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For a d-variate measure a convex, compact set in Rd�1, its lift zonoid, is constructed. This yields an

embedding of the class of d-variate measures having ®nite absolute ®rst moments into the space of

convex, compact sets in Rd�1. The embedding is continuous, positive homogeneous and additive and

has useful applications to the analysis and comparison of random vectors. The left zonoid is related to

random convex sets and to the convex hull of a multivariate random sample. For an arbitrary sampling

distribution, bounds are derived on the expected volume of the random convex hull. The set inclusion of

lift zonoids de®nes an ordering of random vectors that re¯ects their variability. The ordering is

investigated in detail and, as an application, inequalities for random determinants are given.
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1. Introduction

To analyse and compare random vectors, we propose a new geometric approach. For any d-

variate measure, a convex set in Rd�1, its lift zonoid, is constructed. This yields an embedding

of the space of measures on Rd that have ®nite absolute ®rst moments into the space of convex,

compact sets in Rd�1. The embedding is continuous, positive homogeneous and additive;

continuous with respect to weak bounded convergence of measures and the Hausdorff distance

of sets, and additive with respect to the usual sum of measures and the Minkowski sum of sets.

In this way, the distribution of a random vector is represented by its lift zonoid.

The lift zonoid representation proves to be very useful. Here we develop two streams of

applications. First, the lift zonoid is related to random convex sets and to the convex hull of

a multivariate random sample. Second, the set inclusion of lift zonoids de®nes an ordering

of random vectors that re¯ects their variability.

Recent interest in zonoids has arisen from some surprising connections between convex

geometry, analysis (positive de®nite forms, Radon transforms, vector measures), and

stochastic geometry (stochastic processes). A recent survey is Goodey and Weil (1993). The
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zonoid of a multivariate probability measure (or random vector) has been investigated by

Rickert (1967), Schneider (1967) and others.

A random convex set is a random variable in the space of non-empty, convex, compact

subsets of Rd . It has a set-valued expectation (e.g., Weil and Wieacker 1993). In particular,

if X is a d-variate random vector, then the random segment [0, X ] that extends from the

origin to the random point X is a random convex set in Rd . We show that its expectation

equals the zonoid of the distribution of X. The lift zonoid of X comes out to be the

expectation of the random segment

0,
1

X

� �� �
in Rd�1. It contains the origin and is symmetric around the point

1
2

1

ì

� �
where ì denotes the expectation vector of X. In contrast to the zonoid, the lift zonoid of a

measure does determine the underlying measure in a unique way and, therefore, yields a

useful embedding.

The convex hull of independent and identically distributed random points has been

studied by many authors, beginning with ReÂnyi and Sulanke (1963; 1964) and Efron (1965).

By means of the lift zonoid approach we derive upper and lower bounds on the expected

volume of the random convex hull. The bounds are based on the volume of the lift zonoid

of the sampling distribution. They apply to any distribution that has ®nite expectation.

The problem of comparing random vectors with respect to their variability is common to

many parts of applied probability and statistics, among them estimation problems and the

comparison of experiments (Torgersen 1991). We introduce the lift zonoid ordering among

probability distributions (or random vectors), characterize it in many respects and show that

it is a variability ordering weaker than dilation. The lift zonoid ordering is easy to handle

and allows the derivation of interesting probability inequalities.

In Section 2 we investigate the zonoid of a ®nite measure in Rd . Section 3 presents the

de®nition and theory of the lift zonoid. Consider the space of convex compacts in Rd�1,

endowed with the Minkowski sum and the Hausdorff distance. We demonstrate that any

measure that has ®nite absolute ®rst moments is, by its lift zonoid, mapped into this space

and that the mapping is injective, positive linear, and continuous, hence a homoeomorphic

embedding. Given two measures, the inclusion of their lift zonoids is characterized by

conditions on the univariate projections of these measures. A new metric among measures is

proposed. In Section 4 we derive bounds on the expected volume of a random convex hull,

i.e., the convex hull of a d-variate random sample, for a general sampling distribution. To

this end, we introduce the notion of a random lift zonotope and show that, up to a known

constant, its expected volume equals the volume of the lift zonoid. The result is used to

provide upper and lower bounds for the expected volume of the random convex hull in

terms of the volume of the lift zonoid. Section 5 contains a comprehensive investigation of

the ordering among random vectors that is induced by the inclusion of lift zonoids. The

ordering between two random vectors is characterized by expectation inequalities and shown
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to be equivalent to the dilation ordering of all univariate projections of the two vectors.

Thus the lift zonoid order is an ordering of variability, and weaker than the multivariate

dilation order. The lift zonoid order is continuous. It is preserved under probability mixtures

and convex convolutions and under arbitrary af®ne transformations. In particular, the lift

zonoid order between two random vectors implies the same order between all their

marginals. A reverse result is true under stochastic independence. Further, we show that

every probability distribution, in the weak sense, can be approximated by empirical

distributions that are below it and by absolutely continuous distributions that are above it (in

the lift zonoid order). As a ®nal application, inequalities for the expectation of random

determinants are derived.

We conclude this section with some notation. A point x in Euclidean space Rk is a

column, xT denotes the transpose of x, and hx, yi the usual inner product. Rk
� is the subset

of points in Rk that have non-negative components, and S kÿ1 the unit sphere. B k denotes

the Borel sets in Rk , 0 is the origin, [0, x] � fy: y � á . x, á 2 [0, 1]g the segment from

the origin to x, K(E) the E-ball around the origin. For two sets C and D, C � D �
fx� y: x 2 C, y 2 Dg is their Minkowski sum, and ä(C, D) � inf fE: C � D� K(E),
D � C � K(E), E. 0g is their Hausdorff distance. For random variables, �d means equality

in distribution.

2. The zonoid of a measure

Let M be the class of non-negative measures F on (Rd , B d) that have ®nite positive total

mass á(F) � � Rd dF(x) . 0, and let F �M be the class of probability measures. F is

called absolutely continuous (discrete) if it possesses a density with respect to Lebesgue

(counting) measure on Rd . Let M0 (F 0) be the subclass of measures (probability measures)

F for which
�

Rd ixi dF(x) is ®nite. The zonoid of a measure is de®ned as follows.

De®nition 2.1. Let F 2M be given. For a measurable function g: Rd ! [0, 1], consider the

point æ(F, g) � (z1, . . . , zd)T 2 Rd,

æ(F, g) �
�

Rd

g(x)x dF(x)

� �
:

The set

Z(F) � fæ(F, g): g: Rd ! [0, 1] measurableg
is called the zonoid of F.

Let us recall several properties of zonoids. A compact zonoid is a limit, in the Hausdorff

sense of sums of line segments. The sum of two zonoids is a zonoid. The linear image of a

zonoid is a zonoid. In particular, a projection of a zonoid is a zonoid.

Zonoids of measures have the following properties.
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Proposition 2.1. Let F 2M.

(i) The zonoid of F is convex and contains 0.

(ii) If F 2M0, the zonoid is compact and symmetric around 1
2
ì(F).

Further, Z(F) is the convex hull of the range of the vector measure ôF , given by ôF(A) ��
Ax dF(x), A 2 B d . If F is absolutely continuous then Z(F) equals the range of ôF ,

according to Lyapunov's theorem (Lindenstrauss 1966). For the derivation of these properties,

the reader is referred to Bolker (1969); see also Schneider and Weil (1983).

Given a convex, compact set K � Rd , the support function h(K, :): Rd ! R of K is

de®ned by

h(K, p) � max fhx, pi: x 2 Kg, p 2 Rd :

The function h(K, :) is continuous, convex and homogeneous of degree 1. h(K, :) > 0 if and

only if 0 2 K. For two convex, compact sets K and R we have h(K � R, :) � h(K, :) �
h(R, :), h(K, :) < h(R, :), if and only if K � R, and, in particular, h(K, :) � h(R, :) if and

only if K � R. For these and other properties of support functions, see Eggleston (1958). The

following theorem shows what the support function of the zonoid of a measure looks like.

Theorem 2.1. For F 2M0 , the support function of Z(F) is given by

h(Z(F), p) �
�
fx:hx, pi>0g

hx, pi dF(x) �
�

Rd

max f0, hx, pig dF(x): (2:1)

Proof. For every measurable function g: Rd ! [0, 1] and every p 2 Rd we obtain

g(x)hx, pi < h p(x)hx, pi,
where h p denotes the indicator function of the set fx: hx, pi > 0g. Therefore

hæ(F, g), pi �
�

Rd

g(x)hx, pi dF(x) <

�
Rd

h p(x)hx, pi dF(x)

� hæ(F, h p), pi �
�
fx: hx, pi>0g

hx, pi dF(x)

�
�

Rd

max f0, hx, pig dF(x):

(2:2)

Because æ(F, h p) 2 Z(F), (2.1) follows. u

With this theorem we demonstrate that the zonoid of a probability measure is the

expectation of a random segment. Recall the de®nition of a random convex set and its
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expectation. A random convex set C is a Borel measurable map from a probability space

(Ù, B , P) to the space of non-empty, compact, convex subsets of Rd . The expectation of a

random convex set C is the set E(C) given implicitly by

h(E(C), p) � E(h(C, p)), p 2 Rd : (2:3)

This set-valued expectation has appeared in different settings; see, for example, Weil and

Wieacker (1993). If the norm of C has ®nite expected value then E(C) is a compact set.

Proposition 2.2. Let F 2 F 0 and X be a random vector distributed as F. Then Z(F) �
E([0, X ]).

Proof. Because Z(F) and E([0, X )] are compact sets, they are equal if and only if they have

the same support functions. According to (2.1), we have h(Z(F), p) � � Rd max f0,

hx, pig dF(x). On the other hand, h([0, X ], p) � max f0, hX , pig, hence

h(E([0, X ]), p) � E(h([0, X ], p)) �
�

Rd

max f0, hx, pig dF(x) � h(Z(F), p), (2:4)

and we are done. u

Another consequence of Theorem 2.1 is the following:

Corollary 2.1. Let F, G 2M0. Then Z(F) � Z(G) if and only if�
fx:hx, pi>0g

x dF(x) �
�
fx:hx, pi>0g

x dG(x) (2:5)

for every p 2 Rd.

From Corollary 2.1 it follows that the zonoids of different measures may be the same.

For example, if d � 1, the measures F and G have the same zonoid if and only if�1
0

x dF(x) � �1
0

x dG(x) and
� 0

ÿ1 x dF(x) � � 0

ÿ1 x dG(x). We give an example of two

probability measures in Rd that have ®nite support.

Example 2.1. Let F, G 2 F 0, and assume that F has support x1, . . . , xn and assigns

probability qi to xi, i � 1, . . . , n, and G has support y1, . . . , ym with probabilities

r1, . . . , rm. Assume further thatX
fxij9ë.0:xi�ë pg

qixi �
X

f yjj9ë.0: yj�ë pg
r j yj: (2:6)

Equation (2.6) means that, for every p, the ray through p contributes the same amount to the

expectation of F as to the expectation of G. It follows then that�
fx:hx, pi>0g

x dF(x) �
X

t

X
fxi:9ë.0:xi�ë tg

qixi,
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where the ®rst sum extends over all t in the set ft: t 2 Sdÿ1 \ ft: ht, pi > 0g. Therefore

(2.6) and Corollary 2.1 imply that Z(F) � Z(G).

3. The lift zonoid of a measure

We introduce the notion of the lift zonoid of a measure in M .

De®nition 3.1. Let F 2M. For a measurable function g: Rd ! [0, 1], consider the point

z(F, g) � z0(F, g)

æ(F, g)

� �
2 Rd�1,

where

z0(F, g) �
�

Rd

g(x) dF(x), æ(F, g) �
�

Rd

g(x)x dF(x):

The set

Ẑ(F) � fz(F, g): g: Rd ! [0, 1] measurableg
is called the lift zonoid of F.

The de®nition has the following geometric meaning. We add the coordinate x0 and

embed Rd as the hyperplane Há(F) � fx 2 Rd�1: x0 � á(F)g in Rd�1. The given d-variate

measure F 2M is embedded as a measure on this hyperplane. The resulting measure F̂ on

Rd�1 is called the lifted measure, and the lift zonoid of F equals the zonoid of this.

Formally

Ẑ(F) � Z(F̂), F̂(B) � F(ð0(B \ Há(F))), (3:1)

where ð0 is the projection on the last d coordinates. From De®nition 3.1 it immediately

follows that Z(F) � ð0( Ẑ(F)), the projection of the lift zonoid on the last d coordinates is

the zonoid. For F 2 F 0 the lift zonoid is the expectation of the random segment

0,
1

X

� �� �
,

where X is a random vector distributed by F.

Another important special case arises if F has ®nite support in Rd . The lift zonoid in this

case is a convex polytope which is called the lift zonotope of F.

Let A � (aik) be a matrix in Rn3(d�1) with non-negative ®rst column. The ®rst column is

indexed with zero. Let FA 2M0 be a measure that gives mass ai0 to the point

ai � (ai1, . . . , aid), i � 1, . . . , n. Then the lift zonotope of FA is

Ẑ(FA) � (x0, x)T 2 Rd�1: x0 �
Xn

i�1

g(i)ai0, x �
Xn

i�1

g(i)ai0
. ai, 0 < g(i) < 1 for all i

( )
:
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A zonotope is a sum of line segments. In particular,

Ẑ(FA) � a10
. [0, (1, a1)T] � . . . � an0

. [0, (1, an)T]:

The following lemma shows the shape of the lift zonoid in the case d � 1.

Lemma 3.1. Let d � 1, F 2M0.

(i) Then Ẑ(F) is the convex hull of the following points in Rd : the origin, the point

(á(F), ì(F))9, and all points�
]ÿ1,y]

dF(x),

�
]ÿ1,y]

x dF(x)

 !T

, y 2 R, (3:2)

and �
[ y,�1[

dF(x),

�
[ y,�1[

x dF(x)

 !T

, y 2 R: (3:3)

(ii) Equivalently, Ẑ(F) is the convex hull of

t . á(F),

� t

0

Fÿ1(s) ds

� �T

, 0 < t < 1, (3:4)

and

t . á(F),

�
1ÿ t

Fÿ1(s) ds

� �T

, 0 < t < 1, (3:5)

where Fÿ1(s) � inf fx 2 R: F(x) > sg is the usual inverse distribution function of F.

The proof of Lemma 3.1 follows from Theorem 2.1, and is left to the reader. Observe

that the origin and the point (á(F), ì(F))T can be represented as the above integrals (3.2)

and (3.3) with y � �1 and y � ÿ1, respectively: (0, 0) � (
�

Æ dF(x),
�

Æx dF(x)) and

(á(F), ì(F)) � (
�

]ÿ1,�1[ dF(x),
�

]ÿ1,�1[x dF(x)).

Theorem 3.1. (i) The lift zonoid of F 2M is convex and contains 0 2 Rd�1.

(ii) If F 2M0, the lift zonoid is compact and symmetric around

1
2

á(F)

ì(F)

� �
:

(iii) If the support of F is in Rd
�, then Ẑ(F) is contained in the (d � 1)-dimensional

rectangle between 0 and

á(F)

ì(F)

� �
:

These properties of the lift zonoid follow immediately from Proposition 2.1, Next we

show that the lift zonoid is positive linear and continuous.
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Theorem 3.2. Let F, F1 and F2 2M0, â. 0. Then

Ẑ(âF) � â Ẑ(F), Ẑ(F1 � F2) � Ẑ(F1)� Ẑ(F2): (3:6)

Proof. Positive homogeneity, Ẑ(âF) � â Ẑ(F), is immediate from De®nition 2.1. To prove

additivity, we recall that the support function of the Minkowski sum, Ẑ(F1)� Ẑ(F2), is equal

to the sum of support functions of Ẑ(F1) and Ẑ(F2). Thus, we obtain

h(Z(F̂1)� Z(F̂2), p) � h(Z(F̂1), p)� h(Z(F̂2), p)

�
�
fx:hx, pi>0g

hx, pi dF̂1(x)�
�
fx:hx, pi>0g

hx, pi dF̂2(x)

�
�
fx:hx, pi>0g

hx, pi d(F̂1(x)� F̂2(x)) � h(Z(F̂1 � F̂2), p)

� h( Ẑ(F1 � F2), p):

Here we have used Theorem 2.1 and the fact that the adding and lifting of measures can be

interchanged, hence Z(F̂1 � F̂2) � Ẑ(F1 � F2). From the equality of support functions we

conclude the equality of sets, hence (3.6). u

Theorem 3.3. Let F 2M0, and let (Fn)n2N be a bounded sequence in M0. Then Ẑ(Fn)

converges to Ẑ(F) in the Hausdorff distance if and only if (Fn)n2N converges weakly to F.

Proof. If the sequence Fn converges weakly to F and Fn < G, G 2M0, then it is easy to

check that ä( Ẑ(Fn), Ẑ(F))! 0, where ä is the Hausdorff distance (Bolker 1969).

To prove the reverse, we observe that the convergence of zonoids Ẑ(Fn) to Ẑ(F) in the

Hausdorff metric implies uniform convergence of the support functions. That is, the

integrals
�

Rd max f0, p0 � hp, xig dFn(x) converge, for ( p0, p) 2 Sd, uniformly to�
Rd max f0, p0 � h p, xig dF(x). Then the derivatives in direction p converge (the derivative

in a direction is a uniform limit),�
fx: p0�h p, xi>0g

dFn(x)!
�
fx: p0�h p, xi>0g

dF(x), (3:7)

and this holds for every ( p0, p) 2 Rd�1.

Given a probability measure F 2 F and some p 2 Rd , we de®ne

F p(t) �
�
fx2Rd :hx, pi< t)

dF(x), t 2 R:

If F is the distribution of a random vector X, then F p is the distribution of the random

variable hX , pi.
Without loss of generality we assume that the above Fn and F are probability measures,
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since the convergence of zonoids Ẑ(Fn) to Ẑ(F) implies that limá(Fn) � á(F). Now let Fn

be the probability distribution of X n and F the probability distribution of X. For every

p 2 Sdÿ1, (3.7) yields weak convergence (Fn) p ! F p. By the LeÂvy continuity theorem (e.g.,

Laha and Rohatgi 1979), (Fn) p ! F p implies convergence of the characteristic functions,

E(exp (ithX n, pi)! E(exp (ithX , pi), t 2 R. At t � 1 we obtain E(exp (ihX n, pi)
! E(exp (ihX n, pi), for all p 2 Rd . Again by the LeÂvy theorem we conclude weak

convergence Fn ! F. u

Remark 3.1. In contrast to the zonoid, we prove at the end of this section, the lift zonoid

uniquely determines the underlying measure. Hence the lift zonoid provides an embedding of

the set of measures M0 into the space of convex compact sets in Rd�1. The embedding is

positive linear and, with respect to the weak bounded convergence of measures and the

Hausdorff distance of compacts, a homoeomorphism.

The zonoid of a measure has properties analogous to those shown for the lift zonoid in

Theorems 3.1 and 3.2. Also the zonoid Z(F) is continuous on F. Since the underlying

measure of a zonoid is not unique, the reverse direction of Theorem 3.3 fails. However, for

even measures on the sphere the result holds; see Goodey and Weil (1993, p. 1301).

The inclusion of lift zonoids yields a useful ordering of measures; see Section 5 below.

We characterize the ordering by the following theorem.

Theorem 3.4. Let F, G 2M0. Then Ẑ(F) � Ẑ(G) if and only if Ẑ(F p) � Ẑ(G p) for all

p 2 Rd .

Proof. In view of (3.1) and Theorem 2.1, the support function of the lift zonoid is

h( Ẑ(F), ( p0, p)) � h(Z(F̂), ( p0, p)) �
�

Rd�1

max f0, x0 p0 � hx, pig dF̂(x0, x)

�
�

Rd

max f0, p0 � hx, pig dF(x)

�
�

R

max f0, p0 � tg dF p(t): (3:8)

Therefore, Ẑ(F) � Ẑ(G) if and only if h(Z(F̂), :) < h(Z(Ĝ), :) if and only if�
R

max f0, p0 � t)g dF p(t) <

�
R

max f0, p0 � t)g dG p(t) (3:9)

for all p0 2 R, p 2 Rd . As in (3.8), the support function of Z(cF p) is given by

h(Z(cF p), (q0, q1)) � � R max f0, q0 � tq1g dF p(t), and similarly that of Z(cG p). Therefore,

(3.9) is equivalent to h(Z(F̂ p), ( p0, 1) < h(Z(Ĝ p), ( p0, 1)). Because support functions are

homogeneous, this is equivalent to h(Z(F̂ p), :) < h(Z(Ĝ p), :) for all p 2 Rd , hence to

Ẑ(F p) � Ẑ(G p) for all p 2 Rd . u
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Remark 3.2. The lift zonoid Ẑ(F p) is, in fact, a two-dimensional projection of Ẑ(F). For

some ®xed p 2 Rd, let prp be the projection of Rd�1 onto the two-dimensioned projection

plane that is spanned by the points (1, 0, . . . , 0) and (0, p). Now, for p0 2 R, consider the

extreme point z 2 Ẑ(F) in the direction ( p0, p). Its projection by prp equals�
f p0�h p, xi>0g

dF(x),

�
f p0�h p, xi>0g

hp, xi dF(x)

 !
�

�
f p0� t>0g

dF p(t),

�
f p0� t>0g

t dF p(t)

 !
:

The latter is an extreme point of Ẑ(F p) and has the form (3.2) or (3.3) or equals (0, 0) or

(á(F p), ì(F p)). For every p0, the point ( p0, p) belongs to the projection plane. Therefore

projections of other points of the lift zonoid belong to the convex hull of projections of such

extreme points. According to Lemma 3.1 we obtain the result.

Theorem 3.5. Every measure F 2M0 is uniquely determined by its lift zonoid.

Proof. First, let F, G 2 F 0. Let X, Y be random vectors that are distributed according to F

and G, respectively. Assume Ẑ(F) � Ẑ(G). From Theorem 3.4 and Lemma 3.1 it follows that

for every p 2 Rd � t

0

Fÿ1
p (s) ds �

� t

0

Gÿ1
p (s) ds, t 2 [0, 1],

therefore Fÿ1
p (t) � Gÿ1

p (t) for all t. We conclude that F p � G p, i.e., hX , pi is distributed

like hY , pi, for every p 2 Rd. The CrameÂr±Wold theorem (e.g. Mardia et al. 1979) then

yields that X and Y have the same distribution; hence the proposition for probability

distributions.

Now, let F, G 2M0. Then Ẑ(F) � Ẑ(G) implies that á(F) � á(G) and Ẑf(1=á(F))Fg
� Ẑf(1=á(G))Gg. Because (1=á(F))F and (1=á(G))G 2 F 0, we get (1=á(F))F �
(1=á(G))G by the above, and therefore F � G. u

Corollary 3.1. For every F 2M0 its lift zonoid is uniquely determined by the two-

dimensional projections pr p( Ẑ(F)), p 2 Sdÿ1.

Proof. This follows from Theorems 3.5, 3.4 and Remark 3.2. u

Our approach also yields a new metric among measures that is based on the Hausdorff

distance.

Corollary 3.2. Let d: M0 3 M0 ! R� be a function of the form

d(F1, F2) � ä( Ẑ(F1), Ẑ(F2)), F1, F2 2M0, (3:10)

where ä is the Hausdorff distance. Then d is a metric in M0.
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Proof. From Theorem 3.5 we see that d(F1, F2) � 0 if and only if F1 � F2. Symmetry and

the triangle inequality follow from the same properties of the Hausdorff distance. u

By the embedding property, the lift zonoid can be used in place of the measure. In fact,

from a given lift zonoid, Ẑ, we can reconstruct the measure via the inversion of the Radon

transform (Helgason 1980):

@2 h( Ẑ, ( p0, p))

@ p2
0

is the Radon transform of a measure at the point ( p0, p). In what follows we illustrate several

applications.

4. Expected volume of a random convex hull

We will exhibit a relation between the convex hull of a random sample in d-space and the lift

zonoid of the probability measure from which they are sampled.

Beginning with the work of ReÂnyi and Sulanke (1963; 1964) and Efron (1965), the

convex hull of random points has been studied. Here we provide bounds on the expected

volume in terms of the volume of the lift zonoid of the sampling distribution. The only

restriction we impose is that the distribution has a ®nite expectation of the norm.

De®nition 4.1. Random lift zonotope. Let X1, . . . , X n be n independent random points in

Rd, each having the probability distribution F 2 F 0. The random lift zonotope of

X 1, . . . , X n is the random zonotope in Rd�1 de®ned by

Ẑ(X1, . . . , X n) � �n
i�1 0,

1

n
(1, X i)

� �
: (4:1)

The following theorem shows that the expected volume of the random lift zonotope equals,

up to a constant, the volume of the lift zonoid of the random vector.

Theorem 4.1. Let X1, . . . , X n be independent random vectors each of which is distributed as

F. Then

E Vol ( Ẑ(X 1, . . . , X n)) � (nÿ 1) � � � (nÿ d)

nd
Vol ( Ẑ(F)): (4:2)

Proof. Let M X be a d 3 d matrix whose columns are independent and identically distributed

as F. Due to Proposition 2.2 and Vitale (1991a), we have that Vol (Z(X )) � (d!)ÿ1Ejdet MX j.
The lift zonoid of X is the zonoid of the random vector X̂ � (1, X ) in Rd�1 that has 1 for

sure as its ®rst component. Thus the volume of the lift zonoid of X equals

Vol ( Ẑ(F)) � 1

(d � 1)!
Ej det M X̂ j: (4:3)
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Given points x1, . . . , xn in Rd�1, a zonotope �n
i�1[0, xi] is a convex polyhedron, whose

volume equals (see Shephard 1974)X
1<i1, :::, id�1<n

j det (xi1 , . . . , xid�1
)j: (4:4)

In view of (4.4), we have

Vol ( Ẑ(X 1, . . . , X n)) �
X

1<i1, :::, id�1<n

���� det
1

n
(1, X i1 ), . . . ,

1

n
(1, X id�1

)

� �����: (4:5)

Therefore, with respect to (4.3) and (4.5), we obtain

E Vol ( Ẑ(X 1, . . . , X n)) �
X

1<i1,:::, id�1<n

E

���� det
1

n
(1, X i1 ), . . . ,

1

n
(1, X id�1

)

� �����
� 1

nd�1
(d � 1)!

X
1<i1,:::, id�1<n

Vol ( Ẑ(F)) � 1

nd�1
(d � 1)!

n

d � 1

 !
Vol ( Ẑ(F))

� Vol ( Ẑ(F))
Yd

i�1

nÿ i

n
,

(4:6)

and the proof is complete. u

Let x1, . . . , xn be points in Rd , and consider the zonotope

Z n � 0,
1

n
(1, x1)

� �
� . . . � 0,

1

n
(1, xn)

� �
:

We want to establish inequalities between the volume of Z n and the volume of the convex

hull, Cn � conv fx1, . . . , xng. While Z n is a set in Rd�1, Cn is one in Rd . In what follows,

the volumes are de®ned with respect to these dimensions. We ®rst provide a lower bound for

the volume of Cn.

Theorem 4.2.

Vol (Cn) > 2d(d � 1) Vol (Z n): (4:7)

Proof. Consider the hyperplanes Há � fx 2 Rd�1jx0 � ág and the half-spaces H<á �
fx 2 Rd�1jx0 < ág and H>á � fx 2 Rd�1jx0 > ág. Let Sn � Z n \ H1=n. Then

Cn � n . ð0(Sn), where ð0 is the projection on the last d coordinates. Therefore the d-

variate volume of Sn equals

Vol (Sn) � 1

nd
Vol (Cn): (4:8)
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It is easy to check that for any á < 1=n,

n . Sn � n . (Z n \ H1=n) � 1

á
. (Z n \ Há): (4:9)

Therefore, Z n � Cone(Sn), where Cone(S) � fësjë 2 R�, s 2 Sg for S � Rk. Because Z n is

centrally symmetric around 1
2
(1, ì),

Vol (Z n) < 2 . Vol (Cone(Sn) \ H<1=2): (4:10)

Further, Cone(Sn) \ H<1=2 is a pyramid in Rd�1 that has base Cone(Sn) \ H1=2 and height

1=2. As the d-variate volume of the base amounts to (n=2)d , we obtain

Vol (Cone(Sn) \ H<1=2) � 1

d � 1
.
1

2
.

n

2

� �d

Vol (Sn): (4:11)

In view of (4.8), (4.10), (4.11) we have

Vol (Z n) <
n

2

� �d

.
1

d � 1
.

1

n

� �d

Vol (Cn) (4:12)

as required. u

A reverse bound is established in the following theorem.

Theorem 4.3. Let n > d � 1. Then

Vol (Cn) <
nd�1(d � 1)

n(d � 1)ÿ 2d
Vol (Z n): (4:13)

Proof. First, note that (4.13) can be written

Vol (Z n) >
1

nd

nÿ 2

n
� 2

1

(d � 1)n

� �
Vol (Cn): (4:14)

Consider the partition of Z n that consists of the two pyramids Sn � Z n \ H<1=n, �Sn �
Z n \ H>(nÿ1)=n and the convex body Bn � Z n \ H<(nÿ1)=n \ H>1=n. The pyramids have the

same volumes of bases, nÿd Vol (Cn), and the same heights 1=n. So, their volumes sum to

2

nd

1

(d � 1)n
Vol (Cn):

The body Bn is convex and has centrally, around the point 1
2
(1, ì), symmetric bases, Sn and

Sn, and height (nÿ 2)=n. Therefore, due to Schwartz symmetrization (Bonnesen and Fenchel

1934),

Vol (Bn) >
nÿ 2

n
Vol (Sn) � nÿ 2

n

1

nd
Vol (Cn),

which yields the proof. u
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As a consequence of the above three theorems we have the following.

Theorem 4.4. Let X1, . . . , X n be random vectors independent and identically distributed as

F, n > d � 1. Then

n

2

� �ÿd Yd

i�1

(nÿ i)

 !
(d � 1) Vol ( Ẑ(F)) < E Vol (conv fX1, . . . , X ng)

<
(d � 1)n

n(d � 1)ÿ 2d

Yd

i�1

(nÿ i)

 !
Vol ( Ẑ(F)): (4:15)

5. Lift zonoids and variability of random vectors

We propose a new ordering between random vectors in Rd that is weaker than dilation and

has nice geometric properties. Our idea is to replace a probability distribution on Rd by its

lift zonoid and to consider the order between random vectors that is induced by the inclusion

of their lift zonoids.

5.1. The lift zonoid order

The zonoid order d Z between measures F and G 2M is de®ned by

F d Z G if Z(F) � Z(G): (5:1)

Corollary 2.1 and Example 2.1 have shown that there exist many probability measures that

are equivalent with respect to the zonoid order. The following de®nition avoids this

drawback.

De®nition 5.1. For F, G 2M0, we introduce the lift zonoid order dLZ,

F dLZ G if Ẑ(F) � Ẑ(G):

It follows immediately from this de®nition and Theorem 3.1(ii) that F dLZ G implies

á(F) < á(G) and ì(F) < ì(G). dLZ is a partial order (re¯exive, transitive and anti-

symmetric) on M0.

Let X 0 be the set of all random variables that have values in Rd and ®nite expectations,

and, given X, Y 2 X 0, write FX , FY 2 F 0 for their distributions. By de®ning

X dLZ Y if FX dLZ FY ,

we obtain a preorder (re¯exive and transitive) on X 0. This induces a partial order on the

factor space X 0=�d. In view of Proposition 2.2 the preorder between X and Y, X dLZ Y , can

be interpreted in the way that the `set-valued expectation' of X is `smaller' than that of Y,

E([0, (1, X )]) � E([0, (1, Y )]). The lift zonoid order ranks random vectors by their

variability.
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In the remainder of this paper we investigate the properties of dLZ on F 0 and on X 0.

We start with a well-known theorem and the de®nition of the dilation order. See Mosler and

Scarsini (1991), Shaked and Shanthikumar (1994).

Theorem 5.1. Let X, Y 2 X 0. The following three conditions are equivalent.

(i) E[ö(X )] < E[ö(Y )] for all convex ö: Rd ! R for which the expectations exist.

(ii) E[X ] � E[Y ], and E[ö(X )] < E[ö(Y )] for all increasing convex ö: Rd ! R for

which the expectations exist.

(iii) Y �d X � U with some U for which E[U jX ] � 0.

If one, and hence all, conditions of Theorem 5.1 are satis®ed, Y is called a dilation of X,

X ddil Y . For the lift zonoid order we state the following characterization theorem. A

function ö: Rd ! R is called convex-linear if ö � è � l with some linear l: Rd ! R and

some convex è: R! R.

Theorem 5.2. The following ®ve conditions are equivalent.

(i) X dLZ Y .

(ii) E[ö(X )] < E[ö(Y )] holds for every convex-linear function ö for which both

expectations exist.

(iii) For all p 2 Rd , hX , pi dLZ hY , pi.
(iv) For all p 2 Rd , hY , pi � dhX , pi � U p, where U p is a random vector in Rd and

E[U pjhX , pi] � 0.

(v) For all p 2 Rd and all t 2 [0, 1],
� t

0
Fÿ1

p (s) ds >
� t

0
Gÿ1

p (s) ds.

Corollary 5.1. X ddil Y ) X dLZ Y .

As every convex-linear function is convex, the corollary is obvious from Theorems 5.1(i)

and 5.2(ii).

If d . 1, the reverse implication, X dLZ Y ) X ddil Y , does not hold in general

(Koshevoy 1995). But there are cases under which the two orders coincide. See Koshevoy

(1995) and Corollary 5.3 below.

Proof of Theorem 5.2. By Theorem 3.4, X dLZ Y if and only if Ẑ(F p) � Ẑ(G p) for all

p 2 Rd . F p and G p are the distributions of hX , pi and hY , pi, respectively. Hence (i) Û
(iii).

From Lemma 3.1(ii) it follows that, for d � 1 and H 2 F 0, the border of Ẑ(H) consists

of the two curves

t,

� t

0

Hÿ1(s) ds

� �T

, t,

�1

1ÿ t

Hÿ1(s) ds

 !T

, 0 < t < 1:
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Therefore hX , pi dLZ hY , pi if and only if� t

0

Fÿ1
p (s) ds >

� t

0

Gÿ1
p (s) ds 8t 2 [0, 1] (5:2)

E[hX , pi]ÿ
� t

0

Fÿ1
p (s) ds < E[hY , pi]ÿ

� t

0

Gÿ1
p (s) ds 8t 2 [0, 1]: (5:3)

This shows that (iii) implies (5.2) for all p, hence (v). On the other hand, for every p 2 Rd,

we see from (5.2) that E[hX , pi] < E[hY , pi]. The same holds for ÿ p. Therefore

E[hX , pi] � E[hY , pi] for all p. It follows that (5.2) for all p implies (5.3) for all p, and

therefore (v) implies (iii).

Because the expectations are equal, (v) means that, for all p, G p is a dilation of F p. The

equivalences (v) Û (iv) and (v) Û (ii) then follow from Theorem 5.1.

Let l: Rd ! R be linear and è: R! R be convex. Then ö � è � l is a convex function

Rd ! R. u

The dilation order is positive homogeneous, i.e., X ddil Y implies that áX ddil áY for every

á. 0, and the same holds for the lift zonoid order. More general, both the dilation order and

the lift zonoid order are preserved under af®ne transformations.

Proposition 5.1. Let A be a k 3 d matrix, and â 2 Rk . Then

(i) X ddil Y ) AX � â ddil AY � â.

(ii) X dLZ Y ) AX � â dLZ AY � â.

Proof. The proposition is a consequence of Theorem 5.2(ii) and Theorem 5.1(i). u

In particular, if two random vectors are lift zonoid ordered then all their marginals are

ordered as well. It follows from Theorem 3.3 that the lift zonoid order is continuous in the

following sense.

Theorem 5.3. Let F, G 2 F 0, and consider a sequence (Gn)n2N bounded in M0 that

converges weakly to G. Then

(i) F dLZ Gn8n 2 N) F dLZ G.

(ii) Gn dLZ F8n 2 N) G dLZ F.

5.2. The lift zonoid of a marginal distribution

We show that the lift zonoid of a marginal distribution is the proper projection of the lift

zonoid. From this again it is seen that the lift zonoid ordering of two random vectors implies

the same for all their marginals. Under stochastic independence a reverse result is proved.

Now, for x 2 Rd and J � f1, 2, . . . , dg, let xJ denote the vector of components xi, i 2 J ,

and xÿJ the vector of components xi, i =2 J . If F is the distribution of a random vector X in

Rd , F J denotes the marginal distribution of X J .
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Theorem 5.4. Let F 2 F 0, J � f1, 2, . . . , dg, and denotes prJ : (x0, x) 7! (x0, xJ ) for every

(x0, x) 2 Rd�1. Then prJ ( Ẑ(F)) � Ẑ(F J ).

Proof. Extreme points of X̂ (F J ) are of the form�
fxJ : p0�hxJ , pJ i>0g

dF J (xJ ),

�
fxJ : p0�hxJ , pJ i>0g

xJ dF J (xJ )

 !
: (5:4)

Consider the projection of an extreme point of Ẑ(F) in direction ( p0, pJ , 0ÿJ ):

prJ

�
fx: p0�hx, pJ i>0g

dF(x),

�
fx: p0�hx, pJ i>0g

x dF(x)

 ! !

� prJ

�
fx J : p0�hx J , pJ i>0g

dF J (x J ),

�
fx J : p0�hx J, pJ i>0g

x dF J (x J )

 ! !

�
�
fxJ : p0�hxJ , pJ i>0g

dF J (xJ ),

�
fxJ : p0�hxJ , pJ i>0g

xJ dF J (xJ )

 !
: (5:5)

The projections of other points of Ẑ(F) belong to the convex hull of points (5.5), yielding

prJ ( Ẑ(F)) � Ẑ(F J ). u

Theorem 5.4 says that the lift zonoid of a marginal distribution F J is equal to the

projection of the lift zonoid of F. This implies that the lift zonoid order between two

distributions implies the lift zonoid order between all their marginals. The reverse is not

true, but the following theorem holds.

Theorem 5.5. For F, G 2 F 0 and J � f1, . . . , dg,
Ẑ(F J . FÿJ ) � Ẑ(GJ . GÿJ ), Ẑ(F J ) � Ẑ(GJ ) and Ẑ(FÿJ ) � Ẑ(GÿJ ):

Proof. The `only if' part follows from Theorem 5.4. To prove the reverse, we consider the

support function of Ẑ(F J . FÿJ ). For given ( p0, p) 2 Rd ,

h( Ẑ(F J . FÿJ ), ( p0, p)) �
�
fx: p0�hx, pi>0g

( p0 � hx, pi) dF J (xJ ) dFÿJ (xÿJ )

�
�1
ÿ1

�
fxÿ J : p0�hxÿ J , pÿ J i�sg

ø(s, F J ) dFÿJ (xÿJ )

" #
ds

�
�

Rÿ J

ø( p0 � hxÿJ , pÿJ i, F J ) dFÿJ (xÿJ ), (5:6)

where we have introduced

ø(s, F J ) �
�
fxJ : s�h pJ , xJ i>0g

(s� hpJ , xJ i) dF J (xJ ):
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Note that s 7! ø(s, F J ) is a convex function, and xÿJ 7! ø( p0 � hxÿJ , pÿJ i, F J ) is a

convex-linear function. Therefore, from Ẑ(FÿJ ) � Ẑ(GÿJ ), Theorems 5.2(ii) and 5.6 we

obtain

h( Ẑ(F J . FÿJ ), ( p0, p)) �
�

Rÿ J

ø( p0 � hxÿJ , pÿJ i, F J ) dFÿJ (xÿJ )

<

�
Rÿ J

ø( p0 � hxÿJ , pÿJ i, F J ) dGÿJ (xÿJ )

�
�1
ÿ1

�
fxÿ J : p0�hxÿ J , pÿ J i�sg

ø(s, F J ) dGÿJ (xÿJ )

" #
ds: (5:7)

Further, Ẑ(F J ) � Ẑ(GJ ) with Theorem 5.2(ii) yields ø(s, F J ) < ø(s, GJ ) for all s.

Therefore the right-hand side of (5.7) is bounded by�1
ÿ1

�
fxÿ J : p0�hxÿ J , pÿ J i�sg

ø(s, GJ ) dGÿJ (xÿJ )

" #
ds � h( Ẑ(GJ . GÿJ ), ( p0, p)):

We conclude h( Ẑ(F J . FÿJ ), :) < h( Ẑ(GJ . GÿJ ), :), hence Ẑ(F J . FÿJ ) � Ẑ(GJ . GÿJ ). u

Corollary 5.2. Let X , Y , U , V 2 X 0. Assume that X and Y are independent, U and V are

independent, X dLZ U , Y dLZ V . Then, for every á 2 [0, 1],

áX � (1ÿ á)Y dLZ áU � (1ÿ á)V : (5:8)

Proof. Consider the random vectors (X T, Y T)T and (U T, V T)T in R2d . From the assumptions

of Corollary 5.2 and Theorem 5.5 it follows that (X T, Y T)T dLZ (U T, V T)T. Let I d denote

the d 3 d unit matrix, Od denote the d 3 d zero matrix, and A � á(I d , Od) �
(1ÿ á)(Od , I d). Then A(X 9, Y 9)9 � áX � (1ÿ á)Y and A(U 9, V 9)9 � áU � (1ÿ á)V .

Proposition 5.1(ii) yields the assertion. u

The next corollary says that, for vectors of stochastically independent components, the

lift zonoid order is equivalent to the dilation order.

Corollary 5.3. Let F, G 2 F 0, F(x) �Qd
j�1 F j(xj), G(x) � Qd

j�1 G j(xj), and let X �
(X1, . . . , X d)T be distributed according to F, Y � (Y1, . . . , Yd)T according to G. Then

X dLZ Y , X j dLZ Y j, 8 j, X ddil Y :

Proof. By repeated application of Theorem 5.5, F dLZ G if and only if F j dLZ G j for all j.

For univariate probability distributions, dilation and lift zonoid order coincide. Again, under

the stochastic independence assumption, dilation of all univariate marginals is equivalent to Y

being a dilation of X. u
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5.3. Probability mixtures and convex convolutions

Next, we show that the ordering dLZ is preserved under mixtures of probability distributions.

Theorem 5.6. Let F1, F2, G1, G2, H 2 F 0. For every á 2 [0, 1], the following statements

hold:

(i) If F1 dLZ G1 and F2 dLZ G2, then áF1 � (1ÿ á)F2 dLZ áG1 � (1ÿ á)G2.

(ii) If F1 dLZ H and F2 dLZ H, then áF1 � (1ÿ á)F2 dLZ H .

(iii) If H dLZ G1 and H dLZ G2, then H dLZ áG1 � (1ÿ á)G2.

Proof. Obviously, (ii) and (iii) follow from (i). By assumption in (i), we have Ẑ(F1) � Ẑ(G1)

and Ẑ(F2) � Ẑ(G2). From Theorem 3.2 it follows that for every F1, F2 2 F 0,

Ẑ(áF1 � (1ÿ á)F2) � á Ẑ(F1)� (1ÿ á) Ẑ(F2): (5:9)

Then Ẑ(áF1 � (1ÿ á)F2) � Ẑ(áG1 � (1ÿ á)G2) holds, and we conclude (i). u

The next proposition is about convex convolutions, i.e., convex combinations of

independent random vectors.

Theorem 5.7. Let X , Y , W 2 X 0, á 2 [0, 1], and assume that X and Y are independent.

Denote by V the á-mixture, with FV � áFX � (1ÿ á)FY , and by U the á-convolution,

U � áX � (1ÿ á)Y , of X and Y. Then the following statements hold:

(i) U dLZ V .

(ii) If X dLZ W and Y dLZ W then U dLZ W .

(iii) If W dLZ X and W dLZ Y then W dLZ U .

Theorem 5.7(ii) implies that, if a set of independent random vectors is dLZ-smaller than a

given random vector, then every convex combination of such vectors is smaller than the given

vector, too. (iii) implies the same for a set of independent vectors that are dLZ-greater than a

given vector.

Proof. Let FX , FY , FU , FV and FW be the distributions of X, Y, U, V and W, respectively.

Show that, for 0 < á < 1, the inclusion

Ẑ(FU ) � á Ẑ(FX )� (1ÿ á) Ẑ(FY ) (5:10)

holds. Let z 2 Ẑ(FU ). Then, with some g: Rd ! [0, 1],
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z �
�

Rd

g(u)(1, u)T dFU (u)

�
�

Rd

�
Rd

g(áx� (1ÿ á)y)(1, áx� (1ÿ á)y)T dFX (x) dFY (y)

� á

�
Rd

�
Rd

g(áx� (1ÿ á)y)(1, x)T dFX (x)

� �
dFY (y)

� (1ÿ á)

�
Rd

�
Rd

g(áx� (1ÿ á)y)(1, y)T dFY (y)

� �
dFX (x): (5:11)

The inner integral of the ®rst summand in (5.11) is an element of Ẑ(FX ) for every y.

Integration over y again yields an element of Ẑ(FX ) because Ẑ(FX ) is convex. Therefore the

®rst summand in (5.11) equals áz� with some z� 2 Ẑ(FX ). Similarly, the second summand

amounts to (1ÿ á)z��, where z�� 2 Ẑ(FY ). We conclude (5.10). Therefore, Ẑ(FU ) �
Ẑ(FV ), which proves part (i) of the theorem.

From the assumptions of part (ii) and Theorem 5.6(ii) we conclude that FV � áFX �
(1ÿ á)FY dLZ FW , hence with (i), U dLZ V , it follows that U dLZ W .

Part (iii) is a consequence of Corollary 5.2 u

5.4. Monotone approximation of distributions

The following theorem shows that, in the lift zonoid order, every probability distribution can

be approximated from below by empirical distributions and from above by absolutely

continuous distributions.

Theorem 5.8. Given F 2 F 0, there exists a sequence fFng of empirical distributions and a

sequence fF ng of absolutely continuous distributions such that both converge weakly to F

and

Fn dLZ F dLZ F n:

Proof. We show that there exist such sequences with Fn ddil F ddil F n; then the theorem

follows from Corollary 5.1.

Let F 2 F 0. F is decomposed, F � D� C, into a discrete measure D 2M0 and an

atomless measure C 2M0. First, we approximate C, in weak convergence from below, by a

sequence fCng of discrete measures such that C is a dilation of Cn for each n. We do this

as follows. Let Sn � fx:
Pd

j�1xi < ng, n 2 N, and S nm be a partition of the simplex Sn

into simplices of diameter less than mÿ1, m 2 N. De®ne the measure

Cnm(fyg) �
�

S dC(x) if y � � S x dC(x), S 2 S nm,�
RdnSn

dC(x) if y � � RdnSn
x dC(x),

0 otherwise:

8<:

396 G. Koshevoy and K. Mosler



Then Cnm is discrete and Cnm ddil C for all n and m. Further, Cnn !weak
C. We conclude that

Dn :� D� Cnn !weak
F and Dn ddil F for all n.

Now, a discrete distribution G with support y1, . . . , ym and probabilities p1, . . . , pm can

be approximated by a sequence of empirical distributions Er such that G is a dilation of Er

for every r. For this we employ empirical distributions whose support includes the support

of G and, in addition, a vector z. For every r, the probability of yi under Er is chosen to be

k ri=r, k ri 2 f0, 1, . . . , rg, such that k ri=r < pi, (k ri � 1)=r . pi, and the remaining

probability at z equal to
P

(rpi ÿ kri)yi=
P

( pir ÿ kri). Then, obviously, G is a dilation of

Er. This proves the existence of a sequence fEnrg of empirical distributions such that

Enr !weak
Dn and Enr ddil Dn for all n and r, and therefore, by the above, Fn :� Enn !weak

F

and Fn ddil F for all n.

With respect to the approximation from above, we proceed as follows. For x 2 Rd, and

n 2 N, let T n
x be the multivariate normal distribution with expectation x and covariance

matrix nÿ1 I d , where I d is the d 3 d unit matrix. Then, for every x, T n
x is a dilation of the

probability measure concentrated at x. The probability measure F n, F n(B) ��
Rd T n

x (B) dF(x), as a mixture, is a dilation of F; see Phelps (1966, ch. 13). Further, Fh

is absolutely continuous. Because Fh !weak
F, the proof is complete. u

In the case d � 1, a given nontrivial F 2 F 0 can also be approximated the other way

round, viz. by a sequence of absolutely continuous distributions from below and a sequence

of discrete distributions from above. This holds because any convex centrally symmetric set

in R2 is a zonoid, which in higher dimensions is not true. The problem whether F can be

approximated in the lift zonoid order from above by empirical distributions is related to the

problem of approximating a zonoid by zonotopes on the basis of ®nitely many support

values. This problem is non-trivial and, to our knowledge, unsolved; see Goodey and Weil

(1993, p. 1321).

5.5. An application to random determinants

Like the dilation order, the lift zonoid order may be used to generate many probability

inequalities. Here we present an application to random determinants. Let X be a random

vector in Rd . Then, by (4.3), the volume of the lift zonoid of X equals

(1=(d � 1)!)Ej det M X̂ j, where M X̂ is a (d � 1) 3 (d � 1) matrix whose columns are

independent and identically distributed copies of (1, X ). From the de®nition of the lift

zonoid order we know that X dLZ Y implies Ẑ(X ) � Ẑ(Y ), hence

X dLZ Y implies Ej det M X̂ j < Ej det M Ŷ j:

The zonoids of X and Y are projections of the corresponding lift zonoids on their last d

coordinates. Therefore the same inequality follows from the zonoid volumes

X dLZ Y implies Ej det M X j < Ej det M Y j: (5:12)
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By this the comparison results of Vitale (1991a; 1991b) can be strengthened. For example, let

Y and Y9 be random vectors with E[Y 9jY ] � 0. Then

Ej det M Y j < Ej det M Y�Y 9j: (5:13)

This follows from our Theorem 5.2(vi) and (5.12). It extends Theorem 5.2 in Vitale (1991b).

Further, Vitale's Theorem 5.5 is an immediate consequence of our Theorem 5.7(ii).
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