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A general class of estimators of the extreme-value index is generated using estimates of mean, medium

and trimmed excess functions. Special cases yield earlier proposals in the literature, such as Pickands'

(1975) estimator. A particular restatement of the mean excess function yields an estimator which can

be derived from the slope at the right upper tail from a generalized quantile plot. From this viewpoint

algorithms can be constructed to search for the number of extremes needed to minimize the mean

square error of the estimator. Basic asymptotic properties of this estimator are derived. The method is

applied in case studies of size distributions for alluvial diamonds and of wind speeds.
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1. Introduction

Let X
1

, X
2

; . . . ;Xn; . . . be a sequence of positive independent and identically distributed

(i.i.d.) observations from some distribution function F . Denote the order statistics based on

the ®rst n observations by

X
�

1

4X
�

2

4 � � �4X
�

n :

We assume that for some constants an > 0 and bn and some  2 R

lim

n!1

P
X

�

n ÿ bn

an
4x

� �

� G

�x� for all x; �1�

where G

�x� denotes the so-called extreme-value distributions, given by

G

�x� � exp�ÿ�1� x�

ÿ1=
�:

The parameter  is called the extreme-value index.

We consider the problem of estimating  under the model (1) from a sample of size n.

Applications are numerous and can, for example, be found in econometrics, insurance,

reliability theory, environmetrics, geology and climatology. An application to geology can

be found in Caers et al. (1996). In that paper the data, which are sizes of precious stones, are

modelled by a log-hyperbolic distribution, which can be shown to satisfy (1) with  > 0. In

the present paper we will demonstrate the results on two examples of alluvial diamond
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deposits in Guinea, West Africa. The Bougban data set covers a part of the Bougban River

more than 20 kilometres in length and consists of 683 stone sizes. The Bimboko deposit

contains 356 data points. A second illustration is an application to wind-speed modelling.

Data sets of daily fastest-mile speeds from three cities in the USA with di�erent wind

regimes will be analysed: Des Moines (Iowa), Grand Rapids (Michigan) and Albuquerque

(New Mexico). The di�erences between the cities are re¯ected in the  values: positive

values of  entail a heavy polynomially decreasing tail (referred to as a Pareto tail), a zero

value can be regarded as a moderate tail behaviour, while negative values of  allow for a

distributional model with ®nite right end-point. Moreover, one can use formulae, as in

Dekkers et al. (1989), for estimating large quantiles as well as the end-point of the

underlying distribution.

We ®rst refer to two estimators of  that have been proposed under the general model as

described above. Pickands (1975) estimates  by

̂
P

k;n �

1

log 2

log

X
�

nÿbk=4c ÿ X
�

nÿbk=2c

X �

nÿbk=2c
ÿ X �

nÿk

 !

;

where k denotes the number of extremes used in the estimation procedure, and where bxc

denotes the integer part of x �dxe � bxc � 1�. Pickands' estimator was extensively studied in

Dekkers and de Haan (1989).

A second estimator, called the moment estimator, was proposed in Dekkers et al. (1989):

̂
M

k;n � �
�1�

k;n
� 1ÿ

1

2

1ÿ

��
�1�

k;n
�
2

�
�2�

k;n

 !ÿ1

;

where

�
�l �

k;n
� k

ÿ1

X

k

j�1

�logX
�

nÿ j�1

ÿ logX
�

nÿk�
l

�l � 1; 2�:

This estimator can be regarded as an adaptation of Hill's estimator (Hill 1975), �
�1�

k;n
, which

is only a consistent estimator for  where one knows that  > 0. Hill's estimator can be

understood as follows. First,  > 0 implies that X is of Pareto type, that is,

1ÿ F�x��

1ÿ F�x�
! �

1=

�2�

as x! 1 for all � > 1. Introducing the so-called mean residual life function, e, of any

positive random variable Y , given by

e�x� � E�Y ÿ xjY > x� �x > 0�;

it is known that the mean residual life function of Y � logX , with X of Pareto type,

tends to  as x! 1 (see, for example, Beirlant et al. 1996). Taking x � logX
�

nÿk we

®nd �
�1�

k;n
as a natural empirical estimator of the corresponding value of e �x�. The

remaining terms in the moment estimator were then added to obtain consistency when

the parameter  is real-valued.
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In the present context of estimating the real-valued parameter  no really practical

algorithms have yet been proposed in order to make an optimal choice of the number of

extremes k in the estimation procedure. Theoretical work Ð see, for example, Haeusler and

Teugels (1985) and CsoÈ rg��o et al. (1985) in the Pareto case Ð has clearly shown that under a

minimum mean square error criterion the optimal value of k typically depends on the

particular tail at hand, and more speci®cally on the rate in (2) (see Bingham et al. 1987,

Section 3.12.1). In practice, practitioners try to make inferences on  from a stable part of

the sequence of estimators of  as a function of k. This, however, presents serious problems

in non-simulated applications due to the high volatility of estimators appearing in extreme-

value theory. This can be seen from the ®gures in earlier papers on the subject (for example,

Dekkers et al. 1989) and in Section 4 of the current paper. Sometimes there is no stable part

in the picture, and even if a stable part is present, the substantial variance makes it di�cult

to choose within it.

Apart from providing insight into the link between excess functions and novel estimators

for the extreme-value index, the present paper seriously tries to remedy this last problem in

the choice of k, crucial in applications. More speci®cally, we will show that generalized

quantile plots can be constructed which, under (1), show an ultimately linear behaviour

with slope approaching  at the points corresponding to the extreme data. Estimating this

slope by a regression ®t then provides an estimator for . This is the subject of Section 2. In

Section 3 we will then show how the optimal k can be tracked down by looking for the best

linear regression ®t through the quantile plot based on a weighted least-squares error

criterion. In Section 4 we comment on the behaviour of our algorithm on some simulated

data sets. We further illustrate the algorithm on the diamond data examples already

mentioned, as well as on the US wind-speed data. Proofs and computational details are

deferred to Appendices A and B.

2. Excess functions and estimators of the extreme value index

2.1. PARETO DISTRIBUTIONS

Before we introduce our new estimator(s), we recall some basic notions on the Pareto case

( > 0) leading to the Hill estimator among others. In this particular case (1) can be restated

in terms of the tail function U, de®ned as

U�x� � Q 1ÿ

1

x

� �

�x > 1�

where

Q�p� � F
i
�p� � inffy : F�y�5pg �p 2 �0; 1��:

It was shown by de Haan (1970) that where  > 0, (1) is equivalent to

U�x� � x


`�x� �3�
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where ` denotes a slowing varying function, that is, one which satis®es

lim

x!1

`��x�

`�x�
� 1 �� > 0�:

Relation (3) states that U is regularly varying with index  (notation: U 2 R

�.

Based on a sample of size n,  can be estimated consistently using relation (3) by

inspecting the scatterplot with coordinates

ÿ log

j

n� 1

� �

; logX
�

nÿ j�1

� �

� j � 1; . . . ; n�

which can be seen as an approximation of the scatterplot

ÿ log

j

n� 1

� �

; logU
n� 1

j

� �� �

� j � 1; . . . ; n�:

Indeed, under (3) with  > 0, the theoretical quantiles logU��n� 1�=j � ultimately (for

j=n! 0) stand in linear relation, with slope , to the corresponding quantiles

ÿ log� j=�n� 1�� of the standard exponential distribution. The basic property here is that

for any slowly varying function l we have that log l�x�= log x! 0 as x! 1.

The slope to the right of the point with coordinates �ÿ log��k� 1�=�n� 1��, logX
�

nÿk� is

then typically estimated by the quotient of average increase

k
ÿ1

X

k

j�1

logX
�

nÿ j�1

ÿ logX
�

nÿk

kÿ1
X

k

j�1

log

n� 1

j

� �

ÿ log

n� 1

k� 1

� �

which leads to the Hill estimator

Hk;n � k
ÿ1

X

k

j�1

logX
�

nÿ j�1

ÿ logX
�

nÿk: �4�

Indeed, the denominator in the above quotient can be safely approximated by 1 using

Stirling's formula.

Beirlant et al. (1996) proposed to estimate the optimal k from the minimum value of the

sequence of weighted mean square error expressions

MSE�k� �
1

k

X

k

j�1

w
opt

j;k
log

X
�

nÿ j�1

X �

nÿk

� �

ÿ  log

k� 1

j

� �� �

2

;

where w
opt

j;k
denotes the weights to be optimized in such a way that MSE�k� consistently

estimates the asymptotic mean square error of the Hill estimator Hk;n.
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2.2. GENERALIZED QUANTILE PLOTS

Next we show how the Pareto case of Section 2.1 can be extended to the general model (1)

without prior knowledge of the sign of .

Our ®rst theorem proposes functions that exhibit the regularly varying behaviour with

index  under (1) as does U in (3) in the Pareto model. The ®rst part of the theorem states

that when  < 1, themean excess function eU :� e �U is regularly varying with index . The

restriction to  < 1 appears from the fact that otherwise e may not be de®ned. This

restriction can be lifted in two ways. One way is to replace the empirical mean excess values

obtained at x � n=k,

Ek;n � k
ÿ1

X

k

j�1

X
�

nÿ j�1

ÿ X
�

nÿk

by approximations

UHk;n � X
�

nÿk k
ÿ1

X

k

j�1

logX
�

nÿ j�1

ÿ logX
�

nÿk

 !

obtained by a one-term Taylor expansion of the logarithmic function around X
�

nÿk (to be

justi®ed later). Remark then thatUHk;n can be seen as an estimator of the product function

U�x�H�x� whereH�x� � e
log

� logU�x� with e
log

the mean residual life function of the log-

transformed data. We henceforth write

UH�x� � U�x�H�x� � U�x�

�

1

1

flogU�wx� ÿ logU�x�g
dw

w2

:

Another way to lift the restriction is to replace Ek;n with more robust versions, such as a

generalized median excess functional

M
�p�

k;n
� X

�

nÿbpkc ÿ X
�

nÿk �0 < p < 1�;

or a trimmed mean excess functional

E
�p�

k;n
�

1

kÿ bpkc

X

k

i�bpkc�1

X
�

nÿ i�1

ÿ X
�

nÿk �0 < p < 1�:

These functions estimate

m
�p�

U
�x� � U

x

p

� �

ÿU�x�

and

e
�p�

U
�x� �

x

1ÿ p

�

x=p

x

U�v�

v2
dvÿU�x�

at x � n=k, respectively.
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We can now state the analytic results on which our estimation procedures will be based.

Proofs are deferred to Appendix A.

Theorem 1.

(i ) Restricting to the case  < 1, F satis®es (1) if and only if eU 2 R.

(ii ) If F satis®es (1) for some  2 R then UH 2 R

.

(iii ) F satis®es (1) for some  2 R if and only if for all 0 < p < 1,m
�p�

U
2 R


and e

�p�

U
2 R


.

In the following we concentrate on the function UH and consequently derive estimators

for . Note that the use of estimators based onM
�p�

k;n
or E

�p�

k;n
requires the estimation of the

nuisance parameter p. Theorem 1(ii) then entails that under the general model (1)

logUH�x� �  log x as x! 1. From this it follows that a generalized quantile plot

ÿ log

j

n

� �

; logUHj;n

� �

� j � 1; . . . ; nÿ 1� �5�

eventually will be linear for the smaller j values.

In Figure 1 this is illustrated for the wind-speed data from three US cities. They are the

daily fastest-mile speeds measured by anemometers 10m above the ground. The line

structures in the generalized quantile plots are the result of an inherent grouping of the data

due to loss of accuracy during the data collecting process. For the Des Moines daily wind-

speed maxima �n � 5478� the generalized quantile plot (5) clearly shows an increasing

behaviour, which re¯ects a heavy tail for the underlying distribution. The ¯attening trend in

the Grand Rapids data set �n � 5478� suggests a weaker tail with  � 0, while for

Albuquerque �n � 6939� even a negative  value, resulting in a distribution with a ®nite

right end-point, can be expected.

2.3. ESTIMATION OF THE EXTREME-VALUE INDEX

An estimate of the extreme-value index  can thus be obtained by estimating the slope of the

generalized quantile plot (5) from a point �ÿ log�k=n�, logUHk;n� to the right of which

linearity starts to appear. An estimation algorithm for the slope of the right tail of the

quantile plot can be found by applying a right-sided weighted least-squares method. The

problem of deciding on the number k of extremes to be used can hence be regarded as a

diagnostic regression problem, that is, deciding on the point from which an `optimal' linear

®t is obtained through the quantile plot.

The equation of the line through �ÿ log��k� 1�=n�, logUHk�1;n� with slope  is given by

y � logUHk�1;n �  x� log

k� 1

n

� �� �

:

The ®tting of a straight line through the points with coordinates �log� j=n�, logUHj;n�

� j � 1; . . . ; k� with a least-squares algorithm leads to the minimization of

X

k

j�1

wj;k log

UHj;n

UHk�1;n

� �

ÿ  log

k� 1

j

� �� �

2
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with respect to . Equating the ®rst-order derivative with respect to  to zero yields

̂k;n �

k
ÿ1

X

k

j�1

wj;k log
k � 1

j

� �

flogUHj;n ÿ logUHk�1;ng

kÿ1
X

k

j�1

wj;k log

k� 1

j

� �� �

2

: �6�
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Figure 1.Generalised quantile plot (5). (a) Albuquerque; (b) Grand Rapids; (c) Des Moines



Introduce the weight function ~w� j; k� :� wj;k log��k� 1�=j �. The numerator in (6) can be

rewritten as

X

k

j�1

j

k

1

j

X

j

i�1

~w�i; k�

( )

flogUHj�1;n ÿ logUHj;ng:

If we take wj;k of the form w� j=k� and introduce K�t� � ÿt
ÿ1
�

t

0

w�x� log x dx, then

j
ÿ1
�

j

i�1

~w�i; k� can be seen as an approximation of K� j=k�. The denominator in (6) is

then a Riemann approximation of the integral

�

1

0

K�t� dt.

We conclude that a weighted least-squares estimation method for the slope of the

generalized quantile plot leads to a broad class of estimators for  which can be compared

with the class of kernel estimators introduced by CsoÈ rg��o et al. (1985) for the subcase  > 0:

̂k;n �

X

k

j�1

j

k
K

j

k

� �

flogUHj�1;n ÿ logUHj;ng

kÿ1
X

k

j�1

K
j

k

� �

�7�

where

K�t� � ÿ

1

t

�

t

0

w�x� log x dx �t 2 �0; 1��

is a smoothing kernel. Formal replacement of theUH values in (7) byM
�p�

and E
�p�

values

yields other sets of estimators.

The choice of the uniform (0,1) kernel in (7) yields the direct adaptation of Hill's

estimator

H
�2

k;n :� k
ÿ1

X

k

i�1

logUHj;n ÿ logUHk�1;n; �8�

which can be rewritten as

H
�2

k;n �
~Hk;n �HHk;n

where

HHk;n � k
ÿ1

X

k

j�1

logHj;n ÿ logHk�1;n

is the result of a Hill-type operation on the Hill-type statistics, and

~Hk;n �

1

k

X

k

j�1

logX
�

nÿ j ÿ logX
�

nÿkÿ1

is the Hill estimator with the largest observation deleted. This estimator can be compared

with the moment estimator. Both estimators depart from the Hill estimator and add a
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term to the Hill estimator in order to allow for an extreme-value index estimator in the

full sense.

Pickands' (1975) estimator is a kernel estimator based on the median excess statistics

M
�0:5�

k;n
with K�u� � u

ÿ1
for u 2 �0:5; 1� and 0 elsewhere.

2.4. ASYMPTOTIC PROPERTIES OF H
�2

k; n

From now on we will concentrate on the above generalization H
�2

k;n of the Hill estimator

given in (8). We end this section with a statement of the basic asymptotic properties of this

estimator of the extreme-value index.

In our next theorem we give some natural and fairly general conditions under which

asymptotic normality holds for H
�2

k;n. Other results on the asymptotic normality of

estimators based on trimmed mean excess or median excess estimators have been derived

too and can be found in Vynckier (1996).

Generalizing the methods of proof developed in Dekkers et al. (1989), we derive

approximations of an extreme-sum process which constitutes a somewhat di�erent version

of the process discussed in Mason and Turova (1994).

Let f�k;n�t�; 1=kn4t41g denote the mean excess process, de®ned by

�k;n�t� �
�����

kn

p

X
�

nÿdtkne
k
ÿ1

n

X

dtkne

i�1

�logX
�

nÿ i�1

ÿ logX
�

nÿdtkne
�

UH
n

tkn

� � ÿ t

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

�1=kn4t41�:

We will show that

���

k
p

�H
�2

k;n ÿ � �

���

k
p

�

1

0

flogUH
dtkne;n

ÿ logUHk;ngdtÿ 

� �

�

���

k
p

�

1

0

log

UH�n=tk�

UH�n=k�

� �

dtÿ 

� �

�

�

1

1=k

t
ÿ1
�k;n�t� dftI�t�g � o

P

�1� �9�

where I denotes the indicator of the unit interval and limk=n!0

o
P

�1� � 0 in probability. The

next theorem states an approximation theorem for the mean excess process which will allow

us to obtain the asymptotic distribution of the estimator H
�2

k;n. The limit process will be

distributed as

Z

�t� �

�1ÿ � t


�

t

0

W�s�s
ÿ1ÿ

dsÿW�t�

� �

� t� ~W�1� ÿW�1��  < 0

�1� �W�t� � t� ~W�1� ÿW�1�� 50;

8

>

<

>

:

where fW�t�; t50g and f ~W�t�; t50g are independent standard Wiener processes.
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We now state our key theorem upon which rely all proofs of the asymptotic normality of

the estimators. We set, for any �40 and any t > 0,

k
�
�t� �

t
�

ÿ 1

�

if � < 0

log t if � � 0:

8

>

>

<

>

>

:

Theorem 2. Suppose F satis®es (1) with  2 R; moreover,

(i ) for  > 0: there exist 
1

40 and a positive function b
1

�b
1

�x� ! 0 as x! 1� such that

�tx�
ÿ

U�tx�

xÿU�x�
ÿ 1 � b

1

�x�k

1

�t� �t! 1�;

(ii ) for  � 0: there exist positive functions a, b
2

�b
2

�x� ! 0 as x! 1� such that

lim

z!1

U�x��logU�tx� ÿ logU�x�� ÿ a�x� log t

b
2

�x�
� �

�log t�
2

2

�t51�;

(iii ) for  < 0; there exist 
3

40 and a positive function, b
3

�b
3

�x� ! 0 as x! 1� such that

�tx�
ÿ

�U�1� ÿU�tx��

xÿ
�Y�1� ÿU�x��

ÿ 1 � b
3

�x�k

3

�t� �x! 1�:

Suppose also limn!1
kn � 1 and:

(iv) for  > 0 : sup
1=kn4 t41

�����

kn

p

b
1

�n=tkn� ! 0 �n! 1�

(v) for  � 0 : sup
1=kn4 t41

���

k
p

nb2�n=tkn�=a�n=tkn� ! 0 �n! 1�

(vi ) for  < 0 : sup
1=kn4 t41

���

k
p

nb3�n=tkn� ! 0 �n! 1�:

Then for any � 2 �0;
1

2

�, on a suitable probability space there exist sequences f~�k;ng of

probabilistically equivalent versions of f�k;ng and a Gaussian process Z

as described above

such that, as n! 1,

sup

1=kn4 t41

jt
ÿ1=2� �

�~�k;n�t� ÿ Z

�t��j !

P

0:

The assumptions of Theorem 2 are similar to those of Theorem 3.1 in Dekkers et al.

(1989) and are found to be quite general. Some similar alternative conditions are discussed

in the same paper.

By Karamata's theorem (see, for example, Bingham et al. 1987) statement (ii ) of

Theorem 1 is equivalent to stating that UH�x� �x > 0� can be written in the form

x


c�x� exp

�

x

1

"�u�

u
du

� �

where "�x� ! 0 �x! 1� and where c�x� ! c �x! 1�. In what follows we restrict

ourselves to the case where c�x� is a constant function, equal to 1, say, in which case we
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speak about normalized regularly and slowly varying functions. It now follows that the

expression for the bias ofH
�2

k;n as found in the ®rst term on the right-hand side of (9) can be

rewritten as

�

1

0

"

n

kt

� �

dt: �10�

If we use this analysis of the bias terms, we can now formulate the basic asymptotic result

for our extreme-value index estimator.

Theorem 3. When UH is a normalized regularly varying function with index  such that
�����

kn

p �

1

0

"�n=kt� dt! 0 as n! 1, we have under conditions (i )±(vi ) of Theorem 2 that

���

k
p

nfH
�2

kn;n
ÿ g !

d

�

1

0

t
ÿ1
Z


�t� dtÿ Z


�1�:

Calculation of the covariance structure of theZ

process leads to the asymptotic variance

for the estimator:

�

1

0

t
ÿ1
Z


�t� dtÿ Z


�1� �

d

N�0; �1� �
2

� 50

N 0;

�1ÿ ��1�  � 2
2

�

�1ÿ 2�

 !

 < 0:

8

>

<

>

:

3. Optimal choice of k

In this section we provide an algorithm for choosing k optimally. Through regression

diagnostics such as mean square error goodness-of-®t plots, we will estimate the asymptotic

mean square error (AMSE) of the adapted Hill estimator of the extreme value index given by

AMSE�H
�2

k;n� �

1

k
var

�

1

0

t
ÿ1
Z


�t� dtÿ Z


�1�

� �

�

�

1

0

"�n=kt� dt

� �

2

:

3.1. CONDITIONS ON

~l

We will carry out the above-mentioned study under the following assumption on the slowly

varying function

~l de®ned by

~l�x� � x
ÿ

UH�x�:

Condition. There exist a real constant �40 and a rate function g satisfying g�x� ! 0 as

x! 1, such that, for all � > 1,

~

`��x�

~

`�x�
ÿ 1 � g�x�k

�
��� �x! 1�: �11�
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This condition is based on the concept of slow variation with remainder (see, for example,

Section 3.12.1 of Bingham et al. 1987) and can be checked to follow from the conditions

(i )±(iii ) in Theorem 2.

Assumption (11) entails that as x! 1

x

g�x�

�

1

x

log

~

`�t� ÿ log

~

`�x�

t2
dt �

�

1

1

log

~l�ux�

~

`�x�

 !

g�x�

du

u2
!

�

1

1

u
�

ÿ 1

�

du

u2

�

1

�

1

1ÿ �

ÿ 1

� �

�

1

1ÿ �

;

so that g can be represented as

g�x� � �1ÿ ��x

�

1

x

log

~

`�t� ÿ log

~

`�x�

t2
dt

��1ÿ �� x

�

1

x

logUH�t�

t2
dtÿ logUH�x�

� �

ÿ 

� �

:

Where the slowly varying function

~

` (see (2)) is normalized one can show (see, for

example, 1.3.4 in Bingham et al. 1987) that

"�x� �
x~`

0
�x�

~

`�x�
almost everywhere;

from which it easily follows with (10) that

g
n

k

� �

� �1ÿ ��ABias�H
�2

k;n�

where ABias�H
�2

k;n� denotes the asymptotic bias of H
�2

k;n as k=n! 0.

3.2. ESTIMATION OF THE NUISANCE PARAMETER �

The non-positive index � can easily be seen to be the index of regular variation of the

function �x
�

1

x t
ÿ2
logUH�t� dtÿ logUH�x�� ÿ .

To estimate the auxiliary index �, we will use the estimator

HRm;n �

log

H
�2

b�m�k�=4c ÿH
�2

b�m�k�=2c

H �2

bm=2c
ÿH �2

m

�

�

�

�

�

�

�

�

�

�

log

2m

m� k

� � �m � k� 1; . . . ; nÿ 2�; �12�

where k denotes the position of an initial estimate ̂k;n of .
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The estimatorHRm;n can be seen as an estimator for the slope of the straight-line pattern

in the plot

ÿ log

m

n

� �

; log jH
�2

bm=2c
ÿH

�2

m j

� �

�m � k; . . . ; nÿ 2�: �13�

In this, by using a Pickands' operation one avoids the estimation of the unknown parameter

. Only the position k of an initial estimate is of importance as the estimates are only relevant

for m > k. The position of m is determined by an unweighted least-squares principle.

This is illustrated for a simulation of size n � 1500 from the standard log-normal

distribution on where � � 0. In this case the unweighted mean square error goodness-of-

®t plot for (13) (Figure 2a), reaches its minimum atm � 909 (Figure 2b), which corresponds

with the estimate HR
909;1500

� ÿ0:311 for � in (12) (Figure 2c).
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Figure 2. Simulation of 1500 standard lognormal data. (a) Plot (13) with k � 104; (b)

unweighted mean square error:

1

m

X

m

j�1

log

H
�2

j=2;n ÿH
�2

j;n

H�2

�m�1�=2;n
ÿH�2

m�1;n

�

�

�

�

�

�

�

�

�

�

ÿHRm;n log

m� 1

j

 !

2

; (c)

Plot (12) of HRm;n against m with k � 104.



3.3. THE OPTIMAL MSE PLOTS

Our aim now is to estimate nonparametrically the AMSE of the adapted Hill estimator

using a weighted mean square error expression

MSE
opt

�k� �
1

k

X

k

j�1

w
opt

j;k
log

UHj;n

UHk�1;n

� �

ÿ  log

k� 1

j

� �� �

2

for some sequence of weights w
opt

j;k
, to be de®ned next, which depend on  and �. The value

of k
opt

minimizing MSE
opt

�k� �k � 1; 2; . . .� is then used in estimating  by H
�2

k
opt

;n. By

this method we will avoid the direct estimation of g�n=k�, which would give rather unstable

graphics. We also remark that the above-mentioned method in a sense corresponds to using

an adaptive kernel estimator in order to decide on the optimal k.

The factor  in MSE
opt

�k� denotes the real value of the extreme-value index which needs

to be estimated. Also the weights w
opt

j;k
will be seen to depend on the unknown parameters 

and �. This problem can be circumvented by replacing them by a value H
�2

k;n (or HRm;n) of

the corresponding Hill statistics for some value of k (or m). This will be done through an

iterative procedure, described in Appendix B.

The optimal weights can be calculated as follows. For any sequence of weights wj;k we

observe that

MSE �

1

k

X

k

j�1

wj;kE log

UHj;n

UHk�1;n

� �

ÿ  log

k� 1

j

� �� �

2

�

1

k

X

k

j�1

wj;kE log

 

UHj;n

UH

�

n

j

�

!

ÿ log

 

UHk�1;n

UH

�

n

k� 1

�

!

0

@

� log

UH

�

n

j

�

UH

�

n

k� 1

�

0

B

@

1

C

A

ÿ  log

 

k� 1

j

!

1

C

A

2

which can be approximated asymptotically using Theorem 2 and assumption (11) by

MSE �

1

k

X

k

j�1

wj;kE
1

�����������

k� 1

p

Z


j

k� 1

� �

j

k� 1

ÿ Z

�1�

8

>

>

<

>

>

:

9

>

>

=

>

>

;

0

B

B

@

� log

n

j

� �



~

`

n

j

� �

n

k� 1

� �



~

`

n

k� 1

� �

0

B

B

@

1

C

C

A

ÿ  log

k� 1

j

� �

1

C

C

A

2
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�

1

k

X

k

k�1

wj;kE
1

�����������

k� 1

p

Z


j

k� 1

� �

j

k� 1

ÿ Z

�1�

8

>

>

<

>

>

:

9

>

>

=

>

>

;

� g
n

k� 1

� � j

k� 1

� �

ÿ�

ÿ1

�
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<

:

9

=

;

0

B

B

@

1

C

C

A

2

�

1

k

X

k

j�1

wj;k
1

k� 1

E

Z


j

k� 1

� �

j

k� 1

ÿ Z

�1�

0

B

B

@
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C

C

A

2

� �1ÿ ��
2

1

k

X

k

j�1

wj ;k

j

k� 1

� �

ÿ�

ÿ1

�

0

@

1

A

2

ABias

2

�H
�2

k�1;n�

� akAvar�H
�2

k�1;n� � bkABias
2

�H
�2

k�1;n�

where

ak �

1

k

X

k

j�1

wj;k
j

k� 1

� �

ÿ1

ÿ1

 !

�50�

1

k

X

k

j�1

wj;k
j

k� 1

� �

ÿ1

ÿ

4

1�  � 2
2

j
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� �

ÿ

�
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2

1�  � 2
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bk � �1ÿ ��
2

1

k

X

k

j�1

wj;k

j

k� 1

� �

ÿ�

ÿ1

�

0

@

1

A

2

:

Hence, for two linear independent sequences of weights, w
�1�

j;k
and w

�2�

j;k
, with corresponding

constants a
�i �

k
and b

�i �

k
�i � 1; 2�, the optimal weights are obtained by taking linear

combinations:

w
opt

j;k
� �

1;kw
�1�

j;k
� �

2;kw
�2�

j;k

where

�
1;k �

b
�2�

k
ÿ a

�2�

k

a
�1�

k
b
�2�

k
ÿ b

�1�

k
a
�2�

k

; �
2;k �

a
�1�

k
ÿ b

�1�

k

a
�1�

k
b
�2�

k
ÿ b

�1�

k
a
�2�

k

:

The authors found the choice of the weight functions w
�1�

j;k
� j=�k� 1� and

w
�2�

j;k
� ÿ log� j=�k� 1�� to be quite appropriate.
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4. Some simulations and a practical example

In this section the iteration procedure will be demonstrated for three simulated data sets

and for the Bimboko example, using the weights � j=�k� 1��, ÿ log� j=�k� 1��.

4.1. A SIMULATION FOR POSITIVE 

The ®rst simulation of size n � 1500 is drawn from a Burr distribution with  � 2:

1ÿ F�x� �
1

1� x

� �

2

�x > 0�:
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(c)

Figure 3. Simulated Burr dataset. (a) Generalised quantile plot (5) with ®tted line at position

j � 566; (b) H
�2

k;n versus k; (c) estimated AMSE�H
�2

k;n� versus k in the ®nal iteration step.



The ®tted line on the generalized quantile plot (Figure 3a) has been ®xed at the initial

position k
0

� 566 with corresponding value H
�2

566;1500
� 2:010. In Figure 3b the estimator

H
�2

k;n is plotted against k. The second and ®nal iteration step, shown in Figure 3c, reaches its

minimum at

^k
opt

� 506 with corresponding H
�2

506;1500
� 1:993.

As seen in Figure 3c some local minima in the estimated AMSE can show up. A

simulation study con®rmed that such secondary minima are dominated by the `right' global

minimum during the iteration.

4.2. A SIMULATION FOR  � 0

For the log-normal data set of Figure 2 with  � 0, the iteration also stopped after two
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Figure 4. Simulated standard lognormal dataset. (a) Generalised quantile plot with ®tted line

at position j � 103; (b) H
�2

k;n versus k; (c) estimated AMSE�H
�2

k;n� versus k in the ®nal iteration

step.



steps. In Figure 4b the estimator H
�2

k;n is plotted against k, while Figure 4c shows the ®nal

estimator for the asymptotic MSE. Here

^k
opt

is 103, leading to the estimate 0.119 for .

This ®nal estimate has been used for the ®tted line on the generalized quantile plot

(Figure 4a).

We notice that the log-normal distribution is one of the most di�cult cases in extreme-

value statistics in the class  � 0, as the slowly varying function

~l in (11) behaves

logarithmically or, equivalently, � � 0. This entails that the bias disappears logarithmically

slow. Hence, a relatively small value of k
opt

has to be expected, which is re¯ected in the

estimated AMSE plot. Of course, in practice one will have at one's disposal more speci®c

techniques, such as log-normal, exponential and Weibull quantile plots.

4.3. A SIMULATION FOR NEGATIVE 

A third simulation is a sample of 1500 data points from a reversed Burr distribution where

 � ÿ1, de®ned by

1ÿ F�x� �
2

1� �1ÿ x�
ÿ0:5

 !

2

�0 < x < 1�:

For this example ®ve iteration steps were needed in order to estimate the optimal k value.

Starting with an initial estimate 
0

� ÿ1:212 at k
0

� 1087, the position of the minimum of

the unweighted mean square error (Figure 5a), the iterative procedure resulted in a ®nal

estimate at position

^k
opt

� 264, yielding an estimate H
�2

264;1500
of ÿ1:099 for . The

corresponding ®tted line on the generalized quantile plot (5) is shown in Figure 5b.

4.4. THE BIMBOKO DEPOSIT

For our ®nal example we consider the Bimboko dataset introduced in Section 1. The clearly

increasing trend in the generalized quantile plot (5) (Figure 6) convinces us of the

Pareto-type behaviour of the underlying distribution. This result corresponds with the

geological ®nding of the adequacy of the log-hyperbolic distribution for describing sizes of

diamonds in situations such as the alluvial diamond deposit at the Bimboko River. In

geological literature the log-normal distribution for homogeneous deposits and mixtures of

this distribution for non-homogeneous deposits have been put forward. Due to the sorting

process during transportation by the river, it is plausible to assume a linear relation between

the logarithmic mean and variance. This constraint, together with the choice of the

generalized inverse Gaussian distribution as mixing distribution for the variance, results

in the log-hyperbolic distribution (Barndor�-Nielsen 1977). For the Bimboko data set, the

iterative procedure for ®nding the optimal k value stopped after two steps at position

^k
opt

� 209, yielding an estimate of 0.716 for , which is the extreme-value index of the log-

hyperbolic distribution. The corresponding ®tted line on the generalized quantile plot has

been overlaid in Figure 6.
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4.5. CONCLUDING REMARKS

1. In order to estimate � adequately, the position k of the initial value for  in (12) must

not be too large. For this reason k can be taken at a local minimum in the mean square

error, rather than at the global minimum. This was the case for the reversed Burr data set

(see Figure 5a) where in the ®rst iteration step k has been set at 399, which is the local

minimum, rather than at 1087. For the initial value 
0

itself, H
�2

1087;1500
� ÿ 1:212.
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Figure 5. Simulated reversed Burr dataset. (a) Unweighted mean squares error on generalised

quantile plot; (b) generalised quantile plot (5) with ®tted line at position j � 264.

Figure 6. Bimboko deposit. Generalised quantile plot (5) with ®tted line at position j � 209.



2. The estimation of the � parameter in the iteration is of secondary importance. The

procedure used above was found to be quite robust to variations in this � parameter.

3. Finally, we comment on the choice of the weights w
�1�
, w

�2�
. By simulations it turned

out that the weights � j=�k� 1�;ÿ log� j=�k� 1�� gave the most stable numerical results.

However, in the presence of outliers in the generalized quantile plot (5), the weights

�1;ÿ log� j=�k� 1�� gave better results. This can be seen in Figure 7, where the results of the

iteration procedure are shown for the Bougban data set. In Figure 7a the `best ®tted' line

through the generalized quantile plots for the weights �1;ÿ log� j=�k� 1�� was reached

after three iteration steps and gives an estimate of 0.651 for  at k
opt

� 654. The procedure

with weights � j=�k� 1�;ÿ log� j=�k� 1�� ended after two iteration steps in a loop, jumping

from k � 58 (H
�2

58;683
� 0:526) to k � 395 (H

�2

395;683
� 0:584). The corresponding estimates of

 give unsatisfactory ®ts, as can be seen in Figure 7b.

Appendix A: Proofs

Proof of Theorem 1

We con®ne ourselves to the proof of (ii); demonstrations of the other parts can be found in

Vynckier (1996).

First suppose that F satis®es (1). Then,

UH�x� � U�x�

�

1

1

flogU�wx� ÿ logU�x�g
dw

w2

:

Hence Lemma 2.5 in Dekkers et al. (1989), together with the dominated convergence
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Figure 7. Bougban deposit. Generalised quantile plot. (a) Fitted line at position j � 654; (b)

Fitted line at position j � 58 and j � 395.



theorem, yields that, for some positive function a,

UH�x�

a�x�
�U�x�

�

1

1

logU�tx�ÿ logU�x�

a�x�

� �

t
ÿ2
dt!

�

1

1

t
ÿ2
log t dt � 1 �if 50�

�

1

1

t


ÿ 1



� �

t
ÿ2
dt�

1

1ÿ

�if  < 0�:

8

>

>

>

<

>

>

>

:

It also follows from Lemma 2.5 in Dekkers et al. (1989) that under (1) a is regularly varying

with index  which implies that UH is regularly varying with index . h

Proof of Theorem 2

We con®ne ourselves to the proof of Theorem 2 where  < 0. The other results can be

proved in analogous fashion. Recall the following result: let Y
1

;Y
2

; . . . be a sequence of

i.i.d. random variables with common distribution function 1ÿ 1=x �x > 1�; then

�X
1

;X
2

; . . .� �
d

�U�Y
1

�;U�Y
2

�; . . .�

and for all n,

�X
�

1

;X
�

2

; . . . ;X
�

n � �d

�U�Y
�

1

�;U�Y
�

2

�; . . . ;U�Y
�

n ��:

Furthermore, the random variablesY


i
�i � 1; . . . ; n� have as common distribution function

F

�x� � x

ÿ1=
�0 < x < 1�. Moreover, the vector

Y
�

nÿkn�1

Y �

nÿkn

 !



;

Y
�

nÿkn�2

Y �

nÿkn

 !



; . . . ;

Y
�

n

Y �

nÿkn

 !


 !

has the same distribution as the vector of order statistics �Z
�

kn
; . . . ;Z

�

1

� of a sample of size kn

from F

, independent of Y

�

nÿkn
.

We denote the corresponding quantile functions by Q

and the empirical quantile

function

^Qkn
, that is,

^Qkn
�t� � Z

�

j if

j ÿ 1

kn
< t4

j

kn
; � j � 1; . . . ; kn�:

The empirical quantile process qkn based on

^Qkn
will now be of basic importance:

qkn�t� � ÿ

t
�1



�����

kn

p

f ^Qkn
�t� ÿQ


�t�g; �04t < 1�:

Lemma 1. If fB�t�; 04t41g is a Brownian bridge, then for any �
1

2 �0;
1

2

�

sup

04 l41

B�t�

tÿ�
1

�1=2

�

�

�

�

�

�

�

�

� O
P

�1�:
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For each n one can de®ne a Brownian bridge fBn�t�; 04t41g such that for any �
2

2 �0;
1

2

�

sup

04 c41

k
1=2ÿ �

2

n jqkn�t� ÿ Bn�t�j !P

0:

Moreover, for each n one can de®ne a Wiener process f ~Wn�t�; 04t41g, independent of Bn,

such that

�����
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�

!
P

0:

Proof. The ®rst statement can be derived for example from (2.6) in Mason and Turova

(1994). The second statement follows immediately from Theorem 4.5.7 in M. CsoÈ rg��o and

ReÂ veÂ sz (1981). Finally, the method of proof of statement (2.9) in Mason and Turova (1994)

can be applied to the speci®c distribution at hand, but can also be generalized in this case to

all values of , in order to derive the ®nal statement in the Lemma. h

First, we decompose �k;n as
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We now show that under the given conditions for any � 2 �0;
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To prove (A2), take � 2 �0;
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�3�

n �t�

where supt2�0;1� jR
�3�

n �t�j � O�k
ÿ1=2

n � as n! 1 and kn ! 1.

Since Z
�

dtkne�1

� ^Qkn
�t� and k

ÿ1

n �

dtkne

i�1

Z
�

i �

�

t

kÿ1
^Qk�v� dv�O

P

�k
ÿ1

n � uniformly in

t 2 �k
ÿ1

n ; 1�, we obtain

�

�2�

n �t� ÿ �1ÿ �t


�
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0
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^Qk�t�
� R
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1

�t� � S
2

�t� � S
3

�t� � R
�4�

n �t�:

where supt2�0;1� jR
�4�

n �t�j � O�k
ÿ1=2

n � as n! 1 and kn ! 1.

From Q

�v� � v

ÿ

one checks that S
3

�t� � 0.

Lemma 1 entails that, for every t 2 �1=kn; 1�,

t
ÿ1=2� �

jS
1

�t�j4C


sup

1=kn4t41

jqkn�t� ÿ Bn�t�j

t1=2ÿ �

whereC

is a constant depending on  and �. The right-hand side of this expression tends to

zero in probability as n! 1 and kn ! 1.

Application of Lemma 1 with �
2

� �=4 shows that uniformly in t 2 �1=kn; 1�

qkn�t� � Bn�t� �O
P

�k
�=4ÿ1=2

n �;
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n � as kn ! 1. Using the ®rst statement in Lemma 1

with �
1

� �=2 and the above observations about S
1

, one obtains that for n! 1, kn ! 1,

uniformly in t 2 �1=k; 1� the ®rst term in the expansion of S
2

tends to zero in probability.

Finally, using the same methods as before, one shows that
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so that with the help of Lemma 1 one ®nds that
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To derive sup
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t
ÿ1=2� �

jR
�2�

n �t�j !
P

0, one basically relies on Lemma 3.5 in Dekkers

et al. (1989). Where  < 0 part (iii) of that lemma can be invoked assuming (iii) in Theorem

2. Hence we have to show that, uniformly in t 2 �1=kn; 1� as n! 1, kn ! 1,
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where An�t� is a linear combination of terms of the form
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where � is a positive constant. Again with the preceding argument concerning �A:2� we

derive that t
ÿ1=2� �

An�t� is bounded in probability, uniformly in t 2 �1=kn; 1� as n! 1,

kn ! 1.

Finally, it follows from assumption (vi) and the last statement in Lemma 1 that

�����

kn

p

b
3

�Y
�

nÿdtkne
� !

P

0, �n! 1, kn ! 1). This concludes the proof of (A.2).

The proof of (A.1) and (A.3) can now be given using the same techniques as in the

preceeding derivations. h

Appendix B: Algorithm

In the following, the iterative procedure to ®nd the AMSE is described. Here w
opt

j;k
�

�
; �

�
�

denotes the value of w
opt

j;k
with  and � replaced by estimates 

�
, �

�
.
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0
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Acknowledgements

This research was partially funded by the Belgian National Fund for Scienti®c Research

(NFWO). The authors acknowledge the provision of diamond size data by Dr L. Rombouts

317Excess functions and estimation of the extreme-value index



of Terraconsult and the wind-speed data by the National Institute of Standards and

Technology (Gaithersburg, Maryland). They would like to thank Jef Caers of the

Department of Civil Engineering of the Katholieke Universiteit Leuven for interesting

discussions on this topic.

References

Barndor�-Nielsen, O. (1977) Exponentially decreasing distributions for the logarithm of particle size.

Proc. Roy. Soc. London Ser. A, 353, 401±419.

Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Tail index estimation, Pareto quantile plots and

regression diagnostics. J. Amer. Statist. Assoc. To appear.

Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Cambridge: Cambridge

University Press.

Caers, J., Vynckier, P., Beirlant, J. and Rombouts, L. (1996) Extreme value analysis of diamond size

distributions. Math. Geol., 28, 25±43.

CsoÈ rg��o, S., Deheuvels, P. and Mason, D. (1985) Kernel estimates of the tail index of a distribution.

Ann. Statist., 13, 1050±1077.

CsoÈ rg��o, M. and ReÂ veÂ sz, P. (1981) Strong Approximations in Probability and Statistics. Budapest:

AkadeÂ miai Kiado.

de Haan, L. (1970) On Regular Variation and its Applications to the Weak Convergence of Sample

Extremes. Math. Centre Tract 32. Amsterdam: Centrum voor Wiskunde en Informatica.

Dekkers, A.L.M. and de Haan, L. (1989) On the estimation of the extreme-value index and large

quantile estimation, Ann. Statist., 17, 1795±1833.

Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989) A moment estimator for the index of an

extreme-value distribution, Ann. Statist., 17, 1833±1855.

Haeusler, E. and Teugels, J.L. (1985) On asymptotic normality of Hill's estimator for the exponent of

regular variation. Ann. Statist., 13, 743±756.

Hill, D.M. (1975) A simple approach to inference about the tail of a distribution. Ann. Statist., 3,

1163±1174.

Mason, D.M. and Turova, T. (1994) Weak convergence of the Hill estimator process. In J. Galambos

(ed.), Extreme Value Theory and Applications. Dordrecht: Kluwer Academic Publishers.

Pickands, III, J. (1975) Statistical inference using extreme order statistics. Ann. Statist., 3, 119±131.

Vynckier, P. (1996) Tail estimation, quantile plots and regression diagnostics. PhD thesis, KU

Leuven.

Received June 1994 and revised June 1996

318 J. Beirlant, P. Vynckier and J.L. Teugels


	Abstract
	1. Introduction
	2. Excess functions and estimators of the extreme value index
	2.1. PARETO DISTRIBUTIONS
	2.2. GENERALIZED QUANTILE PLOTS
	2.3. ESTIMATION OF THE EXTREME-VALUE INDEX
	2.4. ASYMPTOTIC PROPERTIES OF H*2k,n
	3. Optimal choice of k
	3.1. CONDITIONS ON l
	3.2. ESTIMATION OF THE NUISANCE PARAMETER RHO
	3.3. THE OPTIMAL MSE PLOTS
	4. Some simulations and a practical example
	4.1. A SIMULATION FOR POSITIVE RHO 
	4.2. A SIMULATION FOR GAMMA = 0
	4.3. A SIMULATION FOR NEGATIVE GAMMA
	4.4. THE BIMBOKO DEPOSIT
	4.5. CONCLUDING REMARKS 
	Appendix A: Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Appendix B: Algorithm
	Acknowledgements
	References

