A central limit theorem for normalized functions of the increments of a diffusion process, in the presence of round-off errors

SYLVAIN DELATTRE* and JEAN JACOD
Laboratoire de Probabilités (CNRS URA 224), Université Pierre et Marie Curie (Paris-6), 4 place Jussieu, Tour 56, 3ème étage, 75252 Paris Cedex 05, France

Let X be a one-dimensional diffusion process. For each $n \geq 1$ we have a round-off level $\alpha_{n}>0$ and we consider the rounded-off value $X_{t}^{\left(\alpha_{n}\right)}=\alpha_{n}\left[X_{t} / \alpha_{n}\right]$. We are interested in the asymptotic behaviour of the processes $U(n, \varphi)_{t}={ }_{2}^{1} \Sigma_{1 \leq i \leq[n t]} \varphi\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}, \sqrt{n}\left(X_{i / n}^{\left(\alpha_{n}\right)}-X_{(t-1) / n}^{\left(\alpha_{n}\right)}\right)\right.$ as n goes to $+\infty$: under suitable assumptions on φ, and when the sequence $\alpha_{n \sqrt{ }} n$ goes to a limit $\beta \in[0, \infty)$, we prove the convergence of $U(n, \varphi)$ to a limiting process in probability (for the local uniform topology), and an associated central limit theorem. This is motivated mainly by statistical problems in which one wishes to estimate a parameter occurring in the diffusion coefficient, when the diffusion process is observed at times i / n and is subject to rounding off at some level α_{n} which is 'small' but not 'very small'.
Keywords: functional limit theorems; round-off errors; stochastic differential equations

1. Introduction

Let us consider a one-dimensional diffusion process X, solution to the equation

$$
\begin{equation*}
\mathrm{d} X_{t}=a\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \tag{1.1}
\end{equation*}
$$

where W is a standard Brownian motion, and a and σ are smooth enough functions on \mathbb{R}. The behaviour of functionals of the form

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{\mid n t]} \varphi\left(X_{(i-1) / n}, \sqrt{n}\left(X_{i / n}-X_{(i-1) / n}\right)\right) \tag{1.2}
\end{equation*}
$$

as $n \rightarrow \infty$ is known (see, for example, Jacod 1993), and it is crucial for instance in estimation problems related to diffusion models when one observes the process X at times $i / n, i \geq 1$.

Now, in practical situations not only do we observe the process at 'discrete' times, but also each observation is subject to measurement errors, one of these being the round-off effect: if $\alpha>0$ is the accuracy of our measurement, we replace the true value X_{t} by $k \alpha$ when

[^0]$k \alpha \leq X_{t}<(k+1) \alpha$ with $k \in \mathbb{Z}$. The object of this paper is to study the limiting behaviour of functionals like (1.2) when $X_{i / n}$ is substituted with its rounded-off value.

More precisely, we are given a sequence α_{n} of positive numbers, where α_{n} represents the accuracy of measurement when the discretization times are i / n. With each real x we associate its integer part $[x]$ and fractional part $\{x\}=x-[x]$, and for every real x we denote by $x^{\left(\alpha_{n}\right)}=\alpha_{n}\left[x / \alpha_{n}\right]$ its rounded-off value at level α_{n}. Instead of (1.2) we consider processes such as

$$
\begin{equation*}
U(n, \varphi)_{t}=\frac{1}{n} \sum_{i=1}^{[n t]} \varphi\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}, \sqrt{n}\left(X_{i / n}^{\left(\alpha_{n}\right)}-X_{(i-1) / n}^{\left(\alpha_{n}\right)}\right)\right), \tag{1.3}
\end{equation*}
$$

perhaps with φ replaced by a well-behaved sequence φ_{n} of functions.
In fact, the asymptotic behaviour of (1.3) and of other similar processes will be deduced from the behaviour of the following:

$$
\begin{equation*}
V\left(n, f_{n}\right)_{t}=\frac{1}{n} \sum_{i=1}^{[n t]} f_{n}\left(X_{(i-1) / n},\left\{X_{(i-1) / n} / \alpha_{n}\right\}, \sqrt{n}\left(X_{i / n}-X_{(i-1) / n}\right)\right), \tag{1.4}
\end{equation*}
$$

where f_{n} are functions on $\mathbb{R} \times[0,1] \times \mathbb{R}$. The interest of (1.4) is that it simultaneously encompasses (1.2) and (1.3), and gives additional results for functions of the fractional parts $\left\{X_{i / n} / \alpha_{n}\right\}$ which may have independent interest (see Section 3).

Throughout this paper we will assume that $\beta_{n}=\alpha_{n} \sqrt{n}$ converges to a limit β in $[0, \infty)$.
In Section 2 we state the main results about processes $V\left(n, f_{n}\right)$. They are twofold: first convergence in probability; then an associated central limit theorem for the normalized and compensated processes. In Section 3 we deduce from this the behaviour of processes like (1.3).

In Section 4 we give an example of a statistical application: the process under observation is (1.1) with $a(x)=0, \sigma(x)=\sigma$ and $X_{0}=0$, that is $X_{t}=\sigma W_{t}$, and we wish to estimate σ^{2} from the observation of the rounded-off values $X_{i / n}^{\left(\alpha_{n}\right)}$ for $i=1, \ldots, n$. This simple example allows us to exhibit the main features of estimation in the presence of round-off. The statements of Section 4 can be read without the whole arsenal of notation of Sections 2 and 3, and corresponding results concerning general diffusion processes will be developed elsewhere.

The rest of the paper is organized as follows. In Section 5 we prove some (more or less well-known) results about the semigroups of the process X. In Section 6 we introduce the fundamental tool, which is that if a real-valued random variable Y admits a smooth density, then for $\rho>0$ the variable $\{Y / \rho\}$ is 'almost' independent of Y and uniformly distributed on $[0,1)$ (the 'almost' being controlled by powers of ρ): this is related to results due to Kosulajeff (1937) and Tukey (1939). In Section 7 we study the functions which occur in the limits of our processes. In Section 8 we introduce a fundamental martingale. This martingale is constructed, approximately, as the martingale used in the proof of the central limit theorem for a triangular array of stationary mixing sequences of random variables, the 'stationary sequence' here being the fractional parts $\left\{X_{i / n} / \alpha_{n}\right\}$. Finally, Section 9 is devoted to proving the main theorems.

The assumption that β_{n} goes to a finite limit is restrictive, although for statistical purposes it should be a natural assumption.

If $\beta_{n} \rightarrow \infty$ and still $\alpha_{n} \rightarrow 0$, we have seen in Jacod (1996) for the Brownian motion case (i.e. $a=0, \sigma=1$) that $U(n, \varphi)_{t} / \beta_{n}$ converges in probability to $t \sqrt{2 / \pi}$ for the function $\varphi(x, y)=y^{2}$. More generally if φ_{n} has the form $\varphi_{n}(x, y)=\psi_{n}(x)|y|^{p}$ it is possible to prove convergence in probability of $\beta_{n}^{1-p} U\left(n, \varphi_{n}\right)$, as well as a corresponding central limit theorem (these results will be developed elsewhere): this implies that for arbitrary functions φ_{n} the normalizing factors should depend on φ_{n} in a rather complicated way.

When α_{n} goes to a limit $\alpha>0$ (for example, if $\alpha_{n}=\alpha>0$ for all n), the situation is quite different: again in the Brownian case and if $\varphi(x, y)=y^{2}$, then $U(n, \varphi) / \sqrt{n}$ converges in probability to a multiple of the sum $\sum_{k \in \mathbb{Z}} L^{k \alpha}$, where L^{a} is the local time of X at level a. Presumably a similar result holds here, but the limit is random here and a central limit theorem, if it holds at all, would be of a different nature.

2. Statement of the main results

We first present our assumptions. First, for the process X, we assume the following:
Hypothesis H. The functions a and σ are of class C^{5} and $\sigma>0$ identically, and for each starting point the process X is non-explosive.

We denote by P_{x} the law of the process X starting at $X_{0}=x$, on the canonical space $\Omega=C\left(\mathbb{R}_{+}, \mathbb{R}\right)$ endowed with the canonical filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$.
Next, let $f_{n}: \mathbb{R} \times[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of functions satisfying the following for $r=1$ or $r=2$:

Hypothesis K_{r}. The functions f_{n} are C^{r} in the first variable, and for all $q>0$ there are constants C_{q}, r_{q} such that, for $0 \leq i \leq r, n \geq 1$:

$$
\begin{equation*}
\left|\frac{\partial^{i}}{\partial x^{i}} f_{n}(x, u, y)\right| \leq C_{q}\left(1+|y|^{r_{q}}\right) \quad \text { for }|x| \leq q . \tag{2.1}
\end{equation*}
$$

Furthermore, there is a function $f: \mathbb{R} \times[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}, f_{n}(x, u, y)$ converges $\mathrm{d} u \otimes \mathrm{~d} y$-almost everywhere to $f(x, u, y)$.

Recall that $\beta_{n}=\alpha_{n} \sqrt{n} \rightarrow \beta \in[0, \infty)$, and $V\left(n, f_{n}\right)$ is given by (1.4).
For the first theorem, we need some notation. Denote by h_{s} the density of the normal law $\mathscr{N}\left(0, s^{2}\right)$, and $h=h_{1}$. For any function f on $\mathbb{R} \times[0,1] \times \mathbb{R}$ satisfying (2.1) for $i=0$, we set (σ is as in (1.1)):

$$
\begin{equation*}
m f(x, u)=\int h_{\sigma(x)}(y) f(x, u, y) \mathrm{d} y, \quad M f(x)=\int_{0}^{1} m f(x, u) \mathrm{d} u \tag{2.2}
\end{equation*}
$$

Note that $M f$ is locally bounded.
Theorem 2.1. Under the hypotheses H and K_{l}, the processes $V\left(n, f_{n}\right)$ converge in P_{x} probability, locally uniformly in time, to the process $\int_{0}^{t} M f\left(X_{s}\right) \mathrm{d} s$.

We next give a 'central limit theorem' associated with the previous result. Here again we need to introduce a number of functions. Let W be a standard Brownian motion on a space
(Ω, \mathscr{G}, P), generating the filtration $\left(\mathscr{G}_{t}\right)_{t \geq 0}$. If ψ is a function of polynomial growth on $[0,1] \times \mathbb{R}$, for all $\sigma>0, \rho>0, u \in[0,1]$ we set (for $i \geq 1$):

$$
\begin{align*}
m_{\sigma} \psi(u) & =\mathrm{E}\left(\psi\left(u, \sigma W_{1}\right)\right), \quad M_{\sigma} \psi=\int_{0}^{1} m_{\sigma} \psi(u) \mathrm{d} u, \tag{2.3}\\
\eta_{i} \psi(\sigma, \rho, u) & =\psi\left(\left\{u+\sigma W_{i-1} / \rho\right\}, \sigma\left(W_{i}-W_{i-1}\right)\right)-M_{\sigma} \psi, \tag{2.4}\\
\ell_{i} \psi(\sigma, \rho, u) & =\mathrm{E}\left(\eta_{i} \psi(\sigma, \rho, u)\right) . \tag{2.5}
\end{align*}
$$

We will prove later (see Section 7) that the series $L \psi=\sum_{i \geq 1} \ell_{i} \psi$ is absolutely convergent, and we can introduce square-integrable random variables by writing (note that $\eta_{1} \psi(\sigma, \rho, u)$ does not depend on ρ):

$$
\begin{equation*}
\chi \psi(\sigma, \rho, u)=\eta_{1} \psi(\sigma, u)+L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1} / \rho\right\}\right)-L \psi(\sigma, \rho, u) . \tag{2.6}
\end{equation*}
$$

Finally, if φ is another function of the same type as ψ, we set

$$
\begin{equation*}
\delta_{\varphi, \psi}(\sigma, \rho, u)=\mathrm{E}(\chi \varphi(\sigma, \rho, u) \chi \psi(\sigma, \rho, u)), \quad \Delta_{\varphi, \psi}(\sigma, \rho)=\int_{0}^{1} \delta_{\varphi, \psi}(\sigma, \rho, u) \mathrm{d} u \tag{2.7}
\end{equation*}
$$

Equations (2.4)-(2.7) make no sense when $\rho=0$. However, we set, for $\rho=0$:

$$
\begin{equation*}
\Delta_{\varphi, \psi}(\sigma, 0)=M_{\sigma}(\varphi \psi)-M_{\sigma} \varphi M_{\sigma} \psi \tag{2.8}
\end{equation*}
$$

and will prove (again in Section 7) that $\Delta_{\varphi, \psi}$ is continuous on $(0, \infty) \times[0, \infty)$, while for all $\rho \geq 0$:

$$
\begin{equation*}
\Delta_{\psi, \psi}(\sigma, \rho) \geq\left[M_{\sigma}\left(\psi \varphi_{\sigma}\right)\right]^{2} \tag{2.9}
\end{equation*}
$$

where $\varphi_{\sigma}(u, y)=y / \sigma$.
The connection between (2.2) and (2.3) is as follows, where $f_{x}(u, y)=f(x, u, y)$:

$$
\begin{equation*}
m f(x, u)=m_{\sigma(x)} f_{x}(u), \quad M f(x)=M_{\sigma(x)} f_{x} \tag{2.10}
\end{equation*}
$$

and we introduce in a similar fashion (with $\varphi_{\sigma}(u, y)=y / \sigma$ again):

$$
\begin{equation*}
\Delta(f, g)(x, \rho)=\Delta_{f_{x}, g_{x}}(\sigma(x), \rho), \quad R f(x)=M_{\sigma(x)}\left(f_{x} \varphi_{\sigma(x)}\right) \tag{2.11}
\end{equation*}
$$

For further reference, we also set:

$$
\begin{equation*}
\tilde{f}(x, u, y)=f(x, u, y)\left(y\left(\frac{a(x)}{\sigma(x)^{2}}-\frac{3 \sigma^{\prime}(x)}{2 \sigma(x)}\right)+y^{3} \frac{\sigma^{\prime}(x)}{2 \sigma(x)^{3}}\right) \tag{2.12}
\end{equation*}
$$

where σ^{\prime} is the first derivative of σ.
After this long list of notation, we also recall that if V_{n} is a sequence of random variables on $\left(\Omega, \mathscr{F}, P_{x}\right)$, taking values in a Polish space E, we say that V_{n} converges stably in law to a limit V if V is an E-valued random variable defined on an extension $\left(\bar{\Omega}, \overline{\mathscr{F}}^{\prime}, \bar{P}_{x}\right)$ of the space $\left(\Omega, \mathscr{F}, P_{x}\right)$ and if $\mathrm{E}_{x}\left(Y f\left(V_{n}\right)\right) \rightarrow \overline{\mathrm{E}}_{x}(Y f(V))$ for every bounded random variable Y on ($\Omega, \mathscr{F}, P_{x}$) and every bounded continuous function f on E (see Renyi 1963; Aldous and Eagleson 1978; or Jacod and Shiryaev 1987). This is obviously a (slightly) stronger mode of convergence than convergence in law.

We will apply this to processes, so E is the Skorokhod space $\mathbb{D}\left(\mathbb{R}_{+}\right)$. The extension $\left(\bar{\Omega}, \overline{\mathscr{F}}, \bar{P}_{x}\right)$ is such that it accomodates another standard Brownian motion B independent of W, and we consider the process (recall that $\Delta(f, f)(x, \rho) \geq R f(x)^{2}$ by (2.9) and (2.11)):

$$
\begin{equation*}
B_{t}^{\prime}=\int_{0}^{t}\left(\Delta(f, f)\left(X_{s}, \beta\right)-R f\left(X_{s}\right)^{2}\right)^{1 / 2} \mathrm{~d} B_{s} \tag{2.13}
\end{equation*}
$$

Theorem 2.2. Assume that the hypotheses H and K_{2} hold. The processes $\sqrt{n}\left(V\left(n, f_{n}\right)_{t}-\right.$ $\left.\int_{0}^{t} M f_{n}\left(X_{s}\right) \mathrm{d} s\right)$ and $\sqrt{n}\left(V\left(n, f_{n}\right)_{t}-\frac{1}{n} \sum_{i=1}^{[n t]} M f_{n}\left(X_{(i-1) / n}\right)\right.$) converge stably in law to the following process (with B^{\prime} and \tilde{f} given by (2.13) and (2.12)):

$$
\begin{equation*}
\int_{0}^{t} M \tilde{f}\left(X_{s}\right) \mathrm{d} s+\int_{0}^{t} R f\left(X_{s}\right) \mathrm{d} W_{s}+B_{t}^{\prime} \tag{2.14}
\end{equation*}
$$

Corollary 2.3. Assume that the hypotheses H and K_{2} hold, and associate \tilde{f}_{n} with f_{n} by (2.12). The two sequences of processes

$$
\begin{aligned}
& \sqrt{n}\left(V\left(n, f_{n}\right)_{t}-\int_{0}^{t} M f_{n}\left(X_{s}\right) \mathrm{d} s-\frac{1}{\sqrt{n}} \int_{0}^{t} M \tilde{f}_{n}\left(X_{s}\right) \mathrm{d} s\right), \\
& \sqrt{n}\left(V\left(n, f_{n}\right)-\frac{1}{n} \sum_{i=1}^{[n t]} M f_{n}\left(X_{(i-1) / n}\right)-n^{-3 / 2} \sum_{i=1}^{[n t]} M \tilde{f}_{n}\left(X_{(i-1) / n}\right)\right),
\end{aligned}
$$

converge stably in law to the process $\int_{0}^{t} R f\left(X_{s}\right) \mathrm{d} W_{s}+B_{t}^{\prime}$.
Remark 2.1. Another way of characterizing the process B^{\prime} is as follows: it is a process on the extension $\left(\bar{\Omega}, \overline{\mathscr{F}}, \bar{P}_{x}\right)$ such that, conditionally on the σ-field \mathscr{F}, it is a continuous Gaussian martingale null at $t=0$, with (deterministic) bracket

$$
\begin{equation*}
\left\langle B^{\prime}, B^{\prime}\right\rangle_{t}=\int_{0}^{t}\left(\Delta(f, f)\left(X_{s}, \beta\right)-R f\left(X_{s}\right)^{2}\right) \mathrm{d} s \tag{2.15}
\end{equation*}
$$

Remark 2.2. There is, of course, a version of these results for d-dimensional functions $f_{n}=\left(f_{n}^{i}\right)_{1 \leq i \leq d}$ all of whose components satisfy hypothesis K_{2}. Then the processes $V\left(n, f_{n}\right)$ and functions $M \tilde{f}$ and $R f$ are d-dimensional as well, as the results are exactly the same as in Theorem 2.2 and Corollary 2.3, provided we describe the d-dimensional process $B^{\prime}=\left(B^{\prime i}\right)_{1 \leq i \leq d}$, conditionally on \mathscr{F}, as a continuous Gaussian martingale null at $t=0$, with the following brackets:

$$
\begin{equation*}
\left\langle B^{\prime i}, B^{\prime j}\right\rangle_{t}=\int_{0}^{r}\left(\Delta\left(f^{i}, f^{j}\right)\left(X_{s}, \beta\right)-R f^{i}\left(X_{s}\right) R f^{j}\left(X_{s}\right)\right) \mathrm{d} s \tag{2.16}
\end{equation*}
$$

The proof is exactly the same as for the one-dimensional case. Another description of B^{\prime} as the stochastic integral with respect to a d-dimensional Brownian motion independent of W is, of course, possible, and involves a square root of the symmetric non-negative matrices $\left(\Delta\left(f^{i}, f^{j}\right)(x, \beta)-R f^{i}(x) R f^{j}(x)\right)_{1 \leq i, j \leq d}$.

3. Some applications

We consider here the processes $U(n, \varphi)$ of (1.3). More precisely, let φ_{n} be a sequence of functions on \mathbb{R}^{2}, satisfying the following assumption (for $r=1$ or $r=2$):

Hypothesis L_{r}. The functions φ_{n} are C^{r} in the first variable, continuous in the second variable, and for all $q>0$ there are constants C_{q}, r_{q} such that, for $0 \leq i \leq r, n \geq 1$:

$$
\begin{equation*}
\left|\frac{\partial^{i}}{\partial x^{i}} \varphi_{n}(x, y)\right| \leq C_{q}\left(1+|y|^{r_{q}}\right) \quad \text { for }|x| \leq q \tag{3.1}
\end{equation*}
$$

Furthermore, φ_{n} converges pointwise to a function φ.

$$
\begin{array}{r}
\text { Since } X_{t}^{\left(\alpha_{n}\right)}=X_{t}-\alpha_{n}\left\{X_{t} / \alpha_{n}\right\}, \text { we have } U\left(n, \varphi_{n}\right)=V\left(n, f_{n}\right) \text {, where } \\
f_{n}(x, u, y)=\varphi_{n}\left(x-\alpha_{n} u, \beta_{n}\left[u+y / \beta_{n}\right]\right) . \tag{3.2}
\end{array}
$$

Furthermore, we have the following lemma.
Lemma 3.1. If $\beta_{n} \rightarrow \beta$ the hypothesis L_{r} implies that the sequence $\left(f_{n}\right)$ defined by (3.2) satisfies K_{r}, with the limiting function f given by

$$
f(x, u, y)= \begin{cases}\varphi(x, \beta[u+y / \beta]) & \text { if } \beta>0 \tag{3.3}\\ \varphi(x, y) & \text { if } \beta=0\end{cases}
$$

Proof. Property (2.1) is obvious. Recall that $\alpha_{n} \rightarrow 0$, while $\beta_{n}\left[u+y / \beta_{n}\right]$ converges to y if $\beta=0$, and to $\beta[u+y / \beta]$ for $\mathrm{d} u \otimes \mathrm{~d} y-\operatorname{almost}$ all (u, y) if $\beta>0$. Hence the continuity of φ_{n} yields $\quad \varphi_{n}\left(x, \beta_{n}\left[u+y / \beta_{n}\right]\right)-\varphi_{n}(x, y) \rightarrow 0 \quad$ if $\quad \beta=0, \quad$ and $\quad \varphi_{n}\left(x-\alpha_{n} u, \beta_{n}\left[u+y / \beta_{n}\right]\right)-$ $\varphi_{n}(x, \beta[u+y / \beta]) \rightarrow 0 \quad$ if $\quad \beta>0$. Since $\quad \varphi_{n} \rightarrow \varphi \quad$ we deduce that $f_{n}(x,.) \rightarrow$ $f(x,) .\mathrm{d} u \otimes \mathrm{~d} y-$ almost everywhere.

In order to translate the results of Section 2 into the present setting, we introduce some more notation. For any function φ on \mathbb{R}^{2} satisfying (3.1) for $i=0$, set

$$
\Gamma \varphi(x, \rho)= \begin{cases}\int_{0}^{1} \mathrm{~d} u \int h(y) \varphi(x, \rho[u+y \sigma(x) / \rho]) \mathrm{d} y & \text { if } \rho>0 \tag{3.4}\\ \int h(y) \varphi(x, \sigma(x) y) \mathrm{d} y & \text { if } \rho=0\end{cases}
$$

Theorem 3.1. Under the hypotheses H and L_{1} the processes $U\left(n, \varphi_{n}\right)$ converge in $P_{x^{-}}$ probability, locally uniformly in time, to the process $\int_{0}^{t} \Gamma \varphi\left(X_{s}, \beta\right) \mathrm{d} s$.

Proof. It suffices to observe that $\Gamma \varphi(x, \beta)=M f(x)$ with f as in (3.3).
In a similar way to (3.4), we set, for $\rho>0$:

$$
\begin{equation*}
\tilde{\Gamma} \varphi(x, \rho)=\int_{0}^{1} u \mathrm{~d} u \int h(y) \varphi(x, \rho[u+y \sigma(x) / \rho]) \mathrm{d} y \tag{3.5}
\end{equation*}
$$

For all φ_{n} we also write $\varphi_{n}^{\prime}(x, y)=\partial \varphi_{n}(x, y) / \partial x$.

Theorem 3.2. Assume that the hypotheses H and L_{2} hold. The processes

$$
\begin{align*}
& \sqrt{n}\left(U\left(n, \varphi_{n}\right)_{t}-\int_{0}^{t} \Gamma \varphi_{n}\left(X_{s}, \beta_{n}\right) \mathrm{d} s+\alpha_{n} \int_{0}^{t} \tilde{\Gamma} \varphi_{n}^{\prime}\left(X_{s}, \beta_{n}\right) \mathrm{d} s\right) \tag{3.6}\\
& \sqrt{n}\left(U\left(n, \varphi_{n}\right)_{t}-\frac{1}{n} \sum_{i=1}^{[n t]} \Gamma \varphi_{n}\left(X_{(i-1) / n}, \beta_{n}\right)+\frac{\alpha_{n}}{n} \sum_{i=1}^{[n t]} \tilde{\Gamma} \varphi_{n}^{\prime}\left(X_{(i-1) / n}, \beta_{n}\right)\right) \tag{3.7}
\end{align*}
$$

converge stably in law to the process (2.14), with f given by (3.3).
Proof. Set $\gamma_{n}(x)=M f_{n}(x)-\Gamma \varphi_{n}\left(x, \beta_{n}\right)+\alpha_{n} \tilde{\Gamma} \varphi_{n}^{\prime}(x)$. The processes (3.6) and (3.7) are respectively equal to $\sqrt{n}\left(V\left(n, f_{n}\right)_{t}-\int_{0}^{t} M f_{n}\left(X_{s}\right) \mathrm{d} s\right)+\sqrt{n} \int_{0}^{t} \gamma_{n}\left(X_{s}\right) \mathrm{d} s$ and $\sqrt{n}\left(V\left(n, f_{n}\right)_{t}-\right.$ $\left.\frac{1}{n} \sum_{i=1}^{[n t]} M f_{n}\left(X_{(i-1) / n}\right)\right)+n^{-1 / 2} \sum_{i=1}^{[n t]} \gamma_{n}\left(X_{(i-1) / n}\right)$. Therefore, the result will follow from Theorem 2.2 if we prove that

$$
\begin{equation*}
\sup _{x:|x| \leq A} \sqrt{n}\left|\gamma_{n}(x)\right| \rightarrow 0 \quad \text { for all } A>0 \tag{3.8}
\end{equation*}
$$

We have

$$
\begin{aligned}
\gamma_{n}(x)= & \int_{0}^{1} \mathrm{~d} u \int h(y)\left(\varphi_{n}\left(x-\alpha_{n} u, \beta_{n}\left[u+\sigma(x) y / \beta_{n}\right]\right)-\varphi_{n}\left(x, \beta_{n}\left[u+\sigma(x) y / \beta_{n}\right]\right)\right. \\
& \left.+\alpha_{n} u \varphi_{n}^{\prime}\left(x, \beta_{n}\left[u+\sigma(x) y / \beta_{n}\right]\right)\right) \mathrm{d} y .
\end{aligned}
$$

Since $\alpha_{n}^{2} \sqrt{n} \rightarrow 0,(3.8)$ is deduced from hypothesis L_{2}.
Remark 3.1. If $\beta=0$, then $\alpha_{n} \sqrt{n} \rightarrow 0$, while $\tilde{\Gamma} \varphi_{n}^{\prime}\left(x, \beta_{n}\right)$ is locally bounded in x, uniformly in n : therefore we can replace (3.6) and (3.7) by the processes

$$
\sqrt{n}\left(U\left(n, \varphi_{n}\right)_{t}-\int_{0}^{t} \Gamma \varphi_{n}\left(X_{s}, \beta_{n}\right) \mathrm{d} s\right) \quad \text { and } \quad \sqrt{n}\left(U\left(n, \varphi_{n}\right)_{t}-\frac{1}{n} \sum_{i=1}^{[n t]} \Gamma \varphi_{n}\left(X_{(i-1) / n} \beta_{n}\right)\right)
$$

Very often in applications, the functions φ_{n} will be even in the second variable. The results then take a simpler form, as follows.

Corollary 3.3. Assume that the hypotheses H and L_{2} hold, and also that $\varphi(x, y)=\varphi(x,-y)$ identically. The processes (3.6) and (3.7) converge stably in law to the process $\int_{0}^{t} \Delta(f, f)\left(X_{s}, \beta\right)^{1 / 2} \mathrm{~d} B_{s}$, where f is given by (3.3) and B is a standard Brownian motion independent of W.

Proof. It suffices to prove that $M \tilde{f}(x)=R f(x)=0$. In view of (2.11) and (2.12), it is enough to prove that $M g(x)=0$ if $g(x, u, y)=f(x, u, y) k(x, y)$ where $k(x, y)=A(x) y$ or $k(x, y)=A(x) y^{3}$ for an arbitrary function A. But (3.3) and the assumption of φ yield that $g(x, u, y)=-g(x, 1-u,-y)$ for $\mathrm{d} u \otimes \mathrm{~d} y$-almost all (u, y). Since the measure $\mathrm{d} u \otimes h_{\sigma(x)}(y) \mathrm{d} y$ is invariant by the map $(u, y) \rightarrow(1-u,-y)$, we deduce $M g(x)=0$ from (2.2).

The processes (3.6) and (3.7) are not fit for statistical applications, since they involve not only the 'observed' values $X_{i / n}^{\left(\alpha_{n}\right)}$, but also the 'non-observed' path $s \rightarrow X_{s}$ in the case of (3.6), or the non-observed values $X_{i / n}$ in the case of (3.7). To circumvent this problem, we can state the following result, the proof of which is postponed until Section 9.

Theorem 3.4. Assume that the hypotheses H and L_{2} hold.
(a) The processes

$$
\begin{equation*}
\sqrt{n}\left(U\left(n, \varphi_{n}\right)_{t}-\frac{1}{n} \sum_{i=1}^{[n t]} \Gamma \varphi_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \beta_{n}\right)+\frac{\alpha_{n}}{n} \sum_{i=1}^{[n t]} \tilde{\Gamma} \varphi_{n}^{\prime}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}, \beta_{n}\right)\right) \tag{3.9}
\end{equation*}
$$

converge stably in law to the process (2.14), with f given by (3.3).
(b) If, further, $\varphi(x, y)=\varphi(x,-y)$ identically, then the processes

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{i=1}^{[n t]}\left(\varphi_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \sqrt{n}\left(X_{i / n}^{\left(\alpha_{n}\right)}-X_{(i-1) / n}^{\left(\alpha_{n}\right)}\right)\right)-\Gamma \varphi_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \beta_{n}\right)\right) \tag{3.10}
\end{equation*}
$$

converge stably in law to the process $\int_{0}^{t} \Delta(f, f)\left(X_{s}, \beta\right)^{1 / 2} \mathrm{~d} B_{s}$, where f is given by (3.3) and B is a standard Brownian motion independent of W.

Remark 3.2. As for Theorem 3.2, if $\beta=0$ we can replace the process (3.9) by $\sqrt{n}\left(U\left(n, \varphi_{n}\right)_{t}-\right.$ $\left.\frac{1}{n} \sum_{i=1}^{[n t]} \Gamma \varphi_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \beta_{n}\right)\right)$, and even by $\sqrt{n}\left(U\left(n, \varphi_{n}\right)_{t}-\frac{1}{n} \sum_{i=1}^{[n t]} \Gamma \varphi_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}, \beta_{n}\right)\right)$ because $\left|\Gamma \varphi_{n}\left(x+\alpha_{n} / 2, \beta_{n}\right)-\Gamma \varphi_{n}\left(x, \beta_{n}\right)\right| \leq g(x) \alpha_{n} \leq g(x) \beta_{n} / \sqrt{n}$ for some locally bounded function g.

Remark 3.3. Other versions of (3.9) are possible: for example, we can replace $\Gamma \varphi_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \beta_{n}\right)$ by $\Gamma_{n} \varphi_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}, \beta_{n}\right)$, where

$$
\Gamma_{n} \varphi_{n}(x)=\int_{0}^{1} \mathrm{~d} u \int_{0}^{1} \mathrm{~d} v \int h(y) \varphi_{n}\left(x+\alpha_{n} v, \beta_{n}\left[u+y \sigma(x) / \beta_{n}\right]\right) \mathrm{d} y
$$

We can also replace $\tilde{\Gamma} \varphi_{n}^{\prime}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}, \beta_{n}\right)$ by $\tilde{\Gamma} \varphi_{n}^{\prime}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \beta_{n}\right)$.
Remark 3.4. As in Corollary 3.3, if φ is even in the second variable, the limit in Theorem 3.4 is $\int_{0}^{t} \Delta(f, f)\left(X_{s}, \beta\right)^{1 / 2} \mathrm{~d} B_{s}$.

Remark 3.5. As in Section 2, these results admit a multidimensional version, when each φ_{n} takes values in \mathbb{R}^{d}. We leave the details to the reader.

Finally we give some very simple applications to the processes

$$
\begin{equation*}
U_{t}^{n}(p)=\frac{1}{n} \sum_{i=1}^{[n t]}\left\{X_{i / n} / \alpha_{n}\right\}^{p} \tag{3.11}
\end{equation*}
$$

where $p \in \mathbb{R}_{+}$.
Theorem 3.5. Assume that the hypothesis H holds. Then the processes $U_{t}^{n}(p)$ converge locally uniformly in time, in $\mathbb{L}^{q}\left(P_{x}\right)$ for all q, to the function $t /(p+1)$. Furthermore, the processes
$\sqrt{n}\left(U_{t}^{n}(p)-t /(p+1)\right)$ converge stably in law to $\int_{0}^{t} \Delta(f, f)\left(X_{s}, \beta\right)^{1 / 2} \mathrm{~d} B_{s}$, where $f(x, u, y)=u^{p}$ and B is a standard Brownian motion independent of W.

Note that if $\beta=0$, then $\Delta(f, f)(x, 0)=1 /\left(p^{2}+1\right)-(1 /(p+1))^{2}$, so the limit above is again a homogeneous Brownian motion, independent of W. If $\beta>0$, then $\Delta(f, f)(x, \beta)$ depends on x and the limit in not independent of W.

Proof. We only have to notice that $U_{t}^{n}(p)=V(n, f)_{t}+\left\{X_{[n t] / n} / \alpha_{n}\right\}^{p} / n$, where f is as above: we have the hypothesis K_{2} for $f_{n}=f$, and we can apply Theorems 2.1 and 2.2, and check that $R f(x)=M \tilde{f}(x)=0$ and that $M f(x)=1 /(p+1)$.

4. A simple statistical application

In this section we consider the following statistical problem: the process X is $X=\sigma W$, where W is a standard Brownian motion, and $\sigma>0$ is unknown. We wish to estimate $\vartheta=\sigma^{2}$, from the observation of $X_{i / n}^{\left(\alpha_{n}\right)}$ for $i=1, \ldots, n$. The estimation will be based on the discretized quadratic variation, calculated from these rounded-off values, i.e. the variables

$$
\begin{equation*}
\tilde{V}^{n}=\sum_{i=1}^{n}\left(X_{i / n}^{\left(\alpha_{n}\right)}-X_{(i-1) / n}^{\left(\alpha_{n}\right)}\right)^{2} \tag{4.1}
\end{equation*}
$$

since it is well known that without round-off error (i.e. $\alpha_{n}=0$), \tilde{V}^{n} is (in all possible senses) the best estimator of ϑ, and that $\sqrt{n}\left(\tilde{V}^{n}-\vartheta\right)$ converges in law to $\mathscr{N}\left(0,2 \vartheta^{2}\right)$ if the true value of the parameter is ϑ.

First, the following result, easily deduced from Theorem 3.1, has already been proved in Jacod (1996). Below, P^{ϑ} denotes the law of X for the value ϑ of the parameter.

Theorem 4.1. The variables \tilde{V}^{n} converge in P^{ϑ}-probability to the number

$$
\gamma(\beta, \vartheta)= \begin{cases}\int_{0}^{1} \mathrm{~d} u \int h(y) \beta^{2}\left[u+\frac{y \sqrt{\vartheta}}{\beta}\right]^{2} \mathrm{~d} y & \text { if } \beta>0 \tag{4.2}\\ \vartheta & \text { if } \beta=0\end{cases}
$$

Proof. Setting $\varphi(x, y)=y^{2}$, it is enough to observe first that $\tilde{V}^{n}=U(n, \varphi)$, and second that $\gamma(\beta, \vartheta)=\Gamma \varphi(x, \beta)$ with the notation of (3.4) since $\sigma(x)=\sqrt{\vartheta}$.

It can be shown that $\gamma(\beta, \vartheta)>\vartheta$ if $\beta>0$: hence the estimators \tilde{V}^{n} are consistent if $\beta=0$, but are not consistent if $\beta>0$.

Furthermore, the function $\beta \rightarrow \gamma(\beta, \vartheta)$ is twice differentiable, and we can prove that $\partial \gamma(0, \vartheta) / \partial \beta=0$ and $\partial^{2} \gamma(\beta, \vartheta) / \partial \beta^{2}=\frac{1}{3}$. Then when $\beta=0$, it follows from Theorem 3.2 (applied to $\varphi_{n}(x, y)=y^{2}$, so that $\tilde{\Gamma} \varphi_{n}^{\prime}\left(x, \beta_{n}\right)=0$) that $\sqrt{n}\left(\tilde{V}^{n}-\vartheta\right)$ converges in law to $\mathscr{N}\left(0,2 \vartheta^{2}\right)$ if $\sqrt{n} \beta_{n}^{2} \rightarrow 0$, whereas it explodes when $\sqrt{n} \beta_{n}^{2} \rightarrow \infty$, and it converges to a noncentred normal variable if $\sqrt{n} \beta_{n}^{2}$ converges to a limit in $(0, \infty)$: this means that, unless α_{n} goes to 0 very fast (i.e. $n^{3 / 4} \alpha_{n} \rightarrow 0$), then \tilde{V}^{n} does not go to ϑ at the rate $1 / \sqrt{n}$.

So there is a need for better estimators. In fact, the function $\vartheta \rightarrow \gamma(\beta, \vartheta)$ is an increasing bijection from \mathbb{R}_{+}into \mathbb{R}_{+}, whose inverse is denoted by $\gamma^{-1}(\beta, \vartheta)$. We then have the following result.

Theorem 4.2. The estimators $\hat{\vartheta}_{n}$, defined by $\hat{\vartheta}_{n}=\gamma^{-1}\left(\beta_{n}, \tilde{V}^{n}\right)$, are consistent, and $\sqrt{n}\left(\hat{\vartheta}_{n}-\vartheta\right)$ converges in law under P^{ϑ} to $\mathscr{N}(0, \Sigma(\beta, \vartheta))$, for some $\Sigma(\beta, \vartheta)$ satisfying $\Sigma(0, \vartheta)=2 \vartheta^{2}$.

This implies that if $\beta=0$, then the $\hat{\vartheta}_{n}$ s are efficient since they achieve the same bound as if the true values $X_{i / n}$ were observed. When $\beta>0$ they achieve at least the best rate $1 / \sqrt{n}$ (we do not know whether they are efficient in this case, relative to the observed σ-fields).
Proof. The continuity of the function γ and Theorem 4.1 yield that $\gamma^{-1}\left(\beta_{n}, \tilde{V}^{n}\right) \rightarrow$ $\gamma^{-1}(\beta, \gamma(\beta, \vartheta))=\vartheta$ in P^{ϑ}-probability, hence the consistency.

Let $\Delta(\beta, \vartheta)$ be the quantity $\Delta(f, f)(x, \beta)$ with f associated with $\varphi(x, y)=y^{2}$ by (3.3) and $\sigma(x)=\sqrt{\vartheta}$ (clearly this does not depend on x).

By construction $\gamma\left(\beta_{n}, \hat{\vartheta}_{n}\right)=\tilde{V}^{n}$, so Corollary 3.3 yields that the variables $\sqrt{n}\left(\gamma\left(\beta_{n}, \hat{\vartheta}_{n}\right)-\gamma\left(\beta_{n}, \vartheta\right)\right)$ converge in law to $\mathcal{N}(0, \Delta(\beta, \vartheta))$ (recall that here $\tilde{\Gamma} \varphi=0$). Using the fact that $\vartheta \rightarrow \gamma(\beta, \vartheta)$ is continuously differentiable with a positive derivative, the consistency and Taylor's formula yield that $\sqrt{n}\left(\hat{\vartheta}_{n}-\vartheta\right)$ converges in law to $\mathscr{N}\left(0, \Delta(\beta, \vartheta) /(\partial \gamma(\beta, \vartheta) / \partial \vartheta)^{2}\right)$. Finally (4.2) gives $\partial \gamma(0, \vartheta) / \partial \vartheta=1$, while (2.8) yields $\Delta(0, \vartheta)=2 \vartheta^{2}$, hence the final result.

5. Preliminaries

The first aim of this section is to prove that we can replace the hypotheses H and K_{r} by the following:

Hypothesis H^{\prime}. a and σ are C_{b}^{5} functions, and $\inf _{x} \sigma(x)>0$.
Hypothesis $K_{r}^{\prime} . \quad f$ and f_{n} are as in hypothesis K_{r}, and there are constants $p \in \mathbb{N}, K>0$, such that for $0 \leq i \leq r$ and all n, x, y, u :

$$
\begin{equation*}
\left|\frac{\partial^{i}}{\partial x^{i}} f_{n}(x, u, y)\right|+|f(x, u, y)| \leq K\left(1+|y|^{p}\right) \tag{5.1}
\end{equation*}
$$

Assume that the hypotheses K and K_{r} hold, and suppose for a moment that the process X is defined on the canonical space of the Brownian motion W and starts at $X_{0}=x_{0}$. Also, let $A=\sup \alpha_{n}$.

For all $q \geq\left|x_{0}\right|$ there are functions $\left(a_{q}, \sigma_{q}\right)$ satisfying H^{\prime}, such that $a_{q}(x)=a(x)$ and $\sigma_{q}(x)=\sigma(x)$ if $|x| \leq q+A$. There are also functions $\left(f_{n}^{q}, f^{q}\right)$ satisfying K_{r}^{\prime} and such that $f_{n}^{q}(x, u, y)=f_{n}(x, u, y)$ and $f^{q}(x, u, y)=f(x, u, y)$ if $|x|,|y| \leq q+A$.

Denote by X^{q} the solution of (1.1) with the coefficients a_{q}, σ_{q}, and set $T_{q}=\inf \left(t:\left|X_{t}\right| \geq\right.$ $q+A)$. Obviously $X^{q}=X$ and $X^{q\left(\alpha_{n}\right)}=X^{\left(\alpha_{n}\right)}$ on $\left[0, T_{q}\right]$, so all processes associated with $\left(X, f_{n}, f\right)$ or with $\left(X^{q}, f_{n}^{q}, f^{q}\right)$ as in Section 2 coincide on $\left[0, T_{q}\right]$. Since $T_{q} \rightarrow \infty$ almost surely because X is non-explosive, it is clearly enough to prove all results for all triples $\left(X^{q}, f_{n}^{q}, f^{q}\right), q \geq\left|x_{0}\right|$.

Hence we can and will assume throughout the rest of this paper that H^{\prime} and K_{r}^{\prime} are in force.

Since all results are 'local' in time, we will also fix an arbitrary time interval $[0, T]$, with $T \in \mathbb{N}$. All constants below may depend on the coefficients (a, σ), on T, and on the constants (K, p) of (5.1), and also on the sequence $\left(\alpha_{n}\right)$, but they do not depend otherwise on f_{n}, f, or on n or ω.

Now we come back to the canonical space $\left(\Omega, \mathscr{F}, P_{x}\right)$ with the canonical process X. We construct a standard Brownian motion W, simultaneously for all measures P_{x}, by the formula

$$
W_{t}=\int_{0}^{t} \frac{1}{\sigma\left(X_{s}\right)} \mathrm{d} X_{s}-\int_{0}^{t} \frac{a\left(X_{s}\right)}{\sigma\left(X_{s}\right)} \mathrm{d} s
$$

Let $\left(\mathscr{F}_{t}\right)_{t \geq 0}$ be the filtration generated by X, or equivalently by W.
Now we recall some results concerning the densities $\left(p_{t}(x, y): x, y \in \mathbb{R}\right)_{t>0}$ of the transition semigroup of the process X, under H^{\prime}. Some of these are more or less well known, some seem to be new.

First, we recall an 'explicit' form of p_{t} in terms of a standard Brownian bridge denoted in this section by $B=\left(B_{t}\right)_{t \in[0,1]}$. Set

$$
\begin{aligned}
S(x) & =\int_{0}^{x} \frac{1}{\sigma(y)} \mathrm{d} y, \quad b=a / \sigma^{2}-\sigma^{\prime} / 2 \sigma \\
H(x) & =\int_{0}^{x} b(y) \mathrm{d} y, \quad c=-\frac{1}{2}\left(\sigma^{2} b^{2}+\sigma \sigma^{\prime} b+\sigma^{2} b^{\prime}\right) \circ S^{-1}(x) \\
V_{t}(x, y) & =t \int_{0}^{1} c\left((1-u) S(x)+u S(y)+\sqrt{t} B_{u}\right) \mathrm{d} u, \quad r_{t}(x, y)=\mathrm{E}\left(\mathrm{e}^{V_{t}(x, y)}\right)
\end{aligned}
$$

Then (see, for example, Dacunha-Castelle and Florens-Zmirou 1986):

$$
\begin{equation*}
p_{t}(x, y)=\frac{1}{\sigma(y) \sqrt{2 \pi t}} r_{t}(x, y) \exp \left\{H(y)-H(x)-\frac{(S(y)-S(x))^{2}}{2 t}\right\} \tag{5.2}
\end{equation*}
$$

We also set $q_{t}(x, y)=p_{t}(x, x+y)$, so that $y \rightarrow q_{t}(x, y)$ is the density of $X_{t}-X_{0}$ under P_{x}. Recall that h_{s} is the density of the law $\mathscr{N}\left(0, s^{2}\right)$ and $h=h_{1}$, and we set

$$
\begin{equation*}
g(x, y)=y\left(\frac{a(x)}{\sigma(x)^{2}}-\frac{3 \sigma^{\prime}(x)}{2 \sigma(x)}\right)+y^{3} \frac{\sigma^{\prime}(x)}{2 \sigma(x)^{3}} \tag{5.3}
\end{equation*}
$$

We also recall that $t \leq T$ (the constants below may depend on T).

Lemma 5.1. There are constants $C, L>0$ such that (with g as in (5.3)):

$$
\begin{equation*}
\left|\frac{\partial^{i+j}}{\partial x^{i} \partial y^{j}} p_{t}(x, y)\right| \leq C h_{L \sqrt{t}}(y-x)\left(1+\left|\frac{y-x}{L t}\right|^{i+j}+t^{-(i+j) / 2}\right) \quad \text { if } i+j \leq 3 \tag{5.4}
\end{equation*}
$$

$$
\begin{align*}
& \left|\frac{\partial^{i}}{\partial x^{i}} q_{t}(x, y)\right| \leq C h_{L \sqrt{i}}(y)\left(1+\left(y^{2} / L t\right)^{i}\right) \quad \text { if } i \leq 3, \tag{5.5}\\
& \quad|y| \leq t^{1 / 3} \Rightarrow\left|q_{t}(x, y)-(1+\sqrt{t g}(x, y / \sqrt{t})) h_{\sigma(x) \sqrt{t}}(y)\right| \leq C t\left(1+(y / \sqrt{t})^{8}\right) h_{\sigma(x) \sqrt{t}}(y) . \tag{5.6}
\end{align*}
$$

Proof. H and S are C^{3} functions, with all derivatives of order 1,2,3 bounded. Next, $V_{t}(x, y, \omega)$ are C_{b}^{3} functions of (x, y), with bounds on the functions and their partial derivatives independent of ω, hence r_{t} are C_{b}^{3} functions and $1 / r_{t} \leq C$. Elementary calculations show that

$$
\left|\frac{\partial^{i+j}}{\partial x^{i} \partial y^{j}} p_{t}(x, y)\right| \leq C p_{t}(x, y)\left[1+\left|\frac{y-x}{t}\right|^{i+j}+t^{-(i+j) / 2}\right] \quad \text { if } i+j \leq 3 .
$$

Since H and S are Lipschitz and $\inf _{x \neq y \mid}\left|\frac{S(x)-S(y)}{x-y}\right|>0$, another simple computation shows the existence of $L>0$ with $p_{t}(x, y) \leq C h_{L \sqrt{t}}(y-x)$, hence (5.4). A third calculation shows that

$$
\left|\frac{\partial^{i}}{\partial x^{i}} q_{t}(x, y)\right| \leq C q_{t}(x, y)\left[1+\left(y^{2} / t\right)^{i}\right] \quad \text { if } i \leq 3,
$$

while $q_{t}(x, y) \leq C h_{L t}(y)$: so we have (5.5).
Write

$$
\Delta(x, y)=H(x+y)-H(x)-\frac{1}{2 t}\left((S(x+y)-S(x))^{2}-\frac{y^{2}}{\sigma(x)^{2}}\right)
$$

so that (5.2) yields

$$
q_{t}(x, y)=h_{\sigma(x) \sqrt{t}}(y) \frac{\sigma(x)}{\sigma(x+y)} r_{t}(x, x+y) \mathrm{e}^{\Delta(x, y)} .
$$

We have $\left|S(x+y)-S(x)-y / \sigma(x)+y^{2} \sigma^{\prime}(x) / 2 \sigma(x)^{2}\right| \leq C y^{3}$ and $\mid H(x+y)-H(x)-$ $y b(x) \mid \leq C y^{2}$, hence

$$
\left|\Delta(x, y)-y b(x)-y^{3} \frac{\sigma^{\prime}(x)}{2 t \sigma(x)^{3}}\right| \leq C\left(y^{2}+y^{4} / t\right) .
$$

So if $|y| \leq t^{1 / 3}$ it follows that

$$
\left|\mathrm{e}^{\Delta(x, y)}-1-y b(x)-y^{3} \frac{\sigma^{\prime}(x)}{2 t \sigma(x)^{3}}\right| \leq C\left(y^{2}+y^{6} / t^{2}\right) .
$$

Next, $\left|V_{t}\right| \leq C$ yields $\left|r_{t}(x, x+y)-1\right| \leq C t$. Finally $\left|\sigma(x+y)-\sigma(x)-y \sigma^{\prime}(x)\right| \leq C y^{2}$, while $\inf _{x} \sigma(x)>0$, hence

$$
\left|\frac{\sigma(x)}{\sigma(x+y)}-1+y \frac{\sigma^{\prime}(x)}{\sigma(x)}\right| \leq C y^{2} .
$$

Putting all these results together immediately yields (5.6).

Since $\int h_{L \sqrt{t}}(y)|y|^{q} \mathrm{~d} y \leq C_{q} t^{q / 2}$, we easily deduce from (5.4) and (5.5) that

$$
\begin{array}{ll}
\int\left|\frac{\partial^{i+j}}{\partial x^{i} \partial y^{j}} p_{t}(x, y)\right| \mathrm{d} y \leq C t^{-(i+j) / 2} & \text { if } i+j \leq 3 \\
\int\left|\frac{\partial^{i}}{\partial x^{i}} q_{t}(x, y)\right||y|^{q} \mathrm{~d} y \leq C_{q} q^{/ 2} & \text { if } i \leq 3 \tag{5.8}
\end{array}
$$

Recall the following well-known upper bounds, under H^{\prime} :

$$
\begin{equation*}
\mathrm{E}_{x}\left(\left|X_{t}-X_{0}\right|^{p}\right) \leq C_{p} t^{p / 2}, \quad \mathrm{E}_{x}\left(\left|X_{t}-X_{0}-\sigma\left(X_{0}\right) W_{t}\right|^{p}\right) \leq C_{p} t^{p} \tag{5.9}
\end{equation*}
$$

Lemma 5.2. There are constants C_{r} such that, for all $t>0$ and all functions f having $|f(x)| \leq M\left(1+|x / \sqrt{t}|^{r}\right)$, we have

$$
\begin{align*}
\left|\mathrm{E}_{x}\left(f\left(X_{t}-x\right)\right)-\mathrm{E}_{x}\left(f\left(\sigma(x) W_{t}\right)\right)\right| & \leq C_{r} M \sqrt{t} \tag{5.10}\\
\mid \mathrm{E}_{x}\left(f\left(X_{t}-x\right)\right)-\mathrm{E}_{x}\left(f\left(\sigma(x) W_{t}\right)\left(1+\sqrt{\operatorname{tg}}\left(x, \sigma(x) W_{t} / \sqrt{t}\right)\right) \mid\right. & \leq C_{r} M t \tag{5.11}
\end{align*}
$$

Proof. We first prove (5.11). Denote the left-hand side of (5.11) by $A=\mid \int\left(q_{t}(x, y)-\right.$ $\left.h_{\sigma(x) \sqrt{t}}(y)\right)(1+\sqrt{t} g(x, y / \sqrt{t})) f(y) \mathrm{d} y \mid$. We have $A \leq B+B^{\prime}$, where

$$
\begin{aligned}
B & =\mid \int_{|y| \leq t^{1 / 3}}\left(q_{t}(x, y)-h_{\sigma(x) \sqrt{t}}(y)(1+\sqrt{\operatorname{tg}} g(x, y / \sqrt{t})) f(y) \mathrm{d} y \mid\right. \\
B^{\prime} & =\mid \int_{|y|>t^{1 / 3}}\left(q_{t}(x, y)-h_{\sigma(x) \sqrt{t}}(y)(1+\sqrt{\operatorname{t}} g(x, y / \sqrt{t})) f(y) \mathrm{d} y \mid .\right.
\end{aligned}
$$

First, (5.6) yields

$$
B \leq C_{r} M t \int h_{\sigma(x) \sqrt{t}}(y)\left(1+|y / \sqrt{t}|^{8+r}\right) \mathrm{d} y \leq C_{r} M t
$$

Second, by (5.5) and the hypothesis H^{\prime} we have $h_{\sigma(x) \sqrt{t}}(y) \leq C h_{L t}(y)$ and $q_{t}(x, y) \leq C h_{L t}(y)\left(1+y^{2} / L t\right)$ for some $L>0$. Further, in view of (5.3) and H^{\prime}, we also have $|\sqrt{\operatorname{tg}}(x, y / \sqrt{t})| \leq C|y|\left(1+y^{2} / t\right)$; thus

$$
B^{\prime} \leq M C \int_{|y|>t^{1 / 3}} h_{L \sqrt{t}}(y)\left(1+|y / \sqrt{t}|^{r}\right)\left(1+|y|\left(1+y^{2} / t\right)\right) \mathrm{d} y \leq C_{r} M t
$$

These two majorations yield (5.11).
Now let A^{\prime} be the left-hand side of (5.10). We have $A^{\prime} \leq A+A^{\prime \prime}$, where

$$
A^{\prime \prime}=M \int h_{\sigma(x) \sqrt{t}}(y)\left(1+|y / \sqrt{t}|^{r}\right)|y|\left(1+y^{2} / t\right) \leq C_{r} M \sqrt{t}
$$

Finally, we give a simple result on Riemann approximations.
Lemma 5.3. Let $A_{t}^{n}=\frac{l}{n} \sum_{i=1}^{[n t]} f\left(X_{(i-1) / n}\right)-\int_{0}^{t} f\left(X_{s}\right) \mathrm{d}$ s, where f is a function on \mathbb{R}.
(a) Iff is differentiable and $M=\sup _{x}\left(|f(x)|+f^{\prime}(x) \mid\right)$, then

$$
\begin{equation*}
\mathrm{E}_{x}\left(\sup _{t \leq T}\left|A_{t}^{n}\right|^{2}\right) \rightarrow 0 \tag{5.12}
\end{equation*}
$$

(b) If f is twice differentiable and $M=\sup _{x}\left(|f(x)|+\left|f^{\prime}(x)\right|+\left|f^{\prime \prime}(x)\right|\right)$,

$$
\begin{equation*}
\left.\mathrm{E}_{x} \sup _{t \leq T}\left|A_{t}^{n}\right|^{2}\right) \leq C M^{2} / n^{2} \tag{5.13}
\end{equation*}
$$

Proof. (a) Set $\quad \xi_{i}^{n}=\int_{(i-1) / n}^{i / n}\left(f\left(X_{s}\right)-f\left(X_{(i-1) / n)} \mathrm{d} s \quad\right.\right.$ and $\quad \kappa_{t}^{n}=-\int_{[n t] / n}^{t} f\left(X_{s}\right) \mathrm{d} s$. Then $A_{t}^{n}=\kappa_{t}^{n}-\sum_{i=1}^{[n t]} \xi_{i}^{n}$. Furthermore, $\left|\kappa_{t}^{n}\right| \leq M / n$, and if $w_{T}(\vartheta)$ denotes the modulus of continuity of $t \rightarrow X_{t}$ on $[0, T]$ we have $\left|\xi_{i}^{n}\right| \leq M w(1 / n) / n$. Thus $\sup _{t \leq T}\left|A_{t}^{n}\right| \leq$ $M\left(1 / n+w_{T}(1 / n)\right)$, and $\mathrm{E}_{x}\left(w_{T}(1 / n)^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$ (because $w_{T}(1 / n) \xrightarrow{\rightarrow}$ and $w_{T}(1 / n) \leq 2 \sup _{t \leq T}\left|X_{t}\right| \in \mathbb{L}^{2}\left(P_{x}\right)$ under $\left.H^{\prime}\right)$, and we get (5.12).
(b) If f is twice differentiable, Itô's formula yields $\xi_{i}^{n}=\eta_{i}^{n}+\zeta_{i}^{n}$, where

$$
\begin{aligned}
\eta_{i}^{n} & =\int_{(i-1) / n}^{i / n} \mathrm{~d} s \int_{(i-1) / n}^{s}\left(f^{\prime} \sigma\right)\left(X_{r}\right) \mathrm{d} W_{r} \\
\zeta_{i}^{n} & =\int_{(i-1) / n}^{i / n} \mathrm{~d} s \int_{(i-1) / n}^{s}\left(f^{\prime} a+\frac{1}{2} f^{\prime \prime} \sigma^{2}\right)\left(X_{r}\right) \mathrm{d} r .
\end{aligned}
$$

We have $\left|\kappa_{t}^{n}\right| \leq M / n$ and $\left|\zeta_{i}^{n}\right| \leq C M n^{-2}$. Thus in order to obtain (5.13) it suffices to prove that, if $B_{i}^{n}=\sum_{j=1}^{i}, \eta_{j}^{n}$, we have $\mathrm{E}_{x}\left(\sup _{i \leq n T}\left(B_{i}^{n}\right)^{2}\right) \leq C M^{2} / n^{2}$. But $\left(B_{i}^{n}\right)_{i \in \mathbb{N}}$ is a martingale relative to the discrete-time filtration $\left(\mathscr{F}_{i / n}\right)_{i \in \mathbb{N}}$, so by Doob's inequality it suffices to prove that $\mathrm{E}_{x}\left(\sum_{j=1}^{n T}\left(\eta_{j}^{n}\right)^{2}\right) \leq C M^{2} / n^{2}$, or even that $\mathrm{E}\left(\left(\eta^{n}\right)^{2}\right) \leq C M^{2} / n^{3}$. But, by the CauchySchwarz inequality, we obtain

$$
\mathrm{E}_{x}\left(\left(\eta_{i}^{n}\right)^{2}\right) \leq \frac{1}{n} \int_{(i-1) / n}^{i / n} \mathrm{~d} s \mathrm{E}_{x}\left(\int_{(i-1) / n}^{s}\left(f^{\prime} \sigma\right)^{2}\left(X_{r}\right) \mathrm{d} r\right) \leq C M / n^{3}
$$

6. The fractional part of a random variable

We begin with a fundamental result.
Lemma 6.1. There are universal constants C_{N} such that for all $\rho>0$, and all Borel functions k on \mathbb{R} and f on $\mathbb{R} \times[0,1)$ such that $x \rightarrow g(x, y):=k(x) f(x, y)$ is of class $C^{N}(N \geq 1)$, we have:

$$
\begin{equation*}
\left|\int_{\mathbb{R}} k(x) f\left(x,\left\{\frac{x}{\rho}\right\}\right) \mathrm{d} x-\int_{\mathbb{R}} k(x) \mathrm{d} x \int_{0}^{1} f(x, u) \mathrm{d} u\right| \leq C_{N} \rho^{N} \int_{\mathbb{R}} \mathrm{d} x \int_{0}^{1}\left|\frac{\partial^{N}}{\partial x^{N}} g(x, u)\right| \mathrm{d} u \tag{6.1}
\end{equation*}
$$

When k is the density of a random variable Y, the left-hand side of (6.1) is $\left|\mathrm{E}\left(f\left(Y,\left\{\frac{Y}{\rho}\right\}\right)\right)-E\left(\int_{0}^{1} f(Y, u) \mathrm{d} u\right)\right|$: we thus refine some old results of Kosulajeff (1937) and Tukey (1939).

Proof. First, let φ be a C^{N} function on $[a, a+\rho)$. Taylor's formula yields, for $k \leq N-1$ and $z \in[a, a+\rho)$:

$$
\begin{aligned}
\varphi(z) & =\sum_{k=0}^{N-1} \varphi^{(k)}(a) \frac{(z-a)^{k}}{k!}+\int_{a}^{z} \varphi^{(N)}(v) \frac{(z-v)^{N-1}}{(N-1)!} \mathrm{d} v \\
\int_{a}^{a+\rho} \varphi^{(k)}(u) \mathrm{d} u & =\sum_{\ell=k}^{N-1} \varphi^{(\ell)}(a) \frac{\rho^{\ell+1-k}}{(\ell+1-k)!}+\int_{a}^{a+\rho} \varphi^{(N)}(z) \frac{(a+\rho-z)^{N-k}}{(N-k)!} \mathrm{d} z
\end{aligned}
$$

Introduce the polynomials P_{k} given by

$$
(i+1) x^{i}=\sum_{k=0}^{i} \frac{(i+1)!}{(i+1-k)!} P_{k}(x) .
$$

(Then $P_{0}(x)=1$ and P_{k} is of degree k.) We obtain

$$
\rho \varphi(a+\rho y)-\sum_{k=1}^{N-1} P_{k}(y) \rho^{k} \int_{a}^{a+\rho} \varphi^{(k)}(u) \mathrm{d} u=A+B
$$

where

$$
\begin{aligned}
& A=\sum_{k=0}^{N-1}\left(\varphi^{(k)}(a) \frac{\rho^{k+1} y^{k}}{k!}-\sum_{\ell=k}^{N-1} P_{k}(y) \frac{\rho^{\ell+1}}{(\ell+1-k)!} \varphi^{(\ell)}(a)\right) \\
& B=\rho \int_{a}^{a+\rho y} \varphi^{(N)}(v) \frac{(a+\rho y-v)^{N-1}}{(N-1)!} \mathrm{d} v-\sum_{k=0}^{N-1} P_{k}(y) \rho^{k} \int_{a}^{a+p} \varphi^{(N)}(z) \frac{(a+\rho-z)^{N-k}}{(N-k)!} \mathrm{d} z
\end{aligned}
$$

while the definition of P_{k} yields $A=0$. The existence of a universal constant C_{N} such that the following holds for all $y \in[0,1)$ is obvious:

$$
\begin{equation*}
\left|\rho \varphi(a+\rho y)-\sum_{k=0}^{N-1} P_{k}(y) \rho^{k} \int_{a}^{a+\rho} \varphi^{(k)}(u) \mathrm{d} u\right| \leq C_{N} \rho^{N} \int_{a}^{a+\rho}\left|\varphi^{(N)}(v)\right| \mathrm{d} v \tag{6.2}
\end{equation*}
$$

Now set $A=\int k(x) f\left(x,\left\{\frac{x}{\rho}\right\}\right) \mathrm{d} x$. We have:

$$
\begin{equation*}
A=\sum_{j \in \mathbb{Z}} \int_{j \rho}^{(j+1) \rho} k(u) f(u, u / \rho-j) \mathrm{d} u=\sum_{j \in \mathbb{Z}} \int_{0}^{1} \rho g(\rho j+\rho y, y) \mathrm{d} y . \tag{6.3}
\end{equation*}
$$

with $g(x, y)=k(x) f(x, y)$. Also set $g^{(\ell)}(x, y)=\partial^{\ell} g(x, y) / \partial x^{\ell}, G_{i}^{\ell}(x)=\int_{0}^{1} g^{(\ell)}(x, y) y^{i} \mathrm{~d} y$ and $\gamma_{\ell}=\int_{\mathbb{R}} \mathrm{d} x \int_{0}^{1}\left|g^{(\ell)}(x, y)\right| \mathrm{d} y$. Clearly, $\int_{\mathbb{R}}\left|G_{i}^{\ell}(x)\right| \mathrm{d} x \leq \gamma_{\ell}$, and we assume $\gamma_{N}<\infty$, otherwise there is nothing to prove. If $u_{\ell}=\sum_{j \in \mathbb{Z}} \int_{j \rho}^{(j+1) \rho} \mathrm{d} x \int_{0}^{1} P_{\ell}(y) g^{(\ell)}(x, y) \mathrm{d} y$ we obtain, by (6.2) and (6.3):

$$
\left|A-\sum_{0 \leq \ell \leq N-1} \rho^{\ell} u_{\ell}\right| \leq C_{N} \rho^{N} \gamma_{N}
$$

Since $P_{0}=1$ we have $u_{0}=\int_{\mathbb{R}} k(x) \mathrm{d} x \int_{0}^{1} f(x, y) \mathrm{d} y$. If $\ell \geq 1, u_{\ell}$ is a linear combination of the numbers $\int_{\mathbb{R}} G_{i}^{\ell}(x) \mathrm{d} x$ for $0 \leq i \leq \ell$. Now, G_{i}^{ℓ} and $G_{i}^{\ell-1}$ are integrable, and $G_{i}^{\ell}=\partial G_{i}^{\ell-1} / \partial x$, hence $\int_{\mathbb{R}} G_{i}^{\ell}(x) \mathrm{d} x=0$ and therefore $u_{\ell}=0$ if $\ell \geq 1$: we thus deduce the result.

As a particular case, there is a constant C such that, for all $\rho>0$, all Borel sets I in $[0,1]$ of Lebesgue measure $\ell(I)$ and all random variables Y with C^{1} density k, we have (apply (6.1) to $\left.f(x, y)=1_{I}(y)\right)$:

$$
\begin{equation*}
P\left(\left\{\frac{Y}{\rho}\right\} \in I\right) \leq \ell(I)\left(1+C \rho \int_{\mathbb{R}}\left|k^{\prime}(x)\right| \mathrm{d} x\right) \tag{6.4}
\end{equation*}
$$

7. The function Δ

The aim of this section is to study the functions $\Delta_{\psi, \psi}$ defined in (2.7), and also to prove (2.9) and the following estimate on the functions of (2.5):

$$
\left|\ell_{i} \psi(\sigma, \rho, u)\right| \leq \begin{cases}C & \text { if } i=1 \tag{7.2}\\ C(\rho / \sigma)^{3}(i-1)^{-3 / 2} & \text { if } i \geq 2\end{cases}
$$

Below we consider functions ψ on $[0,1] \times \mathbb{R}$, satisfying (as in (5.1)):

$$
\begin{equation*}
|\psi(u, y)| \leq K\left(1+|y|^{p}\right) \tag{7.2}
\end{equation*}
$$

We also assume that $1 / K^{\prime} \leq \sigma \leq K^{\prime}$ and $\rho \leq K^{\prime}$ for some $K^{\prime}<\infty$. When the function $\sigma(x)$ is used, it is assumed to satisfy H^{\prime}. The constants C below will depend only on p, K, K^{\prime} and on the constants occurring in H^{\prime}.

The basic relation relates ℓ_{i+1} with ℓ_{1} and is as follows for $i \geq 1$:

$$
\begin{equation*}
\ell_{i+1} \psi(\sigma, \rho, u)=\mathrm{E}\left(\ell_{1} \psi\left(\sigma,\left\{u+\sigma W_{i} / \rho\right\}\right)\right) \tag{7.3}
\end{equation*}
$$

(note that $\ell_{1} \psi(\sigma, u)=m_{\sigma} \psi(u)-M_{\sigma} \psi$ does not depend on ρ). Observe that under (7.2) we have $\left|\ell_{1} \psi\right| \leq C$ and $\int_{0}^{1} \ell_{1} \psi(\sigma, u) \mathrm{d} u=0$, so (7.3) and (6.1) with $N=3$, along with $k(x)=h(y-\rho u / \sigma)$ and $f(x, y)=\ell_{1} \psi(\sigma, y)$, readily yield (7.1). If we set $L \psi(\sigma, 0, u)=\ell_{1} \psi(\sigma, u)$), and since $\sigma \geq 1 / K^{\prime}$, we obtain, for all $\rho \geq 0$ (by integration of (7.3), and Fubini's theorem for (7.5) below):

$$
\begin{gather*}
|L \psi(\sigma, \rho, u)| \leq C, \quad|L \psi(\sigma, \rho, u)-L \psi(\sigma, 0, u)| \leq C \rho^{3} \tag{7.4}\\
\int_{0}^{1} L \psi(\sigma, \rho, u) \mathrm{d} u=0 \tag{7.5}
\end{gather*}
$$

Using (2.7), (2.8) and the fact that $\mathrm{E}\left(\left|\eta_{1} \psi(\sigma, u)\right|^{2}\right) \leq C$, we deduce:

$$
\begin{equation*}
\left|\delta_{\psi, \psi}(\sigma, \rho, u)\right| \leq C, \quad\left|\Delta_{\psi, \psi}(\sigma, \rho)\right| \leq C \tag{7.6}
\end{equation*}
$$

Lemma 7.1. We have (2.9), and the following (with $\left.\varphi_{\sigma}(u, y)=y / \sigma\right)$:

$$
\begin{gather*}
L \varphi_{\sigma}(\sigma, \rho, u)=m_{\sigma} \varphi_{\sigma}(u)=M_{\sigma} \varphi_{\sigma}=0, \quad \Delta_{\varphi_{\sigma}, \varphi_{\sigma}}(\sigma, \rho)=1, \tag{7.7}\\
\Delta_{\psi, \varphi_{\sigma}}(\sigma, \rho)=M_{\sigma}\left(\psi \varphi_{\sigma}\right) . \tag{7.8}
\end{gather*}
$$

Proof. That $m_{\sigma} \varphi_{\sigma}(u)=M_{\sigma} \varphi_{\sigma}=0$ is obvious, so $\eta_{i} \varphi_{\sigma}(\sigma, \rho, u)=W_{i}-W_{i-1}$ and thus $L \varphi_{\sigma}(\sigma, \rho, u)=0$ for all $\rho \geq 0$. Then $\chi \varphi_{\sigma}(\sigma, \rho, u)=W_{1}$ and the last part of (7.7) is also obvious. Equation (7.8) is obvious if $\rho=0$. If $\rho>0$ we have

$$
\delta_{\psi, \varphi_{\sigma}}(\sigma, \rho, u)=\mathrm{E}\left(\psi\left(u, \sigma W_{1}\right) \varphi_{\sigma}\left(\sigma W_{1}\right)\right)+\mathrm{E}\left(W_{1} L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1} / \rho\right\}\right)\right),
$$

and thus (7.8) follows from (7.5).
Let us define $\bar{\Omega}=\Omega \times[0,1], \quad \bar{G}=\mathscr{G} \otimes \mathscr{B}([0,1]), \quad \bar{P}(\mathrm{~d} \omega, \mathrm{~d} u)=P(\mathrm{~d} \omega) \mathrm{d} u$. If we set $(\chi \psi)_{\sigma, \rho}(\omega, u)=\chi \psi(\sigma, \rho, u)(\omega)$ if $\rho>0$ and $(\chi \psi)_{\sigma, 0}(\omega, u)=\eta_{1} \psi(\sigma, u)(\omega)$, it follows from (2.7) and (2.8) that $\Delta_{\psi, \psi}(\sigma, \rho)=\overline{\mathrm{E}}\left(\left|(\chi \psi)_{\sigma, \rho}\right|^{2}\right)$ for all $\rho \geq 0$. Thus (7.7) yields $\Delta_{\psi, \psi}(\sigma, \rho)^{1 / 2} \geq \overline{\mathrm{E}}\left((\chi \psi)_{\sigma, \rho}\left(\chi \varphi_{\sigma}\right)_{\sigma, \rho}\right)=\int_{0}^{1} \mathrm{E}\left(\chi \psi(\sigma, \rho, u) W_{1}\right) \mathrm{d} u$ by the Cauchy-Schwarz inequality. But (2.6) and (7.5) give

$$
\int_{0}^{1} \mathrm{E}\left(\chi \psi(\sigma, \rho, u) W_{1}\right) \mathrm{d} u=\int_{0}^{1} \mathrm{E}\left(\left(\psi\left(u, \sigma W_{1}\right)-M_{\sigma} \psi\right) W_{1}\right) \mathrm{d} u=\int_{0}^{1} \mathrm{E}\left(\left(\psi \varphi_{\sigma}\right)\left(u, \sigma W_{1}\right)\right) \mathrm{d} u
$$

which equals $M_{\sigma}\left(\psi \varphi_{\sigma}\right)$, and (2.9) is proved.
In the next lemma we are given a family $\left(\psi_{x}\right)_{x \in \mathbb{R}}$ of functions satisfying (7.2), such that $x \rightarrow \psi_{x}(u, y)$ is differentiable and each $\partial \psi_{x}(u, y) / \partial x$ also satisfies (7.2).

Lemma 7.2. Under the above assumptions, $x \rightarrow \delta_{\psi_{x}, \psi_{x}}(\sigma(x), \rho, u)$ is differentiable and, for $0<\rho \leq K^{\prime}$:

$$
\begin{equation*}
\left|\frac{\partial}{\partial x} \delta_{\psi_{x}, \psi_{x}}(\sigma(x), \rho, u)\right| \leq C \tag{7.9}
\end{equation*}
$$

Proof. (a) Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be differentiable in the first variable, with $f(x,$.$) and$ $\partial f(x,.) / \partial x$ satisfying (7.2), and $F(x)=\mathrm{E}\left(f\left(x, \sigma(x) W_{1}\right)\right)=\int \frac{1}{\sigma(x)} h\left(\frac{z}{\sigma(x)}\right) f(x, z) \mathrm{d} z$. Since $h^{\prime}(z)=-z h(z)$, we obtain by Lebesgue's theorem:

$$
F^{\prime}(x)=\int h(z)\left(\frac{\partial}{\partial x} f(x, \sigma(x) z)+\frac{\sigma^{\prime}(x)}{\sigma(x)}\left(z^{2}-1\right) f(x, \sigma(x) z)\right) \mathrm{d} z
$$

Therefore $|F(x)|+\left|F^{\prime}(x)\right| \leq C$ (recall H^{\prime}).
(b) Applying this to $f(x, y)=\psi_{x}(u, y)$ gives that $x \rightarrow m_{\sigma(x)} \psi_{x}(u)$ and thus $x \rightarrow M_{\sigma(x)} \psi_{x}$ are bounded with bounded derivatives. Hence $g(x, u):=\ell_{1} \psi_{x}(\sigma(x), u)$ also satisfies $|g(x, u)| \leq C$ and $|\partial g(x, u) / \partial x| \leq C$.

By (7.3),

$$
\ell_{i+1} \psi_{x}(\sigma(x), \rho, u)=\int \frac{\rho}{\sigma(x) \sqrt{i}} h\left(\frac{\rho z}{\sigma(x) \sqrt{i}}\right) g(x,\{u+z\}) \mathrm{d} z
$$

Differentiate again under the integral sign to obtain

$$
\left.\left.\begin{array}{rl}
\frac{\partial}{\partial x} \ell_{i+1} \psi_{x}(\sigma(x), \rho, u)= & \int h\left(z-\frac{\rho u}{\sigma(x) \sqrt{ }}\right)
\end{array}\right) \frac{\partial}{\partial x} g(x,\{z\}) \mathrm{d} z\right] .
$$

Then we can apply (6.1) twice with $N=3$, taking into account the fact that $\int_{0}^{1} g(x, u) \mathrm{d} u=0$ and thus $\int_{0}^{1} \frac{\partial}{\partial x} g(x, u) \mathrm{d} u=0$, and obtain $\left|\frac{\partial}{\partial x} \ell_{i+1} \psi_{x}(\sigma(x), \rho, u)\right| \leq C i^{-3 / 2}$ (recall that $\rho \leq K^{\prime}$ here). Hence $\left|\frac{\partial}{\partial x} L \psi_{x}(\sigma(x), \rho, u)\right| \leq C$.

Now (2.6) yields $\chi \psi_{x}(\sigma(x), \rho, u)=f\left(x, \sigma(x) W_{1}\right)$ if we set

$$
f(x, y)=\psi_{x}(u, y)-M_{\sigma(x)} \psi_{x}+L \psi_{x}(\sigma(x), \rho,\{u+y / \rho\})-L \psi_{x}(\sigma(x), \rho, u)
$$

What precedes shows that the function f (hence f^{2} as well) satisfies the requirements of (a). Since $\delta_{\psi_{x}, \psi_{x}}(\sigma(x), \rho, u)=\mathrm{E}\left(f^{2}\left(x, \sigma(x) W_{1}\right)\right)$, the result follows from (a).

Now we consider a sequence ψ_{n} of functions satisfying (7.2), and a sequence ρ_{n} of positive numbers. We assume that

$$
\psi_{n} \rightarrow \psi \mathrm{~d} u \otimes \mathrm{~d} y \text {-almost surely, } \quad \rho_{n} \rightarrow \rho \in[0, \infty)
$$

where ψ is another function (satisfying (7.2) as well, of course).
Lemma 7.3. Under the previous hypotheses, $\Delta_{\psi_{n}, \psi_{n}}\left(\sigma, \rho_{n}\right) \rightarrow \Delta_{\psi, \psi}(\sigma, \rho)$.
Note that by Lemmas 7.2 and 7.3, $(\sigma, \rho) \rightarrow \Delta_{\psi, \psi}(\sigma, \rho)$ is continuous on $(0, \infty) \times[0, \infty)$. By the bilinearity of $(\varphi, \psi) \rightarrow \Delta_{\varphi, \psi}(\sigma, \rho)$ and the polarization principle, $\Delta_{\varphi, \psi}$ is also continuous on $(0, \infty) \times[0, \infty)$ if φ and ψ satisfy (7.2).

Proof. (a) Consider $(\bar{\Omega}, \bar{G}, \bar{P})$ as defined in the proof of Lemma 7.1, and $\chi_{n}(\omega, u)=$ $\chi \psi_{n}\left(\sigma, \rho_{n}, u\right)(\omega)$. We have seen that $\Delta_{\psi_{n}, \psi_{n}}\left(\sigma, \rho_{n}\right)=\overline{\mathrm{E}}\left(\chi_{n}^{2}\right)$. By (2.6), we have $\chi_{n}=f_{n}+k_{n}$, where

$$
\begin{aligned}
f_{n}(\omega, u)= & \psi_{n}\left(u, \sigma W_{1}(\omega)\right)-M_{\sigma} \psi_{n}-L \psi_{n}\left(\sigma, \rho_{n}, u\right) \\
& +L \psi_{n}\left(\sigma, \rho_{n},\left\{u+\sigma W_{1}(\omega) / \rho_{n}\right\}\right)-L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1}(\omega) / \rho_{n}\right\}\right) \\
k_{n}(\omega, u)= & L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1}(\omega) / \rho_{n}\right\}\right)
\end{aligned}
$$

(b) From (2.3) we clearly have that $m_{\sigma} \psi_{n} \rightarrow m_{\sigma} \psi \mathrm{d} u$-almost surely, hence $M_{\sigma} \psi_{n} \rightarrow M_{\sigma} \psi$ and $\ell_{1} \psi_{n}(\sigma,.) \rightarrow \ell_{1} \psi(\sigma,)$.$\mathrm{d} u -almost surely. Then (7.3) yields, for i \geq 1$:

$$
\ell_{i+1} \psi_{n}\left(\sigma, \rho_{n}, u\right)=\int \frac{\rho_{n}}{\sigma \sqrt{i}} h\left(\frac{z \rho_{n}}{\sigma \sqrt{i}}\right) \ell_{1} \psi_{n}(\{u+z\}) \mathrm{d} z .
$$

If $\rho>0$ and if u is fixed, then $\ell_{1} \psi_{n}(\{u+z\}) \rightarrow \ell_{1} \psi(\{u+z\})$ for $\mathrm{d} z$-almost all z, hence $\ell_{i+1} \psi_{n}\left(\sigma, \rho_{n}, u\right) \rightarrow \ell_{i+1} \psi(\sigma, \rho, u)$. Using (7.1) and Lebesgue's theorem, we deduce that $L \psi_{n}\left(\sigma, \rho_{n}, u\right) \rightarrow L \psi(\sigma, \rho, u)$ for all u if $\rho>0$, and also for $\rho=0$ since $L \psi(\sigma, 0, u)=\ell_{1} \psi(\sigma, u)$.

By Egoroff's theorem, for all $\varepsilon>0$ there is a Borel set A_{ε} in $[0,1]$ such that $\int_{0}^{1} 1_{A_{\varepsilon}}(u) \mathrm{d} u \leq \varepsilon$ and $\eta_{n}:=\sup _{u \notin A_{\varepsilon}}\left|L \psi_{n}\left(\sigma, \rho_{n}, u\right)-L \psi(\sigma, \rho, u)\right| \rightarrow 0$. Then if

$$
\begin{equation*}
f(\omega, u)=\psi\left(u, \sigma W_{1}(\omega)\right)-M_{\sigma} \psi-L \psi(\sigma, \rho, u), \tag{7.10}
\end{equation*}
$$

for all u we have $\lim \sup _{n}\left|f_{n}(\omega, u)-f(\omega, u)\right| 1_{\left\{\left\{u+\sigma W_{1}(\omega) / \rho_{n}\right\} \notin A_{\varepsilon}\right\}}=0 P$-almost surely. Since (6.4) yields $P\left(\left\{u+\sigma W_{1} / \rho_{n}\right\} \notin A_{\varepsilon}\right) \leq C \varepsilon$ and since $\left|f_{n}(\omega, u)\right| \leq C\left(1+\left|W_{1}(\omega)\right|^{p}\right)$, and since $\varepsilon>0$ is arbitrary, it follows that

$$
\begin{equation*}
f_{n} \rightarrow f \quad \text { in } \mathbb{L}^{2}(\bar{P}) \tag{7.11}
\end{equation*}
$$

(c) Now we suppose that $\rho>0$. We have $\Delta_{\psi, \psi}(\sigma, \rho)=\overline{\mathrm{E}}\left(\chi^{2}\right)$, where $\chi(\omega, u):=\chi \psi(\sigma, \rho, u)(\omega)$, and $\chi=f+k$, where $k(\omega, u)=L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1}(\omega) / \rho\right\}\right)$ (use (2.6)). In view of (7.11) and $\left|k_{n}\right| \leq C$, the result will follow if we prove

$$
\begin{equation*}
\overline{\mathrm{E}}\left(k_{n}^{2}\right) \rightarrow \overline{\mathrm{E}}\left(k^{2}\right), \quad \overline{\mathrm{E}}\left(k_{n} f\right) \rightarrow \overline{\mathrm{E}}(k f) \tag{7.12}
\end{equation*}
$$

For the first property above, observe that

$$
\overline{\mathrm{E}}\left(k_{n}^{2}\right)=\int_{0}^{1} \mathrm{~d} u \int \frac{\rho_{n}}{\sigma} h\left(\frac{z \rho_{n}}{\sigma}\right) L \psi(\sigma, \rho,\{u+z\})^{2} \mathrm{~d} z
$$

which clearly converges to $\overline{\mathrm{E}}\left(k^{2}\right)$. Similarly $\mathrm{E}\left(L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1} / \rho_{n}\right\}\right)\right) \rightarrow \mathrm{E}(L \psi(\sigma, \rho,\{u+$ $\left.\left.\sigma W_{1} / \rho\right\}\right)$), so in view of (7.10), in order to prove the second property in (7.12) it is enough to prove that for all u :

$$
\begin{equation*}
\mathrm{E}\left(\psi\left(u, \sigma W_{1}\right) L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1} / \rho_{n}\right\}\right)\right) \rightarrow \mathrm{E}\left(\psi\left(u, \sigma W_{1}\right) L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1} / \rho\right\}\right)\right) \tag{7.13}
\end{equation*}
$$

For all $\varepsilon>0$ there is a C_{b}^{1} function φ_{ε} on \mathbb{R} such that $\mathrm{E}\left(\left|\psi\left(u, \sigma W_{1}\right)-\varphi_{\varepsilon}\left(\sigma W_{1}\right)\right|\right) \leq \varepsilon$. We also have

$$
\mathrm{E}\left(\varphi_{\varepsilon}\left(\sigma W_{1}\right) L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1} / \rho_{n}\right\}\right)\right)=\int \frac{\rho_{n}}{\sigma} h\left(\frac{z \rho_{n}}{\sigma}\right) \varphi_{\varepsilon}\left(z \rho_{n}\right) L \psi(\sigma, \rho,\{u+z\}) \mathrm{d} z
$$

which converges to $\mathrm{E}\left(\varphi_{\varepsilon}\left(\sigma W_{1}\right) L \psi\left(\sigma, \rho,\left\{u+\sigma W_{1} / \rho\right\}\right)\right)$ because φ_{ε} is continuous and bounded and $L \psi$ is bounded. Since $\varepsilon>0$ is arbitrary, we deduce (7.13), hence (7.12) and the lemma is proved when $\rho>0$.
(d) All that then remains is to consider the case $\rho=0$. Recall that $L \psi(\sigma, 0, u)=m_{\sigma} \psi(u)-M_{\sigma} \psi$, hence $f(\omega, u)=\psi\left(u, \sigma W_{1}(\omega)\right)-m_{\sigma} \psi(u)$ by (7.10), and a simple computation shows that $\overline{\mathrm{E}}\left(f^{2}\right)=M_{\sigma}\left(\psi^{2}\right)-\int_{0}^{1} m_{\sigma} \psi(u)^{2} \mathrm{~d} u$. Using (6.1) for $N=1$ and for the functions $k(x)=h\left(x-u \rho_{n} / \sigma\right)$ and $f(x, y)=\varphi\left(x-u \rho_{n} / \sigma\right) L \psi(\sigma, 0, y)^{i}$ (where $\varphi \in C_{\mathrm{b}}^{1}$ and $i=1,2$) yields

$$
\begin{equation*}
\left|\mathrm{E}\left(\varphi\left(\sigma W_{1}\right) L \psi\left(\sigma, 0,\left\{u+\sigma W_{1} / \rho_{n}\right\}\right)^{i}\right)-\mathrm{E}\left(\varphi\left(\sigma W_{1}\right)\right) \int_{0}^{1} L \psi(\sigma, 0, y)^{i} \mathrm{~d} y\right| \leq C \rho_{n} \rightarrow 0 \tag{7.14}
\end{equation*}
$$

Since $\quad \int_{0}^{1} L \psi(\sigma, 0, y)^{2} \mathrm{~d} y=\int_{0}^{1} m_{\sigma} \psi(u)^{2} \mathrm{~d} u-\left(M_{\sigma} \psi\right)^{2}$, we deduce that $\overline{\mathrm{E}}\left(k_{n}^{2}\right) \rightarrow$ $\int_{0}^{1} m_{\sigma} \psi(u)^{2} \mathrm{~d} u-\left(M_{\sigma} \psi\right)^{2}$. In view of (2.8) and (7.11), it remains to prove that $\overline{\mathrm{E}}\left(k_{n} f\right) \rightarrow 0$. Because of (7.14) for $i=1$ and $\varphi=1$ and from (7.5) (valid also for $\rho=0$), it remains to prove that $\mathrm{E}\left(\psi\left(u, \sigma W_{1}\right) L \psi\left(\sigma, 0,\left\{u+\sigma W_{1} / \rho_{n}\right\}\right)\right) \rightarrow 0$. Exactly as in (c), we can replace $\psi(u,$.$) by a C_{\mathrm{b}}^{1}$ function φ_{ε}, and (7.14) for $i=1$ and $\varphi=\varphi_{\varepsilon}$ and (7.5) give the result.

8. Some auxiliary results

We assume below that the hypotheses H^{\prime} and K_{r}^{\prime} hold for $r=1$ or $r=2$. In addition to
(2.2) and (2.3), for all functions φ satisfying (5.1) for $i=1$ we set

$$
\begin{align*}
m_{n} \varphi(x, u) & =\int q_{1 / n}(x, y) \varphi(x, u, y \sqrt{n}) \mathrm{d} y, & & M_{n} \varphi(x) \tag{8.1}
\end{align*}=\int_{0}^{1} m_{n} \varphi(x, u) \mathrm{d} u,
$$

In the following all constants, denoted by C, may depend on T, on K and p in (5.1), on the coefficients a, σ and on the sequence $\left(\alpha_{n}\right)$.

Lemma 8.1. Under K_{r}^{\prime} we have the upper bounds

$$
\begin{align*}
\left|\frac{\partial^{i}}{\partial x^{i}} m_{n} f_{n}\right|+\left|\frac{\partial^{i}}{\partial x^{i}} m f_{n}\right|+\left|m_{n} f\right|+|m f| & \leq C \quad \text { for } 0 \leq i \leq r \tag{8.2}\\
\left|m_{n} f_{n}-m f_{n}\right|+\left|\bar{m}_{n} f_{n}-\bar{m} f_{n}\right| & \leq C / \sqrt{n} \tag{8.3}\\
\left|m_{n} f_{n}-m f_{n}-m \tilde{f}_{n} / \sqrt{n}\right| & \leq C / n \tag{8.4}
\end{align*}
$$

where \tilde{f}_{n} is given by (2.12).
Proof. Property (8.2) readily follows from K_{r}^{\prime} and (5.8). Observing that $m f_{n}(x, u)=$ $\int h_{\sigma \sigma(x) / n}(y) f_{n}(x, u, y \sqrt{n}) \mathrm{d} y$, (8.3) and (8.4) follow from (5.10) and (5.11) applied to the function $f(y)=f_{n}(x, u, y \sqrt{n})$.

Next we set for $i, n, k \in \mathbb{N}^{*}$:

$$
\begin{align*}
\eta_{i}^{n} & =f_{n}\left(X_{(i-1) / n},\left\{X_{(i-1) / n} / \alpha_{n}\right\}, \sqrt{n}\left(X_{i / n}-X_{(i-1) / n}\right)-M_{n} f_{n}\left(X_{(i-1) / n}\right)\right. \tag{8.5}\\
\mu_{i}^{n}(k) & =\sum_{j=i}^{i+k-1}\left(\mathrm{E}_{x}\left(\eta_{j}^{n} \mid \mathscr{F}_{i / n}\right)-\mathrm{E}_{x}\left(\eta_{j}^{n} \mid \mathscr{F}_{(i-1) / n}\right)\right) \tag{8.6}\\
M_{t}^{n}(k) & =n^{-1 / 2} \sum_{i=1}^{[n t]} \mu_{i}^{n}(k) . \tag{8.7}
\end{align*}
$$

Due to K_{r}^{\prime}, along with (5.9) and (8.2), every $\mu_{i}^{n}(k)$ is square-integrable, hence $M^{n}(k)$ is a locally square-integrable martingale on $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{[n t] / n}\right)_{t \geq 0}, P_{x}\right)$.

For further reference, we also deduce from (8.6) and (8.7) that

$$
\begin{align*}
\mu_{i}^{n}(k)= & \eta_{i}^{n}+\bar{m}_{n} f_{n}\left(X_{i / n}\right)-\bar{m}_{n} f_{n}\left(X_{(i-1) / n}\right)-\int p_{(k-1) / n}\left(X_{(i-1) / n}, y\right) \bar{m}_{n} f_{n}(y) \mathrm{d} y \\
& +\sum_{j=1}^{k-2} \int\left(p_{j / n}\left(X_{i / n}, y\right)-p_{j / n}\left(X_{(i-1) / n}, y\right)\right) \bar{m}_{n} f_{n}(y) \mathrm{d} y, \tag{8.9}\\
M_{t}^{n}(k)= & n^{-1 / 2} \sum_{i=1}^{[n t]} \eta_{i}^{n}+n^{-1 / 2}\left(\bar{m}_{n} f_{n}\left(X_{[n t] / n}\right)-\bar{m}_{n} f_{n}\left(X_{0}\right)+\sum_{i=1}^{k-2} \int\left(p_{i / n}\left(X_{[n t] / n}, y\right)\right.\right. \\
& \left.\left.-p_{i / n}\left(X_{0}, y\right)\right) \bar{m}_{n} f_{n}(y) \mathrm{d} y-\sum_{i=0}^{[n t]-1} \int p_{(k-1) / n}\left(X_{i / n}, y\right) \bar{m}_{n} f_{n}(y) \mathrm{d} y\right) . \tag{8.10}
\end{align*}
$$

We presently give some estimates of $\mu_{i}^{n}(k)$ and $M_{t}^{n}(k)$. We first set

$$
\begin{align*}
\delta^{n}(k, x) & =\mathrm{E}_{x}\left(\left|\mu_{1}^{n}(k)\right|^{2}\right) \tag{8.11}\\
H_{t}^{n}(k) & =M_{t}^{n}(k)-n^{-1 / 2} \sum_{i=1}^{[n t]} \eta_{i}^{n} \tag{8.12}
\end{align*}
$$

Lemma 8.2. We have, for $j \leq n T$:

$$
\left.\begin{array}{rl}
\int p_{j / n}(x, y) \bar{m}_{n} f_{n}(y) \mathrm{d} y & \leq \begin{cases}C / \sqrt{j} & \text { under } K_{1}^{\prime} \\
C / j & \text { under } K_{2}^{\prime}\end{cases}
\end{array}\right\} \begin{aligned}
& \int\left(p_{j / n}(x, y)-p_{j / n}\left(x^{\prime}, y\right)\right) \bar{m}_{n} f_{n}(y) \mathrm{d} y \leq C\left|x-x^{\prime}\right| \frac{\sqrt{n}}{j^{3 / 2}} \quad \text { under } K_{2}^{\prime} .
\end{aligned}
$$

Proof. For (8.13) it is enough to apply (6.1) to $k(y)=p_{j / n}(x, y)$ and $f(y, u)=m_{n} f_{n}(y, u)-$ $M_{n} f_{n}(y)$ with $N=1(N=2)$ and $\rho=\alpha_{n}$, and to use (5.7) and (8.2) and the facts that $\sup \left(\alpha_{n} / \sqrt{n}\right)<\infty$ and $j \leq n T$. Observing that

$$
\int\left(p_{j / n}(x, y)-p_{j / n}\left(x^{\prime}, y\right)\right) \bar{m}_{n} f_{n}(y) \mathrm{d} y=\int_{x}^{x^{\prime}} \mathrm{d} z \int \frac{\partial}{\partial z} p_{j / n}(z, y) \bar{m}_{n} f_{n}(y) \mathrm{d} y
$$

we similarly deduce (8.14) from (6.1) with $k(y)=\frac{\partial}{\partial z} p_{j / n}(z, y)$ and f as above and $N=2$, by using (5.7) and (8.2) again.

It follows from (8.2), (5.9), (8.9) and Lemma 8.2 that

$$
2 \leq k \leq n T \Rightarrow \mathrm{E}_{x}\left(\left|\mu_{1}^{n}(k)\right|^{4}\right) \leq \begin{cases}C k^{2} & \text { under } K_{1}^{\prime} \tag{8.15}\\ C & \text { under } K_{2}^{\prime}\end{cases}
$$

By (5.9), (8.9) and Lemma 8.2 we also have, under K_{2}^{\prime} and for $2 \leq k^{\prime} \leq k \leq n T$, that

$$
\mathrm{E}_{x}\left(\left|\mu_{1}^{n}(k)-\mu_{1}^{n}\left(k^{\prime}\right)\right|^{2}\right) \leq C\left(k^{-2}+k^{\prime-2}+k^{\prime-1}\right) \leq C / k^{\prime}
$$

and this, together with (8.13) and the Cauchy-Schwarz inequality, gives

$$
\begin{equation*}
2 \leq k^{\prime} \leq k \leq n T \text { and } K_{2}^{\prime} \Rightarrow\left|\delta^{n}(k, x)-\delta^{n}\left(k^{\prime}, x\right)\right| \leq C / \sqrt{k^{\prime}} \tag{8.16}
\end{equation*}
$$

Similarly, (8.10), (8.2) and (8.13) yield

$$
2 \leq k \leq n T \Rightarrow\left|H_{t}^{n}(k)\right| \leq \begin{cases}C \sqrt{n / k} & \text { under } K_{1}^{\prime} \tag{8.17}\\ C(\sqrt{n} / k+(\log k) / \sqrt{n}) & \text { under } K_{2}^{\prime}\end{cases}
$$

Finally, recalling (2.7), we prove the following lemma.
Lemma 8.3. Under K_{2}^{\prime} and if $f_{n, x}(u, y)=f_{n}(x, u, y)$, we have, for $16 \leq k \leq n T$:

$$
\begin{equation*}
\left|\delta^{n}(k, x)-\delta_{f_{n, x^{\prime}} f_{n, x}}\left(\sigma(x), \beta_{n},\left\{x / \alpha_{n}\right\}\right)\right| \leq C k^{-1 / 8} \tag{8.18}
\end{equation*}
$$

Proof. Recall the notation used in (8.1) and (2.3), and also set

$$
\bar{m}^{\prime} f_{n}\left(x, x^{\prime}\right):=m f_{n}\left(x,\left\{x^{\prime} / \alpha_{n}\right\}\right)-M f_{n}(x)=m_{\sigma(x)} f_{n, x}\left(\left\{x^{\prime} / \alpha_{n}\right\}\right)-M_{\sigma(x)} f_{n, x}
$$

Note that $\bar{m} f_{n}(x)=\bar{m}^{\prime} f_{n}(x, x)$. From the proof of Lemma $7.2, x \rightarrow \bar{m}^{\prime} f_{n}\left(x, x^{\prime}\right)$ has a bounded derivative, hence by (8.3):

$$
\begin{equation*}
\left|\bar{m}^{\prime} f_{n}\left(x, x^{\prime}\right)-\bar{m}_{n} f_{n}\left(x^{\prime}\right)\right| \leq C\left(n^{-1 / 2}+\left|x-x^{\prime}\right|\right) \tag{8.19}
\end{equation*}
$$

Let us set $k^{\prime}=\left[k^{1 / 4}\right]$, hence $2 \leq k^{\prime} \leq k \leq n T$. We also set

$$
\begin{aligned}
b_{k^{\prime}}^{n}(x) & =\bar{m}_{n} f_{n}(x)+\sum_{j=1}^{k^{\prime}-2} \int p_{j / n}(x, y) \bar{m}_{n} f_{n}(y) \mathrm{d} y, \\
c_{k^{\prime}}^{n}\left(x, x^{\prime}\right) & =\bar{m}^{\prime} f_{n}\left(x, x^{\prime}\right)+\sum_{j=1}^{k^{\prime}-2} \int h_{\sigma(x) \sqrt{j / n}}\left(y-x^{\prime}\right) \bar{m}^{\prime} f_{n}(x, y) \mathrm{d} y .
\end{aligned}
$$

Then (8.9) can be written as

$$
\begin{equation*}
\mu_{1}^{n}\left(k^{\prime}\right)=\eta_{1}^{n}+b_{k^{\prime}}^{n}\left(X_{1 / n}\right)-b_{k^{\prime}+1}^{n}\left(X_{0}\right) \tag{8.20}
\end{equation*}
$$

Since $\bar{m}^{\prime} f_{n}$ is bounded, we deduce from H^{\prime} that

$$
\left|\int h_{\sigma(x) \sqrt{j / n}}\left(y-x^{\prime}\right) \bar{m}^{\prime} f_{n}(x, y) \mathrm{d} y-\int h_{\sigma\left(x^{\prime}\right) \sqrt{j / n}}\left(y-x^{\prime}\right) \bar{m}^{\prime} f_{n}(x, y) \mathrm{d} y\right| \leq C\left|x-x^{\prime}\right|
$$

Next, (5.10) and (8.2) yield

$$
\left|\int p_{j / n}\left(x^{\prime}, y\right) \bar{m}_{n} f_{n}(y) \mathrm{d} y-\int h_{\sigma\left(x^{\prime}\right) \sqrt{j / n}}\left(y-x^{\prime}\right) \bar{m}_{n} f_{n}(y) \mathrm{d} y\right| \leq C \sqrt{j / n}
$$

Finally, $\int h_{\sigma\left(x^{\prime}\right) \sqrt{j / n}}\left(y-x^{\prime}\right)|y-x| \mathrm{d} y \leq\left|x-x^{\prime}\right|+C \sqrt{j / n}$, hence (8.19) yields

$$
\int h_{\sigma\left(x^{\prime}\right) \sqrt{j / n}}\left(y-x^{\prime}\right)\left|\bar{m}_{n} f_{n}(y)-\bar{m}^{\prime} f_{n}(x, y)\right| \mathrm{d} y \leq C\left(\sqrt{j / n}+\left|x-x^{\prime}\right|\right)
$$

Putting all these upper bounds together, and using (8.19) once more, we obtain

$$
\begin{equation*}
\left|b_{k^{\prime}}^{n}\left(x^{\prime}\right)-c_{k^{\prime}}^{n}\left(x, x^{\prime}\right)\right| \leq C\left(k^{\prime 3 / 2} n^{-1 / 2}+k^{\prime}\left|x-x^{\prime}\right|\right) \tag{8.21}
\end{equation*}
$$

We also set $\bar{\eta}^{n}=f_{n}\left(X_{0},\left\{X_{0} / \alpha_{n}\right\}, \sqrt{n}\left(X_{1 / n}-X_{0}\right)\right)-M f_{n}\left(X_{0}\right)$, so that, in view of (8.3) and (8.5), we have $\left|\eta_{1}^{n}-\bar{\eta}^{n}\right| \leq C / \sqrt{n}$. Therefore, if

$$
\begin{equation*}
\bar{\mu}^{n}\left(k^{\prime}\right)=\bar{\eta}^{n}+c_{k^{\prime}}^{n}\left(X_{0}, X_{1 / n}\right)-c_{k^{\prime}+1}^{n}\left(X_{0}, X_{0}\right) \tag{8.22}
\end{equation*}
$$

we deduce from (5.9), (8.20) and (8.21) that $\mathrm{E}_{x}\left(\left|\mu_{1}^{n}\left(k^{\prime}\right)-\bar{\mu}^{n}\left(k^{\prime}\right)\right|^{2}\right) \leq C\left(k^{\prime 3} / n+k^{\prime 2} / n\right) \leq$ $C k^{\prime 3} / n \leq C n^{-1 / 4}$, because $k^{\prime} \leq C n^{1 / 4}$. This, the Cauchy-Schwarz inequality and the second part of (8.15) yield

$$
\begin{equation*}
\left|\mathrm{E}_{x}\left(\left|\mu_{1}^{n}\left(k^{\prime}\right)\right|^{2}\right)-\mathrm{E}_{x}\left(\left|\bar{\mu}^{n}\left(k^{\prime}\right)\right|^{2}\right)\right| \leq C n^{-1 / 8} \tag{8.23}
\end{equation*}
$$

We now consider a function ψ on $[0,1] \times \mathbb{R}$ satisfying (7.2). Using the notation (2.4) and (2.5), we set $L_{k^{\prime}} \psi=\sum_{i=1}^{k^{\prime}} \ell_{i} \psi$ and

$$
\begin{equation*}
\mu \psi\left(k^{\prime}\right)(\sigma, \rho, u)=\eta_{1} \psi(\sigma, \rho, u)+L_{k^{\prime}-1} \psi\left(\sigma, \rho,\left\{u+\sigma W_{1} / \rho\right\}\right)-L_{k^{\prime}} \psi(\sigma, \rho, u) \tag{8.24}
\end{equation*}
$$

Since $\left|L \psi(\sigma, \rho, u)-L_{k^{\prime}} \psi(\sigma, \rho, u)\right| \leq C\left(1+(\rho / \sigma)^{3}\right) k^{\prime-1 / 2}$ by (7.1), we obtain

$$
\begin{aligned}
|\chi \psi(\sigma, \rho, u)| & \leq|\eta \psi(\sigma, \rho, u)|+C\left(1+(\rho / \sigma)^{3}\right), \\
\left|\chi \psi(\sigma, \rho, u)-\mu \psi\left(k^{\prime}\right)(\sigma, \rho, u)\right| & \leq C\left(1+(\rho / \sigma)^{3}\right) k^{\prime-1 / 2} .
\end{aligned}
$$

In particular,

$$
\begin{equation*}
\left|\delta_{\psi, \psi}(\sigma, \rho, u)-\mathrm{E}\left(\left|\mu \psi\left(k^{\prime}\right)(\sigma, \rho, u)\right|^{2}\right)\right| \leq C\left(1+(\rho / \sigma)^{3}\right) k^{\prime-1 / 2} \tag{8.25}
\end{equation*}
$$

We now fix n and x, and set $\psi(u, y)=f_{n}(x, u, y), \sigma=\sigma(x), \rho=\beta_{n}$. Note that $\ell_{1} \psi(\sigma, \rho, u)=\bar{m}^{\prime} f_{n}\left(x, \alpha_{n} u\right)$ and $\ell_{i+1} \psi(\sigma, \rho, u)=\mathrm{E}\left(\ell_{1} \psi\left(\sigma, \rho,\left\{u+\sigma W_{i} / \rho\right\}\right)\right)=\int h_{\sigma(x)} \sqrt{i / n}$ $\left(z-\alpha_{n} u\right) \bar{m}^{\prime} f_{n}(x, z) \mathrm{d} z$. Hence $c_{k^{\prime}}^{n}\left(x, x^{\prime}\right)=L_{k^{\prime}-1} \psi\left(\sigma, \rho,\left\{x^{\prime} / \alpha_{n}\right\}\right)$ and (8.22) yields that, P_{x}-almost surely,

$$
\bar{\mu}^{n}\left(k^{\prime}\right)=\psi\left(\left\{x / \alpha_{n}\right\}, \sqrt{n}\left(X_{1 / n}-x\right)\right)+L_{k^{\prime}-1} \psi\left(\sigma, \rho,\left\{X_{1 / n} / \alpha_{n}\right\}\right)-L_{k^{\prime}} \psi\left(\sigma, \rho,\left\{x / \alpha_{n}\right\}\right)
$$

In other words, $\bar{\mu}^{n}\left(k^{\prime}\right)=\varphi_{n}\left(X_{1 / n}\right)$ for a function φ_{n} satisfying $\left|\varphi_{n}(y)\right| \leq C\left(1+(y \sqrt{n})^{p}\right)$ and (5.10) shows that if $\bar{\mu}^{\prime n}\left(k^{\prime}\right)=\varphi_{n}\left(x+\sigma(x) W_{1 / n}\right)$ we have

$$
\begin{equation*}
\left|\mathrm{E}\left(\left|\bar{\mu}^{n}\left(k^{\prime}\right)\right|^{2}\right)-\mathrm{E}\left(\left|\bar{\mu}^{\prime \prime}\left(k^{\prime}\right)\right|^{2}\right)\right| \leq C / \sqrt{n} . \tag{8.26}
\end{equation*}
$$

But by (8.24), the variables $\mu \psi\left(k^{\prime}\right)\left(\sigma, \rho,\left\{x / \alpha_{n}\right\}\right)$ under P and $\bar{\mu}^{\prime n}\left(k^{\prime}\right)$ under P_{x} have the same distribution: then a combination of (8.23), (8.25) and (8.26) gives

$$
\left|\delta^{n}\left(k^{\prime}, x\right)-\delta_{f_{n, x}, f_{n, x}}\left(\sigma(x), \beta_{n},\left\{x / \beta_{n}\right\}\right)\right| \leq C\left(k^{\prime-1 / 2}+n^{-1 / 8}\right)
$$

Using (8.16), along with $k^{\prime}=\left[k^{1 / 4}\right]$ and $k \leq n T$, gives the result.

9. Proofs of the main theorems

In this section we prove the theorems of Section 2 and Theorem 3.4. As said in Section 5, we can and will assume that the hypotheses H^{\prime} and K_{r}^{\prime} are in force. We also use the notation of Section 8: $\eta_{i}^{n}, \mu_{i}^{n}(k)$ and $M_{t}^{n}(k)$ of (8.5)-(8.7) and $H_{t}^{n}(k)$ of (8.12). We set

$$
\begin{aligned}
U_{t}^{n} & =\frac{1}{n} \sum_{i=1}^{[n t]} M f_{n}\left(X_{(i-1) / n}\right), \quad \tilde{U}_{t}^{n}=\frac{1}{n} \sum_{i=1}^{[n t]} M \tilde{f}_{n}\left(X_{(i-1) / n}\right), \\
\bar{U}_{t}^{n} & =\frac{1}{n} \sum_{i=1}^{[n t]} M_{n} f_{n}\left(X_{(i-1) / n}\right),
\end{aligned}
$$

so that we have, for all k :

$$
\begin{align*}
V\left(n, f_{n}\right)-U^{n} & =M^{n}(k) / \sqrt{n}+\left(\bar{U}^{n}-U^{n}\right)-H^{n}(k) / \sqrt{n} \\
\sqrt{n}\left(V\left(n, f_{n}\right)-U^{n}\right) & =M^{n}(k)+\tilde{U}^{n}+\sqrt{n}\left(\bar{U}^{n}-U^{n}-\tilde{U}^{n} / \sqrt{n}\right)-H^{n}(k) \tag{9.1}
\end{align*}
$$

Proof of Theorem 2.1. We assume K_{1}^{\prime} and take $k_{n}=\left[n^{1 / 3}\right]$.
Since $M^{n}\left(k_{n}\right)$ is a square-integrable martingale, we have by Doob's inequality and expressions (8.7) and (8.15):

$$
\mathrm{E}_{x}\left(\sup _{t \leq T}\left|M_{t}^{n}\left(k_{n}\right)\right|^{2}\right) \leq 4 \mathrm{E}_{x}\left(\left|M_{T}^{n}\left(k_{n}\right)\right|^{2}\right)=\frac{4}{n} \sum_{i=1}^{n T} \mathrm{E}_{x}\left(\left|\mu_{i}^{n}\left(k_{n}\right)\right|^{2}\right) \leq C n^{1 / 3}
$$

Expression (8.17) yields $\left|H_{t}^{n}\left(k_{n}\right) \sqrt{n}\right| \leq C n^{-1 / 6}$, and (8.3) yields $\sup _{t \leq T}\left|U_{t}^{n}-\bar{U}_{t}^{n}\right| \leq C / \sqrt{n}$, so that by (9.1) we obtain

$$
\begin{equation*}
\sup _{t \leq T}\left|V\left(n, f_{n}\right)_{t}-U_{t}^{n}\right| \rightarrow 0 \quad \text { in } \mathbb{L}^{2}\left(P_{x}\right) \tag{9.2}
\end{equation*}
$$

Now, (8.2) and (5.12) imply that $\sup _{t \leq T}\left|U_{t}^{n}-\int_{0}^{t} M f_{n}\left(X_{s}\right) \mathrm{d} s\right| \rightarrow 0$ in $\mathbb{L}^{2}\left(P_{x}\right)$. We can easily check from (2.2) (using K_{1}^{\prime} again) that $M f_{n} \rightarrow M f$ pointwise, and $\left|M f_{n}\right| \leq C$, hence we also have $\sup _{t \leq T}\left|U_{t}^{n}-\int_{0}^{t} M f\left(X_{s}\right) \mathrm{d} s\right| \rightarrow 0$ in $\mathbb{L}^{2}\left(P_{x}\right)$. This and (9.2) yield the result.

Remark 9.1. Supose that K_{1}^{\prime} holds, except that the sequence f_{n} does not converge to a limit f. The previous proof for (9.2) remains valid.

Proof of Theorem 2.2. We assume K_{2}^{\prime} and take $k_{n}=\left[n^{3 / 4}\right]$.
(a) In view of (8.2) and (5.13), the processes $\sqrt{n}\left(U_{t}^{n}-\int_{0}^{t} M f_{n}\left(X_{s}\right) \mathrm{d} s\right)$ converge in law to 0 , so it is enough to prove the stable convergence in law of $\sqrt{n}\left(V\left(n, f_{n}\right)-U^{n}\right)$. By (8.4), $\mid \sqrt{n}\left(\bar{U}_{t}^{n}-U_{t}^{n}-\tilde{U}_{t}^{n} / \sqrt{n} \mid \leq C / \sqrt{n}\right.$, while by (8.24) we have $\left|H_{t}^{n}\left(k_{n}\right)\right| \leq C n^{-1 / 4}$. By (5.14), $\sup _{t \leq T}\left|\tilde{U}_{t}^{n}-\int_{0}^{t} M \tilde{f}_{n}\left(X_{s}\right) \mathrm{d} s\right| \rightarrow 0$ in $\mathbb{L}^{2}\left(P_{x}\right)$, and we deduce that $\sup _{t \leq T} \mid \tilde{U}_{t}^{n}-$ $\int_{0}^{t} M \tilde{f}\left(X_{s}\right) \mathrm{d} s \mid \rightarrow 0$ in $\mathbb{L}^{2}\left(P_{x}\right)$ exactly as in the previous proof. Therefore,

$$
\sup _{t \leq T}\left|\tilde{U}_{t}^{n}+\sqrt{n}\left(\bar{U}_{t}^{n}-U_{t}^{n}-\tilde{U}_{t}^{n} / \sqrt{n}\right)+H_{t}^{n}\left(k_{n}\right)-\int_{0}^{t} M \tilde{f}\left(X_{s}\right) \mathrm{d} s\right| \rightarrow 0 \quad \text { in } \mathbb{L}^{2}\left(P_{x}\right) .
$$

It is known that if a sequence of processes Z^{n} converges stably in law to some limit Z and if another sequence of processes Y^{n} converges locally uniformly in probability to Y, then the sums $Y^{n}+Z^{n}$ converge stably in law to $Y+Z$. Thus, in view of (9.1), it remains to prove that (with the notation of (2.13))

$$
\begin{equation*}
M^{n}\left(k_{n}\right) \rightarrow U:=\int_{0} R f\left(X_{s}\right) \mathrm{d} W_{s}+B^{\prime} \quad \text { stably in law. } \tag{9.3}
\end{equation*}
$$

(b) The process U of (9.3) is a martingale on an extended space, which is characterized by its brackets

$$
\begin{equation*}
B_{t}:=\langle U, W\rangle_{t}=\int_{0}^{t} R f\left(X_{s}\right) \mathrm{d} s, \quad C_{t}:=\langle U, U\rangle_{t}=\int_{0}^{t} \Delta(f, f)\left(X_{s}, \beta\right) \mathrm{d} s \tag{9.4}
\end{equation*}
$$

(use (2.13)). On the other hand, if $W_{t}^{n}=W_{[n t] / n}$, both processes W^{n} and $M^{n}\left(k_{n}\right)$ are squareintegrable martingales with respect to the filtration $\left(\mathscr{F}_{[n t] / n}\right)_{t \geq 0}$, with brackets

$$
\begin{align*}
& B_{t}^{n}:=\left\langle M^{n}\left(k_{n}\right), W^{n}\right\rangle_{t}=\frac{1}{n} \sum_{i=1}^{[n t]} \mathrm{E}_{X_{(i-1) / n}}\left(\mu_{1}^{n}\left(k_{n}\right) \sqrt{n} W_{1 / n}\right) \tag{9.5}\\
& C_{t}^{n}:=\left\langle M^{n}\left(k_{n}\right), M^{n}\left(k_{n}\right)\right\rangle_{t}=\frac{1}{n} \sum_{i=1}^{[n t]} \mathrm{E}_{X_{(i-1) / n}}\left(\mu_{1}^{n}\left(k_{n}\right)^{2}\right) . \tag{9.6}
\end{align*}
$$

Now, following Genon-Catalot and Jacod (1993, Section 5.c), as soon as the following convergences in P_{x}-probability (for all t) hold:

$$
\begin{equation*}
B_{t}^{n} \rightarrow B_{t}, \quad C_{t}^{n} \rightarrow C_{t}, \quad n^{-2} \sum_{i=1}^{[n t]} \mathrm{E}_{X_{(i-1) / n}}\left(\mu_{1}^{n}\left(k_{n}\right)^{4}\right) \rightarrow 0 \tag{9.7}
\end{equation*}
$$

we have convergence in law under P_{x} of the pair $\left(M^{n}\left(k_{n}\right), W^{n}\right)$ to the pair (U, W), where U is as in (9.3). Since W^{n} converges locally uniformly in time for all ω to W, we also have convergence in law of $\left(M^{n}\left(k_{n}\right), W\right)$ to (U, W), and thus $\left.\mathrm{E}_{x}\left(\Phi \zeta M^{n}\left(k_{n}\right)\right) \Psi(W)\right) \rightarrow$ $\overline{\mathrm{E}}_{x}(\Phi(U) \Psi(W))$ for all continuous bounded functions Φ, Ψ on the Skorokhod space $\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{R}\right)$. But any bounded random variable Z on $\left(\Omega, \mathscr{F}, P_{x}\right)$ is the \mathbb{L}^{1}-limit of a sequence of variables of the form $\Psi_{p}(W)$ with Ψ_{p} continuous, uniformly bounded in p : it readily follows that $\mathrm{E}_{x}\left(\Phi\left(M^{n}\left(k_{n}\right)\right) Z\right) \rightarrow \overline{\mathrm{E}}_{x}(\Phi(U) Z)$, that is we have (9.3).

Due to (8.15), the third expression in (9.7) is smaller than C / n, so it remains to prove the first two convergences in (9.7).
(c) With the notation of (8.11), we have $C_{t}^{n}=\frac{1}{n} \sum_{i=1}^{[n t]} \delta^{n}\left(k_{n}, X_{(i-1) / n}\right)$. Setting $\tilde{\delta}^{n}(x, u)=\delta_{f_{n, x}, f_{n, x}}\left(\sigma(x), \beta_{n}, u\right)$, we can apply (8.18) to get

$$
\left|C_{t}^{n}-\frac{1}{n} \sum_{i=1}^{[n t]} \tilde{\delta}^{n}\left(X_{(i-1) / n},\left\{X_{(i-1) / n} / \alpha_{n}\right\}\right)\right| \leq C n^{-3 / 32}
$$

Next, (7.6) and (7.9) show that the functions $(x, u, y) \rightarrow \tilde{\delta}^{n}(x, u)$ satisfy K_{1}^{\prime}, except for the convergence of $\tilde{\delta}^{n}$ to a limit, and $M \tilde{\delta}^{n}(x)=\Delta\left(f_{n}, f_{n}\right)\left(x, \beta_{n}\right)$ by (2.2), (2.7) and (2.11). So Remark 9.1 implies that

$$
\sup _{t \leq T}\left|\frac{1}{n} \sum_{i=1}^{[n t]}\left(\tilde{\delta}^{n}\left(X_{(i-1) / n},\left\{X_{(i-1) / n} / \alpha_{n}\right\}\right)-\Delta\left(f_{n}, f_{n}\right)\left(X_{(i-1) / n}, \beta_{n}\right)\right)\right| \rightarrow 0
$$

in $\mathbb{L}^{2}\left(P_{x}\right)$. Finally, the functions $(x, u, y) \rightarrow \Delta\left(f_{n}, f_{n}\right)\left(x, \beta_{n}\right)$ also satisfy K_{1}^{\prime}, with the limiting function $(x, u, y) \rightarrow \Delta(f, f)(x, \beta)$ by Lemma 7.3 and (2.11). Hence Theorem 2.1 implies that

$$
\sup _{t \leq T}\left|\frac{1}{n} \sum_{i=1}^{[n t]} \Delta\left(f_{n}, f_{n}\right)\left(X_{(i-1) / n}, \beta_{n}\right)-\int_{0}^{t} \Delta(f, f)\left(X_{s}, \beta\right) \mathrm{d} s\right| \rightarrow 0
$$

in $\mathbb{L}^{2}\left(P_{x}\right)$. Therefore the second convergence in (9.7) takes place.
(d) Let us denote by $\tilde{\mu}_{i}^{n}(k)$ the variable defined by (8.6), with the function f_{n} substituted by $f^{\prime}(x, u, y)=y / \sigma(x)$ (the stationary sequence $\left(f^{\prime}\right)$ also satisfies K_{2}^{\prime}, with possibly different constants K, p), and set

$$
\tilde{B}_{t}^{n}=\frac{1}{n} \sum_{i=1}^{[n t]} \mathrm{E}_{X_{(i-1) / n}}\left(\mu_{1}^{n}\left(k_{n}\right) \tilde{\mu}_{1}^{n}\left(k_{n}\right)\right)
$$

Denote also by $C^{+, n}$ (or $C^{-, n}$) the processes defined by (9.6), except that f_{n} is substituted by $f_{n}^{+}=f_{n}+f^{\prime}$ (or $f_{n}^{-}=f_{n}-f^{\prime}$). If $f^{+}=f+f^{\prime}$ and $f^{-}=f-f^{\prime}$, (b) above implies that $C_{t}^{ \pm, n} \rightarrow \int_{0}^{t} \Delta\left(f^{ \pm}, f^{ \pm}\right)\left(X_{s}, \beta\right) \mathrm{d} s \quad$ in P_{x}-probability. Now, $\Delta\left(f, f^{\prime}\right)=\frac{1}{4}\left(\Delta\left(f^{+}, f^{+}\right)-\right.$ $\left.\Delta\left(f^{-}, f^{-}\right)\right)$and $\tilde{B}^{n}=\frac{1}{4}\left(C^{+, n}-C^{-, n}\right)$, so we deduce that

$$
\tilde{B}_{t}^{n} \rightarrow \int_{0}^{t} \Delta\left(f, f^{\prime}\right)\left(X_{s}, \beta\right) \mathrm{d} s \quad \text { in } P_{x} \text {-probability }
$$

Since $\Delta\left(f, f^{\prime}\right)(x, \beta)=R f(x)$ by (2.11) and (7.8), if we prove that

$$
\begin{equation*}
\tilde{B}_{t}^{n}-B_{t}^{n} \rightarrow 0 \quad \text { in } P_{x} \text {-probability } \tag{9.9}
\end{equation*}
$$

we will have the first convergence in (9.7), and Theorem 2.2 will be proved.
(e) With f^{\prime} in place of f_{n}, we get $\eta_{i}^{n}=\gamma_{i}^{n}-\mathrm{E}_{x}\left(\gamma_{i}^{n} \mid \mathscr{F}_{(i-1) / n}\right)$, where $\gamma_{i}^{n}=\sqrt{n}\left(X_{i / n}-X_{(i-1) / n}\right) / \sigma\left(X_{(i-1) / n}\right) \quad$ (see (8.1) and (8.5)). Therefore $\tilde{\mu}_{1}^{n}\left(k_{n}\right)=$ $\gamma_{1}^{n}-\mathrm{E}_{X_{0}}\left(\gamma_{1}^{n}\right)$. Then (5.9) yields first $\left|\mathrm{E}_{x}\left(\gamma_{1}^{n}\right)\right| \leq C \sqrt{n}$ and then $\mathrm{E}_{x}\left(\left|\bar{\mu}_{1}^{n}\left(k_{n}\right)-\sqrt{n} W_{1 / n}\right|^{2}\right) \leq$ C / n. Using (8.15), we deduce that

$$
\left|\mathrm{E}_{x}\left(\mu_{1}^{n}\left(k_{n}\right) \tilde{\mu}_{1}^{n}\left(k_{n}\right)\right)-\mathrm{E}_{x}\left(\mu_{1}^{n}\left(k_{n}\right) \sqrt{n} W_{1 / n}\right)\right| \leq C / n
$$

This readily gives (9.9), and we are done.
Proof of Corollary 2.3. Since $M \tilde{f}_{n} \rightarrow M \tilde{f}$ and $\left|M \tilde{f}_{n}\right| \leq C$ (see the previous proofs), both processes $\int_{0}^{t} M \tilde{f}_{n}\left(X_{s}\right) \mathrm{d} s$ and $\frac{1}{n} \sum_{i=1}^{[n t]} M \tilde{f}_{n}\left(X_{(i-1) / n}\right)$ converge locally uniformly in time, in P_{x}-probability, to the process $\int_{0}^{t} M \tilde{f}\left(X_{s}\right) \mathrm{d} s$, and the result immediately follows from Theorem 2.2.

Proof of Theorem 3.4. (a) As in Section 5, we can and will assume that in (3.1) the constants $C_{q}=C, \quad r_{q}=r$ do not depend on q. Set $v_{n}(x)=\Gamma \varphi_{n}\left(x, \beta_{n}\right)$ and $w_{n}(x)=\tilde{\Gamma} \varphi_{n}^{\prime}\left(x, \beta_{n}\right)$. Due to Theorem 3.2, we only have to show the following convergences in P_{x}-probability, locally uniform in t :

$$
\begin{gather*}
n^{-1 / 2} \sum_{i=1}^{[n t]}\left(v_{n}\left(X_{(i-1) / n}\right)-v_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\alpha_{n} / 2\right)\right) \rightarrow 0 \tag{9.10}\\
\frac{1}{n} \sum_{i=1}^{[n t]}\left(w_{n}\left(X_{(i-1) / n}\right)-w_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}\right)\right) \rightarrow 0 \tag{9.11}
\end{gather*}
$$

By the change of variable $z=y \sigma(x)$ in (3.5), we see that w_{n} is C^{1} with $\left|w_{n}^{\prime}(x)\right| \leq C$, hence $\left|w_{n}(x)-w_{n}\left(x^{\left(\alpha_{n}\right)}\right)\right| \leq C / \sqrt{n}$ and (9.11) is obvious. Similarly, (3.4) yields that v_{n} is C^{2} with $\left|v_{n}^{(i)}(x)\right| \leq C$ for $i=0,1,2$, hence by Taylor's formula

$$
\left|v_{n}(x)-v_{n}\left(x^{\left(\alpha_{n}\right)}+\alpha_{n} / 2\right)-\alpha_{n}\left(\left\{x / \alpha_{n}\right\}-1 / 2\right) v_{n}^{\prime}(x)\right| \leq C / n .
$$

If $A_{t}^{n}=\frac{1}{n} \sum_{i=1}^{[n t]}\left(\left\{X_{(i-1) / n} / \alpha_{n}\right\}-1 / 2\right) v_{n}^{\prime}\left(X_{(i-1) / n}\right)$, to obtain (9.10) it is enough to show that $A_{t}^{n} \rightarrow 0$ locally uniformly in P_{x}-measure. Observe that $A_{t}^{n}=V\left(n, \bar{f}_{n}\right)_{t}$, where $\bar{f}_{n}(x, u, y)=(u-1 / 2) v_{n}^{\prime}(x)$ satisfies K_{1}^{\prime} except for the convergence of \bar{f}_{n} to a limit. In view of Remark 9.1, we have, by (9.2):

$$
\sup _{t \leq T}\left|A_{t}^{n}-\frac{1}{n} \sum_{i=1}^{[n t]} M \bar{f}_{n}\left(X_{(i-1) / n}\right)\right| \rightarrow 0 \quad \text { in } \mathbb{L}^{2}\left(P_{x}\right)
$$

It remains to observe that $M \bar{f}_{n}=0$ (see (2.2)), and we have the result.
(b) Suppose now that $\varphi(x, y)=\varphi(x,-y)$. In view of Corollary 3.3, the limiting process for (3.9) is as described after (3.10). The sequence $\bar{\varphi}_{n}(x, y)=\varphi_{n}\left(x+\alpha_{n} / 2, y\right)$ also satisfies L_{2} with the same limit function φ, so we only have to show that the difference between (3.10) for φ_{n} and (3.9) for $\bar{\varphi}_{n}$ goes to 0 in P_{x}-probability, uniformly in time.

First, L_{2} implies that φ is C^{1} in the first variable, and we have $\varphi^{\prime}(x, y)=\varphi^{\prime}(x,-y)$, so the same change of variable as in the proof of Corollary 3.3 readily shows that $\tilde{\tilde{\Gamma}} \varphi^{\prime}(x, \rho)=\frac{1}{2} \Gamma \varphi^{\prime}(x, \rho)$. We also have $\bar{\varphi}_{n}^{\prime} \rightarrow \varphi^{\prime}$ pointwise, so L_{2} again yields that $\tilde{\Gamma} \bar{\varphi}_{n}^{\prime}\left(x, \beta_{n}\right)-\frac{1}{2} \Gamma \bar{\varphi}_{n}^{\prime}\left(x-\alpha_{n} / 2, \beta_{n}\right)$ converges locally uniformly in x to $\tilde{\Gamma} \varphi^{\prime}(x, \beta)-$ $\frac{1}{2} \Gamma(x, \beta)=0$. Then

$$
\frac{1}{n} \sum_{i=1}^{[n t]}\left(\tilde{\Gamma} \bar{\varphi}_{n}^{\prime}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}, \beta_{n}\right)-\frac{1}{2} \Gamma \bar{\varphi}_{n}^{\prime}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \beta_{n}\right)\right) \rightarrow 0
$$

locally uniformly in t. So we can replace the process (3.9) by

$$
\begin{equation*}
\sqrt{n}\left(U\left(n, \bar{\varphi}_{n}\right)_{t}-\frac{1}{n} \sum_{i=1}^{[n t]} \Gamma\left(\bar{\varphi}_{n}-\frac{\alpha_{n}}{2} \bar{\varphi}_{n}^{\prime}\right)\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \beta_{n}\right)\right) . \tag{9.12}
\end{equation*}
$$

Now, Taylor's formula, (3.4) and L_{2} yield

$$
\left|\Gamma\left(\bar{\varphi}_{n}-\frac{\alpha_{n}}{2} \bar{\varphi}_{n}^{\prime}\right)(x, \rho)-\Gamma \varphi_{n}(x, \rho)\right| \leq g(x, \rho) \alpha_{n}^{2}
$$

for some locally bounded function g. So we can replace the process (9.12) by

$$
\begin{equation*}
\sqrt{n}\left(U\left(n, \bar{\varphi}_{n}\right)_{t}-\frac{1}{n} \sum_{i=1}^{[n t]} \Gamma \varphi_{n}\left(X_{(i-1) / n}^{\left(\alpha_{n}\right)}+\frac{\alpha_{n}}{2}, \beta_{n}\right)\right) \tag{9.13}
\end{equation*}
$$

It remains to observe that the processes (9.13) and (3.10) are the same.

References

Aldous, D.J. and Eagleson, G.K. (1978) On mixing and stability of limit theorems. Ann. Probab., 6, 325-331.
Dacunha-Castelle, D. and Florens-Zmirou, D. (1986) Estimation of the coefficient of the diffusion from discrete observations. Stochastics, 19, 263-284.
Genon-Catalot, V. and Jacod, J. (1993) On the estimation of the diffusion coefficient for multidimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist, 29, 119-151.
Jacod, J. (1993) Limit of random measures associated with the increments of a Brownian semimartingale. Preprint.
Jacod, J. (1996) La variation quadratique du brownien en présence d'erreurs d'arrondi. Astérisque. To appear.
Jacod, J. and Shiryaev, A.N. (1987) Limit Theorems for Stochastic Processes. Berlin: Springer-Verlag.
Kosulajeff, P. (1937) Sur la répartition de la partie fractionnaire d'une variable aléatoire. Mat. Sb (N.S.), 2, 1017-1019.

Renyi, A. (1963) On stable sequences of events. Sankyā, 25, 293-302.
Tukey, J.W. (1939) On the distribution of the fractional part of a statistical variable. Mat. Sb. (N.S.), 4, 561-562.
Received December 1994 and revised February 1996

[^0]: * To whom correspondence should be addressed.

