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functions of N weakly dependent random variables under easily veri®able conditions. In particular, we

show, for some ä. 0, the validity of the bound O(Nÿ1=2 logä N ) for U-statistics, studentized means,
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1. Introduction and results

Let X 1, X2, . . . be a sequence of random variables taking values in an arbitrary measurable

space (X , A) which is stationary in the strong sense. We shall assume that the sequence

satis®es an absolute regularity condition with coef®cients

â(m) �def
sup
k>1

E sup fjPfAjó [1, k]g ÿ PfAgj: A 2 ó [k � m, 1)g ! 0,

as m!1, where ó [a, b] denotes the ó-algebra generated by the random variables Xl such

that l 2 [a, b].

The aim of this paper is to prove Berry±Esseen bounds for a suf®ciently large class of

statistics of weakly dependent random variables. Let t � tN be real-valued function of N

variables. We shall consider statistics T � t(X 1, . . . , XN ) which can be represented as

T � S � R, where S � 1�����
N
p

XN

j�1

g(X j), (1:1)

for some function g: X ! R such that Eg(X 1) � 0 and some remainder term R �
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RN (X 1, . . . , X N ). The function g may depend on N; throughout we allow such dependence

without explicitly mentioning it. Decomposition (1.1) is just a notational convention, and we

shall later impose additional conditions on g and R.

Let

ó 2
N �def

ES2 � Eg2(X1)� 2
XNÿ1

j�1

(1ÿ jNÿ1)Eg(X1)g(X 1� j)

denote the variance of S, and let rs � Ejg(X 1)js.
In the case of independent identically distributed (i.i.d.) random variables X 1, X2, . . . ,

the linear part S of the statistic T is asymptotically normal as N !1,

PfS , ó N xg ! Ö(x),

where Ö(x) is the standard normal distribution function, provided that

ó 2
N > Ó2 . 0, for all N , (1:2)

and supN r2�ä ,1, for some ®xed Ó. 0 and ä. 0. In the weakly dependent case the

additional condition supm m(1�å)(1�1=ä)â(m) ,1, for some å. 0, ensures the same result (see

Ibragimov and Linnik 1971; Ibragimov 1975; Eberlein 1984). Thus the statistic T will be

asymptotically normal provided that in addition R! 0 in probability.

In order to prove Berry±Esseen bounds, some stronger conditions are necessary. It is

known (Tikhomirov 1980) that the conditions

sup
N

r3 < r,1 (1:3)

and

â(m) < K exp fÿâmg, for all m > 1, (1:4)

for some K ,1 and â. 0, together imply

sup
x

jPfS , ó N xg ÿÖ(x)j < ANÿ1=2 log2 N

with a constant A depending on K, â, Ó and r only. We shall extend this estimate for general

nonlinear statistics.

Let ó c[ j, k] denote the ó-algebra generated by X l such that l =2 [ j, k] and 1 < l < N . In

the case k , j, set ó c[ j, k] � ó (X1, . . . , X N ).

Theorem 1.1. Assume that (1.2)±(1.4) hold. Let

Rj,k � Rj,k(X 1, . . . , X jÿ1, X k�1, . . . , XN )

denote any ó c[ j, k]-measurable random variables such that Rj, jÿ1 � R, for all 1 < j < N,

and let

ã �def
max fE2=3jRj,k ÿ Rj,kÿ1j3=2: j jÿ kj < log3 N and 1 < j < k < Ng:

330 V. Bentkus, F. GoÈtze and A. Tikhomirov



Then

sup
x

jPfT , ó N xg ÿÖ(x)j < AN 1=2 log2 N � AEjRj � Aã
�����
N
p

log3 N

with a constant A depending only on K, â, Ó and r. If the function g is independent of N and

ó 2 �def
lim

N!1
ó 2

N � Eg2(X1)� 2
X1
j�1

Eg(X 1)g(X 1� j) . 0,

then supx jPfT , ó xg ÿÖ(x)j satis®es the same estimate with a constant A depending on K,

â, ó and r only.

For the proof of the result we apply a modi®cation of the method used by Stein (1972)

and Tikhomirov (1980), among others. Theorem 1.1 seems to be the ®rst Berry±Esseen

bound for a general class of statistics of dependent samples. In Section 2 we apply Theorem

1.1 to functions of sample means, functionals of the empirical distribution functions,

studentized means, U-statistics and linear combinations of order statistics. In all these

applications the estimation of EjRj and ã in Theorem 1.1 is quite simple and reduces to the

estimation of certain moments. The random variables Rj,k may be obtained by the simple

rule: `remove all terms of R involving random variables X l with l such that j < l < k'.

In the literature only special classes of (nonlinear) statistics of weakly dependent samples

have so far been considered: Yoshihara (1976) proved asymptotic normality for a class of U-

statistics; Denker (1982) and Denker and Keller (1983) proved the asymptotic normality and

functional limit theorems for classes of U-statistics and von Mises statistics and obtained

Berry-Esseen bounds; Yoshihara (1984) obtained a Berry±Esseen bound for U-statistics; for

results concerning sums see, for example, a review of Sunklodas (1991). Edgeworth

expansions for statistics of dependent samples were considered by GoÈtze and Hipp (1983;

1994). The aim of the present paper is to develop a method to prove suf®ciently precise

Berry±Esseen bounds for a suf®ciently general class of statistics such that the previous

results are included as particular cases, thus avoiding further extensions for speci®c statistics.

Our result is similar to a Berry±Esseen bound described by van Zwet (1984) for

symmetric statistics of independent samples. In the independent case more precise estimates

are known; see, for example, Friedrich (1989), Bolthausen and GoÈtze (1993), Bentkus and

GoÈtze (1996) and, for lower estimates, Bentkus et al. (1994). We could improve the moment

conditions for the nonlinear part of the statistic combining methods developed for

independent random variables and those of the present paper, but detailed proofs would

require a large amount of routine work. Furthermore, the dependence on log N in Theorem

1.1 can be improved using modi®cations of our proofs. In order to avoid technicalities, we

do not formulate and prove bounds with better powers of log N . The question whether the

log N factors in Theorem 1.1 are unavoidable remains open. Recently Rio (1996) obtained

an O(Nÿ1=2) result for sums in the case of j-mixing stationary bounded sequences.

Whether Rio's result for sums holds for the â-mixing case, remains open.

The mixing condition (1.4) is relatively weak. For example, solutions of the ItoÃ equations

in Euclidean spaces satisfy this condition and do not satisfy conditions with other stronger

(e.g., uniformly) mixing coef®cients; see Veretennikov (1987). Heinrich (1992) found a
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clear and simple condition yielding (1.4) for stationary renewal processes. Condition (1.4) is

also ful®lled when the similar condition holds for ø-mixing coef®cients ø(m) or for j-

mixing coef®cients j(m) since â(m) < j(m) < ø(m). We have chosen â-mixing as the

weakest mixing condition such that the decoupling inequality (1.5) for the distance in the

variation holds. The exponential decay of the mixing coef®cients in (1.4) is imposed in

order to simplify the technicalities.

Let A, A1, A2, . . . denote generic constants which may depend on parameters of interest,

such as K, â, r, á, . . . . Let m denote a natural number such that for a suf®ciently large

generic constant A, m � A log N , for example, m � [A log N ].

Let ô, ô1, ô2, . . . denote a sequence of i.i.d. random variables uniformly distributed on

[0, 1], and independent of all other random variables. By Eô we shall denote the conditional

expectation given all random variables but ô.
Let î̂ denote an independent copy of the random variable î, which is also independent of

all other random variables appearing in the speci®c context.

We shall often use the following simple decoupling inequality which allows us to get rid

of dependence problems. Assume that î is ó (ÿ1, k]-measurable, that ç is ó [k � m, 1)-

measurable and that the random variables î and ç take values in a Polish space. If

supu,v jj(u, v)j < D, then

jEj(î, ç)ÿ Ej(î, ç̂)j < Dâ(m): (1:5)

Weaker measures of dependence such as á-dependence will not allow inequalities of type

(1.5) which we need to treat nonlinear statistics.

2. Applications

In this section we shall apply Theorem 1.1 to various special statistics to show that in fact the

conditions can be easily veri®ed. Similar examples were considered in the independent case

by Bentkus et al. (1997).

2.1. Functions of sample means

Assume for this subsection only that X 1, X2, . . . take values in a real separable Banach space

B . Consider the statistic

T �
�����
N
p

(H( �X )ÿ H(0))

for a function H : B ! R, where the sample mean �X �def
Nÿ1(X 1 � � � � � X N ).

We shall use Taylor's expansion for suf®ciently smooth functions f : B ! R (see, for

example, Cartan 1971),

f (x� h) � f (0)� f 9(x)h � � � � � 1

k!
f (k)(x)hk � 1

k!
Eô(1ÿ ô)k f (k�1)(x� ôh)hk�1,

where f ( j)(x)h j denotes the jth FreÂchet derivative of f at point x in the direction h.
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Assuming that H is FreÂchet differentiable and using Taylor's expansion, we may write

g(x) �def
H9(0)x, and

R �def �����
N
p

(H( �X )ÿ H(0)ÿ H9(0) �X ) �
�����
N
p

Eô(1ÿ ô)H 0(ô �X ) �X 2:

The function g is independent of N, and

T � 1�����
N
p

XN

j�1

g(Xj)� R:

Denote

Ms �def
Xs

j�1

sup
x2B

i H ( j)(x)i:

Theorem 2.1. Assume that the mixing condition (1.4) is ful®lled. Let

EX1 � 0, r �def
EiX 1 i3 ,1:

Assume that ó 2 . 0. If M3 ,1 then there exists a constant A depending only on B , K, â,

r, M3 and ó such that

äN �def
sup

x

jPfT , ó xg ÿÖ(x)j < CNÿ1=2 log4 N :

If the Banach space B is of type 2 then the smoothness condition M3 ,1 may be relaxed

to M2 ,1.

Remark. A Banach space B is of type 2 if there exists a constant C � C(B ) such that

Ei
PN

i�1Yi i2 < C
PN

i�1EiYi i2, for any independent centred random variables Yi. Finite-

dimensional spaces, Hilbert spaces and Lp, lp, 2 < p ,1, are of type 2.

Proof of Theorem 2.1. We shall derive the result from Theorem 1.1.

The veri®cation of j(ó N=ó )ÿ 1j < A=N is easy. Therefore it is suf®cient to prove that

EjRj < AmNÿ1=2 (2:1)

and that

EjRj,k ÿ Rj,kÿ1j3=2 < A(m=N )3=2, (2:2)

where

Rj,k �def �����
N
p

(H( �X [ j,k])ÿ H(0)ÿ H9(0) �X [ j,k]),

and

�X [ j,k] �def �X ÿ Nÿ1
X

i2[ j,k]

X i:
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While proving (2.1) and (2.2) we may assume that i Xj i < N2 with probability 1. Otherwise

we may replace X j by X j1fi Xj i < N2g ÿ EXj1fiX j i < N 2g. For example, in the case of

(2.1), by such a replacement the error is bounded from above by

ANÿ1=2
XN

j�1

EiX j i1fiX j i > N 2g � A
�����
N
p

Ei X1 i1fi X1 i > N 2g < ANÿ7=2:

Indeed, we may split Xj � X j1fi Xj i < N2g � X j1fi Xj i . N2g, use the representation R ������
N
p

(H( �X )ÿ H(0)ÿ H9(0) �X ), apply jH(u)ÿ H(v)j < M1 iuÿ vi and use the triangle

inequality.

Let us prove (2.1). Note that jRj < M2

�����
N
p

i �X i2. Thus, in the case of the Banach space

B of type 2, the bound (2.1) is a consequence of Lemma 3.1 below. The proof of (2.1)

without the type 2 assumption is slightly more complicated (see Section 3).

Let us prove (2.2). Notice that �X [ j,kÿ1] � �X [ j,k] � Nÿ1 X k and that

jRj,k ÿ Rj,kÿ1j �
�����
N
p
jH( �X [ j,kÿ1])ÿ H( �X [ j,k])ÿ H9(0)Nÿ1 Xk j:

Expanding in powers of Nÿ1 Xk , we see that instead of (2.2) it is suf®cient to show that

EjH9( �X [ j,k])Xk ÿ H9(0)Xk j3=2 < Am3=2 Nÿ3=4: (2:3)

Let us write �X [ j,k] � U � Ä, where U is the sum of terms Nÿ1 Xl in the sum �X [ j,k] such that

jl ÿ kj. m, and where Ä denotes the remaining part of the sum �X [ j,k]. Expanding in powers

of Ä and using (a1 � � � � � am)3=2 <
����
m
p

(a
3=2
1 � � � � � a3=2

m ), we reduce (2.3) to

EjH(U )Xk ÿ H9(0)X k j3=2 < Am3=2 Nÿ3=4: (2:4)

Using (1.5), we may replace X k in (2.4) by an independent copy, say X̂ k. An expansion in

powers of U and an application of the HoÈlder inequality show that (2.4) follows from

E(H 0(ôU )U X̂ k)2 < Am2 Nÿ1: (2:5)

If the Banach space is of type 2, we may apply Lemma 3.1 (below) in order to estimate

EiU i2, and (2.5) implies the result. Let us continue the proof of (2.2) for arbitrary Banach

spaces. Expanding the square in (2.5), we see that (2.5) is a consequence of

Nÿ1
X

i

X
l

jEH 0(ôU )X i X̂ k H 0(ôU )X l X̂ k j < Am2, (2:6)

where the sums
P

i and
P

l are taken over the indices i and l in the sum U. By the triangle

inequality we may remove in (2.6) summands with jiÿ lj < m. Next we may remove from

the sum U summands with indices near to i or l. An application of (1.5) will complete the

proof. u

2.2. Functionals of empirical distribution functions

The results of this subsection are obvious extensions of those for functions of sample means.

Throughout this subsection we shall use the following notation. Let ç1, ç2, . . . denote a
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sequence of real random variables stationary in the strong sense. Let F denote the

distribution function of ç1, and let FN be the empirical distribution function corresponding

to the sample ç1, . . . , çN . De®ne the random processes X i(t), t 2 R, 1 < i < N , by

Xi(t) �def
1fçi , tg ÿ F(t):

Finally, let

EN �def �����
N
p

(FN ÿ F) � (X 1 � � � � � X N )=
�����
N
p

denote the empirical process.

Assume that a functional H takes real values and that H(F) and H(FN ) are well de®ned.

De®ne the statistic

T �def �����
N
p

(H(FN )ÿ H(F)):

We may write FN ÿ F � EN=
�����
N
p � �X . Introducing the functional

GF(h) �def
H(F � h),

we have

T �
�����
N
p

(GF( �X )ÿ GF(0)):

Let us de®ne derivatives of H via derivatives of GF as H (s)(F � x) �def
G

(s)
F (x). In order to

de®ne derivatives of GF , introduce a Banach space B , which may depend on F and should

be chosen in dependence on H and the particular problem. We shall assume that GF : B ! R

admits FreÂchet derivatives, and we shall require that B contains the sample functions X i(t)

almost surely. Furthermore, we assume that X i, �X are well-de®ned and take values in B .

Denote

Ms �def
Xs

j�1

sup
x2B

i H ( j)(x)i:

Theorem 2.1 implies the following result.

Theorem 2.2. Assume that the sequence ç1, ç2, . . . satis®es the mixing condition (1.4). Let

EX1 � 0, r �def
EiX 1 i3 ,1:

De®ne g(x) �def
H9(F)x and assume that ó 2 . 0. If M3 ,1, then there exists a constant A

depending only on B , K, â, r, M3 and ó such that

sup
x

jPfT , ó xg ÿÖ(x)j < CNÿ1=2 log4 N :

If the Banach space B is of type 2 then the condition M3 ,1 may be relaxed to M2 ,1.
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2.3. Linear combinations of order statistics

We will apply the result for functionals of empirical distribution functions using the notation

of Section 2.2.

Consider the statistic

lN �def
Nÿ1

XN

i�1

ciNçi:N ,

where ç1:N < � � � < çN :N denote the order statistics of ç1, . . . , çN , and coef®cients

c1N , . . . , cNN are generated by a weight function J : [0, 1]! R,

ciN �def
N

� i=N

(iÿ1)=N

J (u) du:

De®ne

T �def �����
N
p

(lN ÿ ì),

where

ì �
�1
ÿ1

xJ (F(x)) dF(x):

If Ejç1j,1, the boundedness of J is suf®cient for the following representation (see

Govindarajulu and Mason 1983):

lN ÿ ì �
�1
ÿ1

[Ø(FN (t))ÿØ(F(t))] dt,

where

Ø(x) �
�1

x

J (u) du:

Therefore we may write

lN ÿ ì � H(FN )ÿ H(F),

where

H(h) �
�0

ÿ1
[Ø(h(t))ÿØ(0)] dt �

�1
0

Ø(h(t)) dt:

Let i:i p denote the norm of the space L p(R). Let B be the Banach space of functions

with norm

ixi � ixi1 � ixi2 � ixi3:

If the function J is smooth, then the functional h 7! T (P� h): B! R is FreÂchet

differentiable and
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Ms < Lsÿ1 �def
Xsÿ1

j�0

sup
x

jJ ( j)(x)j, s < 3:

It is easy to verify that the random process X 1 (see Section 2.2) satis®es

Ei X1 i s

p < c( p, s)(Ejç1js= p � (Ejç1j)s= p), for all p > 1, s . 0:

Theorem 2.3. Assume that a stationary sequence ç1, ç2, . . . satis®es the mixing condition

(1.4). Let r �def
Ejç1j3 ,1. De®ne a0 � 1, aj �def

2, for j . 0,

ó 2 �def
�

R2

J (F(t))J (F(s))
X1
j�0

aj[Pfç1 , t, ç1� j , sg ÿ F(t)F(s)] ds dt

and assume that ó 2 . 0. If L2 ,1 then there exists a constant A depending only on K, â, L2

and ó such that

sup
x

jPfT , ó xg ÿÖ(x)j < CNÿ1=2 log4 N :

The condition L2 ,1 may be relaxed to L1 ,1.

Under the condition L2 ,1, the proof of Theorem 2.3 requires a straightforward

application of Theorem 2.2 only. The weaker condition L1 ,1 implies an inequality for

the empirical processes EN like that characterizing type 2 spaces. Hence, Theorem 2.3

again follows from Theorem 2.2 (cf. Bentkus et al. 1997) in this case as well.

2.4. Studentized sample means

In this subsection we shall assume that random variables in the stationary sequence

X1, X 2, . . . take real values and satisfy the mixing condition (1.4). Assume as well that

EX1 � 0 and EX 4
1 < r4 ,1. Denote

�X � Nÿ1(X 1 � � � � � X N ), S �def �����
N
p

�X , ó 2
N � ES2,

and assume that limN!1 ó 2
N �def

ó 2 . 0. Consider the estimator

s2 � 1

N

XN

j�1

X
l:j jÿ lj<m

Xj X l

of ó. It is consistent and asymptotically unbiased provided m � A log N, for a suf®ciently

large constant A. Put s �def �����
s2
p

if s2 > 0, and s �def
0 if s2 , 0. Introduce the studentized

statistic t,

t �def

S

s
, s . 0,

0, s � 0:

8<:
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Theorem 2.4. There exists a constant A � A(K, â, ó , r4) such that

sup
x

jPft , xg ÿÖ(x)j < ANÿ1=2 log9=2 N :

Proof. We shall derive the result from Theorem 1.1. Without loss of generality, we shall

assume that ó 2 � 1.

Notice that

Pfjs2 ÿ 1j > åg < Aåÿ1 m3=2 Nÿ1=2, for any å. 0: (2:7)

Indeed, by Chebyshev's inequality, it is suf®cient to estimate Ejs2 ÿ ó 2j < Ejs2 ÿ Es2j �
jEs2 ÿ 1j, and to show that

jEs2 ÿ 1j < Am2 Nÿ1, E(s2 ÿ Es2)2 < m3 Nÿ1: (2:8)

While proving (2.8) we may assume that jXjj < N . Otherwise we may replace X j

by X j1fjX jj < Ng ÿ EX j1fjXjj < Ng. By the triangle inequality, the error is bounded

by Am=N. Let us prove, for example, the second inequality in (2.8). By the triangle

inequality,

E(s2 ÿ Es2)2 < mNÿ2
Xm

s�0

E
XNÿs

j�1

Z j,s

0@ 1A2

, Z j,s �def
Xj X j�s ÿ EX j X j�s:

The sequence X j X j�s, j � 1, 2, . . . , is stationary and satis®es the mixing condition with

coef®cients â(mÿ s), for m > s. Thus we may apply Lemma 3.1 (with 2m instead of m) and

get E(
PNÿs

j�1 Z j,s)
2 < AmN . Collecting the estimates, we obtain (2.8).

Introduce a C1 function such that

è(x) �def

2 x < 0

1���
x
p 1

2
< x <

3

2

0 x > 2:

8>>>>>><>>>>>>:
Due to (2.7)

sup
x

jPft , xg ÿ PfSè(s2) , xgj < Am3=2 Nÿ1=2,

and it is suf®cient to prove that

sup
x

jPfSè(s2) , xg ÿÖ(x)j < AmNÿ1=2: (2:9)

While proving (2.9) we may assume that jXjj < N2, for 1 < j < N. Otherwise we may

replace the Xj by their truncated and centred versions because è is a bounded function such

that jè(u)ÿ è(v)j < Ajuÿ vj.
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Write

T �def
Sè(s2) � S � R, with R �def

S(è(s2)ÿ 1):

In order to apply Theorem 1.1 we have to verify that

EjRj < Am2 Nÿ1=2, EjRj,k ÿ Rj,kÿ1j3=2 < Am9=4 Nÿ3=2, (2:10)

for j jÿ kj < log3 N, with

Rj,k �def
S j,k(è(s2

j,k)ÿ 1),

where S j,k denotes the sum S without the summands Nÿ1=2 Xi, j < i < k, and s2
j,k denotes

the sum s2 but without the summands Nÿ1 X i X l such that at least one of i, l 2 f j, . . . , kg.
Using è(1) � 1 and jè(u)ÿ è(v)j < Ajuÿ vj, we have

EjRj < AEjSj js2 ÿ 1j < Am2 Nÿ1=2,

and the bound for EjRj follows provided we apply HoÈlder's inequality, then Lemma 3.1 to

bound ES2 < Am1=2, and use (2.8).

Let us prove the second inequality in (2.10). It is suf®cient to show that

Ej(S j,k ÿ S j,kÿ1)(è(s2
j,k)ÿ 1)j3=2 and EjS j,kÿ1(è(s2

j,k)ÿ è(s2
j,kÿ1))j3=2 (2:11)

are bounded by Am9=4 Nÿ3=2. Let us estimate the ®rst expectation in (2.11). Notice that

jS j,k ÿ S j,kÿ1j � Nÿ1=2jXk j and that we may represent s2
j,k � q j,k � Ä j,k , where Ä j,k denotes

the sum of terms Nÿ1 X iXl of the sum s2
j,k such that i or l is near to k. Using

jè(u)ÿ è(v)j < Ajuÿ vj5=6 and the triangle inequality, we may neglect Ä j,k , and it is

suf®cient to show that

EjX k(è(q2
j,k)ÿ 1)3=2 < Am9=4 Nÿ3=4:

Using (1.5), we may replace Xk by its independent copy, and it remains to show that

Ejè(q2
j,k)ÿ 1j3=2 < AEjq2

j,k ÿ 1j3=2 < Am9=4 Nÿ3=4:

But this bound may be proved like (2.8).

In order to estimate the second expectation in (2.11) notice that the difference s2
j,k ÿ

s2
j,kÿ1 may contain at most A log N summands Nÿ1 XiX l and proceed similarly. u

2.5. U-statistics

For notational simplicity we shall consider U-statistics of second order only, that is

U � S � R, with S � 1�����
N
p

XN

1

g(X j), R � Nÿ3=2
X

1<i, j<N

ø(X i, Xj),

where the function ø: X 2 ! R1 is symmetric, ø(x, y) � ø(y, x), and Eø(x, Xj) � 0, for all

x 2 X (functions g and ø may depend on N).
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Theorem 2.5. Assume that the conditions (1.2)±(1.4) are ful®lled and that

sup
N

sup
1< l, j<N

Eø2(X l, X j)� sup
N

Eø2(X̂ 1, X2) < L ,1:

Then

äN �def
sup

x

jPfU , xó Ng ÿÖ(x)j < ANÿ1=2 log7=2 N ,

where the constant A may depend on K, â, r, Ó and L only.

Corollary 2.6. Assume that the conditions of Theorem 2.5 hold and let g be independent of

N. Assume that the variance ó 2 is positive. Then

ä9N �def
sup

x

jPfU , ó xg ÿÖ(x)j < ANÿ1=2 log7=2 N ,

where the constant A may depend on K, â, r, ó and L only.

Remark. Yoshihara (1984) proved the bound ä9N � O(Nÿ1=2 log2 N ) assuming that g and ø
are independent of N and that sup l, j Ejø(Xl, X j)j3 � Ejø(X̂1, X2)j3 ,1.

Proof of Theorem 2.5. We shall apply Theorem 1.1. It is suf®cient to show that

EjRj < AmNÿ1=2 and ã < A
����
m
p

Nÿ1, (2:12)

with

Rj,k �def
Nÿ3=2

X
B\[ j,k]�Æ

ø(Xi, X l),

where the sum is taken over all two-point subsets B � fi, lg � f1, . . . , Ng such that

B \ [ j, k] � Æ. Notice that

Rj,k ÿ Rj,kÿ1 � Nÿ3=2
X

l2[1,N ]n[ j,k]

ø(X k , Xl):

Therefore the inequalities (2.12) follow from

E

���� X
1<i, j<N

ø(Xi, X j)

���� < AmN (2:13)

and

E

���� X
l2[1,N ]n[ j,k]

ø(X k , X l)

����3=2

< A(mN )3=4: (2:14)

While proving (2.13) and (2.14) we may and shall assume that jø(x, y)j < 4N3. Indeed,

otherwise we may replace ø(x, y) by
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ø(x, y)1fjø(x, y)j < N 3g ÿ ë(x)ÿ ë(y)� Eë(X̂ 1),

with ë(x) �def
Eø(x, X1)1fjø(x, X1)j < N 3g.

Lemma 3.2, together with the HoÈlder inequality, yields (2.13).

Let us prove (2.14). By the triangle inequality, we may remove from the sum in (2.14) all

summands with indices l such that jl ÿ kj < m. Using (1.5), we may replace Xk by its

independent copy X̂ k. Thus, by the HoÈlder inequality, (2.14) follows from

E
X

ø(X̂ k , X l)

 !2����X̂ k

0@ 1A < AmN ,

where the sum is taken over all l such that jl ÿ kj. m and l 2 [1, N ]n[ j, k]. An application

of Lemma 3.1 concludes the proof of (2.14) and of the lemma. u

3. Auxiliary results

Lemma 3.1. Assume (1.4) and let the random variables X i take values in a Banach space B
of type 2. Let EX i � 0 and PfiX i i < Dg � 1, for all 1 < i < N, for some D ,1. Then

E

��������XN

i�1

X i

��������2 < 2Cn
XN

i�1

Ei X i i2 � 2â(n)D2 N 3,

for any natural n.

Proof. Let us split f1, . . . , Ng � Ä1 [ Ä2[ � � � [Äs into the union of disjoint subintervals

Ä j of length n with s � N=n, for 1 < j < sÿ 1. Denote

Yj �
X
i2Ä j

X i, Z1 �
X

j:1<2 j<s

Y2 j, Z2 �
X

j:1<2 j�1<s

Y2 j�1:

Then
PN

j�1 X j � Z1 � Z2, and it is suf®cient to estimate Ei Z1 i2 and Ei Z2 i2. We shall

estimate Ei Z1 i2 only. Let Ŷ1, Ŷ2, . . . denote a sequence of independent copies of Y1, Y2, . . . .

Applying (1.5) and estimating iX j i < D, we have

Ei Z1 i2 � EiY2 � Z1 ÿ Y2 i2 < Ei Ŷ2 � Z1 ÿ Y2 i2 � D2 N2â(n):

Repeating this procedure (with Y4, Y6, . . . instead of Y2), we obtain

Ei Z1 i2 < E

�������� X
j:1<2 j<s

Ŷ2 j

��������2 � D2 N3â(n):

Now the de®nition of Banach spaces of type 2 and the triangle inequality yield

E

�������� X
j:1<2 j<s

Ŷ2 j

��������2 < Cn
XN

i�1

EiX i i2:

Collecting the estimates we conclude the proof of the lemma. u
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Proof of (2.1) for arbitrary Banach spaces. Expanding into a Taylor series, we may write

R � Nÿ1=2Eô

XN

i�1

(H9(ô �X )ÿ h9(0))X i,

and (2.1) follows from

E

����XN

i�1

(H9(ô �X )ÿ H9(0))X i

���� < Am: (3:1)

Write �X i � �X ÿ Ä, where Ä �def
Nÿ1

P
j2[iÿm,i�m] X j. Expanding in powers of Ä, using the

triangle inequality and applying the HoÈlder inequality, we see that instead of (3.1) it is

suf®cient to prove

E
XN

i�1

Eô(H9(ô �X i)ÿ H9(0))X i

 !2

< Am2: (3:2)

Expanding the square in (3.2), we arrive at

XN

i�1

XN

j�1

jE(H9(ô �X i)ÿ H9(0))X i(H9(ô �X j)ÿ H9(0))X jj < Am2,

and it is suf®cient to prove that

jE(H9(ô �X i)ÿ H9(0))X i(H9(ô �X j)ÿ H9(0))Xjj < AmNÿ1, for jiÿ jj < 2m, (3:3)

and

jE(H9(ô �X i)ÿ H9(0))X i(H9(ô �X j)ÿ H9(0))Xjj < Am2 Nÿ2, for jiÿ jj. 2m: (3:4)

Let us prove (3.3). Split the sum �X i � �X ij � Ä j, with Ä j denoting the sum of Nÿ1 X l in
�X i such that jl ÿ jj < m. We may also write a similar expression for �X j with Äi.

Expanding in powers of Ä j and of Äi, we see that (3.3) follows from

jE(H9(ô �X ij)ÿ H9(0))X i(H9(ô �X ij)ÿ H9(0))Xjj < AmNÿ1, for jiÿ jj < 2m:

By (1.5) we may replace the pair ç �def
(Xi, X j) by its independent copy, say (X̂ i, X̂ j), use the

Taylor expansion and reduce (3.3) toX
l,k

jEH 0(ôô1
�X ij)Xl X̂ i H 0(ôô2

�X ij)X k X̂ k j < AmN , jiÿ jj < 2m,

where the sum is taken over all l and k present as indices in the sum �X ij. A repetition of the

previous arguments concludes the proof of (3.3).

The proof of (3.4) is similar to (although more technical than) that of (3.3), and we omit

it. u
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Lemma 3.2. Assume the mixing condition (1.4). Let supx, y jø(x, y)j < D and Eø(x, X 1) � 0,

for all x. Then

J �def
E

X
1<i, j<N

ø(X i, Xj)

 !2

< Am2 N2 L� AD2 N4â(m),

where L �def
max1<i, j<N Eø2(X i, X j).

Proof. We may write J �def
E(
P

Bø(X i, X j))
2, where the sum is taken over all two-point

subsets B � fi, jg such that B � f1, . . . , Ng. Let Bm denote the m-neighbourhood of

B � f1, . . . , Ng, that is, Bm �def fs 2 f1, . . . , Ng: jiÿ Sj < m or j jÿ sj < mg. Let d(B) �def

jiÿ jj be the diameter of B. Then J < 2J1 � 2 j2, where

J1 �def
E

X
d(B)<m

ø(X i, Xj)

 !2

, and J2 �def
E

X
d(B).m

ø(X i, X j)

 !2

:

The number of two-point subsets B � f1, . . . , Ng such that d(B) < m does not exceed mN .

Thus (a1 � � � � � as)
2 < s(a2

1 � � � � � a2
s) implies J1 < Am2 N2 L. Furthermore,

J2 �
X

d(B).m,d(D).m

Eø(Xi, X j)ø(X k , Xl),

where B � fi, jg and D � fk, lg denote two-point subsets of f1, . . . , Ng. The number of

pairs of sets B and D such that D � Bm is bounded from above by Am2 N 2. Therefore, it is

suf®cient to show that X
d(B).m,d(D).m,D 6�Bm

Eø(X i, Xj)ø(Xk , X l) < AD2 N4â(m): (3:5)

But the relations d(B) . m, d(D) . m and D 6� Bm imply that at least one of k or l, say k,

satis®es jk ÿ ij. m and jk ÿ jj. m. Thus, by (1.5), we may replace Xk by its independent

copy X̂ k and (3.5) follows since Eø(X̂ k , x) � 0, for all x. u

4. Proof of Theorem 1.1

We shall denote by a a generic, suf®ciently small positive constant which may depend on K,

â, Ó and r only. Also write

f (t) �def
E exp fitTg, ö(t) �def

exp fÿt2=2g:

The proof of the theorem combines the techniques of Tikhomirov (1980) for sums of

weakly dependent random variables, and those used by GoÈtze (1991), Bentkus et al. (1997)

in the i.i.d. case for symmetric statistics.

While proving the theorem we may assume that jg(Xj)j <
�����
N
p

. Otherwise we may

replace g(Xj) by
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g(X j)1fjg(X j)j <
�����
N
p
g ÿ Eg(X j)1fjg(X j)j <

�����
N
p
g:

Without loss of generality, we shall assume as well that ó 2
N � ES2 � 1.

We shall prove that the characteristic function f for jtj < a
�����
N
p

=log2 N � a
�����
N
p

=m2

satis®es the ordinary differential equation,

f 9(t) � ÿtf (t)� å(t) f (t)� å0(t), f (0) � 1, (4:1)

with some functions å and å0 such that

jå(t)j < Am2 t2�����
N
p , (4:2)

and

jå0(t)j < AN1=2jtjm2ã� AEjRj � ANÿ1=2 � AmjtjNÿ1=2: (4:3)

The equation has the unique solution

f (t) � ö(t) exp

� t

0

å(u) du

� �
� ö(t)

� t

0

exp
u2

2
�
� t

u

å(z) dz

( )
å0(u) du: (4:4)

Let us derive Theorem 1.1 from (4.4). It follows from (4.4) that

j f (t)ÿ ö(t)j < I1 � I2,

where

I1 �def
ö(t)

����exp

� t

0

å(u) du

� �
ÿ 1

���� < Am2 Nÿ1=2 t2 exp fÿt2=4g, (4:5)

and

I2 �def
ö(t)

� t

0

exp
u2

2
�
� t

u

å(z) dz

( )
jå0(u)j du

< A(N1=2 m2 � mNÿ1=2)ãmin f1; jtjg � A(EjRj � Nÿ1=2) min fjtjÿ1; jtjg: (4:6)

Estimates (4.5) and (4.6), together with Esseen's inequality for characteristic functions, imply

the result of the theorem.

In order to prove the inequality in (4.5), apply jexp fzg ÿ 1j < jzj exp fjzjg and (4.2) on

the interval jtj < a
�����
N
p

=m2 with a suf®ciently small a. Similarly, the estimate for I2 is

derived using j � t

u
å(z) dzj < aA(t2 ÿ u2) and aA , 1=4.

It remains to prove (4.1)±(4.3). We shall write B � D if B � D� å(t) f (t)� å0(t), for

jtj < a
�����
N
p

=m2, with some functions å and å0 bounded as in (4.2) and (4.3). Thus we have

to prove that f 9(t) � ÿtf (t). Differentiating, we have

f 9(t) � iES exp fitTg � iER exp fitTg � I3 �def i�����
N
p

XN

j�1

Eg(Xj) exp fitTg,

with an error bounded by EjRj.
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De®ne S j,0 �def
S and

Ä j,1 �def
Nÿ1=2

X
l2Ù1

g(Xl) with Ù1 �deffl: 1 < l < N , jl ÿ jj < mg:

Put S j,1 �def
S ÿ Ä j,1. By induction we may de®ne

Ä j,s �def
Nÿ1=2

X
l2Ùs

g(Xl) with Ùs �deffl: 1 < l < N , (sÿ 1)m , jl ÿ jj < smg,

and S j,s �def
S j,sÿ1 ÿ Ä j,s. Furthermore, for a natural r � A1 log N (to be chosen later),

Qj �def
Rjÿrm, j�rm, ä j �def

Rÿ Qj, T j,s �def
S j,s � Qj:

An application of (a1 � � � � � ap)3=2 <
����
p
p

(a
3=2
1 � � � � � a3=2

p ) and of the triangle

inequality implies

Ejä jj3=2 < Am3ã3=2: (4:7)

Taylor's expansion in powers of ä j and an application of (4.7), together with the HoÈlder

inequality, show that

I3 � I4 �def i�����
N
p

XN

j�1

Eg(X j) exp fitT j,0g,

with an error bounded by Ajtjm2 N 1=2ã.

Splitting T j,0 � T j,1 � Ä j,1, we may write

I4 � i�����
N
p

XN

j�1

Eg(X j)J0 exp fitT j,1g � i�����
N
p

XN

j�1

Eg(Xj)J1 exp fitT j,1g,

where J0 �def
1 and Js �def

exp fitÄ j,sg ÿ 1, for s > 1. Repeating the procedure, we obtain (we

shall choose r � A1 log N )

f 9(t) � I4 �
Xrÿ1

s�0

XN

j�1

I( j, s)�
XN

j�1

I1( j, r), for any natural r, (4:8)

with

I( j, s) �def i�����
N
p Eg(Xj)J1 . . . Js exp fitT j,s�1g,

I1( j, r) �def i�����
N
p Eg(Xj)J1 . . . Jr exp fitT j,rg:

The expectation in I( j, s) is taken over a function of a set of random variables which

does not contain X l with indices l such that sm , jl ÿ jj < (s� 1)m. Thus, by (1.5), we

may replace exp fitT j,s�1g by its independent copy, and obtain
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Xrÿ1

s�0

XN

j�1

I( j, s) �
Xrÿ1

s�0

XN

j�1

I2( j, s), (4:9)

with

I2( j, s) �def i�����
N
p Eg(X j)J1 . . . Js E exp fitT j,s�1g:

Indeed, jJsj < 2 and jg(X j)j <
�����
N
p

, and the error in (4.9) is bounded from above by

A
Prÿ1

s�0 N2sâ(m) < N2râ(m) < ANÿ1=2 since r � A1 log N and since we may choose the

constant A � A(A1) in m � A log N suf®ciently large.

We have

I2( j, 0) � 0 since Eg(Xj) � 0: (4:10)

Collecting Jl with odd or even l into separate groups, applying the HoÈlder inequality and

then, by (1.5), replacing the multipliers jJlj < 2 by their independent copies, we obtain

(EjJ1 . . . Jsj3=2)2=3 <
Ys

l�1

(EjJlj3)1=3 � A3sâ1=3(m), s > 1: (4:11)

The choices of m and r and jJsj < jtÄ j,sj, together with (4.11), imply

(EjJ1 . . . Jsj3=2)2=3 < A min f(a=m)s; (mjtjNÿ1=2)sg � ANÿ3: (4:12)

Relation (4.8) implies that

f 9(t) �
Xrÿ1

s�1

XN

j�1

I2( j, s), since
XN

j�1

I1( j, r) � 0: (4:13)

To prove (4.13), use (4.10) and bound I1( j, r) using (4.12). The error in the transition from

(4.8) to (4.13) is bounded by ANÿ1=2.

Denote T 9j,s �def
T j,s � ä j � S j,s � R. Then the relation (4.13) implies

f 9(t) �
Xrÿ1

s�1

XN

j�1

I3( j, s), I3( j, s) �def i�����
N
p Eg(X j)J1 . . . Js E exp fitT 9j,s�1g: (4:14)

Indeed, it suf®ces to expand in powers of ä j and to use (4.7) and (4.12). The error in the

transition from (4.13) to (4.14) is bounded by Ajtjm2
�����
N
p

ã.

De®ne

I4(s) �def
iEg(X j)J1 . . . Js

and notice that, for j 2 Ãs �deff j: sm , j , N ÿ smg, the expectation I4(s) is independent of j

since the sequence X 1, X 2, . . . is stationary. ThusX
j2Ãs

I3( j, s) � I4(s)
X
j2Ãs

Nÿ1=2E exp fitT 9j,s�1g: (4:15)
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Using (4.12), we haveXrÿ1

s�1

X
1< j<N , j=2Ãs

Nÿ1=2Ejg(Xj)J1 . . . Jsj < ANÿ1=2
Xrÿ1

s�1

ms(a=m)s < ANÿ1=2: (4:16)

Due to (4.15) and (4.16), we derive from (4.14) that

f 9(t) �
Xrÿ1

s�1

�����
N
p

I4(s) f s(t), f s(t) �def 1

N

XN

j�1

E exp fitT 9j,s�1g: (4:17)

The error in the transition from (4.14) to (4.17) is bounded by ANÿ1=2.

Let us show that

j f s(t)ÿ f (t)j < AmsNÿ1=2jtf (t)j � AsNÿ1=2: (4:18)

De®ne ì j,s �def
S ÿ S j,s�1. Then T 9j,s�1 � T ÿ ì j,s, and

f s(t)ÿ f (t) � D1 f (t)� D2,

with

D1 �def 1

N

XN

j�1

E exp fÿitì j,sg ÿ 1,

D2 �def 1

N
E
XN

j�1

(î j ÿ Eî j) exp fitTg, î j �def
exp fÿitì j,sg:

Expanding in powers of tì j,s, we obtain

jD1j < 1

N

XN

j�1

Ejtì j,sj < AmsjtjNÿ1=2:

By the HoÈlder inequality,

jD2j2 < Nÿ2E

����XN

j�1

(î j ÿ Eî j)

����2 � Nÿ2
XN

j�1

XN

k�1

E(î j ÿ Eî j)(�îk ÿ E�îk) < As2 Nÿ1,

since in the last sum summands, say Pj,k, with indices j and k such that j jÿ kj < 4ms satisfy

jPj,k j < (Ejî j ÿ Eî jj2Ejîk ÿ Eîk j2)1=2 < At2(Ejì j,sj2Ejì j,sj2)1=2 < As2 mÿ2,

and since jPj,k j < A=N in the case j jÿ kj. 4ms (to see this, apply (1.5)). Collecting these

estimates, we obtain (4.18).

Relations (4.17), (4.18) and (4.12) together imply

f 9(t) �
Xrÿ1

s�1

�����
N
p

I4(s) f (t): (4:19)

The error in replacing (4.17) by (4.19) is bounded from above by Am2 t2 Nÿ1=2j f (t)j �
AmjtjNÿ1=2. By (4.12),
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Xrÿ1

s�2

jI4(s)j < At2 m2 Nÿ1

and

f 9(t) �
�����
N
p

I4(1) f (t) � i
�����
N
p

Eg(Xj)J1 f (t):

A Taylor expansion applied to J1 and a comparison of the coef®cient of t with ÿ1 � ÿES2

show that (4.19) implies that f 9(t) � ÿtf (t), with an error bounded by ANÿ1=2(1 �
m2 t2)j f (t)j), which concludes the proof of the theorem.
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