whether EX ¼ 0 or EX 6¼ 0, respectively. The non-central t-statistic arises naturally in

the calculation of powers for t-tests. The central t-statistic has been well studied, while there is a very

limited literature on the non-central t-statistic. In this paper, we attempt to narrow this gap by

studying the limiting behaviour of the non-central t-statistic, which turns out to be quite complicated.

For instance, it is well known that, under finite second-moment conditions, the limiting distributions

for the central t-statistic are normal while those for the non-central t-statistic can be non-normal and

can critically depend on whether or not EX 4 ¼ 1. As an application, we study the effect of non-

normality on the performance of the t-test.
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1. Introduction

Let X 1, X 2, . . . be a sequence of independent and identically distributed (i.i.d.) non-

degenerate random variables with a common mean, � ¼ E(X 1), and variance,

� 2 ¼ E(X 1 � �)2. Let X be an independent copy of X 1. Student’s t-statistic is defined as

Tn ¼
ffiffiffi
n

p
X

Sn

,

where X ¼ n�1
Pn

i¼1X i and S2n :¼ (n� 1)�1
Pn

i¼1(X i � X )2. We call the statistic Tn non-

central if � 6¼ 0, and central if � ¼ 0.
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There is a very extensive literature on the central t-statistic, and its limiting behaviour is

now very well understood. See, for example, Logan et al. (1973), Chistyakov and Götze

(2004), Giné et al. (1997) and Griffin (2002) for weak convergence, Bentkus and Götze

(1996) and Bentkus et al. (1996) for Berry–Esséen bounds, Shao (1997, 1999) for large

deviation, Wang and Jing (1999) and Jing et al. (2003) for non-uniform exponential Berry–

Esséen bounds, and Jing et al. (2004) for saddlepoint approximation.

In contrast to the central t-statistic, there have been few studies on the limiting behaviour

of the non-central t-statistic. This is somewhat surprising, considering the wide applications

of the non-central t-statistic in statistical inference. See, for example, Walsh (1948),

Scheuer and Spurgeon (1963), Owen (1965), Bagui (1993), Akahira (1995) and Thabane

and Drekic (2003). One of the purposes of this paper is to investigate the limiting behaviour

of the non-central t-statistic and to give a systematic description of its limiting distribution.

It turns out that there are interesting and unexpected phenomena associated with the non-

central t-statistic. For instance, by only assuming that EX 2 , 1, the limiting distribution of

the non-central t-statistic can be non-normal while those of the central t-statistic are known

to be asymptotically normal. In fact, the limiting behaviour of the non-central t-statistic

critically depends on whether or not EX 4 ¼ 1: if EX 4 , 1, the limit can be normal or a

square of normal; if EX 4 ¼ 1, the limit is related to stable distributions.

The non-central t-statistic arises naturally in calculating powers of Student’s t-test for a

location shift in the population mean. These studies are usually based on the assumption

that the sample comes from a normal distribution. See, for example, Neyman (1935),

Neyman and Tokarska (1936) and Johnson and Welch (1940). However, the normality

assumption may not always be reasonable in practice. It is therefore of great interest to

study the effect of non-normality on the power function of Student’s t-test.

The rest of this paper is organized as follows. In Section 2, we provide limiting

distributions for the non-central t-statistic. These results are then used in Section 3 to study

the powers of t-tests under non-normality. All proofs are presented in Section 4.

2. Limiting distributions of the non-central t-statistic

In this section, we describe the domains of attraction for the non-central Student’s t-statistic

by providing a list of possible limiting distributions and sufficient (and perhaps necessary)

conditions for X to belong to a domain of attraction. The limiting distributions for the non-

central t-statistic will be presented in Sections 2.1 and 2.2 for the two cases of EX 2 , 1
and EX 2 ¼ 1, respectively. In Section 2.3, we study the limiting distributions when � ¼ �n

depends on n.

Throughout this paper, we assume that EjX j , 1 and � 6¼ 0. We define � ¼ �=� . Let Z�

follow a stable law with an index � 2 (0, 2] whose characteristic function is given by

E exp(itZ�) ¼
expf�t2=2, if � ¼ 2,

expf�jtj�(1� i(sign t)tan(��=2))g, if � 2 (1, 2) [ (0, 1),

expf�jtj(1þ 2(i=�)(sign t)ln jtj)g, if � ¼ 1:

8<
:
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When � ¼ 2, we write Z ¼ Z2, which is a standard normal random variable. We write

X 2 DA(�) if X belongs to the domain of attraction of the stable law of Z�.

2.1. Limiting distributions when EX 2 , 1

When EX 2 , 1, the asymptotic behaviour of the non-central t-statistic turns out to be

quite different for the following two cases: depending on whether (a) EX 4 , 1 or (b)

EX 4 ¼ 1. For instance, Tn is attracted to the normal distribution (or its square) in case (a)

and to other stable distributions in case (b). All of them have very different convergence

rates, as given below.

Case (a): EX 4 , 1. We write Y 2 B( p, 0, 1) (0 , p , 1) if Y is a standardized

Bernoulli random variable and write X 2 B( p, �, � 2) if X ¼ � Y þ �, where

Y 2 B( p, 0, 1). It is easy to see that Y 2 B( p, 0, 1) if and only if

P Y ¼ � pffiffiffiffiffiffi
pq

p
� �

¼ q, P Y ¼ qffiffiffiffiffiffi
pq

p
� �

¼ p,

where q ¼ 1� p.

Our first theorem shows that if EX 4 , 1, the limiting distributions of Tn are related to

the normal distribution.

Theorem 2.1. Assume that EX 4 , 1.

(i) For X � B( p, �, � 2) such that �=� ¼ 2
ffiffiffiffiffiffi
pq

p
=(q� p) and p 6¼ 1

2
, we have

an(Tn � �0
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
)!D N 2(0, 1),

where �0 ¼ 2
ffiffiffiffiffiffi
pq

p
=(q� p) and an ¼ 2�0

ffiffiffi
n

p
=(1þ �20)g.

(ii) For any random variable X other than the one given in (i), we have

��1
0 (Tn � �

ffiffiffi
n

p
)!D N (0, 1),

where � 2
0 ¼ 1� �Æ3 þ �2(Æ4 � 1)=4, and Æk ¼ E(X � �)k=� k , k ¼ 3, 4.

Remark 2.1. The results of Theorem 2.1 can be rewritten as

Tn �
D �0

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
þ 1þ �20
2�0

ffiffiffi
n

p Z2, in case (i),

�
ffiffiffi
n

p þ �0Z, in case (ii):

8<
:

In case (ii), we note that � 2
0 ¼ 1 if X ¼ �þ �Y , where PfY ¼ �1g ¼ 1

2
. If X � N (�, � 2),

we have � 2
0 ¼ 1þ �2=2 . 1. In general, we have 0 < � 2

0 , 1, where � 2
0 ¼ 0 if and only if

X � B( p, �, � 2) for p 6¼ 1
2
and �=� ¼ 2

ffiffiffiffiffiffi
pq

p
=(q� p).

Remark 2.2. Note that, for given � ¼ �=� , the norming sequence an in Theorem 2.1(i) has
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the same sign (not necessarily positive) as that of �0 for all n. In order to maintain our

convention, an . 0, one can replace the result by janj(T � �0
ffiffiffi
n

p
)!D sign(�0)N2(0, 1).

Case (b): EX 4 ¼ 1. First, we standardize fX , X k , k > 1g by Y ¼ (X � �)=� and

Yk ¼ (X k � �)=� for k > 1. Assume that X 2 2 DA(�) with � 2 [1, 2]. If � 2 (1, 2], then

Y 2 2 DA(�) and

cnn
�1=�(Y 2

1 þ . . . þ Y 2
n � n)!D Z�, as n ! 1, (2:1)

where cn is a slowly varying sequence (see Feller 1971; or Ibragimov and Linnik 1971). In

the case f� ¼ 1g, we have

cnn
�1(Y 2

1 þ . . . þ Y 2
n)� dn !

D
Z1, as n ! 1, (2:2)

with slowly varying cn . 0. The centring constants dn satisfy dn ! 1.

Theorem 2.2. Assume that � 6¼ 0, EX 2 , 1, and EX 4 ¼ 1. Further assume that

X 2 2 DA(�) for 1 < � < 2 and that (dn � cn)
2 ¼ o(cn) when � ¼ 1. Define

an ¼ 2cnn
1=2�1=�=�,

bn ¼
�
ffiffiffi
n

p
, if 1 , � < 2,

�
ffiffiffi
n

p
(3=2� dn=(2cn)), if � ¼ 1:

�
(2:3)

(i) If � ¼ 2, then

an(Tn � bn)!
D

Z:

(ii) If � 2 [1, 2), then

an(Tn � bn)!
D �Z�:

Again, the non-central t-statistics can be attracted to non-normal (i.e. stable) as well as

normal distributions (cf. Theorem 2.1).

Remark 2.3. When Y 2 2 DA(1), then there is a slowly varying function ‘(x) such that

P(Y 2 . x) ¼ 1

x‘(x)
, for x . 1;

see Feller (1971: 574–580), for instance. One can verify that condition (dn � cn)
2 ¼ o(cn) is

satisfied if
Ð1
x

1=(t‘(t))dt ¼ o(1=‘1=2(x)) as x ! 1; see the end of Section 4 for a proof.

This remark also applies to (2.6) in Theorem 2.5 below.

Remark 2.4. We believe that the results in this paper can be generalized to certain dependent

cases, such as martingale and mixing sequences. However, the sample standard deviation Sn

needs to be replaced by an estimator of (1=n)var(Sn). We refer to Davis and Mikosch (1998)

and Mikosch and Straumann (2006) for stable limits of dependent sequences.
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2.2. Limiting distributions when EX 2 ¼ 1

If EX 2 ¼ 1, we redefine the random variables Y and Yk as Y ¼ X � � and Yk ¼ X k � �
for k > 1. If Y 2 2 DA(�) with � 2 (0, 1], then

cnn
�1=�(Y 2

1 þ . . . þ Y 2
n)� dn !

D
Z�, as n ! 1, (2:4)

where cn is a slowly varying sequence, and dn ¼ 0 if � 2 (0, 1) and dn ! 1 if � ¼ 1.

Theorem 2.3. Assume that EjX j , 1 and EX 2 ¼ 1. Assume that Y 2 2 DA(�) with

� 2 [1
2
, 1]. If � ¼ 1

2
, we further assume that the Feller’s condition holds, that is,

lim sup
x!1

xjEYIfjY j < xgj
x2P(jY j . x)þ EY 2 IfjY j < xg , 1: (2:5)

Then,

an(Tn � bn)!
D �Z�, if � ¼ 1,

1=
ffiffiffiffiffiffi
Z�

p
, if � 2 [1

2
, 1),

�

where

an ¼
2d3=2n

�
ffiffiffiffiffiffiffiffi
ncn

p , bn ¼
�
ffiffiffiffiffiffiffiffi
ncn

pffiffiffiffiffiffi
dn

p , if � ¼ 1,

an ¼
n�1þ1=(2�)

�
ffiffiffiffiffi
cn

p , bn ¼ 0, if � 2 [1
2
, 1):

Remark 2.5. We observe that, to have a limiting distribution for the central Tn, we need

X 2 DA(�) with � 2 (1
2
, 1], whereas for the non-central Tn a weaker assumption that X 2 is in

a domain of attraction is sufficient.

2.3. Limiting distributions when � ¼ �n ! 0

Here, we study the limiting distributions of the non-central t-statistic when � ¼ �n depends

on n. Theorem 2.4 below provides a sufficient condition for the convergence

Tn � �n

ffiffiffi
n

p !D N (0, 1), where �n ¼ �n=� .
Let fY , Yi, i > 1g be i.i.d. random variables with EY ¼ 0 and EY 2 ¼ 1, and let

X i :¼ X n,i ¼ � Yi þ �n.

Theorem 2.4. Assume that E(Y 2)� , 1 for some 1 < � < 2. Then

Tn � �n

ffiffiffi
n

p
!D N (0, 1),

provided that �n ! 0 if � ¼ 2 and supn�nn
1=��1=2 , 1 if 1 < � , 2.

The next theorem specifies the limiting distribution of Tn when EY 4 ¼ 1 and Y 2 is in
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the domain of attraction of a stable law with an index � 2 [1, 2]. The limit may be a

standard normal distribution, a stable distribution, or a mixture of normal and stable

distributions.

Theorem 2.5. Assume that E(Y 4) ¼ 1 and Y 2 2 DA(�) with index 1 < � < 2. Let cn and dn

be the sequences defined in (2.1) and (2.2). Put wn ¼ �nn
1=��1=2=(2cn). Assume that

limn!1wn ¼ w 2 [0, 1] and that

wn(dn � cn)
2 ¼ o(cn), if w ¼ 0 and � ¼ 1,

(dn � cn)
2 ¼ o(cn), if 0 , w < 1 and � ¼ 1:

(2:6)

Write

an ¼
1, if w , 1,

w�1
n , if w ¼ 1;

�
(2:7)

and

bn ¼
�n

ffiffiffi
n

p
, if 1 , � < 2,

�n

ffiffiffi
n

p
(1:5� dn=(2cn)), if � ¼ 1:

�
(2:8)

Then

an(Tn � bn)!
D

Z, if w ¼ 0,

Z � wZ�, if 0 , w , 1,

�Z�, if w ¼ 1,

8<
: (2:9)

where Z � N (0, 1) and is independent of Z�.

3. Asymptotic powers and robustness of t-tests under non-
normality

In this section, we shall apply the results obtained earlier to study the asymptotic powers of

Student’s t-test. Some performance criteria for the t-test are introduced in Section 3.1. In

Section 3.2 we present asymptotic powers of the t-test under different situations.

3.1. Evaluation criteria for the t-test

Given a random sample, fX 1, . . . , X ng, from a population, F(�), with � ¼ EX 1 and

� 2 ¼ var(X1) 2 (0, 1), we wish to test

H0 : � ¼ 0 vs: H1 : � ¼ �n(�n . 0):

(This is equivalent to testing H0 : � ¼ 0 versus H1 : � . 0.) The most commonly used test

is based on Student’s t-statistic
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Tn ¼
ffiffiffi
n

p
X

Sn

,

where X ¼ n�1
Pn

i¼1X i and S2n ¼ (n� 1)�1
Pn

i¼1(X i � X )2. The test rejects H0 in favour of

H1 if Tn is large, Tn . Cn, where Cn is the critical value. The size and the power of the test

are given, respectively, by

Æn :¼ Æn(Cn) ¼ PH0
(Tn . Cn),

Pn :¼ Pn(Cn, �n) :¼ 1� �n ¼ PH1
(Tn . Cn):

Finally, we denote the asymptotic power of the test (if the limit exists) to be

P :¼ lim
n!1

Pn(Cn, �n):

Assume first that the sample fX 1, . . . , X ng comes from a normal distribution. Under H0,

Tn follows a t-distribution with n� 1 degrees of freedom; under H1, Tn has a non-central

t-distribution with n� 1 degrees of freedom and a non-centrality parameter, �n

ffiffiffi
n

p
=� . The

availability of tables of non-central t-distributions (see Bagui 1993) makes Student’s t-test

particularly easy to use in practice.

However, the normality assumption on the sample may not always be reasonable in

practice. It is therefore of great interest to study the effect of non-normality on the power

function of Student’s t-test. Unfortunately, there are few papers on this issue. Srivastava

(1958) investigated the effect of non-normality on the power of the t-test by assuming that

the density function of the population can be represented by the first four terms in an

Edgeworth series and concluded that ‘the power of the t-test is not seriously invalidated

even if the samples are from considerably non-normal populations’. However, given the

limited scope and the restricted assumptions of that paper, the above conclusion may be

questionable and certainly deserves a fresh look.

In order to investigate the performance of Tn under non-normality, we need to establish

some performance criteria to evaluate it under different conditions. To do this, let us look at

the various performance criteria that have been used in the literature to compare asymptotic

relative efficiencies of two estimators (see Table 1; or Serfling 1981: 315). All these criteria

require specifications regarding: (a) Æ ¼ limnÆn; (b) � ¼ limn�n; (c) an alternative value,

�n, depending on n or not.

The key observation is that exponential moment conditions have been assumed in all

these approaches, except for Pitman’s approach, where only a finite second-moment

condition is assumed. Exponential moment conditions are clearly too strong in practice,

which limits the usefulness of those criteria as shown in Table 1. Therefore, it is necessary

to modify the performance criteria in Table 1 to evaluate the performance of Tn under

different moment conditions. We are particularly interested in the effect of the tail

probability on the performance of Tn. For convenience, we shall focus our attention on

those cases where the type II error probability approaches some positive limit, �n ! � . 0,

resulting in the behaviours described in Table 2.

It turns out that, in the first two cases in Table 2, where Æn ! Æ . 0 (somewhat related

to Pitman’s approach), the results are easy and very clear-cut. However, in the last two
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cases where Æn ! 0 (somewhat related to Bahadur’s approach), the situations are rather

complicated and the limiting behaviour can be quite different from what one might

expect.

3.2. Asymptotic powers of the t-test

Here, we shall give some explicit expressions for the asymptotic powers,

limn!1Pn(�n, Æn), for the four cases considered in Table 2. We shall see that these

expressions are drastically different under different moment conditions. These results can be

easily derived from the last section and hence are omitted here.

Cases (i) and (ii): Æn ! Æ and �n ! 0 or �.
For these two cases, the asymptotic size of the test is non-zero. We have the following

result.

Theorem 3.1. Assume that EX 2 , 1. If Æn ! Æ, �n ! 0 or �, and
ffiffiffi
n

p
�n=� ! d 2 [0, 1],

we have

P ¼ 1��[��1(1� Æ)� d],

where � is the standard normal distribution function.

Table 1. Different performance criteria

Contributor

Behaviour of

Æn �n �n

Pitman Æn ! Æ . 0 �n ! � . 0 �n ! 0

Chernoff Æn ! 0 �n ! 0 �n ¼ � fixed

Bahadur Æn ! 0 �n ! � . 0 �n ¼ � fixed

Hodges and Lehmann Æn ! Æ . 0 �n ! 0 �n ¼ � fixed

Hoeffding Æn ! 0 �n ! 0 �n ¼ � fixed

Rubin and Sethuraman Æn ! 0 �n ! 0 �n ! 0

Table 2. Performance criteria when �n ! � . 0

Cases

Behaviour of

Æn �n

(i) Æn ! Æ . 0 �n ! 0

(ii) Æn ! Æ . 0 �n ¼ � . 0 fixed

(iii) Æn ! 0 �n ! 0

(iv) Æn ! 0 �n ¼ � . 0 fixed
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It follows from Theorem 3.1 that

P ¼
Æ, if d ¼ 0,

1��[��1(1� Æ)� d], if d 2 (0, 1),

1, if d ¼ 1:

8<
:

In particular, the t-test is asymptotically unbiased as P > Æ.
Case (iii): Æn ! 0 and �n ! �. When Æn ! 0, the situation is quite different from cases

(i) and (ii), where Æn ! Æ . 0. The results in this case may be somewhat unexpected and

they critically depend on whether EX 4 , 1 or EX 4 ¼ 1.

If EX 4 , 1, the asymptotic power functions are related to normal distributions.

Theorem 3.2. Assume that EX 4 , 1.

(i) Suppose that X � B(p, �, � 2) with p 6¼ 1
2
and �=� ¼ �0 :¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� p2

p
=(1� 2p).

If we choose the critical value to be Cn ¼ �0
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
þ x=an with

an ¼ 2�0
ffiffiffi
n

p
=(1þ �20), then

P ¼ 2�(�
ffiffiffi
x

p
): (3:1)

(ii) Suppose that X � B( p, �, � 2) with p 6¼ 1
2
. If we choose the critical value to be

Cn ¼ �
ffiffiffi
n

p þ x�0, where � 2
0 ¼ 1� �Æ3 þ �2(Æ4 � 1)=4, Æk ¼ E(X � �)k=� k ,

k ¼ 3, 4, then

P ¼ �(�x): (3:2)

If EX 4 ¼ 1, the asymptotic power functions are related to stable distributions.

Theorem 3.3. Under the assumptions of Theorem 2.2, for the critical value Cn ¼ bn þ x=an,

we have

P ¼ P(Z� < �x):

Case (iv): Æn ! 0 and �n ! 0. As in case (iii), the asymptotic power function also

depends critically on whether E(X 4) , 1 or E(X 4) ¼ 1. If E(X 4) , 1, we have the

following theorem:

Theorem 3.4. Assume that E(X 4) , 1 and �n ! 0. If we choose the critical value to be

Cn ¼ �n

ffiffiffi
n

p
=� þ x, then

P ¼ �(�x):

However, if E(X 4) ¼ 1, the limiting distributions are quite different.

Theorem 3.5. Assume that the assumptions of Theorem 2.5 are satisfied. Then, for

Cn ¼ bn þ x=an, we have
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P ¼
P(Z > x) if w ¼ 0,

P(Z� wZ� > x), if 0 , w , 1,

P(�Z� > x), if w ¼ 1,

8<
:

where Z � N (0, 1) is independent of Z�.

4. Proofs

For � 2 , 1 and n ¼ 1, 2, . . . , write

Qn ¼
Xn
i¼1

X i � �

�
, Un ¼

Xn
i¼1

(X i � �)2 � � 2

� 2
:

Recall that � ¼ �=� . Elementary transformations lead to

Tn ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
�
ffiffiffi
n

p
þ Qnffiffiffi

n
p

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Un

n
� Q2

n

n2

s
: (4:1)

The following Taylor expansion will be used several times in this section: for juj < 1
2
,

1ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p ¼ 1� u

2
þ 3u2

8
þ W9u3, for some jW9j < 1, (4:2)

¼ 1� u

2
þ Wu2, for some jWj < 1: (4:3)

Lemma 4.1. Assume that EX 2 , 1. Then, we have

Tn ¼ �
ffiffiffi
n

p
þ Qnffiffiffi

n
p � �Un

2
ffiffiffi
n

p þ 2W�
U 2

n

n3=2
þ o p(1), (4:4)

where W is a random variable with jWj < 1, and o p(1) indicates convergence to zero in

probability. In particular, if EjX jr , 1 for some 1 < r < 8=3, then

Tn ¼ �
ffiffiffi
n

p
þ Qnffiffiffi

n
p � �Un

2
ffiffiffi
n

p þ o p(n
(8�3r)=(2r)): (4:5)

Proof. Since EX 2 , 1, the law of large numbers and the central limit theorem imply that

Qn ¼ Op(
ffiffiffi
n

p
) and Un ¼ o p(n):

In view of this and the Taylor expansion (4.3), we have
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Tn ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
�
ffiffiffi
n

p
þ Qnffiffiffi

n
p

� �
1� Un

2n
þ Q2

n

2n2
þ 2W

U2
n

n2
þ Qn

4

n4

� �� �
(4:6)

¼ �
ffiffiffi
n

p
þ Qnffiffiffi

n
p

� �
1� Un

2n
þ 2W

U 2
n

n2

� �
þ o p(1)

¼ �
ffiffiffi
n

p
þ Qnffiffiffi

n
p � �Un

2
ffiffiffi
n

p þ 2W�
U2

n

n3=2
þ Qnffiffiffi

n
p �Un

2n
þ 2W

U 2
n

n2

� �
þ o p(1)

¼ �
ffiffiffi
n

p
þ Qnffiffiffi

n
p � �Un

2
ffiffiffi
n

p þ 2W�
U2

n

n3=2
þ o p(1):

This proves (4.4).

When EjX jr , 1, by the law of large numbers, Un ¼ o p(n
2=r) and hence

U2
n=n

3=2 ¼ o(n(8�3r)=(2r)). Now (4.5) follows from (4.4). h

Assuming that � 6¼ 0, consider the statistic

T�n ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
�
ffiffiffi
n

p
þ Qnffiffiffi

n
p

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Qn

n�
� Q2

n

n2

s
: (4:7)

Lemma 4.2. Assume that � 6¼ 0 and EX 2 , 1. Then, T�n has the stochastic expansion

T�n ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
þ Q2

n(1þ �2)

2n3=2�
þ Op(n

�1):

Proof. Since EX 2 , 1, we have Qn ¼ Op(n
1=2). Applying the Taylor expansion (4.2) with

u ¼ 2Qn=(n�)� Q2
n=n

2, we derive

T�n ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
�
ffiffiffi
n

p
þ Qnffiffiffi

n
p

� �
1� Qn

n�
þ Q2

n

2n2
þ 3

8

2Qn

n�
� Q2

n

n2

� �2

þ Op(n
�3=2)

 !

¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
�
ffiffiffi
n

p
þ Qnffiffiffi

n
p

� �
1� Qn

n�
þ Q2

n

2n2
þ 3Q2

n

2n2�2
þ Op(n

�3=2

� �

¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
�
ffiffiffi
n

p
þ Q2

n

2n3=2�
þ �Q2

n

2n3=2
þ Op(n

�1)

� �

¼ �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
þ Q2

n(1þ �2)

2n3=2�
þ Op(n

�1):

h

Lemma 4.3. Let � 2 R and let Y be a random variable such that EY ¼ 0 and EY 2 ¼ 1. Let

� 2
0 be the variance of the random variable
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� ¼ Y � �

2
(Y 2 � 1),

that is, � 2
0 ¼ E�2. Then �0 ¼ 0 if and only if � ¼ 2Æ3=(Æ4 � 1) with Æ j ¼ EY j, j ¼ 3, 4, and

Y � B( p, 0, 1) with p 6¼ 1
2
. Furthermore, �0 ¼ 0 implies � ¼ 0 with probability one.

Proof. We can assume that Æ4 . 1 in our proof. Indeed, Æ4 > 1, and the equality Æ4 ¼ 1 is

possible only if Y is a symmetric Bernoulli random variable such that jY j ¼ 1. But, in this

case, �0 ¼ 1.

Let us show that �0 ¼ 0 implies that Y � B(p, 0, 1) with p 6¼ 1
2
, and that

� ¼ 2Æ3=(Æ4 � 1). Indeed, if �0 ¼ 0, then � ¼ 0 with probability one, that is,

Y � �(Y 2 � 1)=2 ¼ 0 almost surely. Since the quadratic equation can have at most two

roots, Y can take at most two different values. Hence, �0 ¼ 0 yields Y � B( p, 0, 1) with

p 6¼ 1
2
(note that we cannot have p ¼ 1

2
since this implies that Æ4 ¼ 1). It remains for us to

check that � ¼ 2Æ3=(Æ4 � 1). It is easy to obtain that

� 2
0 ¼ 1� �Æ3 þ

�2

4
(Æ4 � 1) > 0:

By minimizing � 2
0 with respect to � 2 R, we see that �0 can be equal to 0 only if

� ¼ 2Æ3=(Æ4 � 1).

Elementary calculations show that the variance �0 ¼ 0 if Y � B(p, 0, 1) with p 6¼ 1
2
and

� ¼ 2Æ3=(Æ4 � 1). For such a Bernoulli random variable, we also have � ¼ 0 with

probability one. h

Lemma 4.4. Assume that �, �1, �2, . . . are i.i.d. non-negative random variables.

(i) If � 2 DA(1), that is,

cnn
�1
Xn
i¼1

�i � dn !
D

Z1, as n ! 1, (4:8)

with some cn . 0 and dn 2 R, then cn is a slowly varying sequence, d n ! 1
and dn ¼ o(n�) for all � . 0. If, in addition, E� , 1, then cn=dn ! 1=E�.

(ii) If E�� , 1 for some 0 , � , 1, and cnn
�1=�(�1 þ . . . þ �n)!

D
Z�, where Z� is

a stable non-degenerate random variable, then cn ! 1.

Proof. (i) It is well known that � 2 DA(1) implies that cn must be a slowly varying sequence

(see Ibragimov and Linnik 1971; Feller 1971).

Let us prove that dn ! 1. Assume that this is not the case. Then, there exists a

subsequence, say nk ! 1, such that lim dnk
¼ d with some �1 < d , 1. Let

Sn ¼
Pn

i¼1�i. We have

1 ¼ PfSn > 0g ¼ Pfcnn�1Sn � dn > �dng:

Passing to the limit along the subsequence, we derive 1 ¼ PfZ1 > �dg, which is impossible

since, as is well known, PfZ1 > xg , 1, for all x . �1 (see Ibragimov and Linnik 1971;
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Samorodnitsky and Taqqu 1994). Noting that (4.8) implies Ej�j1�� , 1 for all 0 , � , 1,

one can apply the Marcinkiewicz law of large numbers and obtain that dn ¼ o(n�).

Next, we prove that cn=dn ! 1=E� if E� , 1. Since dn ! 1, (4.8) implies

cn

d n

1

n

Xn
i¼1

�i ! 1 in probability:

On the other hand, by the law of large numbers,

1

n

Xn
i¼1

�i ! E� in probability:

Putting together the above two statements yields cn=dn ! 1=E�.
(ii) To prove that E�� , 1 and that cnn

�1=�(�1 þ . . . þ �n)!
D

Z� implies cn ! 1, it

suffices to use the Marcinkiewicz law of large numbers, namely, that n�1=�

(�1 þ . . . þ �n) ! 0 with probability one. h

We are now ready to prove Theorems 2.1, 2.2, 2.4 and 2.5.

Proof of Theorem 2.1. We prove (i) first. Write X ¼ � Y þ �, where Y � B(p, 0, 1). It is
easy to check that

Y � �0
2
(Y 2 � 1) ¼ 0, where �0 ¼

2
ffiffiffiffiffiffi
pq

p

1� 2p
:

Hence, Y 2 � 1 ¼ 2Y=�0 and Un ¼ 2Qn=�0. Replacing Un and � with 2Qn=�0 and �0
respectively in (4.1), we obtain

Tn ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
�0

ffiffiffi
n

p
þ Qnffiffiffi

n
p

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Qn

n�0
� Q2

n

n2

s
: (4:9)

Applying Lemma 4.2 to Tn in (4.9), we have

Tn ¼ �0
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
þ Q2

n(1þ �20)

2n3=2�0
þ Op(n

�1):

That is, 2�0
ffiffiffi
n

p
(1þ �20)

�1(Tn � �0
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
) ¼ Q2

n=nþ Op(n
�1=2). The proof of (i) then

follows from the fact that Qn=
ffiffiffi
n

p
!D Z and Slutsky’s theorem.

As to (ii), by Lemma 4.1, we have

Tn � �
ffiffiffi
n

p
¼ 1ffiffiffi

n
p

Xn
k¼1

(Yk �
�

2
(Y 2

k � 1))þ o p(1):

Since EY 4 , 1, we can apply the central limit theorem to obtain Tn � �
ffiffiffi
n

p !D �0Z, where

� 2
0 ¼ E Y � �

2
(Y 2 � 1)

� �2
� 1� �Æ3 þ �2(Æ4 � 1)=4:

It remains for us to check that �0 ¼ 0 implies the condition of (i). By Lemma 4.3, �0 ¼ 0
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implies that Y is a Bernoulli random variable and � ¼ 2Æ3=(Æ4 � 1) with Æ3 ¼ EY 3 and

Æ4 ¼ EY 4. Elementary calculations show that Æ3=(Æ4 � 1) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� p2

p
=(1� 2p). Hence,

�0 ¼ 0 if and only if the condition of (i) is satisfied. h

Proof of Theorem 2.2. Consider three cases.

Case 1: � ¼ 2. Since X 2 2 DA(2), we have EjX j4�� , 1 for any 0 , � , 1 and hence, by

(4.5),

Tn � �
ffiffiffi
n

p
¼ Qnffiffiffi

n
p � �Un

2
ffiffiffi
n

p þ o p(1): (4:10)

Since EX 4 ¼ 1 and Y 2 is in the domain of attraction of a standard normal random variable,

there exists a slowly varying sequence, cn ! 0, such that cnUn=
ffiffiffi
n

p !D Z (see Feller 1971).

Multiplying (4.10) by an ¼ 2cn=� and noting that Qn=
ffiffiffi
n

p ¼ Op(1), we derive

an(Tn � bn) ¼ �cnUn=
ffiffiffi
n

p
þ o p(1):

It follows that an(Tn � bn)!
D
Z, which proves (i).

Case 2: 1 , � , 2. Note that X 2 2 DA(�) implies that EjX jr , 1 for any 0 , r , 2�. Also
note that 1=2� 1=�þ (8� 6�)=(4�) ¼ 1=�� 1 , 0. We can choose r , 2� so that

EjX jr , 1 and 1=2� 1=�þ (8� 3r)=(2r) , 0. Thus, with an ¼ 2cnn
1=2�1=�=� and

bn ¼ �
ffiffiffi
n

p
, by (4.5) and (2.1),

an(Tn � bn) ¼ �cnn
�1=�Un þ o p(1)!

D �Z�:

Case 3: � ¼ 1. By (2.2),

cnn
�1Un þ cn � dn !

D
Z1: (4:11)

It follows from Lemma 4.4 that cn is slowly varying, cn ! 1 and dn � cn. Hence,

Un ¼ Op(n(1þ jdn � cnj)=cn) and U2
n=n

3=2 ¼ Op(n
1=2(1þ (dn � cn)

2)=c2n) ¼ o p(n
1=2=cn)

by the assumption (dn � cn)
2 ¼ o(cn).

From (4.4), we obtain

Tn ¼ �
ffiffiffi
n

p
� �Un

2
ffiffiffi
n

p þ o p(n
1=2=cn)

or

2cn

�
ffiffiffi
n

p Tn � �
ffiffiffi
n

p 3

2
� dn

2cn

� �
¼ � cnUn

n
þ cn � dn

� �
þ o p(1),

�

which, combining (4.11) and case 2, proves (ii). h

Proof of Theorem 2.4. Note that the representation (4.4) remains valid with � ¼ �n. We thus

have

Tn ¼ �n

ffiffiffi
n

p
þ Qnffiffiffi

n
p � �nUn

2
ffiffiffi
n

p þ 2W�nU
2
n

n3=2
þ o p(1): (4:12)
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Observe that Un=
ffiffiffi
n

p
¼ Op(1) if EY

4 , 1 by the central limit theorem, and Un ¼ o p(n
1=�)

if EjY j2� , 1 for some 1 < � , 2 by the law of large numbers. Hence,

�nUnffiffiffi
n

p ¼ o p(1) (4:13)

under the assumption of the theorem. The theorem now follows from the central limit

theorem, Qn=
ffiffiffi
n

p !D N (0, 1), (4.12) and (4.13). h

Proof of Theorem 2.5. Let �n ¼ cnn
�1=�Un if 1 , � < 2 and �n ¼ cnn

�1(Un þ n)� dn if

� ¼ 1. Then, by (2.1) and (2.2),

�n !
D

Z�: (4:14)

We can also rewrite (4.12) as

Tn � bn ¼
Qnffiffiffi
n

p � wn�n þ
2W�nU

2
n

n3=2
þ o p(1): (4:15)

We formulate the proof into six cases.

Case 1: w ¼ 0 and 1 , � < 2. We have

wn�n ¼ o p(1) and
�nU

2
n

2n3=2
¼ wn�nUn

n
¼ wn�no p(1): (4:16)

Hence, (2.9) holds by (4.15).

Case 2: w ¼ 0 and � ¼ 1. In this case, we have Un ¼ (n=cn)(�n þ dn � cn) and

j�njU 2
n

n3=2
¼ j�nj

ffiffiffi
n

p

c2n
(�n þ dn � cn)

2

<
2j�nj

ffiffiffi
n

p

c2n
(�2n þ (dn � cn)

2)

¼ 4jwnj
�2n
cn

þ (dn � cn)
2

cn

� �
¼ o p(1) (4:17)

by (2.6), (4.14) and Lemma 4.4. This proves (2.9) by (4.15) and (4.17).

Case 3: w ¼ 1 and 1 , � < 2. By (4.15) and (4.16), we see that an(Tn � bn) ¼
� �n(1þ o p(1))þ o p(1)!

D �Z�.

Case 4: w ¼ 1 and � ¼ 1. From the proof of (4.17) and by (2.6), we have

�nU
2
n

n3=2
¼ o p(wn) (4:18)

and hence an(Tn � bn) ¼ ��n þ o p(1)!
D �Z1.

Case 5: 0 , w , 1 and 1 , � < 2. By (4.14) and (4.16), we have
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Tn � bn ¼
Qnffiffiffi
n

p � wn�n(1þ o p(1))þ o p(1) ¼
Qnffiffiffi
n

p � wn�n þ o p(1): (4:19)

It is known that (Qn=
ffiffiffi
n

p
, �n)!

D
(Z, Z�), where Z � N (0, 1) and Z and Z� are independent

(see Resnick and Greenwood 1979). Therefore, by (4.19), we have Tn � bn !
D

Z � wZ�.

Case 6: 0 , w , 1 and � ¼ 1. We have �nU
2
n=n

3=2 ¼ o p(1) by (4.18). Thus, (4.14)

reduces to

Tn � bn ¼
Qnffiffiffi
n

p � wn�n þ o p(1):

Now (2.9) follows from the proof in case 5.

This completes the proof of Theorem 2.5. h

To prove Theorem 2.3, we need one more lemma. Let Y ¼ X � � and Yi ¼ X i � �.
Write Qn ¼

Pn
i¼1Yi and Wn ¼

Pn
i¼1Y

2
i and rewrite the representation (4.1) as

Tn ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
n�þ Qnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wn(1� Q2
n=(nWn))

q : (4:20)

Lemma 4.5. Assume that EY ¼ 0 and Y 2 2 DA(�) for 1
2
< � < 1. If � ¼ 1

2
, we further assume

that (2.5) is satisfied. Then, Qn=
ffiffiffiffiffiffiffi
Wn

p
¼ Op(1).

Proof. By Griffin’s (2002) necessary and sufficient condition for tightness of the Student’s

t-statistic, it suffices to show that

lim sup
x!1

xjEYIfjY j < xgj
x2P(jY j . x)þ EY 2 IfjY j < xg , 1: (4:21)

This is exactly the assumption (2.5) when � ¼ 1
2
. We thus only need to consider 1

2
, � < 1.

Since Y 2 2 DA(�), by Corollary 2, Section XVII.5 in Feller (1971), there exists a slowly

varying function, h(x), such that P(Y 2 . x) ¼ x��h(x). Since EY ¼ 0, integration by parts

yields

xjEYIfjY j < xgj ¼ xjEYIfjY j . xgj < xj
ð1
x

t d P(jY j . t)j

< x2P(jY j . x)þ x

ð1
x

P(jY j . t)dt:

and

Non-central t-statistic 361



x

ð1
x

P(jY j . t)dt ¼ x

ð1
x

t�2�h(t2)dt

< x

ð1
x

t���1=2h(t)dt

¼ O(x2�2�h(x2)) ¼ O(x2P(jY j . x)):

This proves (4.21). h

Proof of Theorem 2.3. By Lemma 4.5, we have Qn=
ffiffiffiffiffiffiffi
Wn

p
¼ Op(1). Thus, by (4.20),

Tn ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
n�ffiffiffiffiffiffiffi

Wn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

n=(nWn)

q þ
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
Qnffiffiffiffiffiffiffi

Wn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

n=(Wn)

q

¼ n�ffiffiffiffiffiffiffi
Wn

p (1þ Op(1=n))þ Op(1): (4:22)

First, consider the case of 1
2
< � , 1. Since cn is slowly varying and cn ! 1 when � ¼ 1

2

by Lemma 4.4, an ¼ n�1þ1=(2�)=(�
ffiffiffiffiffi
cn

p
) ! 0 as n ! 1. Therefore, by (4.22) and (2.4), we

have

anTn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cnn�1=�Wn

p (1þ Op(n
�1))þ o p(1)!

D 1ffiffiffiffiffiffi
Z�

p : (4:23)

For � ¼ 1, write �n ¼ cnn
�1Wn � dn. Then Wn ¼ c�1

n n(�n þ dn). Noting that dn ! 1
and �n !

D
Z1, we have �n ¼ o p(dn) and hence, by (4.22) and Taylor’s expansion (4.3), we

have

Tn ¼
�
ffiffiffiffiffiffiffiffi
ncn

pffiffiffiffiffiffi
dn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ �n=dn)

p 1þ Op

1

n

� �� �
þ Op(1)

¼ �
ffiffiffiffiffiffiffiffi
ncn

pffiffiffiffiffiffi
dn

p 1� �n

2dn

þ Op

1

d2n

 ! !
1þ Op

1

n

� �� �
þ Op(1)

¼ �
ffiffiffiffiffiffiffiffi
ncn

pffiffiffiffiffiffi
dn

p 1� �n

2dn

þ Op

1

d2n

 ! !
þ Op(1):

Therefore,

an(Tn � bn) ¼ ��n þ Op

1

dn

� �
þ Op(an)!

D �Z1,

where an ! 0 comes from Lemma 4.4. This completes the proof of the theorem. h

Proof of Remark 2.3. Let an ¼ n=cn. By Feller (1971: 574–580), we have

dn ¼ nE(sin(Y 2=an))
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and

an‘(an) � n:

Hence cn � ‘(an). Noting that E(Y 2) ¼ 1 and ‘(x) ! 1 as x ! 1, we have

jcn � dnj ¼ njE(Y 2=an � sin(Y 2=an))j

< 2(n=an)E(Y
2 I(Y 2 > an))þ (n=a3n)E(Y

6 I(Y 2 < an))

¼ o(n=(an‘
1=2(an)))þ O(n=(an‘(an)))

¼ o(cn=‘
1=2(an))þ O(cn=‘(n)) ¼ o(c1=2n ),

as desired. h
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normalized sums. Ann. Probab., 27, 2068–2088.

Approximation Theorems of Mathematical Statistics. New York: Wiley.Serfling, R.J. (1980)

Received June 2005 and revised June 2006

V. Bentkus, B.-Y. Jing, Q.-M. Shao and W. Zhao364


	1.&X;Introduction
	2.&X;Limiting distributions of the non-central
	2.1.&Y;Limiting distributions when

	Equation 1
	Equation 2
	Equation 3
	2.2.&Y;Limiting distributions when

	Equation 4
	Equation 5
	2.3.&Y;Limiting distributions when

	Equation 6
	Equation 7
	Equation 8
	Equation 9
	3.&X;Asymptotic powers and robustness of
	3.1.&Y;Evaluation criteria for the
	3.2.&Y;Asymptotic powers of the

	Table 1
	Table 2
	Equation 10
	Equation 11
	4.&X;Proofs
	Equation 12
	Equation 15
	Equation 16
	Equation 18
	Equation 19
	Equation 20
	Equation 21
	Equation 22
	Equation 23
	Equation 24
	Equation 25
	Equation 26
	Equation 27
	Equation 29
	Equation 30
	Equation 31
	Equation 32
	Equation 34
	Acknowledgements
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr18
	mkr19
	mkr20
	mkr21
	mkr22
	mkr23
	mkr24
	mkr25
	mkr26
	mkr27
	mkr28

