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Inference in hidden Markov models I:
Local asymptotic normality in the
stationary case
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Following up on work by Baum and Petrie published 30 years ago, we study likelihood-based
methods in hidden Markov models, where the hiding mechanism can lead to continuous observations
and is itself governed by a parametric model. We show that procedures essentially equivalent to
maximum likelihood estimates are asymptotically normal as expected and consistent estimates of
their variance can be constructed, so that the usual inferential procedures are asymptotically valid.
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1. Introduction and basic results

Hidden Markov models, that is stochastic point functions of finite Markov chains, have
become important in a number of areas of application. These include, first and foremost,
speech recognition (for an introduction and survey, see Rabiner 1989); the study of
excitation periods in ion channels (for a survey, see Ball and Rice 1992), and models for
heterogenous DNA sequences (Churchill 1992). The main focus of these efforts have been
algorithms for the fitting of these models and, in particular (see Rabiner 1989), the
implementation of likelihood-based methods. It is, in fact, not obvious that the likelihood
can be computed in linear time, but that is the case. There has been comparatively little
work on the study of the inferential properties of likelihood methods in these models. The
notable exceptions to this are the papers of Baum and Petrie (1966), Petrie (1969) and, most
recently, Leroux (1989; 1992). Concurrently with our work, Rydén (1994a; 1994b) has also
pursued likelihood-based procedures in hidden Markov models.

Specifically, Baum and Petrie (1966) showed that, when observing a deterministic finite
point function of a finite Markov chain, maximum likelihood estimates of the parameters
of the model governing the chain are consistent and asymptotically normal. Leroux
formulated hidden Markov models in the generality we shall present and established
consistency of maximum likelihood estimates of both the parameters of the Markov chain
and the conditional distribution of the observations given the Markov chain. Unlike the
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Baum—Petrie techniques, which were used for establishing both consistency and asymptotic
normality, Leroux’s approach, based on results of Furstenberg and Kesten (1960) and
Kingman’s (1976) subadditive ergodic theorem, appears incapable of giving results beyond
consistency. On the other hand, we shall show, by adding a few essential ideas to the
penetrating analysis of Baum and Petrie, that the log-likelihood for hidden Markov models
obeys the local asymptotic normality (LAN) conditions of LeCam (see LeCam and Yang
1990, for instance). Hence, efficient analogues of maximum likelihood estimates can be
constructed, and the information bound giving their asymptotic variance estimated. We
shall also indicate how our results need to be strengthened to yield asymptotic efficiency of
maximum likelihood estimates, when they are consistent. Consistency of maximum like-
lihood estimates can also be established with our methods but under conditions slightly
stronger than those of Leroux (1992).

The paper is constructed as follows. In the rest of this section we formally introduce the
models we consider, state our main assumptions and results, and further discuss the
strengths and weaknesses of these as well as extensions and further questions, some of
which we intend to pursue. In Section 2 we give without proof some lemmas needed to
establish our main theorem, discuss the heuristic behind them, and give a proof of the
theorem based on these lemmas. Finally, in Section 3 we state more lemmas and give the
proofs of all the lemmas which may not immediately be derived from the work of Baum and
Petrie or others.

Formally we assume that observations (Yi,...Y,) € V", for some space Y, are dis-

tributed according to P1§">, 9 € ©, where © is an open subset of R” and described as follows:

(i) (Hidden chain.) We are given (but do not observe) a stationary ergodic Markov
chain Xi,...,X,,... with states {1,..., K}, stationary initial probability 7y(i),1 < i < K,
and transition probability matrix ||ay (7, /)| xxx-

(i) (Y; is a function of the present X; and an external randomization only.) Given
Xi,...,X,, the Y; are conditionally independent, and given X;, Y; is independent of
X,,j#i

(iii) (Stationarity.) The conditional distribution of Y; given X; does not depend on i.

(iv) The conditional distribution of Y; given X; = a are dominated by v, a o-finite
measure for all 7, a,9. The conditional density is denoted by gy( - |a).

We may then write the density of (Y7,..., Y,) with respect to product measure v as
gﬂ(yla"'vyn): Z .fﬁ(xlv'"7xn>yla"'7yn)7 (ll)
(xls“--,xn)
where

n—1 n
fb(xla ey Xy Vi e ayn) = 7T19(X1) Haﬁ(xj,xﬂrl) Hg19(yi|xi) (12)

j=1 i=1
is the joint density of (X;,...,X,, Y;,..., Y,) with respect to (counting measure)” x v®.

We denote the joint distribution of (X;, Y;),1 <i < oo, by Py, a probability on (£2,.4),
where (2 is the space of x,y sequences and A is the Borel o-field.
This model, more or less given in Leroux (1989), is more general than it appears to be at
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first sight. It includes all situations where Y; = h(X;_;; 1 <j < t,¢,19), 1 <i < n, where the

¢; are 1.i.d. and independent of the Xs and ¢ is fixed, since we can always take
(X14iy---sXi4i),i >0, as our hidden chain. We will need the following assumptions.

Assumption 1. For all ¥,a,b, ay(a,b) > v(¥) > 0.

Assumption 2. For all a,b, the map 9 — ay(a, b) has three continuous derivatives. Hence so
has 9 — my(a).
Note that Assumptions 1 and 2 imply that for all ¥, there exist § > 0,~(¥y) > 0, such that

inf{ay (@, 5) : [0 — dol < 8} = (V) (1.3)
inf{my(a) : [ — do| < 8} > 7(%). (1.4)

Assumption 3. The maps 9 — V log gy(y|a) have three derivatives for all y,a. Further, for all
Vg there exist 6 > 0, X > 0, such that if

q9,(»,6) = sup {|Vloggy(yla)| : a,[9 —Do| < 6},
then
Ey, exp [Agy, (Y1, 6)] < oo. (1.5)

Assumption 4. For all ¥ there exist 6 > 0,r > 32, such that if

go(yla) }
=su ca, b |9 =9 < by,
o) = sup { S 10—l

then

Ej,p5,( Y1) < o0 (1.6)

b

where the supremum is taken over {1<i<p/Jl=1,...,j,1<a<K,|[J—19 <6}
Assume, for all ¥, some 6 > 0,j = 2,3,

Eg, {(q0,/(Y1,6))*"} < 0. (1.7)

Let (X;, Y;), —0o < i < 00, be the two-sided stationary sequence defined by our model,
and

Assumption 5. Let ¥ = (V,,...,9,) and

a]
o9, .09, loggy(yla)

q9,;(,6) = sup {

1
WY, Yo, Yoq,..)= Y We(Yy, Yo,..0), (1.8)

m=—0o0
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where

Wu(Y1,Y),...) = By {Vlogg(Y,,|X,,)| Y1, Yo,...} — By {V1ogg(Y,|X,)| Yo, Y_y,...}
+ Ey {Vloga(X,,, X, 1) Yy, Yo,...} (1.9)
— Ey {Vlioga(X,,, X,:1)| Yo, Y_i,...}.

We show in Lemma 3.5 that, under Assumptions 1-4, W € L,(Py,), and we can then
define
I(¥) = Eg {wwT}. (1.10)

Fix 9, and let Ly, Py, E, be law, probability and expectation under ¥J,. Let ¢, = n 2,

Y, =9y + 76,, and
L) =% (y,,...,v). (1.11)
g9,

Our main goal is to establish the following theorem:

Theorem 1.1. Suppose Assumptions 1-5 hold. Then there exist A, random p-vectors, such
that if |1,| = O(1), then

lOgLn(Tn) = 7—/;rAn _%TI:IFJI’ITH +Rn(7—n)7 (112)
where
EyA, =0, (1.13)
EyN AT — 1(9), (1.14)
J, — 1(9y), (1.15)
AN (0, 1(9,)), (1.16)

Py(|R,(1,)] < niﬁ//z/en) < max{e,,n"'} for any e, — 0 and y < 2(1 — 16/r)/5 for r satisfy-
ing (1.6), and I(V¥y) given in (1.10).

Note that (1.12) is just local asymptotic normality in the sense of Le Cam. In order to
implement this result for inferential purposes we can proceed more or less as in Le Cam and
Yang (1990, pp. 57-65). We need the following assumption:

Assumption 6. The parameter ¥ is identifiable in the sense that if for some 9,9 € O,
Py =P for all n, then 0 =¥

Lemma 1.1. If Assumptions 16 hold, then there exists an estimate {15,,( Yy, ..., Yy) bas1 which

is \/n consistent. That is, for each ¥y,9, — Vg = Op,(5,).

Let the G, grid denote the set of all (£/;,..., £ jp)énn’”/ > where the j; are integers and ~
is as in Theorem 1.1. If Lemma 1.1 holds we can and shall, without loss of generality,
suppose that 9, takes on values in the G, grid only. Let

¥, = local maximizer of go(Y;, ..., Y,) on G, (1.17)
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closest to 9, among the points of the 8, grid, and, for given ¢,, define the matrix I, by,

) g{ a,n g'l?
Ly = —€, log { ——2leD20_(y, v, (1.18)
8,(4,0)80,(0,)
?§n(aab) :én+€n6n(ea+eb) (119)
where ey, ..., e, are the standard basis vectors and ¢, = 0. Thus, 1§n is a grid version of the

closest root of the likelihood equation to 9, and —1, is a second difference grid evaluated
version of the Hessian at ¢#,,. Then we have the following corollary:

Corollary 1.1. If Assumptions 1—6 hold, 19,1 is as in (1.17) and 1(9y) is non-singular, then

209, — 90)FUA(0, 17 (9)) (1.20)
1,20 1(9,). (1.21)

We are now able to construct asymptotically efficient estimates, tests, etc., by pretending
that 4J,, is approximately A/ (¢, 627! ). This result does not give what one would ideally like:

(a) that the maximum likelihood estimator (MLE) 9}, is asymptotically N (9, 6,1 " (9));
(b) that the Hessian of the log-likelihood at ﬁ:,n_]||(62/819,1819b)logg&;(Yl, el
converges in probability to —I ().

Part (a) requires y/n-consistency of the MLE and uniform (permitting 7, to be data
determined) LAN, while (b) requires consistency of the MLE and some sort of uniform
convergence of the Hessian. These are open problems.

Discussion of assumptions

Evidently using fy and Bayes’s rule we can construct maps from V" to {probabilities on
QA (y1,---30) — Py(+|y1,...,¥,) such that Py(-|Y;,...,Y,) is a regular condi-
tional probability on 2 given (Y7,...,Y,). The key property in Baum and Petrie (1966)
and our analysis is that (X;,X,,...) are an inhomogeneous Markov chain under
Py(-|yi,»2,...). Assumptions 1, 2 and 4 guarantee that, with probability 1, this chain
has strong geometric ergodicity properties which, among other things, guarantee the
existence of I(¢) in (1.10). Assumptions | and 2 can easily be relaxed by specifying that
only some power of the transition matrix needs to have all entries positive. Assumption 4 is
clearly not very demanding. Assumption 3 intersects with Assumptions 1, 2 and 4,
guaranteeing the validity of appropriate Taylor expansions. It is evidently a much stronger
moment condition than is required for valid Taylor expansions in the i.i.d. case. However,
we do not presently see how it can be relaxed. It evidently holds for Gaussian location and
scale families, for instance, as does Assumption 5, which is essentially a standard condition
of the Cramér type.
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Extensions

Two extensions worth considering are:

(a) dropping the requirement that the state space of X be finite;
(b) the case where the hidden process is a Markov random field.

Extension (a) includes most nonlinear ARMA processes which have been proposed (see
Priestley 1988, Tong 1991). Let ... e_q, €, €1, ... be an i.i.d. sequence of random variables
with distribution from a parametric family, {Fy}, and

ij:h(ej7€j,17...,79), 1 S]Sn (122)

Since X; = {¢;_ : kK > 0} isa Markov chain on R™ this falls under case (a). For a discussion
of Edgeworth expansions of smooth statistics in such models see G6tze and Hipp (1992).

Estimation of parameters in hidden Markov fields by ad hoc methods has been
considered by Frigessi and Piccioni (1990) and others. Likelihoods, even for directly
observed fields, are only computable by simulation, but extension of our approach
replacing likelihoods of the hidden process by pseudo-likelihoods may be valuable. See
Qian and Titterington (1991).

We intend to pursue special cases of both extensions. It also appears that extensions to
continuous-time situations where observations are not simply point functions of the hidden
process may also be possible and interesting. A simple example discussed in Daley and Vere
Jones (1989), and pursued by Rydén (1994b), is that of Cox processes driven by a finite-
state continuous Markov process.

2. Proof of Theorem 1.1

We begin with an outline of our proof of Theorem 1.1. Details are given at the end of the
section after the statement of some lemmas. Let Y,, = (Y,,...,Y,) and X,, be the
corresponding X block. Also define YS,I,Q = YmkH‘kark'and Xﬁ,k) be the corresponding X
block where 0 < m < N = n/k — 1. To simplify the notation, we assume that n is a multiple
of k. W argue in II below that if k& does not divide n we can neglect the resulting end effect.
For convenience we use the subscript 7 in the following to stand for ¥, = ¥, + 7,6, where
{7,} is a bounded sequence. Let /T(Y,(ff)|ka+1) denote the conditional likelihood of Y
given X, ., and let

Z P, kaJrl = a‘Yl,mk]/T(Y%()'a)

K
[

L, =% (2.1)
[

K
D Po[ Xyt = a| Yy ullo(Y|a)

a=

—_
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denote the likelihood ratio of Y{' given Y . Also, let

mk+1 - a|Ymk dmk]/ ( }(1]’f)|a)

L) =

rm —

, (2.2)

Mw l“\_Ma

PO mk+1 — a|Ymk dmk]KO( I(’I/’:)|a)

Q

denote the likelihood ratio of Y¥) given Y, dmi> and

W x,
L‘T’m = / ( m | mk+1) (23)
/0 Wl ‘kaJrl)

the likelihood ratio of Y§,1,‘> given X, 1.
1. Write

log L, (T

(Yl,...,Yk) (2.4)

™m
m=1 Yo

and

N x
Z logL., = Z log L%, + Z log ( L:LT’”)) (2.5)
m=1

™™m

Taylor expanding, we get

_r* N N _r*
Zlog<1 + TmL* L )> = Z(er - L:m) - Z(LTmL%W”)(ij - 1)

m= m=1 m=1
A (L‘rm B L:m ) :
m=1 (L?;m)

I1. We expect |L,,, — 1| = Op, (k/n)"/*. We shall establish this and, in so doing, also show
thatif n = Nk +r,0 < r < k, then the difference between log L, (7) and log L, (7) is 0p,(1).
Further, X, X5,... remains a Markov chain given the Ys. Although the chain is not
stationary, it satisfies a strong mixing condition. Thus, we expect that the knowledge of Y's
and Xs in the distant past adds very little information to the present and
|L. — L] = OPO((k/n)1/2) so that we can and do show that the last two terms of (2.6)
are negligible. The second term in (2.4) is also negligible. This uses arguments based on the
Baum and Petrie (1966) results which are stated under our conditions in Lemmas 3.1-3.4.

IT1. We write the first term as

- % (14 R,) (2.6)

N

( Tm_ ‘rm - Tm +Z ™ 7'm (27)

1 m:l m=

Mz

3
Il

We show that the second term is negligible for d — oo, d = o(k) using Baum and Petrie
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again, and that the first term is negligible using uniform mixing and the Ibragimov—Linnik
lemma (Lemma 3.7 below).

IV. We Taylor expand Z%zl log L;,, in 7 and apply uniform mixing to show it has the
LAN structure.

V. Finally, we evaluate /(¢,) necessarily by a different starting formula than that of
Baum and Petries, but again rely on their results to dispose of possible long-range
dependence.

The proof of Theorem 1.1 is based on the following lemma whose proofs are given in the
next section.

We adopt the following notation. We say

A, = Oy, (a,) (2.8)
if and only if there exists some M, c¢(-) \, 0, such that for all M > M, and n > n(M)
POHAn‘ > Man} < C(M)bw

In particular, Oy(a,) = O(a,) and O,(a,) = Op (a,).

Lmma 2.1. If Assumptions 1-4 hold, r > 16,k = n* /M7 ¢ > 2/r,4e+~v < 1/2,7 >0, then
Sor any || < M,

N
Z IOg (er/Lj—m) = Oe,, (n—~//2/en) (29)
m=1
for any e, — 0,ne, — co.
Lemma 2.2. If Assumptions 1-5 hold, r > 32,k = n**7 4 + v < 1/4, then

N
EO sup { Z IOg Lj'm - 5nTTV IOg /0 (Yﬁtl;) | Afmkﬁ-l )
[7|<M m=1

5 819,-;9]. tog (o (Y | Xy.) | } = 002/, (2.10)
where ||a;;|| is the matrix with entries a;;.
Lemma 2.3. Under Assumptions 1—4
tim o (Vioe /oY1) (Troesu(vix0) b =10y )

where I1(¥y) is defined as in (1.10).
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Lemma 2.4. Under Assumptions 1-4, if k = o(n), then

I T ) Po
;Z EO{vv log {O(Ym ‘ka+1)|ka+l}_) 1(190) (212)
m=1
1 N
Y ES IV log /(Y [ X)) Kok} = Oy (1) (2.13)
m=1
max Po18,V 1og £4(Y\ | X)) = € Xoger1] = 0p, (1) (2.14)

where VNTh = (Vh)(Vh)T.

Lemma 2.5. Under Assumptions 1—4,

—Z

2

0
90 aﬁbIOgZO( m |ka+1) _1(190) (215)

Proof of Theorem 1.1. From Lemma 2.1 we see that if 7 = 7, we can replace the left-hand
side of (2.5) by SN_ log L ,, + O, (0 Je,) if k = n*™ e > 2/r, 4 + v < 1/4.
Lemma 2.2 now guarantees that

N
ZlogLTm 8uma Y V1og £o(Yy) | X1 (a)
m= m=1
N
0 log

+ 06 (n71/2+86+2'\//€n).
Let
Emn = 6n7-r;rv 10g KO(YE»];)lekJrl)v I <m<N. (b)

We claim that this is a triangular sequence of martingale summands with respect to the o-
fields 7, = o(Xi pmr1)is15 Yi,0mr1)x)s 1 < m < N. This follows from the Markov property
which gives

1 / :
EO{/((; (Y$)|K71k+1f(m—l)n} EO{(i ( 1(11;)|ka+1)|ka+1} =1 (C)

and the usual interchange of differentiation and integration. Further, I(¢,) is well defined
and by (2.12),

N PO
Z (gmnlf (m—1 n>—) Tn (190)7—177 (d)
m=1
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and by Lemma 2.4,

N
Zl EO(ggml('gmn‘ 2 6)'-7:(11171)n) (e)

N
1/2 /04 1/2 _
< ZEO (§m11|f(mfl)n) 1?;11?;( PO [|€mn| > 6|‘f.(mfl)n} - OP()(I)'

m=1 N

The central limit theorem for triangular arrays of martingale summands (see Hall and
Heyde 1980, for example) establishes that

N
6,73 T log /(Y1) X, 1) EEN (0, 771 (3)7). (0

m=1
Finally, Lemma 2.5 establishes that the last term in (a) tends to — %TTI (9¢)7. The theorem is
proved. O

Proof of Lemma 1.1. We construct a minimum distance estimator. The proofis based on Le
Cam (1956). The construction is simple under the assumption that, for some k < oo, the
map 9 — Pﬂk is one—one and ©-compact. In that case it is possible to construct +/n-
consistent estimates by considering P,g”, the empirical distribution of the vectors
{Y,p:0<b<k—1},for 1 <a<n-—k+1. See Rydén (1995) for a proof that k = 2K
under somewhat different conditions than ours, and Rydén (1994a) for the construction of
the \/n-consistent estimator. In general, let © = U, ©; with Q’ﬂ D ©;,j > 1 compact sets,
and define 7, = {tr € ©; : n_1/4dK(P£f), PR = Minyeq, dK(Pf9 ,P,Sk))}, where dg (-, +) is
the Kolmogorov distance. Then let ¥ € T, where T, = T, with T,;; non-empty and
radius less than n~"/* and minimal jt+k O

Proof of Corollary 1.1. The corollary follows in a standard fashion by the methods of Le
Cam (1986) and Le Cam and Yang (1990). Let Gy, = G, N {9 : [0 — 95| < Mn~"*}. Note
that there are O(nW 2) points in G,, . Write R, = R, (7) for the remainder term in (1.12). It
follows from Theorem 1.1 that

Pyl sup |L,(7) —TA, + T > € (a)
™ 126Gy,
<O0m"?) sup  Py(|R,(7)] > €) (b)
™2y,
P
%o

Hence 4, is within distance OPO(n“ﬂ)/z) of
n ' Pargmax {77A, ~ LT} =020 NA,, (c)

which proves Corollary 1.1. O
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3. Further lemmas and proofs

We begin with four lemmas which are straightforward extensions of key results of Baum
and Petrie (1966) (Lemma 2.1, Lemma 2.2 and Corollary 2.3) valid under Assumptions 1-3
and hence the proofs are omitted. They contain the essential information that knowledge of
ys and xs in the distant past adds very little information to the present. Lemma 3.1
guarantees strong mixing conditions.

Let

po() = (14 (K = 1)y () pg, (1)) -

In what follows we write Py(A|B,yi,...,y,) if Py(A|B,Yy,...,Y,) is a version of the
regular conditional probability of A4 given B, Y1,...,Y,, and PY(A|B,y1,...,»,) is defined
forall 9,4, Band yy,...,y,. This is easily done if we can define densities g (y|x) valid for
all 9,y and x.

Lemma 3.1. For |9 — 94| < 6 and all 9,

Py[Xipr =b|X; =a,p1,...,pa] = po(yiz1) > 0. (3.1)
Lemma 3.2. If C, is an event depending only on X; Y;i>t, then for all
|?9_190| < 67190761 > 2;

|P19[Cl|yt717 s ,ytfdel] - P19[Cf|yr717 s ,ytde
t—1

t—1
< I (1—2uo(y,-))§e><p{—2 > uo(y,-)}

j=t—d+1] j=t—d+1

Lemma 3.3. Let C, be as above, let
Mj(,l?) = mng Pﬂ[Ct|yl7 s 7ynaXt7d = a]7

and define M; (9) as the corresponding minimum. Then, for all 9, |9 — 9| < 6,

M (9) - My ()] < (1= 2p0(37))- (3-2)

Lemma 3.4. If assumptions 1 and 2 hold, then for all 9y,|9 — 9y| < 6,y1,...ys,a,b,
Py[Xsp1=alyi, ..,y X1 = b] > 4(dy). (33)
The following two lemmas are of general utility in missing-data models.
Lemma 3.5. If P> Q.¢" = dQ/dP, T € L,(Q), and B is a sub-o-field, then
Ep|Eo(T[B)] < EJ{| T ES (e }EY (e ), (3.4)
where 1/r+1/s+ 1/t = 1.
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Proof of Lemma 3.5. Note that

EP(Te |B)

Fol B =, e 7wy

(@)

So (3.4) is bounded by

Ep|Ep(Te"|B)Ep(e|B)| < Ep{|T[e"Ep(e *|B)} < E)'{| T|'}E/ {e" JE)/"{e ™).
O(b)

Lemma 3.6. Let 9 — Uy, ¥ € R, be continuously differentiable, where Uy( +) is a stochastic
process on (Q, A),B is a sub-field of A. Then, if Py < v and {3y = dPy/dv, suppose

1) v — glogﬂ,

aU,

(i) 9 — Ey|— 29

(iii) ¥ — Ey[U2]

9 2
(iv) ¥ — Ey (%log /19)

are all continuous. Then,

P ouU,
Sy EalUB) =y (52

) —&—covﬂ{ (Uﬁ’;ﬁbg{ﬁﬂ } (3.5)

Proof of Lemma 3.6. Write A(¥,9 + A) =log(£yin/ly)s

G
(Uz?+Ae
E (eA(ﬂ JO+A) |B)

(9,9+A) | B)

Ejia(Upia|B) =

Then
0 A(0,0+A) 0 A(D,9+A)
819 1)(U1)|B) 8A (U19+Ae |B)| A=0 _EU(U19|B) 8AE (e ’ |B)|A:07 (b)

provided the right-hand side exists. Interchange of integration and differentiation may be
justified under our condition by a delicate but standard argument we do not reproduce. We
get that the right-hand side of (b) is

B ©

E, <8U§
and (3.5) follows. O

B) + E§<U"96%10g{19

0
B) — Elg(U19| B)Elg <a—1910g /,19

oY

We also need a basic lemma (Theorem 17.2.2) from Ibragimov and Linnik (1971 p. 307),
which we quote for completeness.
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Lemma 3.7. If &,n have joint distribution P with marginals Py, P, such that
|P— (P x Py)|| <, where ||| is variational distance, and, for some & >0, and
E|¢]*™ < ¢;, E[n[** < ¢, then

[E(én) — E(OE(n)| < ca' ™, (3.6)
where 3=2/(2+6) and ¢ = 4+ 3¢/ e; 1 + 3¢,
Here are the additional lemmas we need to carry out I-V from Section 2. Let

'rlm(a b) [ i+l:b|Xi:a7Y15"'aYm]' (37)

Lemma 3.8. In our model, if 1 <i<m—1,

fr }
E Xim Y Xi=a, X1 =b,Y,,
O‘rim(avb): {f ( 1 1M>| +1 1 (3 8)
i,m ,b T .
0., (a ) EO{f (Xl val n)|X =1 Yl m}
f
Proof of Lemma 3.8. Note that
Jr
{f (Xl I11?Yll11)1(Xi+1 = baXi = a)|Y1J11)
P.[Xy =b,X; =d|Y,,] = B~ 7 (a)
EO{fT (leaYl m)|Y1 m}
EO{;TT(Xlrn?Ylm)l(Xi - a)lYlm}
P’r[Xl_a|Ylm} = 0 (b)

{j;: (X1n17Y1 m)l( - a)lYlm} = EO{fT (X1)117Y1 m)‘X =1 Yl m}PO[ - alYlm]

f
(©)
Substitute (a), (b) on the left-hand side of (3.8) and simplify using (c) and an analogous
expression for the numerator in (a) to get the right-hand side. O
Let
S, ={(a,b,i,m,7):m—i<d, 1l <m<n|r| <M}
and

EOm() EEO('|Y1,n1)7PTm(') EPT('|Y1,m)7 ete.
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Lemma 3.9. Suppose Assumptions 1, 3 and 4 hold and
d, = o(n'?/logn). (3.9)
Then

} =1—o(n"). (3.10)

| —

PO |:11’1f EOm{‘f;—(Xi.nnYi,m”Xi =da, Xi+l = b} Z
S, foo v

Proof of Lemma 3.9. From (1.2), if |7| < M,

fT

m—i+1
A (X Yim) > <1nf—(c d)) : inf’" () exp{ — M, E:qo (Y;, M6,) } (a)
JO

c,d Oy ¢ T

By Assumptions 1 and 2, if |7| < M then the first two terms are larger than (1 — r7)" ! for
a fixed r = r(M) < oo, so that

F,
1nfEOm{ (szijm |Xi = aaXi+l = b}

Jo
> (1+ 0(1)) exp {(~(dy + 1) M8, max, go( ;. M5,)}. (6)

But by (3.9) and Assumption 3, for some A > 0,
PO |:]I];13.i( qO( Yja M611) > (IOg 2)/Md116n:| (C)
<j<n
< nPylqo( Y1, Mé,) > (log2)/Md,s,]

< nexp {—A(log2/M)c, logn }Ege*9o Y1:M0)

where ¢, — oo and (3.10) follows. O

Lemma 3.10. Suppose Assumptions 1-4 hold and e >2/r. Suppose d, — oo,
d, = o(n'*/(logn)*). Then

sup
Sy

Srnim (g, p) - 1‘ = 0y),(n”"*). (3.11)

Q0 im
Proof of Lemma 3.10. By Lemmas 3.8 and 3.9 it is enough to show that
sup{

S’I

Jr

_E0m< (lesz m)‘X ain-H =cC
Jo

=0, (n”'*"). (a)

EOm (j: (Xl maYl m)|X =da Xl+l - b)
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Consider the three Markov chains X7, j,..., X, X7, -, X X741y, X . Here
{X}} and {X}} are independent, both with transition probablhtles @, jm from j
to j+1,i<j<m, with Y;, held fixed, X;=X},,=a X}, =bX{ =c Also
X/ =Xt <T)+X,1((>T), where T = mm{/ X/—X',,',l</§m}/\m. Note
that

{X7:i<¢<T} and {XJ :i</ < T} have the same distribution. (b)

Further, if E,,, Py, now refer to probabilities on the space on which the data and the
X}, X7, X} are defined.

T fT
EOm(/z (Xl nnYzm)|X =da Xl+l _b) E0m<f (X1m7Y1 m)'X =a X1+1 =c (C)
T e )‘
Em szaY - XimaYi‘.
o (5 (X ) 2 (X0 X, )
EOm |:<§(‘:; (Xl Tin,T) _%(XgilTin,T)>
e - Q,
._O(X,TJrl)f (XT+17 : 7X:117YTJrlv"'vYm)_(X/TvX/TJrl):H' (d)
T Jo Qp

By Assumptions 1 and 2, for |7| < M, d, as above, there exists ¢(M ) < oo such that, if
An = max{qO( Yj7 M6n) 01 S] < I’Z},

Ir

exp{=8n(T = 1)(Mdy + )} <7 i Yir) Sexp{6,(T —i)(MA, + o)} (e)

The same holds if Xﬁ» 7 is replaced by X7’ ;.7 and also
I

f() (XT+1 vaT+l m) < eXp {6 dn(MA + C)} (f)
By Assumption 3 and (c¢) of the proof of Lemma 3.9,
A, = 0,1 ((logn)?). (2)
Then, from (d), (e), (f), and (g), (a) follows if
sup {Eq (" —e” )} — 0, (n™127) (h)
S)’l
for
a, = O(8,(logn)?). (i)
Now,
i+t )
POm[T>i+t]§ H (I_K/LO(Y/))7 (])

J=1+1
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since for j > i

POm[X_;'+1 = /+1|X =4, XN = b Zao,_/,m(% C)ao,i,m(bv C) 2 K‘Ll,%( Y_/’—O—l) (k)

by Lemma 3.1. But, by Assumption 4

2 1/2
. 2 Y ((K/bn) —-1) _ -1
Po| i (K131} < | = 2o (1)} > = o)
if
by = o(n?""). (m)
Note that for any integer-valued random variable N > 1
Ea® —a—i—z " _a"YP[N > 1] (n)

From (J) (1), (n), if b, = o(n 72/'), b,n/(log n) — 00, then a,, = o(b,) and, with probability
1—o(n),

max {EOm(e(T*")“” — ef(Tf’A)"") cm—i<d, 1 <m<n}
< ean —e —day + Z n _ an 11)

— ean _ efan + (ean _ l)eal17br1(l _ e(Ll,,*h,,))*l
= O(an(bn - an)il)
= 0(a,b;")
and (a) follows from (h). O

Lemma 3.11. If Assumptions 1-4 hold, ¢ > 2/r, then
S}g‘lp |P‘rm[Xm = a] - POm[Xm = a” = OI/n(nil/erZG)‘ (312)

Proof of Lemma 3.11. For fixed alet V., ,, € RX be the column vector with coordinates:
V. /,m( ° )P'rm[A/m = a|X/ = ']a /< m. (a)

T,

Then,
Vr,f,m =CQr/m-+- O m—1m Vr,m,m' (b)

By Lemma 3.3

m—1

sup (V7 /(D) = Ve pm(©)| el < MY < T (1 =2pp( ;) ™™ V5 (c)
Jj={+1
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where
B, =2 1glj.lgnuo( Y;). (d)

Then
Sup {|V,./.m(B) = Vi s ()"0 b e |7 M < m} = O0,1(1) (e)

ifb, = 0(’172/,.)’ by arguing as in (1) of Lemma 3.10. Therefore, if ¢, ; , = K's, Vi m(b)
then

Sup {1V .m = co.p e s, 7] < M} = 0,4 (1), ()
where || - || is the L., on R" and 1 is the vector of Is. Then from (b),

” V‘r:/,m - VOA,/,m” = ”aT,Am VT,{'+l,m - aO,/,n1V0,/+1,m||
+ || VT,/+l,m - VO,/+1,111||' (g)

Further, from Lemma 3.10, if m — ¢ = o(n'/?/(logn)?), b, = o(n~>'"), then

S ||(a7,/,m - O‘O,/‘m)VT,/Jrl,m'

—(m—(—1)b
H(a‘r,/,m - aO,/,m)VT,/H‘mH S PnC (m=¢=1) ", (h)
where p, = 0,-1(c,), ¢, = n~ />, since
(ar,fﬁm - O‘()A,/,m)l =0. (1)

Iterating (g) and using (h), we get, if d, = o(nl/z/(log ”)2)7bn = o(rfz/"),
sup {” V‘r,/,m - VO,/,m” m—/ S dnv |T| S M} = 011’1 (Cnb;l)' (J)
Finally,

|P‘rm[Xm = a] - POm[Xm = Cl]|

S Pl X, = DV, (b) = Pou[ X, = b] Vo,f.m(b)}’
b

< Z(P‘rm[X/ = b] - POm[X/' = bDVT/m(b) + ”VT,/,m - VO/,m”' (k)

b

By (f) the first term in (k) is, if m — / > d,,, equal to O,-1(e"“"). If we use (j) and put
b, =n"%d, = n‘(log n)z, the lemma follows. O

Lemma 3.12. Under Assumptions 1-4, if k = o(nl/zfﬁ’),for some vy > 0,

sup {

- )
70(Y1(1]1\)|ka+1) =1} |T| < le <m< N} = Olvn(n 7/2) (313)
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Proof of Lemma 3.12. Note that for any p > 1,

P
Eosup {72 (V10— 1 s ol < e |
_ fr 3 w]|".
= Eysup < |Eg 7T( )fo(xo 7Yo )= L)X, Y || s < M

<+ <1>>Eosup{jf;

But, for any differentiable function A(¢) with 4(0) =0,

(xW0 yWhy — 1’,,: |T|<M}+0(1).

sup {‘e/’(ﬁ> - 1‘, |9 < 6} < ssup {4’ ()]’ : 9| < 8§} < EMMe,

where Mg = sup {|4'(9)] : |9] < 6}. We conclude that

JC; lp:|T|§M}

P a
< (M8,)F {(Zq (Y;, Mé,) ) exp [pMénzk:Q(Yj,Mén)H,

J=1

EOSUP{ (XO 7 ))_

where
4(y,6) = q(y,6) +sup{|Vlogay(a,b)| : [0 — o] < é,a,b}.
Bound the right-hand side of (c) by

p(1+e)
(M6,)"E/ ) (Zq Y;, M6, ) Eg/“*‘){exp

The second term in (e) is bounded by
kP [Eo " (1, M) 1V
use Assumption 3 to bound the third by

1 ke/(14€)
[maXEo{exp (MM(an( Yl,Mén)) ‘Xl = aH
a €

-(: #Z}jj)k‘/“m 4 o(1)

since k = o(n'/?) and 8, — 0. Therefore,

Po[ sup {“( m|ka+l>—1\} nv/ﬂ<0<>"<k6>f’nf’f/2—o< 0
1<mr<M<N /0 k

if k= 0n"*7),p>2+3/.

p(1+ ) M6, &
+e) 5”§ (Y;, Ms,)
J=1

Ritov
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Lemma 3.13. Under Assumptions 1-4, if k = o(n"/*>™), for some v > 0 and ¢ > 2/r

L, —L:
sup {MMT‘F’”' 1 <m< N, |T| < M} = 01/)1(n71/2+26)' (314)
m

Proof of Lemma 3.13. By (3.1)

. 7 { .
min —T(Y,(7];)|Q)BT(YL”1]€) < LTm max _T(YS)]‘:)|Q)BT(Y1 mk) ) (a)
a /0 : a fo ’
where
> P X = al Y 1ulto(Yia)
B (Yim) =< : (b)
ZPO[XM/C+1 = a|Yl‘mk]/0(Yi(711{)|a)
a
But

P_[X, =alY
|BT(Y]7”1]€) o 1| S max T[ mk+1 (1| l,mk} o 1 ) (C)
a PO[ka+l = a|Yl,mk]
It follows from Lemmas 3.11 and 3.4,
sup{|B,(Yi ) — 1| :|r| <M, 1 <m< N} =0,(n ") (d)
On the other hand,
/T T .f’T K K <
) = XV = ¥ (0
/O T ﬁ)

so that by (a) of the proof of Lemma 3.10, if k = o(n'/?/(logn)?), then

sup{ ?(Yfff’la) —?(Y,S’f)b)‘ s, || < M, mb} — 0,1 ("), )
0 0
From (a), (d), (f) and Lemma 3.12 we obtain Lemma 3.13. O

Lemma 3.14. Under Assumptions 1-5,

EOXN:|L:,,,—1|=0(<%)”2>. (3.15)

m=1
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Proof of Lemma 3.14. Note that

Eo{| L7 — 1| Xy = a} = | £ (Y1 k| X1 = a) = Lo(Y1 4| X1 = a)||, (a)

where || - || denotes variational distance. Therefore,
Eo{| L7 — 1]| X1 = a} (b)
SNLAK e Yl Xy = a) = Lo((Xy i, Yo )| Xy = a)| ()

< 2H(‘C0,aa ‘Cla)(z - H2('C0av *Cla))l/zv

where L,, L, are the laws in (c) and H is Hellinger distance, by a standard inequality (Le
Cam 1986, p.47). But

1/2
1 _HZ(‘COm‘Clu) :EO{(_T> (Xl./mYl,k)'Xl :a}

fo

i=1
1/2
gr
) (vilx;
(&) 00

| X :a}. (d)

k
— H Eo{e(l/z) log (g,»/go)(YfIXf)} (e)

i=1

But

k
[]E
i=1

k 2
) .
> [1[1- 2 rRr Bl (Yi b8, + bl 1i M, ) 20y
i=1

1-of)

by Taylor expansion and Assumptions 3 and 5. Similarly, by Assumptions 1 and 2:

EO{ (%) l/z(a)ﬁ@—;) 1/2(Xi7X,-+1)|X1 - a} >1- 0(%‘). (f)

Finally, we conclude from (e) and (f):

ZK:H2(£OG, L1,)mo(a) = 0(") (@)

a=1 n
The lemma is proved by (a), (b) and (g). O

Lemma 3.15. If LY is given by (2.2), r > 8,k = 0(’11/2—7) for some v > 0, d = n‘ log *n,
€ > 2/r then

sup {| L) — L.l :|7| <M, 1<m<N}=0,(n""). (3.16)



Inference in hidden Markov models I 219

Proof of Lemma 3.15. By Lemma 3.2, if B, is given by (d) of Lemma 3.11,

ISUENH PT[ka+l = a|Ymk7d,mk] - PT[A/mk+1 = a|Y1,mk]|} (d)
Il <M
mk—d—1 mk
< — )
< glg)f{ > H (1= 2p0( YJ))}
=1 j=r+1

< ef(dil)Bn

“l-eb

= Ol/n(n_l_ze)

by arguing as for (I) of Lemma 3.10. But, by Lemma 3.1,

Po[ X, =alY,,| > I?ilflao,/—l,n(a,b) >min{uy(Y;) : 1 <j <n} (b)

and, hence

Po[min Po[X, = alY, ] 2n ] =1~ o(n"). (c)
o ,

But, arguing as for Lemma 3.13,

Lo = L)1 < Apr) max 2 (V39 1a) + Ap(0) Lo (@
where
P X1 = a| Y1 il = Po Xoir1 = a| Yok d
By (a) and (c),
sup {4, (7) - m, 7] < M} = 0,1 (n” ") ()
and Lemma 3.15 follows from (d), Lemma 3.12 and Lemma 3.13. O

Lemma 3.16. Suppose Assumptions 1—4 hold. Let d = n“(logn)*, ¢ > 2/r, and k = n**" for
some v > 0,4+~ < 1/2, so that r > 16. Then

2
Eo{ (Z(LL‘ZJ - L:,ﬂ)) } =0(n"). (3.17)

m

Proof of Lemma 3.16. For any fixed u, we first bound

d)\u PT /T !
Bo{(L9)) }<Eo{(mgx;0[xmk+l — Yt mgx7o<Y£f>|a>) } (a)
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Now the first term in (a) is uniformly bounded by Lemma 3.4. The second is bounded by

(m+1)k
exp {Ménu 3 ol Yj,Mén)}. (b)
Jj=mk+1
Thus, if k£ = o(nl/z), by Assumption 3, for all u, eventually
EO( Tl’ﬂ) C (1 + C26n)k < C3' (C)
Similarly,
Eo(L7n)" < Cy. (d)
Now,

/ .
L9 < 7yl b
| Tﬂ1 Tm| —_ nzgjx /0 ( m ‘a) / ( | )

‘) P.
-+ max —- (Yi(1]1(>|a) max|—= [)(;7zk+l = a|Ymk7d mk] -1 (e)
a ZO a | Py ’

= 0,1 () + 0, (n12)

by (f) of Lemma 3.13, Lemma 3.12, Lemma 3.4, Lemma 3.11 and (a) of Lemma 3.15. Let
¢, = en” 22 for some large enough c. Note that

E0|LS.0,1”) - Lim‘2+86 < C2+8€ +E {|L(d) 7-m|2+861(|L7m - -rm‘ 2 Cn)}

<G EPT(ILG) - L3, PO L) - Ll < e} ()

< 2Cﬁ+8(

for large enough n.

We will apply Lemma 3.7, with 6 = 8¢. Note that, if d < k, by the geometric ergodicity of
the chain under Assumptions 1 and 2, the variational norm distance between the joint
distribution of (L ( 1 — L7, L(T‘,Qz — L7,,,) and the product of the marginals is bounded by
celm=rml for some C < 00, & < 1 and all m,, m,. Hence, using (f) above,

N 2

* n _n

EO{ <Z(L<Tii2 - Lm)> } =0(%a) = 0(™) (2)
m=1

under our conditions on k, ¢,,. o

Proof of Lemma 2.1. 1t is enough to show that all terms on the right-hand side of (2.6) are
o,, (n~7?/e,). The first term is equal to

Z( ™m 'rm + Z 'rm Oe,,(n7W/ze;1/2) (a)

m=1 m=
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By Lemmas 3.15 and 3.16. The second term can be bounded by

sup {12l S0, 1 0, (2 (1) ) = 0,0 R )

1<m<N
[rl<M

by Lemmas 3.13 and 3.14. Finally, the third term is negligible since

|L7'm B L:m| -2
|R,| < (1 —sup T:lgmgN,MSM =0,(1) (c)
and
> () -
Tm TI‘H —
: = Oyu(n), (d)
m=1 LTm
both by Lemma 3.13. O

Proof of Lemma 2.2. Expand
log L%, = 6,7"V 1og /o(Y3) | Xk 1)
2

0
819[619‘

J

1
+—7"

” log (YW | Xwt)|| 7

+63J1 - _A)ZZTTIJT 87310555& (Y [ Xpies 1),
' 0 2 a,b,c ¢ Caﬁaaﬂbaﬁl, TN Tm mk+

We use a classical formula based on Lemma 3.6. If B is generated by X, Y and we
suppress arguments in f,

3

99,00,00,

E 87310 fy9|B p + cov o’ ——log f; 0 lo f3|B
0 89,90,00, gy 7 59 00, g 9. gJy

d? d a 9
+covﬂ{&9 Saloe oy logmB} +covﬁ{aﬁ S loe g logmB}

0 0 0
—covﬁ{ 50,108 i o fy 5 logmB}

10g /ﬁ(Y1<111€>| ka+1) (b)

0 .0 .0 )
—COVﬂ{é)Tlngﬁwlogfﬂ,a—mlogfﬂm}

b R
—COV{aﬂ log fy = a9, fﬁ, 10gf19|B} —Wlogm(/\/mkﬂ)-
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We see from (b) and Assumptions 1 and 2 that to bound the third term in (a) it suffices to
bound, for | — ¥y| < Mé,, all a,b,c,
Yia"'7Y/(]}7 (C)

k 2
R
} (e)

17
A, | Y| X,
; 59,09, 2L 1%
EO{E,,,
We can apply Lemma 3.5 to all of these and use Assumption 3 to conclude that, under
Assumption 5, (¢)—(e) are uniformly 0(k3). To do so we take r in the lemma as close to 1 as
possible and s and ¢ as large as necessary since, by A3, and by arguing as in (b) of Lemma
3.16, Egexp |tA| < oo for all k = o(n'/?), 1. Therefore, the expectation of the remainder in
(a)is O(n~"*k?). The lemma follows since there are n/k terms like that in the left-hand side
of (2.10). O

k 63
;Wloggﬁ(nlx,)

1+

ko
;aiq%loggﬂ(Yj‘X/)

k a
D 59, oegs(Y1X))

J=1

Eo{Eﬁ

and

3
| Yi,..., Y

Lemma 3.17. Let —k > —j + 2 and

S(Jj,k) = glffﬂpo[X—k = alX 2, Y 2.0, X1 = b]— Po[X_j = alX_j;5, Y 120, X1 = (]|}

(3.18)
Then
1 0
SG k) <2971 (@o) T (1=2m0(Y))). (3.19)
i=—k+1
Proof of Lemma 3.17.
Pyl X_ = alX_j2,Y_j120, X1 = b]
Po[ Xy = b X 15, Y j100, X = d
= ’ Pyl X_r=alX_j 5, Y_i120] a
Po[X1 =b|X 12, Y ji20 ol Xk =alX 12, Y ji50] (a)
Then
PolX: =b|X_ 12, Y_ 1100, Xop =
S(j,k)§2max{ o[ X | X 12, Yo jin0, X i a]—l‘}. (b)
ab Po[X1 =b|X 12, Y 120
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But
Po[X1 =b[X 2, Y 20l = ZPO[XI =bIX =Y gi1,0] Po[ Xk = | X j12, Y ji2.0],
(©)
and hence
D NP Xy = b X = ¢, Y _gy10) — Pol Xy = b| Xt = @, Y_y1.0]]
S(j, k) <2max—- -
(:6) ab mblnPo[Xl =b[X 12, Y jy20]
0
<2y 'K T (1-2u(Y)) (d)
J=—k+1
by Lemmas 3.3 and 3.4. O
Proof of Lemma 2.3. Without loss of generality, take 1, = 0. Write
£ &jv
{19(Y17"'aYk|X1):HL(XMYI._/)? (a)

j=180-1)9
where g;y(X,,Y; ;) is the joint density of (X;,Y;;) for j > 1, and goy = my(X,). Take
dim () = 1. The generalization is trivial. Then
9 K N d
%101‘;/0(% X)) = Z {%logg/ﬁ(Xl,Yu) - %logg(/l)ﬁ(XhYl,jl)}
=1

The terms in brackets are of course martingale summands, and we arrive at the identity

9 ) ?
E, %logZO(YO | X)

d B 2
Eo{ (MIOgg_/O(XhYl,j) - wlogg(_/—l)o(Xl7Y1,_/—1)> } (c)

I
M~

1

~.
I

P

Eo{UF(X,,Y:,)}, say
1

-~
Il

k
= Z EO{l]jz(ijwLZa Y7j+2,1)}a
=1

where (X}, Y;), —00 < j < oo, is the two-sided stationary sequence such that (X}, Y;),j > 1,

are distributed according to Py. We claim that

Eo{U} (X_ji2, Y21} — 1(0), (d)
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and that, combined with (c), clearly establishes (2.11). Now, if we use (b'/b)(¥9) for
(0/09)log b(v),

1 0 /

g o
(Jj(Xj+27Yj+2,1):E0{ Z 22 (Y Xo) + Z Q_S(vaXerlﬂXjJerYj+2,l} (e)

m=—j+2 0 m=—j+2

0 / —1 /
g «
_EO{ Z g_O(Ym|Xm)+ Z Q_S(XmaXerlﬂXjJrZaYj+2,0}

m=—j+250 Mm=—j+2

by the usual formula. Consider the first part of the mth term in the sum in (e),

! !
g
U = Eo{g—O(Y X)X Y} _ E{g—§< Ym|Xm>|X_,~+2,Y_,+z,o} (0

K /
Z L(Yla){ Pyl X, = alX_ 0, Y o] = Po[ X = al X5, Y ;0 0]}

Note that, by the (backward) martingale convergence theorem, for fixed m < 0,

(1) P 20
(]jm_>E0{g0(YmXm)|Y17Y07-"} EO{g (Y |A/m)|YOaY 17"'} (g)

asj — oo.
Note that

Po{ X = al X_j12,Y_j 120}
= ZPO{Xm =alX_;10,Y_ 20, X1 =b}P{ X1, =b|X_; 5, Y j100} (D)
b

and
Po{ Xy =alX ;12,Y 01}
=Y P Xy =al X0, Y 0, X1 = FP{X = ¢ X 0, Y00} ()
C
so that

maX|P0{Xm—a|X]+2, 7;+20} Po{ X, = a| X, 425 7;+21}‘

Slzll?§|P0{X11:a|X7j+27ij+2,07X1 :b} (.])

—P{ X,y =alX_; 15, Y 50, X, =c}| =S(j,—m).
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We conclude, by Lemma 3.17, that

K / 0
- g
U <297 00) Y22 (Vala)| TT (1= 200(¥2)
a=1 80 k=m+1
0
S 2’)/71(7.90)KCI0(YM,M6,,) eXp <_2 Z NO(Yk)> (k)
k=m-+1

Now, by (k)
—k —k

Lk 2
E0< 3 U_},‘,j) <2k Y Y Eo{qo(le,Mén)qo(sz,Mén) M

m=—j+2 my=—j+2my=—j+2

exp [—2(20:%(1/;) + iMO(YI):l }

t=m, t=m,

Applying the Hélder inequality to each term and using Assumption 3, we obtain

—k 2 N 0 0
EO{< 3 U}};) }SCGZZE(()HG) exp [—2(1+e><2 Mo(Yz)+ZMo(Yt)>]~ (m)

m=—j42 my my t=m,; t=m,

} (n)

0 my—1
— Eo{ H Eo(e*4(1+f)uo(Yr)|Xt) H Eo(e2(1+f)uo(Y,)|Xt)}

t=m, t=m,

But, if m; < m,,

0 0
Eo{exp lz(l +€) (Z Ho(Y;) + Z Ho(Yr)>

1=m 1=my

—my my—m; |my|

S Va1 Na(i+e) S Vol

where ~, = max, Eq(e ™ (")| X, = a) < 1 for all s > 0. Using the bound from (n) in (m) we
obtain, for some C. < 00,7 = Y(140)

—k 2 j=2 . ) )
EO{( Z U;’L)) } < 2C€Zm7m<l+e) ! < 2C€,yk(l+e) 1(1 _7(1+5) 1)71. (O)

m=—j+2 m=k

Thus for any 6 > 0 there exists k = k(6) such that, for all j > k + 2,

B 2
Eo{( ij U}i)) }sa. (p)
m=—j+2
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A similar argument shows that for fixed k, some C < oo, all j,

(Z U, ”) (@)

m=—k

By a similar but easier argument, if

P
U,(m)Eo{a (Xom A/;71+1)|X—j+2aY—j+2.l} Eo{ (Xos Xon +1)X—/+27Y-,+21} (r)

then

) PO a6
(/;';11—>E0 ;O(vameLIHYlaYOv"' EO (A/mMmeLl”YOaY 1y .- (S)
and (p) and (q) carry over as well. We conclude that (d) follows since in fact, by (g), (p)—(s),

L,
Ul(X_ 2, Y 1) — W(Y1, Y,...). (t)

The lemma follows. O

Proof of Lemma 2.4. We begin by proving (2.12). In view of Lemma 2.3 it is enough to show
that, for all 7,

1 N
varg (E > TE{VV' log Lo(YS | X)) Ko }TT> — 0. (a)

m=1

But if we let /i, (X, 1) denote the mth summand in (a), then Lemma 3.7 and geometric
ergodicity of the {X;} guarantee that the expression in (a) is bounded by

CEohi (X1)Nn 2. (b)
Also

Eght 1 (X1) < M*Eq|Viog/,(Y*

x) (c)
k—1 4

k /
< MYEg|»  Vloggy(Yi| X)) + > Viegag(X;, Xioy) + _O(Xl)
i=1 i=1

= 0(k?)

by invoking Lemma 3.7 and (¢) of Lemma 2.3 again. Thus,
thiﬁl(Xl)anz = O(knfl) =o0(1) and (a) and (2.12) follow. To prove (2.13) we take
expectations and note that it is enough to show that

Eo|V log Zy(Y{"[X))[* = O(K?). (d)
But this is just (c). Finally, (2.14) follows from
Po8,|V log 46(Y17 | X1)| < €] < n2e *Eo|[Viog 46V X))[* = Ok*n %) D)
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Proof of Lemma 2.5. By a standard identity valid under our conditions,

82
EO (Wy log /0 (YEI]? | X”7k+1 )>

Therefore, by Lemma 2.3 and stationarity,

= —Eo(VV " log 2o (Y® | X, 11))- (a)

1 N 2
(k)
ZEO; mlogfo(Ym | Xk 1 || = =1 (). (b)
Now use A5 and argue as in the proof of (2.12) to obtain the lemma. O
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