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Upper functions for plane Brownian
windings
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We present a method leading to a number of results on upper functions for such functionals as
winding angles or radius vectors of planar processes.
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1. Introduction

Problems of sharp geometry of multidimensional Brownian curves and close problems for
random walks are widely studied at present. Important results were obtained in the branch of
studying the asymptotics of the functionals of winding angle type of the planar Brownian
motion Z;, t = 0 (see, for example, Messulam and Yor (1982), Lyons and McKean (1984),
Pitman and Yor (1986, 1989), Bertoin and Werner (1993) and Shi (1994, 1995). Limit
theorems of various types for the winding angle 6, were obtained, most of them dealing with
the windings of the process Z; around the origin or around another Brownian particle,
independent of the first one.

Following the work of Bertoin and Werner and of Shi, we try to study lim inf—lim sup
behaviour of the following functionals:

®\(1) = Lﬂ(ps € [c1, 1) 6,

t

By(1) = Jof<ps > ) do,,

t
D(t) = J do, = 6,,
0

where p; = || Z||, €1, €2>0 and 6; is a winding angle (see Pitman and Yor (1986) for a
definition). 1(-) stands for indicator of a random event.

In the section, we recall a couple of well-known facts corresponding to martingales. We
also present several standard definitions.
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2. Preliminary remarks

E.A. Dorofeev

Continuous local martingales, as discussed previously by Messulam and Yor (1982, p. 356),
log ps and the winding process 6, of the Wiener process Z, can be represented in terms of
two independent linear Wiener processes (Bc,, Yc,), as proved by Dambis (1965, p. 443),

after the time change
t
C[ = J ps_z ds.
0
More definitely, for all ¢; >¢, >0 and ¢ >0 one has almost surely
C,
(1) = | "8, € oger, log ) dy, = wiai (€,
0
Ci
@) = | 1B > 0z dy. = w(eA )
0
Cz
o) = | " dy. = wico.
0

where w stands for some linear Brownian motion, independent of (3, and

t
() = J 1B, € [loger, log e2]) ds,
0

(1) = J;T(ﬂs € [loge, oo))ds.

Moreover, for all »>0 with probability 1,
Cr(r) = Olog r»
where o, = inf (u = 0: 5, =), T(r) =min(s = 0: p;, = r) and

log T'(r)
_
2logr

1, r— 00

(Messulam and Yor 1982, p. 355).

2.1)

2.2)

Let I =1I(t), t =0, be a positive random functional. We call U;, i =1, 2, the upper
functions of the first and second types for the functional 7 if, respectively, almost surely

: 11(2)|
lim su =0,
[Hoop U](t)

lim inf Supo=s= [[()] _

0.
=00 Ua(1)



Upper functions for plane Brownian windings 463
3. Upper functions and lim sup theorems
Fix any o> 1.

Lemma 3.1. Let F be an increasing function and w a standard linear Brownian motion.
Define
o, =min{s>0: 5, = r},

where [3 is an independent Brownian motion.

If

e
0=s=0 &

ZP( sup |w(s)| = F(ak)> = o0,
3

then the random events

OSSSOG/(

Akz{ sup |w<s)|zF(ak)}

hold infinitely often almost surely.

Proof. Consider o-algebras
Fir=0(0{w(s), s =0} X o{f;, 0 =5 = 1}).

Events A; are evidently '?%k measurable.
We show that, in the conditions of Lemma 3.1, one has almost surely

ZP( sup  |w(s)| = F(a")|7au“> = o0,
k

=s=
Ofsflfak

According to the Borel-Cantelli-Lévy Lemma (see, for example, Shiryaev (1989, p. 553)),
the last equality is sufficient for statement of Lemma 3.1.
Put

= min{s =04 s = 0}
Using the obvious inequality

sup  |w(s)] = sup  [w(s)|

OSsSo‘uk /K=S=0 i
on the event {/; <0} and applying the Markov property at time /4, we get

P< sup |w(s)| = F(ak)|.7/k> = 1(/4 <Oa/¢)P( sup |w(s) +x| = F(ak)>,

=s= =s5=
O_S_O'(Lk O_S_O'ak

where x = w(/y). By an inequality for Gaussian measures (Ledoux and Talagrand 1991, p.
73), the second term in the product is bounded from below by P(supo=;=o, w(s)| = F(a")).
Taking now a conditional expectation given .7, , ,, we get
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P< sup | w(s)| ZF(oz">|.~/%a“> ZP(/k<oak|%W)P< sup  |w(s)| ZF(oc"))

= =<
Ck<S=0 ik 0737(7(1;{

:aalp( sup |w<s>|2F(ak))'

Oﬁsﬁdak
3.1
From (3.1) we conclude that the series
ZP< sup  |w(s)| = F(a")L%ak,)
% 0=s=0
diverges almost surely.
The proof of the lemma is complete. ]

By analogy, one proves Lemma 3.2.

Lemma 3.2.

(a) Let I be the local time at level 0 and time t of the linear Brownian motion f5.

If

9 ok
O=s=/“*

ZP( sup  w(s)| = F(ak)> — oo,
k

then the random events

Akz{ sup |w(s>|2F<a")}

O ok
0=s=1

hold infinitely often almost surely.
(b) Let

(f) = J 1(Bs € [loge, o)) ds.

0

If

ZP( sup  |w(s)| = F(a")) = o0,

k OSSS‘rz(UUk)
then the random events

Ak:{ sup |w(s>|zF(ak)}

0=s=75(0 k)

hold infinitely often almost surely.

Proof. To prove Lemma 3.2(a), one replaces w(s) everywhere in the proof of Lemma 3.1
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with w(/j)) and, to prove Lemma 3.2(b) with w(t,(s)), respectively, and uses the additivity of
the functionals introduced above. ]

Corollary 3.1. Let FY, i=1,2,3  be increasing  functions  such  that
Va > 1limsup { F D (at)/ FO(1)} = a.
Let the series

=s=<
075700[/(

Sp ( sup  |w(s)| = F(2>(ak)>; (3.2)
k

0=s=/y*

ZP< sup |w(s>|zF<”(a")>;
k

ZP(O sup |w<s)2F<3><a">)
k

=s=72(0 k)

converge (or diverge respectively), for all a>1 simultaneously.
Then one has almost surely

SUPo<s=0 |W(S)| =1 or =1
- - 9

lim su;
kD FO(R)
timsup R0zt PO =1 (3.3)
m — D = = .
Rsup FO(R) or ,

. SUPo=s=1;(0p) |W(S)|
1
1mRsup FO(R)

=1 or =1,
according as the series (3.2) converges or diverges

Corollary 3.1 follows immediately from the Borel-Cantelli Lemma, Lemmas 3.1 and 3.2
and the monotonicity argument.
Now we are able to prove the following result.

Theorem 3.1.

(a) Let F be an increasing function such that F(x)/x — oo, x — o0.
Then one has almost surely

lim sup [wor) =
R F(R)

or 0o,

according as the integral IOO dx/F(x) converges or diverges.
(b) One has almost surely

lim sup (@) = 2
g RloglogR

To prove Theorem 3.1, we need the following lemma.
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Lemma 3.3.

0=s=15(07)

2
P( sup  w(s) = y) =~ o], ry oo, r/y 0.

Proof. We use equation (2.2.1) from Baskakova and Borodin (1992):

00 1/2 00
P(sup w9 =) —erte (/20 = 5| e a- <i> [Feera

0=s=<t V)22 Tt y

One can easily calculate the Laplace transform of distribution of 7,(0): it satisfies

>0 1
—At
P dt < ——— A>0, r — co.
JO ¢ w2(0%) cosh[r(2ﬂ)'/2] d

We also remark that its density is bounded at zero.
Hence, one has

P( sup  w(s) = y) XJ erfc (y/(Zt)l/z)Plz(gT)dt
0

0=s=1(0,)
2 12 oo © P dr
i —22/2¢ X 12(04)
( ) J © 12
T y 0 t

o.¢] 00 o.¢) ) X
dz| Pue, dzJ e 1/2E dy
v 0 —00

00 00 00 2y
—iuz —u“t/2
dz € duJ € P‘L'Z(a'r) dt
Jy J—o0 0
00 00 efiuz du

J_oo cosh (ru)

B JOO dz
), reosh(nz/2r)

2 —my/2
=— "1 1
~C [1+ o(1)],

which is desired (we make use of an expression from Dwight (1961, equation (861.62))). We
should observe here that (u, f)-dependent double integral in the second line is absolutely
convergent for any z>0, and hence one can change the order of integration.

The lemma is proved. O

Proof of Theorem 3.1. Theorem 3.1(a) is essentially Khintchin’s result on the Cauchy process
w(o,).
To prove Theorem 3.1(b), recall that for any », y >0
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P( sup w(s)2y>SP< sup |w(s)|2y>S2P< sup w(3)2y>.

0=s=12(0,) 0=s=15(0,) 0=s=15(0,)

Fix any a> 1.
One sees from Lemma 3.3 that the series

2
ZP( sup |w(s)|ZRakloglogak>
3

0=s5s=72(0 k)

diverges and the series

0=s=72(0 k)

2
ZP( sup  |w(s)| = Eak(loglogak + 2loglog logak)>
k

converges. Corollary 3.1 completes the proof of Theorem 3.1(b). O

It is not difficult to derive from Theorem 3.1 that for increasing function f one has
almost surely

. W(Olog r
hmsupM:O or oo,
r

log r /(r)
according as the integral [~ dx/{xlogx f(x)} converges or diverges, and
li ‘W(TZ(O'log r))| 2
imsup ————=———— = —.
»  logrlogloglogr =
Now we can prove the following theorem for the first-type upper function of the
Brownian winding process.

Theorem 3.2.

(a) Let f be an increasing function.
Then one has almost surely

Dt
lim sup &: 0 or oo,
t

log 7 /(1)
according as the integral [* dx/{xlogx f(x)} converges or diverges.
(b)
|P,(1)] 1

li —_— =
1mtsup log tlogloglogt m

Result (a) was given by Bertoin and Werner (1993), and (b) was independently obtained
by Shi (1995).

Proof. From (2.2) we get
CI)(t) = W(Ct); CI)(T(V)) = W(Olog s CI)Z(T(I”)) = W(TZ(Ulog )-
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We have already proved the desired statement for partial case when # — oo along the set
of moments 7(R) = min{¢>0: || Z/| = R}, R>0.

To complete the proof, one must use the monotonicity argument, as in Corollary 3.1. We
recall here that almost surely logT(r)/2logr — 1, r — oc. Il

Now we turn our attention to the functional

C

D (1) = J 1(Bs € [logey, loge]) dys.
0

We use the following lemma.

Lemma 3.4.

0=s=Iy"

P< sup w(s) = y) =e /"

Proof. One proves this lemma in the same way as Lemma 3.3, using the well-known identity
P[> y) = e V%", O

Now we get the following result.
Lemma 3.5. Almost surely

limrsup ngogr |W(lg’)| =1.

Proof. The proof is based on the fact that, according to Lemma 3.4, the series

ZP( sup  w(s) = F(a“))
k

g
0=s=ly

converges, simultaneously for all a > 1, for
Fi(x) = x'?(loglog x + 2 log log log x)
and diverges, respectively, for
Fy(x) = x!/? log log x.

Finally, one uses Corollary 3.1 as in proof of Theorem 3.1. U

Corollary 3.2. Almost surely

. 1 o\ 12
1 Cr»))| =< log | — .
1mrsup (log r)!/2loglog log r W@ (Cron)) { °8 (cl) }
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Proof. 1t suffices to observe that, as was proved by It6 and McKean (1965, p. 229),

.oT(r) €
lim ——==log (—~
r—oco €

and use Lemma 3.5, bearing in mind that Cr(,) = Oiog » and, if #/t; — ¢ >0, t; — oo, then

for any function f(7)
. [w(1)] - [w()] SRV
<hmf“p f(t)>/ (hmf * f(t)> <

almost surely. O

Now, by analogy with Theorem 3.2, we get from Corollary 3.2 one more result.

Theorem 3.3. Almost surely

lim sup [0 = <
¢+ (logt)!/2logloglog ¢

log (52/61)) 12
> .

Hence, we have completely classified the first-type upper functions for the winding
functionals ®. Next, we prove one result corresponding to the second type.

4. A liminf result

Lemma 4.1. Let G be a positive increasing function.
Then, if

ZP( sup  [w(s)| = G(ak)> = 0,
a )

0=s=Il,**
then the events

Ak:{ sup |w<s)|SG<ak)}

0=s=i
hold infinitely often almost surely.
Before proving Lemma 4.1, we should first prove one useful inequality.

Lemmad4.2. Let 1 =j=<k j, ke N.
Then

P(4; N Ar) = P(A){P(4p) + &/} 4.
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Proof. One has

P(4; N A4) = P( sup  |[w(s)| = G(a’), sup |w(s)| = G(ak)>

o ok
0$sslo"“ OSSSIO”

—G(a)) o

g g
[
[y =s=1,

G(a) .
= J P( sup  [w(s)| = G(ah)|w(lg”) = ”) (4.2)

"
0=s=1,*

X P ( sup  |w(s)] = Glad), w(l3e) = du>.

Using the well-known property of Gaussian measures proved by Ledoux and Talagrand
(1991, p. 73) and the independence of w and the process 3 that determines local times lg“k,
one gets easily that almost surely

P( sup |w(s>|SG(a")|w<l‘.§“")=u>sP( sup w(s)|SG<a">|w<18“"):0>.

l”“‘/< <laak lgaf< <lua’f
0o =5=i 0o =5=h

Thus, using (4.2) and the independence of w and f, we see that

P(4; N Ap) = P( sup w(s)| = Glab)w(ll) = 0>

(o8 (o}
af <= <1 ak
Iy =s=I,

Gt o
xJ P( sup  |w(s)| = G(a), w(lo“’):du> 3)

—G(a)) 0=s=< lg"f

o

- <laal‘ ] al
0=s=/[,""~1,

P(Aj)P< sup vw(s)|SG(ak)>.

Observe that

P< sup [w(s)| = G(ak)> = P( sup [w(s)| = G(ak), inf |Bs] = 0)
—lg“j ¢ k

=5=
[ Tk 9 i al _S_Ua
=</ @ <] " _J a
0=s=I/, 0=s=/, Iy

+P< inf |Bi| >o)

L=<
0,jSs=0,

:P< sp [w(s)| = Gla"), inf Iﬂs|=0>

<=

ok o J=S=0 i
=g=<] @ al a a
O—A—IO IO

+ ok, (4.4)

Define

/% =min{min{s € [04s, 0,+]: |Bs] =0}, o4t }.
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Again from additivity properties and the Ledoux—Talagrand inequality we get

=t=
0=s= ]grlk 71311/ 04 =1=0 4k

P< sup lw(s)| = G(a¥), min |3, = 0)

G(a*)
= p( s o) SG(ak)lwvjk):u)Pw(/,k) du

— k Ik
G(ah) sp=s=1®

— k Ok
G(ah) s p=s=1®

G(a*)
= J P sup  |[w(s)| = G(ak)|w(/jk) = 0) Py, du

. 4.5)
=P swp |wis)| =G
/ijSSlguk
—p( sup w(s)| = G
OSsSlg“k
= P(4y).
Finally, from (4.3)—(4.5) we obtain (4.1). O

Now return to the proof of Lemma 4.1.

Proof of Lemma 4.1. From Lemma 4.2 we have for any n € N

STOPUNA)=2 > PP + ]

0=j,k=n 0=j<k=n

2
—2< > P(Aj)> +2 > P >t
0=j=n 0=j=n j=k=n

2
52< 3 P(Aj)> + a2_al PO L&)

0=j=n 0=,=n

2
= c( > P(A,)) ,

0=j=n

with some C >0, as, in conditions of Lemma 4.1, > P(4;) = oo.
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Applying the Kochen—Stone (1964) version of the Borel-Cantelli Lemma hence we get

that

Ifuk
=<
075710

P< sup  |w(s)| = G(ah) i.o.) =c
Finally, from the 0—1 law we see that actually

[ k
O0=s=/*

P( sup  w(s)| = G(ah) i.o.) _1,
thus completing the proof of Lemma 4.1. We omit a simple proof of the fact that the event in
brackets belongs to the tail o-algebra based on process (53, w). L]
Now we estimate P(Ay).

Lemma 4.3.

2
y Yy
p( sup  [w(s)| = y) =5 (4o, ry—o0 =50

0=s=["

Proof. According to equations (2.2.4) and (6.3.3) from Baskakova and Borodin (1992), we
have

=\ =12 (D erfo (AT 20
P, ol =) =123 o' (Y.

P(IJ > y) = e Y/
Thus,

L[ o x (1 +2k)
P( sup |w(s)] Sy) :ZL e !/? dt{l —2;(—1)kerfc (W)}

0=s= lg’

. [ —t/2r 4 - k > —x2
_zrj e dt(l nm;( ) e ™ dx

0 y(142k) /(2012

[o.¢]

2 & 0 )
:1——§ (—1)"[ e”/zrdtj e dx.
/2 e 0 y(1428) /@012

Changing the order of integration is correct because two integrals and the series are
mutually absolutely convergent.
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Now we have

2 o0 (o¢] o0 )
P/ sup |w(s)|=y\=1-—+ (—l)kj e’t/zrdtj e dx
<0<s<lgT rat/2 ; 0 V(14+2k) /2012
=1- if:(—l)krc e dxjoo e 'dt
ml/? =0 0 Y2142k /4x2r
- f:( l)kr e Y IR A g
/2 - 0
—1-2 Z(_l)k e Y1+2k)/r1?
k=0
2e /"
= 1 - 1 +e_2y/rl/2
v y
:Z[l+o(l)]ﬂ V,yﬂoo,mg’o,
thus proving Lemma 4.3. O

The following result is analogous to Corollary 3.1. Its proof is omitted.

Lemma 4.4. Let G be an increasing function such that Yo > 1limsup,{G(at)/G(#)} = a.
Let the series

[fuk
<
0=s=I/,

ZP( sup |w(s)|SG(ak)> (4.6)
k

converge (or diverge, respectively) for all a>1 simultaneously.
Then one has almost surely

according as the series (4.6) diverges or converges.
Now, using Lemmas 4.3 and 4.4, we obtain the following corollary.

Corollary 4.3. Let G be an increasing function such that Ya > 1limsup,{G(at)/G(H)} = a
and G*(t) = o(t), t — oc.
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Then one has almost surely
SUPp<</7® [w(s)|
lim in LSI or =1,
R G(R)
according as the integral IOC{Gz(y) dy}/y? diverges (or converges, respectively).

For the proof, one should only check that, for any positive constant ¢>0, the
convergence of the integral is equivalent to convergence of the series (4.6):

ZP( sup [w(s)| = cG(ak)> = ZG( )[2 + o(1)].
3

0<v<l“ k

The estimation of probability follows from Lemma 4.3. We omit the calculations.
Finally, by analogy to Theorems 3.1 and 3.2, one obtains the following theorem.

Theorem 4.1. Let g be a decreasing function such that

Ya>1 lim (at)
tgle)

Then one has almost surely

Supo=g=; | P1(s)|
(log 1)!/2g®

according as the integral [*{g*(y)dy}/(ylogy) diverges or converges.

lim inf =0 or oo,

Shi (1995) found the corresponding results for both @ and &®,. The following theorem
holds.

Theorem 4.2. One has almost surely
loglogl
lim inf 28108087

t log t 0<S< t

p |P(s)| =

and for any increasing function f such that log[t/f(?)] is also increasing

Q)

hmmf sup |®,(s)| =0 or oo,

O=s=t

according as the integral [~ dy/ { vlogy f(»)} diverges or converges.
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