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We show that for various classes of stochastic process, namely Gaussian processes, stable LeÂ vy

processes and Brownian martingales, we have almost sure weak convergence of the oscillation in the

measure space ([0, 1], �), � being Lebesgue measure. This result is used to obtain almost sure weak

approximation of the occupation measure via numbers of crossings.
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1. Introduction

Let X � fXt: t 2 Rg be a real-valued random process on a probability space �
;F ;P�.

Our main interest in this paper is to study the almost sure behaviour of the normalized

increments of the process X , namely

Z��t� �
Xt� � ÿ Xt

a���
�1�

for an appropriate normalizing function a�:�, when t varies in a bounded interval I and

� # 0. In classical cases there is no a�:� such thatZ��:� has almost surely a ®nite and non-zero

limit pointwise or in L
p
�I ; �� �05p � 1�, � denoting Lebesgue measure. However, we shall

prove that for a large family of processes we do have almost sure convergence in the sense

that, for an appropriate choice of a�:�, the random measure ���:� de®ned by

���B� �
1

��I �
��ft 2 I ; Z��t� 2 Bg�; B Borel set in R;

almost surely converges weakly to a measure �
�

6� �0 as � # 0. Moreover, in various

situations we shall have convergence of moments. We will prove results of this kind for:

(1) a class of Gaussian processes including fractional Brownian motion (for the standard

Brownian motion the result is given by Wschebor 1992), stationary processes with certain

local behaviour and some non-stationary ones (Section 2);

(2) processes with independent increments and symmetric stable law (Section 3);

(3) continuous martingales satisfying some regularity conditions (Section 4).
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For Gaussian processes and for martingales, one can obtain, as corollaries of our results,

that the paths belong almost surely to a certain family of Besov spaces with critical

parameter for which the HoÈ lder property no longer holds.

The results will be proved in a more general context. Instead of Z��t� as de®ned in (1)

we put

Z��t� �
� _X��t�

a���
; �2�

where _X� is the derivative of X� and X� �  � � X is a regularization of X by means of

convolution with an approximation of unity  �,  ��t� � �1=�� �t=��, �40,  a ®xed

function. Formula (1) corresponds to the special case  � 1
�ÿ1;0�.

In Section 5 we shall apply these methods to obtain almost sure weak approximations of

the occupation measure of the process X by means of the normalized number of crossings

ofX�. A certain amount of work (Wschebor 1985; AzaõÈ s 1989; Nualart andWschebor 1991;

Berzin and Wschebor 1993) has already been devoted to obtaining these kinds of approxi-

mation in L
p
�
;F ;P� for each level of the process. Here the results are better in the sense

that we obtain almost sure results and that we do not require the existence of the local time,

but worse in the sense that the convergence holds as weak convergence of measures instead

of pointwise convergence.

The paths of X will be supposed to be caÁ dlaÁ g. The kernel function  will be of bounded

variation, with support included in �ÿ1; 1�,
R

R �t�dt � 1. 	 denotes the total variation

measure of the (signed) measure with distribution function  . Let

X��t� �

�

�1

ÿ1

 ��tÿ s�Xsds:

C will denote a positive constant that may vary from line to line. C! will denote a positive

random variable, almost surely ®nite, that may also vary from line to line. The parameter �

will be supposed to be bounded by some value �0. F��:� is the centred Gaussian distribution

function with variance �
2
.

2. Oscillation of Gaussian processes

In this section, the interval I is assumed for simplicity to be �0; 1�, and Xt is a centred

Gaussian process with covariance function r�t; s�. We denote the incremental variance

V�s; t� � var�Xt ÿ Xs�.

The theorems of this section rest on the following hypotheses:

H1: There exists a non-negative even function a�:�, non-decreasing on R
�

, satisfying the

following conditions:

H1:1: a�:� is regularly varying at 0 with exponent �, 05�51, that is:

a�u� � u
�
L1�u� �u40�;

where L1 is slowly varying at zero (i.e. limt!0

L1�ut�

L1�t�
� 1 for all u40).
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H1:2: For all u; v 2 �ÿ1; 1� and all t 2 �0; 1�,

V�t� �u; t� �v�

a2���uÿ v��
! b

2
�t�; �! 0;

where the left-hand term is bounded above independently of t, �, u, v, hence b�:� is

bounded and non-negative.

H1:3:

a�2�� � Ca���:

H2: The covariance function r�: ; :� is twice continuously di�erentiable outside the

diagonal and there exists a non-increasing slowly varying function L2 at zero such that

for some �40 and for all t and s 2 �ÿ�; 1� ��; t 6� s,

@
2
r�t; s�

@t@s

�

�

�

�

�

�

�

�

�

�

� Cjtÿ sj
2�ÿ2

L2�tÿ s�:

� is the same as in H1:1.

De®ne C by

C � ÿ

1

2

�

1

ÿ1

�

1

ÿ1

juÿ vj
2�
d �u�d �v�

� �

1

2

:

Theorem 2.1. (General case). Suppose that the hypotheses H1 and H2 are satis®ed. De®ne

Z��t� as in (2). Then as � tends to zero,

(i) almost surely, for every integer k40,
�

I

�Z��t��
k
dt!Mk � E��

k
�;

where � is a random variable with distribution function

�

1

0

FC b�t��x�dt;

(ii) almost surely, for every interval J � I ,

��ft 2 J=Z��t� � xg� !

�

J

FC b�t�
�x�dt; x 6� 0:

Theorem 2.2. (Ordinary increments). Now de®ne Z��t� as in (1), and suppose that hypotheses

H1:1 and H2 and the following hypothesis H
0

1:1 are satis®ed:

H
0

1:1: For all t 2 �0; 1�,

V�t; t� �� ' �a����
2
b
2
�t� as �! 0

V�t; t� �� � C�a����
2
:

Then the conclusions of Theorem 2.1 hold (with C � 1).
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Theorem 2.3. (Stationary increments). We keep the same de®nition of Z� as in Theorem 2.2.

Suppose that the process X�t� has stationary increments, then V�t; s� � V�tÿ s�, a�u� can be

chosen equal to �V�u��1=2 and the function b�:� can be chosen to be identically one. The

variable � is a standard normal variable. If hypothesis H2 is satis®ed and if �V����
1=2

'

�
�
L1��� as �! 0, � 2 �0; 1�, then the conclusions of Theorem 2.1. hold (with C � 1).

Several results about the family of processes X��t� (in the general case) can be

summarized in the following proposition.

Proposition 2.1. Suppose H1 and H2 are satis®ed and 05�5� (� as in H2); then

(a) X��t� has almost surely C
1
sample paths;

(b) var ( _X��t�� � C�
ÿ2
a
2
���;

(c) var (Z��t�� ! C
2

 b
2
�t� as � tends to zero;

(d) for all 
5�, and t 2 �0; 1�,

j� _X��t�j � C!�


;

j� _X��t� ÿ �
0
_X� 0 �t�j � C!j�ÿ �

0

j



;

(e) jtÿ sj43� implies

cov� _X��t�;
_X��s�� � C�tÿ s�

2�ÿ2
L2

jtÿ sj

3

� �

:

Proof of Theorem 2.1. Let �40 and k be a positive integer. We de®ne the variable

Y
k

� �

�

1

0

�Z��t��
k
dt

and ®rst study its variance.

Proposition 2.1(b) implies that Z��t� has a bounded variance, so

var�Y
k

� � �

�

1

0

�

1

0

cov��Z��t��
k
; �Z��s��

k
�dtds

� C��

� �

jtÿsj43�

cov��Z��t��
k
; �Z��s��

k
�dtds:

To bound the second term, note that there exist constants Ck;p such that for every Gaussian

centred vector �U;W � and every k � 1; 2; . . . ; we have

cov�U
k
;W

k
� �

X

1�p�k

Ck;p��u;w�
p
��u ��w�

kÿp
;

where �
2

u, �
2

w and �u;w are the variance of U;W and the covariance of �U;W �, respectively.

By Proposition 2.1(e), when jtÿ sj43�,

cov�Z��t�; Z��s�� � C�
2
�a����

ÿ2
�tÿ s�

2�ÿ2
L2

jtÿ sj

3

� �

:
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Thus, for p � 1,

� �

jtÿsj43�

�cov�Z��t�; Z��s���
p
dtds � C�

2p
�a����

ÿ2p

�

1

�

u
p�2�ÿ2�

�L2�u=3��
p
du:

Now an elementary calculation shows that for every �40 we have
� �

jtÿsj43�

�cov�Z��t�; Z��s���
p
dtds � C�

1ÿ�ÿ�
:

Therefore

var�Y
k

� � � C�
1ÿ�ÿ�

:

The Borel±Cantelli lemma now implies that

Y
k

� ÿ E�Y
k

� �

converges almost surely along the sequence f�n � n
ÿa
; n 2 Ng for su�ciently large a. Now

Proposition 2.1(b), (c) and the dominated convergence theorem imply that

E�Y
k

� � ! E��
k
� as �! 0:

Thus Y
k

�n
converges almost surely to E��

k
�.

We now study the behaviour of Y
k

� for � between two consecutive terms of the sequence

��n; n 2 N�. Letting �40, we de®ne n by �n�1 � �5�n. Then

jY
k

� ÿ Y
k

�n
j � 1ÿ

�a��n��
k

�a����
k

�

�

�

�

�

�

�

�

�

�

�

1

0

�Z�n
�t��

k
dt

�

�

�

�

�

�

�

�

� �a����
ÿk

�

1

0

j�� _X��t��
k
ÿ ��n

_X�n
�t��

k
j dt: �3�

Since a is monotone and regularly varying at zero, �n=�n�1 ! 1 and
R

1

0 �Z�n
�t��

k
dt is

bounded, the ®rst term tends to zero. As for the second, let 
 be as in Proposition 2.1(d).

�� _X��t��
k
ÿ �� _X��t� � ��n

_X�n
�t� ÿ � _X��t���

k
� C!

X

1�p5k

k

p

� �

�

 p
��n ÿ ��


�kÿp�

� C!�

�kÿ1�

��n ÿ ��


:

Now j�n ÿ �j � Cn
ÿ�a�1�

and �n � n
ÿa
, so that the second term in (3) is bounded by

C!�a��n��
ÿk
n
ÿa
�kÿ1�

n
ÿ�a�1�


;

which tends to zero if 
 is su�ciently close to �. Relation (i) is then proved.

The moment convergence in (i) implies the weak convergence of measures in (ii) for the

®xed interval J � I . This implies that this weak convergence holds simultaneously for all

intervals J with rational endpoints. Then (ii) follows from a density argument. h

Proof of Proposition 2.1. (a) _X��t� has the following Riemann±Stieltjes integral representation:

_X��t� �

�

1

ÿ1

Xtÿud ��u�:

The continuity of the paths of Xt implies the result.
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(b)

var� _X��t�� � �
ÿ2

� �

R
2

r�tÿ �u; tÿ �v�d �u�d �v�

�

ÿ1

2�2

� �

R
2

V�tÿ �u; tÿ �v�d �u�d �v�;

since

V�t; s� � r�t; t� � r�s; s� ÿ 2r�t; s�

and
R

d �u� � 0. Now use H1:2, H1:3 and the monotonicity of a.

(c)

var�Z��t�� �
ÿ1

2a2���

� �

R
2

V�tÿ �u; tÿ �v�d �u�d �v�:

Use H1:1, H1:2 and the dominated convergence theorem.

(d) It is well known (Dudley 1973; Adler 1981) that for every 
5�, X�t� satis®es almost

surely a HoÈ lder condition with exponent 
 on the interval �ÿ�; 1� ��. So if �5� and �
0

5�,

then

j� _X��t�j �

�

�1

ÿ1

�Xtÿ�u ÿ Xt�d �u�

�

�

�

�

�

�

�

�

� C!�



�

�1

ÿ1

u


d	�u� � C!�



;

j� _X��t� ÿ �
0
_X�0 �t�j �

�

�1

ÿ1

Xtÿ�u ÿ Xtÿ�0ud �u�

�

�

�

�

�

�

�

�

� C!j�ÿ �
0

j



:

(e) Let jtÿ sj43�; then

cov� _X��t�;
_X��s�� �

� �

R
2

 �u� �v�
@
2
r

@s@t
��tÿ �u; sÿ �v��dudv

� C

� �

R
2

j �u�jj �v�jj�tÿ s� ÿ ��uÿ v�j
2�ÿ2

L2�j�tÿ s� ÿ ��uÿ v�j�dudv

� C�tÿ s�
2�ÿ2

L2

jtÿ sj

3

� �

: h

The proofs of Theorems 2.2 and 2.3 are essentially the same.

3. Oscillation of stable processes with independent increments

Now fXt; t 2 R
�

g is a symmetric �-stable process with independent increments ��41�. It

can be represented (Revuz and Yor 1991) as a `subordinated Wiener process': there exist a

standard Wiener process W�t� and a homogenous independent ��=2�-stable subordinator

Tt such that

Xt �W�Tt�:
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We de®ne ~X and ~T as the extensions ofX and T toR vanishing onR
ÿ

. The processesX� are

obtained by convolution of ~X with the functions  �. We de®ne a��� by

a��� � k k��
1=�
;

so that Z��t� � k k
ÿ1

� �
1ÿ1=�

_X��t�:

The following lemma will be required in the proof of the main theorem of this section; its

proof will follow after the proof of the theorem.

Lemma 3.1. For all real �51=2,

sup
�; �02 �0;1�; � 6� �0

�

1

0 j�
_X��t� ÿ �

0
_X�0 �t�jdt

j�ÿ �
0

j

�
51

almost surely.

Theorem 3.1. As � tends to zero,

(i) for all � 2 R,

Y
�

� �

�

1

0

e
i�Z��t�dt! E�e

i�X1
�

almost surely;

(ii) with probability one, for every bounded interval J and all x,

�ft 2 J=Z��t� � xg ! P�X1 � x���J �;

(iii) with probability one, for every bounded interval J,

�

J

jZ��t�jdt! E�jX1j���J �:

Proof. (i) Let g be a continuous function with compact support in R
�

and de®ne

Y �

�

R
�

g�t�X�t�dt:

Writing the integral as the limit of Riemann sums we get (AzaõÈ s 1990)

E�e
iY
� � exp ÿ

�

R

�

�1

t

g�u�du

� �

�

dt

� �� �

:

This implies that, for t4�:

Z��t� �
D
X1: �4�

In addition,

var�Y
�

� � � E
ÿ

Y
�

� ÿ E�e
i�X1

�

�

2
�

�

1

0

�

1

0

cov�e
i�Z��t�e

i�Z��s�
�dtds:
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The independence of the increments of X implies that, as soon as jtÿ sj42�, the integrand

vanishes, so

var

�

1

0

e
i�Z��t�

� �

� 4�:

This and the Borel±Cantelli lemma imply almost sure convergence of the functionY
�

� along

the sequence

�n � n
ÿa
;

for any ®xed a41. Relation (4) implies that the limit is E�e
i�X1

�.

We now use Lemma 3.1. Let �40, and de®ne n by

�n�1 � �5�n:

Then

jY
�

� ÿ Y
�

�n
j �

�

1

0

e
i�Z��t�

ÿ e
i�Z�n

�t�
dt

�

�

�

�

�

�

�

�

� �

�

1

0

jZ��t� ÿ Z�n
�t�jdt

� C�
j�
ÿ1=�

ÿ �
ÿ1=�

n j

�
ÿ1=�
n

jY
�

�n
j � ��

ÿ1=�

�

1

0

j� _X��t� ÿ �n
_X�n
�t�jdt

� C�j1ÿ ��=�n�
ÿ1=�

j jY
�

�n
j � C!��

ÿ1=�
j�ÿ �nj

�
:

Note that � ' n
ÿa

and 0 � �n ÿ � � Cn
ÿ�a�1�

, so that the ®rst term tends to zero and the

second is bounded by

C!�n
a=�

n
ÿ��a�1�

: �5�

Since �41, a and � can be chosen su�ciently close to 1 and 1

2
respectively, so that:

a=�ÿ ��a� 1�50;

and then relation (5) shows that Y
�

� ÿ Y
�

�n
tends almost surely to zero as n! �1. So Y

�

�

converges almost surely as �! 0, and the proof of (i) is ®nished.

(ii) We have proved in (i) that for all �, Y
�

� converges almost surely as � tends to zero. By

the Fubini theorem, for almost all !, Y
�

� tends to the function E�e
i�X1

� for almost every � as

� tends to zero.

The last assertion is equivalent by means of a standard modi®cation of the LeÂ vy±CrameÂ r

theorem to the weak convergence of the associated probability. The rest of the proof is

identical to that of Theorem 2.1.

(iii) Using the same separability argument as in the proof of Theorem 2.1, we see that it

su�ces to prove the result for the case J � �0; 1�. Denote by N�dx� the LeÂ vy measure of

the stable process X : N�dx� � ��=2� jxjÿ���1�dx. Let 
 (to be made more precise later on)

be such that 0 � 
51=�. For all �40, we de®ne the decomposition

X�t� �

�

jxj5� 

x�

�

t �dx� �

�

jxj� � 

x�

�

t �dx� � X
1; �

t � X
2; �

t ; �6�
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where �
�

t �B� � �t�B� ÿ tN�B�, B � fx: jxj4ag for some a40, and �t�:� is the Poisson

measure of the discontinuities of the process. The ®rst term in (6) is a Wiener integral with

respect to the random set function �
�

t �:�. The second term is given by a ®nite sum and X
1;�

t

and X
2;�

t are independent LeÂ vy processes. We ®rst give the proof in the case of ordinary

increments, i.e.

Z��t� �
Xt� � ÿ Xt

�1=�

and conclude by giving the modi®cations for the general case. The decomposition corre-

sponding to (6) for Z��t� is denoted by

Z��t� � Z
�1�

� �t� � Z
�2�

� �t�:

Let k:k1 be the norm of L
1
��0; 1�; ��. Since X

2;�

t is a step function,

kZ
�2�

� �:�k1 � �
1ÿ1=�

�

juj� � 

juj�1� �0�du�:

By the law of large numbers,
�

juj� � 

juj�1� �0�du� ' �1� �0�

�

juj� � 

jujN�du� � C�


�1ÿ��
;

thus

kZ
�2�

� �:�k1 � C�
���ÿ1�=���1ÿ
��

! 0: �7�

So it su�ces to study Z
�1�

� �t�.

E��Z
�1�

� �t��
2
� � C�

1ÿ2=�

�

jxj5� 

x
2
N�dx� � C�

��ÿ2� �1=�ÿ
�
: �8�

We calculate the variance

var

�

1

0

jZ
�1�

� �t�jdt

� �

�

�

1

0

�

1

0

cov�jZ
�1�

� �t�j; jZ
�1�

� �s�j�dtds:

The integrand vanishes as soon as jtÿ sj4� and is bounded using (8) otherwise. We have

var

�

1

0

jZ
�1�

� �t�jdt

� �

� C�
1���ÿ2� �1=�ÿ
�

:

Relations (4) and (7) imply

E

�

1

0

jZ
�1�

� �t�jdt

� �

! EjX1j:

As in part (i) of the proof, for �n � n
ÿa

with a4�1� ��ÿ 2��1=�ÿ 
��
ÿ1

almost surely,

�

1

0

jZ
�1�

�n
�t�jdt! EjX1j �n!1�:

Relation (7) implies that the same relation is true putting Z�n
�t� instead of Z

�1�

�n
�t�. For
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�n�1 � �5�n, using Lemma 3.1 with 05�5 1

2
, we have

�

1

0

jZ��t�jdtÿ

�

1

0

jZ�n
�t�jdt

�

�

�

�

�

�

�

�

� C! �
ÿ1=�

j�ÿ �nj
�
� ���n=��

1=�
ÿ 1�

�

1

0

jZ�n
�t�jdt

� �

:

The second term tends to zero almost surely, since
R

1

0 jZ�n
jdt is bounded. The ®rst is

bounded by

C!n
a=�

n
ÿ��a�1�

;

which tends to zero as n!1 if we have chosen � close enough to 1

2
, 
 to 1=� and a to

�1� ��ÿ 2��1=�ÿ 
��
ÿ1

so that a=�ÿ �a� 1��50, which is feasible. This ends the proof

for ordinary increments.

For general increments we have to remark that

Z
�i �

� �t� �

�

X
i; �

tÿ�u ÿ X
i; �

t

��juj�
1=�

juj
1=�

d �u�;

to get the same bounds (7) and (8) and to pass to the limit as �! 0 in
�

1

0 jZ�jdt in a similar

way. h

Proof of Lemma 3.1. Let 05�5 1

2
. On the interval �0;T1� �� the Wiener process satis®es

almost surely a HoÈ lder condition with exponent �:

jW�s� ÿW�t�j � C!jtÿ sj
�

t; s 2 �0;T1� ��:

We remark that � _X��t� is given by

� _X��t� �

�

�1

ÿ1

~Xtÿ�ud �u�;

so that

�

1

0

j� _X��t� ÿ �
0
_X�0 �t�jdt �

�

�1

ÿ1

�

1

0

j
~Xtÿ�u ÿ

~Xtÿ�0ujdt d	�u�:

By the Jensen inequality

�

1

0

j
~Xtÿ�u ÿ

~Xtÿ�0ujdt

� �1=�

�

�

1

0

j
~Xtÿ�u ÿ

~Xtÿ�0uj
1=�

dt

� C!

�

1

0

j
~Ttÿ�u ÿ

~Ttÿ�0ujdt

� C!j��ÿ �
0

�ujT1� �0
� C!j��ÿ �

0

�uj;

since T is non-decreasing, T0 � 0. Thus

�

1

0

j� _X��t� ÿ �
0
_X�

0 �t�jdt � C!

�

�1

ÿ1

��ÿ �
0

�

�
u
�
d	�u� � C!��ÿ �

0

�

�
: h
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4. Oscillation of martingales

We consider similar results for ItoÃ integrals fXt: t � 0g of the form

Xt �

�

t

0

b�s�dWs;

where fb�t�: t � 0g is adapted to the ®ltration generated by the Wiener process fWt: t � 0g

and b�:� is locally essentially bounded. We extend X ;W and b by 0 on R
ÿ

. De®ne Z��t� as

�

��

�
p

=k k2�
_X��t�, so that a��� � k k2=

��

�
p

.

Theorem 4.1. Almost surely, for every bounded interval J

��ft : t 2 J;Z��t� � xg� !

�

J

Fb�t��x�dt as �! 0; x 6� 0: �9�

Proof. Without loss of generality we suppose that J � �0; 1� and that

kb�:�k
1
�M;

where M is a non-random constant and where the norm is taken in L
1

��0; 1� �0��.

Check that for all t; 0 � t � 1,

�
1=2

_X��t� � �
1=2

_W��t�b�tÿ �� � �
1=2

�

t� �

tÿ�

 ��tÿ s��b�s� ÿ b�tÿ ���dWs: �10�

Almost surely, the distribution of the ®rst term on the right-hand side of (10), considered

as a function of t in the measure space ��0; 1�; ��, tends to that on the right-hand side of (9) ±

see Section 2 or Wschebor (1992) and take into account the continuity of the translation

operator on L
2
��0; 1�; ��. To prove (9), it will be enough to show that the second term in the

right-hand side of (10) almost surely tends to zero in L
2
��0; 1�; ��.

Put

R��t� � �
1=2

�

t� �

tÿ�

 ��tÿ s��b�s� ÿ b�tÿ ���dWs

�� � E

�

1

0

�R��t��
2
dtÿ �

�

1

0

dt

�

t� �

tÿ�

 
2

� �tÿ s��b�s� ÿ b�tÿ ���
2
ds

� �2
( )

� �
2
E

�

1

0

�

1

0

Y��t�Y��s�dtds

� �

;

with

Y��t� �

�

t� �

tÿ�

 ��tÿ u��b�u� ÿ b�tÿ ���dWu

� �

2

ÿ

�

t� �

tÿ�

 
2

� �tÿ u��b�u� ÿ b�tÿ ���
2
du:

It is clear that if jtÿ sj � 2�, then E�Y��t�Y��s�� � 0, so that

�� � C�; �11�
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where the constant C depends upon M and k k2. Relation (11) follows from the

Burkholder±Davis±Gundy inequality (Karatzas and Shreve 1988), the fact that M is an

upper bound for kbk
1
and

�

t� �

tÿ�

 
2

� �tÿ s�ds �
1

�
k k

2

2:

From (11) and the Borel±Cantelli lemma, we conclude that almost surely

�

1

0

�R�n
�t��

2
dtÿ �n

�

1

0

dt

�

t� �n

tÿ�n

 �n�tÿ s��b�s� ÿ b�tÿ �n��
2
ds ÿÿÿ!

n!�1

0 �12�

�n � n
ÿa

n � 1; 2 . . . ; a41:

Note also that almost surely

�

�

1

0

dt

�

t� �

tÿ�

 
2

� �tÿ s��b�s� ÿ b�tÿ ����
2
ds �

�

1

0

dt

�

1

ÿ1

 
2
�v��b�tÿ �v� ÿ b�tÿ ���

2
dv

�

�

1

ÿ1

 
2
�v�kb�:� ÿ b��vÿ1��:�k

2

2dv;

where b��vÿ1��z� � b�z� ��vÿ 1��. Using the bounded convergence theorem, the expression

above tends to zero. This, together with (12), implies that almost surely

�

1

0

�R��t��
2
dt! 0; �13�

on the sequence � � �n. To prove that (13) holds without restriction we use the bound for

all �40,

j� _X��t� ÿ �
0
_X�0 �t�j �

�

1

ÿ1

Xtÿ�ud u ÿ

�

1

ÿ1

Xtÿ�0ud u

�

�

�

�

�

�

�

�

� C sup
juj51

jXtÿ�u ÿ Xtÿ�0uj5C!j�ÿ �
0

j

1

2
ÿ�
:

This ®nishes the proof of the theorem. h

Note that the previous computations show that for every bounded interval J
�

J

jZ��t�j
2
dt

is almost surely bounded for �40, which implies the uniform integrability of fZ��:�; �40g

in L
1
�J; ��. So using Theorem 4.1 one obtains that almost surely

�1=��J ��

�

J

jZ��t�jdt! E�j�j�;

� being a random variable with distribution function

�1=��J ��

�

J

Fb�t��x�dt:
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5. Almost sure weak approximation of the occupation measure

Let g�t� be a real function de®ned over an interval I . We de®ne the occupation measure

ÿg by

ÿg�I � B� � �ft 2 I ; g�t� 2 Bg;

where I and B are Borel sets on the real line; and the number of crossings of level u,Nu�g; I �

by

Nu�g; I � � #ft 2 I ; g�t� � ug:

Theorem 5.1.With the hypotheses and notations stated in Theorems 2.1, 2.2, 2.3, 3.1 and 4.1,

almost surely, for every continuous real function f and every bounded interval J, we have

���a����
ÿ1

�

�1

ÿ1

f �u�Nu�X�; J �du ÿÿ!
�!0

�

J

�

R

f �u�jb�t�jÿX�dt; du�;

where � is a constant given by

� �

�p=2�
1=2
�C �

ÿ1
for Gaussian processes;

�p=2�
1=2

for martingales;

�EjX�1�j�
ÿ1

for stable processes:

8

>

<

>

:

For stable processes, the function b�t� is identically equal to 1.

Proof. We divide the proof into several steps. First, we use the following equality (Nualart

and Wschebor 1991).

For continuous f , R! R and g of class C
1
, R! R, we have

�

�1

ÿ1

f �u�Nu�g; J �du �

�

J

f �g�t��jg
0

�t�jdt: �14�

Next, we write

���a����
ÿ1

�

R

f �u�Nu�X�; J �du � �

�

J

f �X��t��jZ��t�jdt

� �

�

J

f �X��t�� ÿ f �X�t�jZ��t��jdt� �

�

J

f �Xt�jZ��t�jdt:

�15�

We study the ®rst term in (15). Note that in each case we have proved that
R

J jZ��t�jdt

is almost surely bounded. Over J, X��t� and X�t� are almost surely uniformly bounded and

X�t� is almost everywhere continuous, so f �X��t�� ÿ f �X�t�� converges almost everywhere

to zero. Thus the ®rst term tends to zero.

Let us look at the second term in (15). For each interval J we know that, as � tends to zero,

�

�

J

jZ��t�jdt!

�

J

jb�t�jdt �16�
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almost surely; this follows from weak convergence (Theorems 2.1, 2.2, 2.3, 3.1(i) and 4.1)

plus uniform integrability of the family fZ��:�; �40g in the Gaussian and martingale cases,

and from the direct proof (Theorem 3.1(iii)) in the stable case. Now a density argument

shows that (16) holds true simultaneously for all bounded intervals J. Hence, for every

function g : J ! R which can be written as a uniform limit of linear combinations of

indicator functions of intervals, we have, almost surely,

�

�

J

g�t�jZ��t�jdt ÿÿ!
�!0

�

J

g�t�jb�t�jdt:

That is the case for g�t� � f �Xt� if f is continuous since t! Xt is caÁ dlaÁ g. The equality
�

J

f �Xt�jb�t�jdt �

�

J

�

R

f �u�jb�t�jÿX�dt; du�

is obvious from the de®nition of ÿX . This completes the proof. h
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