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Burdzy and Khoshnevisan in 1995, Csaki ef al. in 1996 and Xiao in 1997 have given some interesting
information about the modulus of continuity of the local time of iterated Brownian motion. The aim
of this paper is to provide the exact rate functions, respectively for the modulus of continuity and for
the modulus of non-differentiability. Our approach strongly relies on Ray—Knight theorems for
Brownian local times and on fine properties of Bessel processes.
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1. Introduction

Consider the real-valued process

wr [ X4 (Y(1)), if Y(1)=0,
21 _{Xj(Y(t)), if Y(1)<0,

where {X,(u); u =0}, {X_(u); u=0} and {Y(¢); =0} are three independent one-
dimensional Brownian motions, starting from 0. The study of Z, the so-called “iterated
Brownian motion” process (terminology coined by Burdzy (1993)), has motivated several
groups of mathematicians. We refer to Hu (1996, Chapter III) for a detailed survey. Let us
also mention more recent work by Bertoin and Shi (1996), Csaki et al. (1996; 1997a,b),
Csaki and Foldes (1997), Khoshnevisan and Lewis (1997), Shi and Yor (1997) and Xiao
(1997).

The present paper focuses on the local time of Z. It was proved independently by Burdzy
and Khoshnevisan (1995) and Csaki et al. (1996) that there exists a jointly continuous
version of {Lj(Z); t =0, x € R}, the local time process of Z. Furthermore, it can be
represented as

t=0,

o.¢] o0

LA+ [ 1L (L1

L2 - |

0
where L(&) denotes the local time of &, for any stochastic process & indexed by R,.
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It is certainly interesting to study the (uniform) modulus of continuity of ¢ — L}(Z), in
the sense of Lévy (1939). Some interesting estimates were presented in the papers by
Burdzy and Khoshnevisan (1995) and Csaki et al. (1996), which have been since improved
by Xiao (1997). Let

oW sup sup{L WD -2}, 0<h<l. (1.2)

0=r<1-hxeR
It was shown by Xiao (1997) that

w(h)

lim sup7h3/4|10g RE

as., (1.3)
for some (finite) universal constant c¢; > 0.
One may wonder if #3/4[log h|/* is the correct rate function for w(k). The answer is yes.

Theorem 1.1. Let w(h) be as in (1.2). There exists a universal constant ¢, >0 such that

lim inf ()
-0 h3/4|log h|3/4

a.s.

The above provides an accurate picture of the modulus of continuity of L(Z), up to
multiplication by a constant. It is also natural to investigate the corresponding liminf
behaviour of L(Z), i.e. its “modulus of non-differentiability” in the sense of Csorgd and
Révész (1979). Define

n(h)“éfo inf sup{Lt+h(Z)—Lf(Z)}, 0<h<l. (1.4)

SIS

Our next result determines the exact order of magnitude of #(/4) when 4 is small.

Theorem 1.2. Let n(h) be as in (1.4); then

| |3/4 | |3/4

. . log h
= = _— = .S.
c3 11r}{1jnf n(h) III}lljélp L n(h) < ¢4, a.s.,

0 h3/4

where c3 >0 and c4 >0 are absolute constants.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminaries
on Brownian local times and Bessel processes. Theorems 1.1 and 1.2 are proved in Sections
3 and 4 respectively.

Throughout the paper, unless stated otherwise, ¢; >0 (1 < i< 30) denote absolute
constants.

2. Preliminaries

Let {Y(f); t =0} as before denote standard one-dimensional Brownian motion, and let
{R4(?); t = 0} be a d-dimensional (d = 0) Bessel process. Unless stated otherwise, we shall
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assume that R;(0) = 0. For general properties of R;, we refer to Revuz and Yor (1994,
Chapter XI). We mention that, when d is a positive integer, R; can be realized as the

Euclidean modulus of d-dimensional Brownian motion.

Lemma 2.1. Fix 0<a<1. There exists cs(a)>0, depending only on a such that, for all

0<e=l,
P( inf L3(Y)> > exp(— 65(2“)) @.1)
Osx<c €

Proof. We only have to treat the situation when ¢ is in the neighbourhood of 0. Consider the
first hitting time of 1 by Y:

o Linf{r>0: Y(r) = 1}.

Let A; denote the probability term on the left-hand side of (2.1). By scaling, for any fixed
constant 0 <) <1 (whose value is to be chosen later),

A = P( inf L, )Z(Y)>“b>

. ab b’
= * > g<—
P <0££bL(’(Y) ERA €2>

( X ab ! 1—x > bz)
=P inf L (Y)>—, J L, (Y)dx—i—J L (YV)dx<
<x<b 0

According to the first Ray—Knight theorem (cf. for example, Rogers and Williams (1987,
Theorem VI.52.1)), {L},”‘(Y ); x = 0} is an inhomogeneous Markov process. More precisely,
it is a two-dimensional squared Bessel process starting from 0 for 0 < x < | and becomes a
squared Bessel process of dimension 0 for x = 1. Hence,

1 00 2
A1>P< it B> | R | U2<t)dt<’;>,
0 0

1-b=r=1
where U denotes a Bessel process of dimension 0, starting from U(0) = Ry(1). By scaling, if

{V(#); t = 0} stands for a Bessel process of dimension 0 with ¥(0) = 1, independent of Ry,
then

()12

—-b=t=<1

< g : b)
A =Pl inf R(t)> J R(H)dt+ R (I)J Ve de<

Since a <1, we can choose 0 <b<1, ¢>0 and »>0v>u>1 such that

v*ab(1 — b) + r’ab® + qr*a®b* < b*.
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Consequently,

00 1/2
A = [P’(J Vz(t)dt<q62>|]:°<R2(t) wab) ) forall0 <¢t=<1- b
0

(ab)l/2 r(ab)1/2

s R(hH = foralll—bﬁtﬁl). 2.2)
Let us estimate P{[ V3(r)dr< qcz} =P {J,° Ri(r)dt<ge®}, where P, denotes the
probability under which R, starts from x (thus Py = P). Write Hy(r) ©linf {t=0:
Ro(t) = r} for all » = 0. By the strong Markov property,

2

P <r Vi) dt < qez) =P, (HO(O) <9<
0 4

2 2
>p, (H0(0)<%> - PZ(H0(0)<%>.

It is known that Hy(0) under P, is distributed as % 4(r) défsup{t >0: Ry(?) = r} under P (cf.
Revuz and Yor (1994, Exercise XI.1.23)). The law of the latter variable is calculated by
Getoor (1979) (cf. also Khoshnevisan et al. (1994) and Yor (1992)):

; Ho(2) = 00>

2 2
_[P’{/4(r)<t}— 5 €X p( t)l{,>0}.

Therefore, for all small ¢,

00 2
P Vi de<ge? ) = 1P, | Hy(0)< ) _ lexp( — 2 = exp| — c(a) ,
0 2 4 2 qez €2

where cg(a) >0 denotes a constant depending only on a. Going back to (2.2) and using the
Markov property,

1/2 1/2
A = exp < Cé(d)) P( sup Ry(f) = v(ai) i Ry(1 —b) = u(alz))

2
€ o=<r<l-b

o P ((ab)1/2 r(ab)!/?

n x S R(H) s——— forallOﬁtﬁb). (2.3)
u(ab)'/? Jesx<uv(ab)'/? /e ¢

Recall that R, is the modulus of Brownian motion in R?. By Gaussian tail estimates, for each
s>0,

12
= ~ — — —
logP(OiligSRz(t) i) % A — o0,
12
logP{Ry(s) = A} ~ —— A — o0,

2s’
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where the usual notation a(x) ~ b(x) (x — xo) denotes lim,_,, {a(x)/b(x)} = 1. Therefore,
letting A, denote the first probability term on the right-hand side of (2.3),

172 12

0<t<1-b

b 1/2
> 1p <R2(1 — b= ”(“6) >

cru’ab

On the other hand, by the scaling property, the infimum term on the right-hand side of (2.3)
equals

inf P {(ab)'/* < Ry(1) < r(ab)"/? for all 0 < t < b¢*},

u(ab)!/2<x<v(ab)!/?

which is bounded below by a positive constant depending only on a. This, together with (2.3)
and (2.4), yields Lemma 2.1. Il

Lemma 2.2. For d >0 and x = 0, let
Hy(x) S inf{r = 0: Ry(t) = x}. 2.5)

Whenever r > (),

Ha(r) 2 law r?
L R0 dt™ Hy (5,

1 . o
where = denotes identity in distribution.

Proof. 1t is possible to directly prove Lemma 2.2 using It6’s calculus, but it turns out to be
more convenient to apply the change of dimension theorem for Bessel processes given by
Biane and Yor (1987) (cf. for example Revuz and Yor (1994, Proposition XI.1.11)) which
asserts the existence of a coupling for R; and Ry, 4/, such that

2RI/Z

1+d/2(t) = Ra(A(1)), t=0,

where A(t)défjot ds/R;4/2(s). Consequently,
t
A7) = %JOde(s) ds, t=0.

Accordingly, for each x>0,
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Hq(2x!'/?)
inf{¢>0: Ry;q(t) = X A (H(2x2)) = —J R%(s)ds,
0
which implies Lemma 2.2 by scaling and taking x = r2/4. O

Lemma 2.3. There exist universal constants cg >0 and co9 >0 such that, for any 0 <c¢ < 1,

oo(=2) =P{(upron mmpoi<d <en(-3). o

The proof of Lemma 2.3 is based on a Ray—Knight theorem due to Eisenbaum (1990).
To be precise, let

adifmf<t>o supLi(Y) = 1) 2.7)

x=0
The followmg theorem characterizes the distribution of the process {L:(Y); x € R}. We write
Y (a) = supo<t<a Y(¢) for brevity.
Theorem 2.1 (Eisenbaum 1990). The random variable Lg(Y) is uniformly distributed in
(0, 1). Moreover, given LY(Y) =4 € (0, 1),
{L(Y); x=0}, {L}(Y); 0<x =< Y(a)}
and
{LIO7(1); 0 < x < V(@) - Y(a)}

are three independent processes, the first being a squared Bessel process of dimension 0,
starting from A, the second a two-dimensional squared Bessel process starting from A and
killed when hitting 1 for the first time, and the third a four-dimensional squared Bessel
process starting from 0, killed when hitting 1.

Proof of Lemma 2.3. Only the situation of small ¢ needs to be treated. The upper bound in
(2.6) in easy. Indeed,

supL"(Y) sup | Y(#)] = 2supL’f(Y)( sup Y(¢) — 1nf Y(t))
R

0=r=l1 o=r=<1

= %J L{(Y)dx

Now the upper bound in (2.6) follows from the second inequality in the following well-
known estimates due to Kesten (1965); cf. also Csaki and Foldes (1986) for the best possible
constants ¢y9 >0 and ¢y >0:

exp (— %) < P(supL“f(Y)<y) < exp (— %), 0<ys=l (2.8)

xeR
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To verify the lower estimate in (2.6), let a be as in (2.7) and let 5> 0 be an absolute
constant whose value is to be chosen later. Let A; denote the probability term in (2.6). By
scaling,

b3
A3 = P{(SuﬁLiz/ez(Y))z sup ‘Y(t)l <62}
xe

0Osr<b?/c

b b
=P (supLZ(Y)) sup | Y (7)| <— a=—
xeR Ost=<a €
b g = b 0(y) <1

0<t<a

where we have used the fact that sup,=o L;,(Y) = 1. Let as before P, denote the probability
under which the d-dimensional Bessel process R; starts from x. Recall the definition of H,
from (2.5). According to Theorem 2.1,

12 JE »
Az J [l:[)ll/z supRg(t)<1 H0(0)< [Ij)ll/z (H2(1)< )

1/3

b3 Hy(1) bz
P H4(1)<F;J Ri(tydt == | dA.
€ 0 €

Obviously,
b3 ( b3>
inf P t<1H0< = f P H(1)<—| =c;s.
Lyt StliIgRo() 0(0) ci, 1/3£}<1/2 ne\ Ho() <55 | = ci3

As a consequence,

b3 Hy(1) b2
Az = cP| Hy() <= J Rﬁ(t)dtBE—Z

2¢2 :
Hi(1) 2 3
= cyP R(ndt =2 p( miy=2
= ciy . (D 1= —cu 4()/2—62
b? b’
= 014P(H3(%) = e_2> - 014|]:°<H4(1) = ?), 2.9

by means of Lemma 2.2. Since P{H;(r)>x} = P{supo<;<.Ry(t)<r}, we can use the
following well-known estimate of Ciesielski and Taylor (1962): for fixed »>0 and d >0,

jzi/Z—l
272

logP{Hy(r) = y} ~ — y — 00,
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where j;5_1 is the smallest positive root of the Bessel function J;/,_;. Therefore, we can
choose a sufficiently large constant b such that

pl =) =p(ma="2) = cis
3(5)/6—2 = 4()/2_52 = €Xp a2 )

which, jointly considered with (2.9), yields the lower estimate in Lemma 2.3. ]

3. Proof of Theorem 1.1

Let Y be Brownlan motlon as before. Define a sequence of increasing stopping times (6,,),=0
by recurrence: 90 T and

def

0, =inf{t=1+0,_1: Y(¢) = n}, n=12....

Define the absolute constant

def 1
C16 2—1/4, 3.1
l6c;

where c¢s défcg(l/Z) is introduced in (2.1) (taking ¢ = 1/2 in Lemma 2.1). In the rest of this
section, we shall work only for large 7 Define the random variable

NENT) =inf(n = 1: 0,>T — 1).

Recall w(#) from (1.2). By scaling,
1
A4 def [P’{w (?> < C16 T73/4(10g T)3/4}

- P( sup sup{Lm(Z) — LY(2)} < cr6(log T)3/4>

0st<T-1 yeR

0=n=m

<P(N < m)+ |]3>< max sup{LHe (2) - L} (2)} < c14(log T)3/4>, (3.2)

where m % [T 1/4], the integer part of T''/*. Let us estimate the first probability term on the
right-hand side. By definition,

PIN=m)=P@0,>T-1)= P(Z(Gn —0,.1)>T— 1).
n=1
Observe that (0, — 0,-1),=1 is a sequence of iid variables, distributed as (1 + VA2,
where ./"and ./ denote two independent Gaussian ./ (0, 1) variables. Accordingly, for each
nand 1 >0,
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PO — 651 >2) = P{(1 +.0Y > 21
=PRI -1
<P2>1 AT+ P{LT 2 <4)
< E{exp(—iA 1 D)} + P(LI 2 <4)

C17
= —.

Al/2

Therefore,

Isns=m

=1 —ﬁ{l —P(en—0n1>TT_l)}

PN < m) < P<max(0 — 0, l)>T71>

Going back to (3.2), we have

1/8 Osn=m

Ay < L IP( max sup{L 10,(2) — Ly (2)} < cig(log T)3/4>.
ve

It remalns to estimate the probability term on the right-hand side. By (1.1), for any
= b(T ) € (0, 1),

max sup{LHH (2) - Ly (2)}

osn<m yeR

Osn=m

= max supJ0 {L o ()= Ly ()} d,L(Xy)

n+b
= maxJ {L{ o (Y) = L§ (N} d, LX)

=ns
Osns=m},

= max inf {L{75 (¥) — LT "(DHL (X - L0},
By the strong Markov property, {Lfigﬂ(Y )— L”“(Y ); x € R},>¢ is an i.i.d. sequence of
processes, distributed as {Z3(Y); x € R}. On the other hand, (L5 (X)) — LX)} =0
are i.i.d. variables, distributed as L)(X ). Consequently,
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C19 m+1

o = 785+ [P{ i) <euton )
T1/8

Now take b2 (16¢s5/log T)'/?. Applying Lemma 2.1 gives

X 1 Cs 1
P( lnf L (Y)>2b> 26Xp<—ﬁ) :m,

whereas by the usual Gaussian tail estimate and (3.1), for all large 7,

P{LY(X})>2ci6b(log T)/*} = P{|.1"| >2¢16b"*(log T)*/*}
= exp{—4cib(log T)*/*}

1
~ i
It follows that
A, < 19 | 1" _
4\T1/8+ BRSVE ST
Let T kdéfkg. By the Borel-Cantelli lemma,
liminf 20/ 70 -
k—oo  (1/T)
where qo(t)déft3/4|log t’/*. Let h € [1/Ts11, 1/T]. By monotonicity, for large £,
(1) Te) _ o(h) _ o(/Ty)
@(1/T) (h) @(1/Ti1)
Since @(1/Ty) ~ @(1/Tiy1) as k tends to infinity, this implies that

= C16, a.s.,

h
lir’fljglf% = e, a.s.,

as desired.

4. Proof of Theorem 1.2

Let us restate Theorem 1.2:
‘ |3/4

lir}{lj{)lfwn(h) = ¢z, a.s.

L - ( inf Li(Y)> )P{LO(X+)>2c16b(log T)¥43met,

4.1
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) | |3/4
lim sup ——7—

nst h3/4 n(h) < cq, a.s. 4.2)

The proof is divided into two parts.

Proof of (4.1). Let Z be the iterated Brownian motion in Section 1. Using Gaussian tail
estimates, it is readily checked that, for x = 1,

P( sup Z(s)>x) < exp(—ca x*3). (4.3)

Oss=<I

For more details, and for the best possible value of ¢y, cf. Révész (1990, p. 126), Burdzy
(1993) and Csaki et al. (1995).
By the occupation time formula,

1= Ji@L’f(Z)dx < ()sclelgL’f(Z))( sup Z(s) — 1nf Z(s))

0=s=<1
Therefore, by scaling, symmetry and (4.3), for any £#>0 and 0<y < h3/4/2,
P(supL W(2) < y) I]j’(supL"(Z) < h3/4)

xeR xeR

O=s=<1

h3/4
< 2P| sup Z(s)>2—
Y

0=s=<l

h3/4
< [P| sup Z(s)f 1nf Z(s)>—
y

h
< exp <—022 4—/3)~ 4.4)
Now let h be very small, and define ¢, & in|log h|=3 for 0<j< <MWY [h h~'log hl].
Introduce the absolute constant
gef (e /*
Cy3 = (7) . (45)

Consider the probability

def h3/4
As =P min sup{L n(2) — L’fj(Z)} < cB|loT

0=/<M(h) h‘3/4
M(h) n3/4
< Z P Sup{L +h(Z) L);](Z)} <cp3 W .
=0 &

Since the iterated Brownian motion Z has stationary (but not independent) increments, for
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each fixed # = 0, supyer{L}, ,(Z) — L}(Z)} has the same law as sup,ecrL}(Z). By (4.4) and
(4.5),

2 1 3
< {M(h) + l}exp{ 4/3 log(z>} < cpahllog hl”.

def

Let hy = k2. It follows from the Borel—Cantelli lemma that
. |10g hk|3/4 . X
h/gilorolfT()qrE}\?(hk) sup{L} (D) — L,/(Z)} = o3, a.s., (4.6)

where we have written ¢; et Jjhillog hy| =3 by (slight) abuse of notation. On the other hand,
applying (1.3) readily gives

1 h 3/4
fim 108 A : /’;|
hy

k—o0

sup sup{LHhA“Oghk‘ (Z)—Li(2)} =0, a.s.,

0=t=<1 xeR

which, in view of (4.6), yields (recalling #(/4) from (1.4))

- flog AP
lim 1nfM77(hk) = 03, a.s.
koo 3/t
k
This yields (4.1) in view of monotonicity of the function / — |log h[>/*/h*/4. O

Proof of (4.2). By (2.8) and Lemma 2.3, there exists a universal constant c,5 >0 such that,
forall 0<A <1,

C25
P(supL}(X ) <A\ =exp| ——=|, 4.7
(xeug (X4 ) p( ,12> (4.7)
€25
P LY(Y Y() — fYt <A ——=. 4.8
{(i‘éﬁ 1( )) (Oggl ()= jn ()) } p( /12> (4.8)
Pick the absolute constant
C6 d;f (32625)3/4. (49)

For notational simplification, we write the “two-sided local time” process

v, o def [ LE(X L), if u=0,
L= {—Lxu(X), otherwise.

Then (1.1) can be simply written as
Li(Z) = J LY(Y)d,L;(X), xeR. (4.10)

Fix a sufficiently large T and define a sequence of stopping times (7,),=¢ by to 10 and
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() =inf{t=1+7,: Y(t)=nTV'}, n=1,2,....

Note the similarity between the 7, and 6, introduced in Section 3. Define
m< (1'%,

Ninf(n=1:7,>7 1),

N
Edéf(szH)mﬂ( inf Y(t)=  sup Y(t))‘
n=1

SISl Tp i SISTHT,

Consider the probability

1
Aédif[P{n<T> > czéT’3/4(log T)3/4}

0=<(<T—

_ IP( inf  sup{L},,(2) — L}(2)} > exgllog T)3/4>
xeR

< P(_min_ suug{L’fH”(Z) — LY (2)} > callog T) /)
SnsN=1 ¢

< P(E°) + P(E; _min 1sup{L’1‘+T (Z) — L (Z)} > ca(log T) 3%
snsN=1yeR ! !

LIPEY) + A, 4.11)

with obvious notation. For brevity, for any 0 < s < ¢ and —oo <u < v < oo, write

def

Ly(s, )= sup{L](Y) — LI(Y)},

yeR
Liu, )< sug{Lj(X) — XX},
xe

= sup ¥(),

SSr<t

Y(s, £)

Y(s, ) inf Y(r),
Ssr=

Y, H & Vs, £) — Y, o).

Clearly, for any x € R, by (4.10),
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Y(Tu,147,)

L}, (2)— LE(2) = J (LY, (V) — L* (1)} d, Li(X)
Y(ty,147,)

< L3, 1 + 1) L5(Y(Tp, 1 +1,), Y(Tp 1 +7,)).
On the event E, we have
Y(t0, 1 +70) S Y(11, 1 + 1) S Y(11, 1 +71) S X(1p, | +7p) <
Therefore, on £ and given (Y(¢); t = 0),

LYY (Tp, 1 +7T0), Y(Tny 1 +7Ty))
{Y#(Tna 1 + Tn)}l/z n=1

are i.i.d. variables, distributed as sup,cpLj(X;). Accordingly,

IsnsN-

Ag < IP(E; min Ly(rn, 1+ 2 ){Y# (10 1 + 1) }/?E, > ca(log T)™ 3/4>

< [F"( mm LY(‘L',,, 1+ ){Y (@, 1 +7 )}1/2:,, > cye(log T)™ 3/4)

1=n

where (E,),=0 are i.i.d. variables independent of o{Y¥(¢); ¢t = 0}, having the same law as
supyerLi(X4). By the strong Markov property,

Ay < P( min ©,Z, > cy(log T)~ 3/4) (4.12)

Isns=m

where the ©,, are distributed as Lf,(O 1){Y#(0 1)}1/2 and we assume that (®,, E,; n = 0)
are mutually independent. Write % b(T) = c26 ’ /(log T)'/2. By (4.8) and (4.7),

ca6(log T)_3/4)
b

cs  casb*(log T
= exp (— ==

2
b Cg

P{@()Eo < c6(log T)_3/4} = [FD{EO < b}P <®0 <

1
Tori/16”

where we have used (4.9) in the last equality. Going back to (4.12), recalling that m = [T'/%]
and (4.9),

A7 < [1 — P{6E) < cs6(log T) /431"

1 m
= <1 - T1/16)

< exp(—cyr T'/19). (4.13)

It remains to estimate P(£€). Since N < T,
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[T]
P(E) < P(N < m) + ZP( inf  Y()<  sup Y(t))

=1 T,<t<l+t1, Tp1s<t<141,_

=Pty >T — 1)+[T][P’( inf  Y()< sup Y(t)),

1Sts1+41; 0=r<l

using the strong Markov property. Since 7,, = > ,=1(T, — T,—1) and the 7, — 7, are i.id.,
distributed as (7'/'® —.7")?/.J"2 (where ./"and ./ denote as before independent Gaussian
A7(0, 1) variables), we have

Isns=m

<1—{1—P<(T1/16 V% > // >}
T1/16) <9T1/8 T - ) "
<1-S1-P(|0]> —p >_— )72
{ (|/ = i
T1/8 371/16 ;1/2 m
SI_{l_eXp<_ 8 )_ 2172 T1/2}

< 6
T1/4'

On the other hand, by the independence of infy,<,<i14, Y(¢) and supo<,<; Y(?),
Pl (0= sup Y(0) = P — 1 <07

n=t=l+t, o=r<1
o TVe - T1/16
< [P><|./7/’| > 7 ) + [P><|./1/ | > 3

T1/8
= 26Xp< T)

1/8 C29
+2Texp| — ) = 77 (4.14)

T
P,>T-1)=<P (max Th —Tne 1)>—)
2m

Therefore

PES) < T1/4

Assembling (4.11), (4.13) and (4.14) yields

1 3/4 3/4 €30
P{”(T) >l /(logT) / T1/4

Take T %S and apply the Borel—Cantelli lemma to arrive at the following estimate:

1
lim supTi/“(log Ty (ﬁ) =< ¢, a.s.

k—o0
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Now (4.2) follows by monotonicity of the function 7 +— T3/*(log T)*/4. O
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