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1. Introduction

In recent years the problem of ®nding martingale measures for a stochastic process has found

applications in the ®eld of mathematical ®nance, e.g. the famous Black±Scholes formula for

evaluating a European call option can be seen as the expectational value of a random variable

with respect to the (in this case unique) martingale measure for the discounted stock price

process. In general there is no unique martingale measure for a stochastic process. So one is

confronted with the problem of choosing a proper martingale measure. Very popular

possibilities are the so-called minimal martingale measure, which has been introduced by

FoÈllmer and Schweizer (1991), or the variance-optimal measure (Schweizer 1995; Delbaen

and Schachermayer 1996; Delbaen et al. 1997). The latter is characterized by minimizing the

L2 norm of the Radon±Nikodym derivative of the new measure with respect to the original

measure among all signed martingale measures for the process. The former exhibits this

feature locally (for a more exact description see FoÈllmer and Schweizer (1991)). Another

possibility is the minimal-entropy martingale measure. It has been shown by Frittelli (1996)

that for a bounded process a unique martingale measure, which minimizes relative entropy

between the original measure and the martingale measure, always exists. In addition, if the

relative entropy is ®nite, the two measures are equivalent. For an economic interpretation of

the variance-optimal and minimal-entropy measures see Delbaen et al. (1997) and see Frittelli

(1996) and Platen and Rebolledo (1995) respectively.

The aim of this paper is to ®nd a connection between these two concepts in discrete time

with a ®nite horizon. It turns out that the missing link is given by martingale measures,

which we call p optimal and which are characterized by minimizing the Lp norm instead of
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the L2 norm. For the role of the p-optimal measures in connection with the closedness of

the space of stochastic integrals see Grandits and Krawczyk (1996). We prove that for

bounded processes the p-optimal measures converge to the minimal-entropy measure in

L1(P), if p tends to 1. As the minimal-entropy measure is always positive, the p-optimal

measures (for pÿ 1 small enough) do not share the drawback of the variance-optimal

measure, namely that the price of a positive contingent claim is sometimes negative, if

determined in the variance-optimal framework.

For unbounded processes, Frittelli and Lakner (1996) have already given an example,

where the minimal-entropy measure does not exist. We give an example of an unbounded

one-step process, where the minimal-entropy martingale measure does exist but, depending

on the expectational value of the process, the above convergence appears or not.

2. Preliminary results

We consider in this paper a stochastic process (Sk)T
k�0 on the stochastic basis

(Ù, F , (F k)T
k�0, P) in discrete time, which is adapted, Rd valued and bounded. Using the

notation

M e(S) � fQjQ is a probability measure, Q � P and S is a Q martingaleg
for all equivalent martingale measures for S, we assume that M e(S) 6� Æ, and that F 0 is

trivial. Whenever we use the process S, these assumptions above should hold, unless

something else is indicated.

By the famous Dalang±Morton±Willinger theorem (Theorem (2.6) of Dalang et al.

(1990)) the existence of an equivalent martingale measure for S is equivalent to the no-

arbitrage condition (NA) (the measure may be chosen s.t. the density is uniformly bounded

(Schachermayer 1992, Theorem 1.1)). (NA) can be formulated in the following way: for

k � 1, . . . , T and each F kÿ1-measurable bounded Rd-valued function h s.t.

(h(ù), Sk(ù)ÿ Skÿ1(ù)) > 0, P a:s:

we have

(h(ù), Sk(ù)ÿ Skÿ1(ù)) � 0, P a:s:,

where (:, :) denotes the inner product in Rd . One can replace (h, ÄSk) by (H . S)T, where H

is a predictable process, and . denotes d-dimensional (discrete) stochastic integration.

The notion of entropy and minimal-entropy martingale measure are introduced in the

following de®nitions.

De®nition 2.1. Let Q and P be two probability measures on (Ù, F ); then the relative entropy

I(Q, P) of Q with respect to P is given by

I(Q, P) �
�

dQ

dP
ln

dQ

dP

� �
dP if Q� P,

�1 otherwise:

8<:
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De®nition 2.2. QE is the solution of the following minimum problem for Q:

EQ[Sk jF kÿ1] � Skÿ1, k � 1, 2, . . . , T ,

EP

dQ

dP

� �
� 1,

I(Q, P)! minimum:

By Theorem 7 and 11 of Frittelli (1996) and our assumptions on S this problem has a

unique solution of the form

Z E
T �

dQE

dP
� c e f ,

where f � (H . S)T . H denotes a predictable process, and c is a normalizing constant.

Remark 2.1. If ZT � c e f , where f � (H . S)T , is the density of a martingale measure for S,

then c and f are uniquely determined by Proposition 9 of Frittelli (1996). This holds in

contrast with Hk , which are not unique on sets, where the support of the on F kÿ1

conditioned law of ÄSk is not Rd .

Finally we give the concept of p-optimal martingale measures. In order to do this, we

need the following de®nition:

M s(S) �

QjQ is a signed measure, Q� P, S is a Q martingale,
dQ

dP
2 L1(P) and E

dQ

dP

� �
� 1

� �
,

and we call it the set of signed martingale measures for S. Since S is bounded, M s(S) is

closed with respect to i:i L1(P) (we identify measures with densities here).

De®nition 2.3. For 1 , p ,1, Q p 2M s(S) is the solution of the minimum problem (for

p � 2 compare Delbaen and Schachermayer (1996) or Schweizer (1995))

EQ[Sk jF kÿ1] � Skÿ1, k � 1, 2, . . . , T ,

E
dQ

dP

� �
� 1,

E

���� dQ

dP

���� p
" #

! minimum:

Note that all expectations, where we do not indicate the measure, are taken with respect

to the original measure P.

There exists a unique solution of the minimum problem because ®rstly, by the Dalang±

Morton±Willinger theorem, we always have even a positive martingale measure with

bounded density for S and therefore one in Lp, secondly M s(S) is closed with respect to
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i:i L1(P) and ®nally the spaces Lp are uniformly convex. However, note that in general the p-

optimal measures are only signed measures.

Remark 2.2. In the sequel we use the function n( p) � 1=( pÿ 1) in order to avoid too

complicated notation, and we even drop the argument of the function n, if the meaning is

clear.

Before we give an explicit formula for the density of the p-optimal measures, we need

the concept of alignment (Luenberger 1969).

De®nition 2.4. Let F be a Banach space. Then two vectors x 2 F, x� 2 F� are aligned, if

hx, x�i � ixi ix� i holds. For Lp spaces this means equality in the HoÈlder inequality.

Lemma 2.1. The density of the p-optimal martingale measure ZT ( p) (1 , p ,1) for S is

aligned to (1� f p), i.e.

ZT ( p) � Cp sgn(1� f p)j1� f pjn( p),

where f p 2 G q
T , G q

T � f(H . S)T \ Lq(P), H predictableg, the closure is understood in the

sense of Lq (q conjugate to p) and Cp is a normalizing constant.

The proof is standard in the theory of minimum norm problems (Luenberger 1969,

Theorem 5.8.1).

Remark 2.3. Note that, if ZT is given by the formula above and if it is a martingale measure

for S, then it is the p-optimal measure by Corollary 5.8.1 of Luenberger (1969).

As a corollary we give another form of the density, which is more convenient in the

limiting process p! 1.

Corollary 2.1. The density of the p-optimal martingale measure ZT ( p) (1 , p ,1) for S

can also be written as

ZT ( p) � Cp sgn 1� f p

n( p)

� �����1� f p

n( p)

����n( p)

,

where f p 2 G q
T .

Proof. The additional n is of course a matter of taste, which makes life easier, when going

with p to 1. As the space of stochastic integrals is already closed with respect to the topology

of convergence in measure (a proof of this result is given in Appendix 1), we can skip the

symbol for closing the space of stochastic integrals. u

In the proof of our main result we need a further formula for ZT ( p), which we give in

the next lemma.
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Lemma 2.2. There exists a predictable Rd-valued process â p, s.t. the density of the p-optimal

martingale measure for S is given by

ZT ( p) � Cp

YT

k�1

����1� (â p,k , ÄSk)

n( p)

����n( p)

sgn 1� (â p,k , ÄSk)

n( p)

� �
:

We also have P a.s.

0 , E
YT

r�k

����1� (â p,r, ÄSr)

n( p)

����n( p)

sgn 1� (â p,r, ÄSr)

n( p)

� �
jF kÿ1

" #

� E
YT

r�k

����1� (â p,r, ÄSr)

n( p)

����n( p)�1

jF kÿ1

" #

< 1

(1)

for k � 1, . . . , T.

Proof. To simplify the notation we shall ®x p in the proof of this lemma and skip therefore

the index p, i.e. we shall write C for Cp, âr for â p,r and n for n( p).

The proof is by induction, and we start with the construction of the process â. Setting

ÿj1� x=njn�1 for U (x) in the proof of Theorem 1 of Rogers (1994), we infer that there

exists an F Tÿ1-measurable function âT , which minimizes

E

����1� (âT , ÄST )

n

����n�1

jF Tÿ1

" #
:

Note that ÿj1� x=njn�1 is not strictly increasing as demanded by Rogers (1994), but the

proof there works for our U as well. The equation

E

����1� (âT , ÄST )

n

����n sgn 1� (âT , ÄST )

n

� �
ÄST jF Tÿ1

" #
� 0

holds by (2.11) of Rogers (1994). Note that âT is not uniquely determined, but (âT , ÄST ) is

(see also Lemma 3.1 below).

We show now (1) for k � T :

E

����1� (âT , ÄST )

n

����n�1

jF Tÿ1

" #

� E

����1� (âT , ÄST )

n

����n sgn 1� (âT , ÄST )

n

� �
1� (âT , ÄST )

n

� �
jF Tÿ1

" #

� E

����1� (âT , ÄST )

n

����n sgn 1� (âT , ÄST )

n

� �
jF Tÿ1

" #
,
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where we have used the predictability of â. As the middle terms in (1), evaluated for âT � 0,

are equal to 1, and âT is the minimizer, the right-hand side of (1) is clear. Assuming the

contrary for the left-hand side, namely the existence of a set A 2 F Tÿ1 with P(A) . 0, s.t.

E[j1� (âT , ÄST )=njn�1jF Tÿ1] � 0 holds on A, yields (âT , ÄST ) � ÿn on A. This is

impossible, since EQ[ÄST jF Tÿ1] � 0 should hold for some equivalent martingale measure Q

by our (NA) assumption, concluding our proof for k � T. We proceed with the induction and

start again to construct âk . âk is de®ned as the solution of the extremal problem

min
â k

E

����1� (âk , ÄSk)

n

����n�1 YT

r�k�1

����1� (âr, ÄSr)

n

����n�1

jF kÿ1

" #
:

Because
QT

r�k�1 j1� (âr, ÄSr)=njn�1 is never identically equal to zero on F k-measurable

sets with positive measure by the induction assumption, the existence of an F kÿ1-measurable

solution âk can be veri®ed as in the case k � T . We also get the validity of

E

����1� (âk , ÄSk)

n

����n sgn 1� (âk , ÄSk)

n

� �
ÄSk

YT

r�k�1

����1� (âr, ÄSr)

n

����n�1

jF kÿ1

" #
� 0,

which can be written as

E

����1� (âk , ÄSk)

n

����n sgn 1� (âk , ÄSk)

n

� �
ÄSk E

YT

r�k�1

����1� (âr, ÄSr)

n

����n�1

jF k

" #
jF kÿ1

" #
� 0

(2)

or

E ÄSk

YT

r�k

����1� (âr, ÄSr)

n

����n sgn 1� (âr, ÄSr)

n

� �
jF kÿ1

" #
� 0:

It remains to prove (1). Using (2) and the induction assumption we get

E
YT

r�k

����1� (âr, ÄSr)

n

����n�1

jF kÿ1

" #

� E

����1� (âk , ÄSk)

n

����n sgn 1� (âk , ÄSk)

n

� �
1� (âk , ÄSk)

n

� �"

3 E
YT

r�k�1

����1� (âr, ÄSr)

n

����n�1

jF k

" #
jF kÿ1

#

� E

����1� (âk , ÄSk)

n

����n sgn 1� (âk , ÄSk)

n

� �
E

YT

r�k�1

����1� (âr, ÄSr)

n

����n�1

jF k

" #
jF kÿ1

" #

� E

����1� (âk , ÄSk)

n

����n sgn 1� (âk , ÄSk)

n

� �"
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3 E
YT

r�k�1

����1� (âr, ÄSr)

n

����n sgn 1� (âr, ÄSr)

n

� �
jF k

" #
jF kÿ1

#

� E
YT

r�k

����1� (âr, ÄSr)

n

����n sgn 1� (âr, ÄSr)

n

� �
jF kÿ1

" #
:

The inequalities in (1) are proven in completely the same way as for k � T.

C is a normalizing constant and, as ZT ( p) is the density of a martingale measure for S

by construction, and because we may write it as Cj1� f jn sgn(1� f ) with f 2 G q
T , it is

the p-optimal martingale measure by Remark 2.3. u

Remark 2.4. A similar result has been given by Schweizer (1995) for p � 2. In this case, one

can give even explicit formulae for â2,k.

For our next preparatory result we need some further notation (Bennet and Sharpley

1988).

De®nition 2.5. L log L consists of all P-measurable real functions f for which�
j f jln�j f j dP ,1

(here ln� x � max(ln x, 0)).

Proposition 2.1. For the densities ZT ( p) of the p-optimal martingale measures for S we have

(ZT ( p))1 , p ,1 is bounded in L log L:

Proof. We assume that P is not a martingale measure for S. This assumption is justi®ed

because, if P is a martingale measure for S, we have ZT ( p) � 1 for all p and the assertion is

trivial.

In view of the form of ZT ( p) in Corollary 2.1 we de®ne the sets

Ap � f f p < ÿng,
Bp � fÿn , f p < 0g,

Dp � f f p . 0g:
First of all we need an estimate for j � Bp

(1� f p=n)n f p dPj. Noting that the function

(1ÿ x=n)nx in the interval [0, n] can be estimated above by 1=e, gives�����
Bp

1� f p

n

� �n

f p dP

���� <
1

e
:

Because of the relations
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sgn

�
Ap

1� f p

n

� �
f p dP

( )
� sgn

�
Dp

1� f p

n

� �
f p dP

( )
� ÿsgn

�
Bp

1� f p

n

� �
f p dP

( )
,

�
Ù

sgn 1� f p

n

� �����1� f p

n

����n f p dP � 0,

we conclude that �
Ù

����1� f p

n

����nj f pj dP <
2

e
(3)

holds. In the following estimates we denote by M positive constants, which do not depend on

p, but which are not necessarily identical:�
Dp

1� f p

n

� �n

ln� 1� f p

n

� �n

dP <

�
Dp

1� f p

n

� �n

f p dP < M ,

where we have used áÿ n ln(1� á=n) . 0 for á. 0 and (3). Using, instead of this relation,

áÿ n ln(á=nÿ 1) . 0 for á > 2n, we get�
Ap

����1� f p

n

����n ln�
����1� f p

n

����n dP < M

in the same way, and we end up with�
Ù

����1� f p

n

����n ln�
����1� f p

n

����n dP < M : (4)

It remains to show that jCpj < M holds.

We claim that

9ä. 0 s:t:

�
Dp

f p dP > ä 8p: (5)

Assuming the contrary, we get a sequence fpkg1k�1 s.t.
�

Dk
f k dP! 0 for k !1 with the

obvious meaning of Dk and f k . We claim that this in turn implies that

f ÿk ! 0 in probability for k !1: (6)

If (6) were false, we could extract a subsequence, which we denote again by f k, s.t.

P[ f ÿk .á] .á. 0 holds for all k and some á. By Lemma A.1.1 of Delbaen and

Schachermayer (1994) we can now ®nd that gk 2 conv( f ÿk , f ÿk�1, . . .) s.t. gk ! g in

probability with P[g . 0] . 0. Applying the same convex combinations to f �k , we get a

sequence hk ! 0 in the norm of L1 and therefore in probability. Since gk ÿ hk are elements

of the space of stochastic integrals G T � f(H . S)T jH predictableg, and G T is closed with

respect to the topology induced by convergence in probability (see Proposition A1.1 in

Appendix 1), we get a contradiction to our (NA) assumption. Therefore our claim (6) is true.

After a further extraction of a subsequence we get f k ! 0 P a.s. and therefore
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sgn 1� f k

n( pk)

� �����1� f k

n( pk)

����n( pk )

! 1 P a:s:

As we have already shown the boundedness of j1� f k=n( pk)jn( pk ) in L log L,

sgn 1� f k

n( pk)

� �����1� f k

n( pk)

����n( pk )

! 1 for k !1

holds with respect to the norm of L1. We ®nally get

i ZT ( pk)ÿ 1i L1 ! 0 for k !1,

which is a contradiction, because the space of martingale measures for our bounded S is

closed with respect to the L1 norm, and the constant function 1 is not a density of a

martingale measure for S under our assumptions. We conclude that (5) is valid.

Now on the one hand we have�����1� f p

n

����n dP >

�
Dp

1� f p

n

� �n

dP >

�
Dp

(1� f p) > ä,

but on the other hand

Cp

�����1� f p

n

����n dP �
�
jZT ( p)j dP < M

holds true. The last inequality follows from

i ZT ( p)i L1 < i ZT ( p)i L p < M ,

where the ®rst inequality is trivial, and the second follows from the fact that we have always

a martingale measure for S with bounded density. So we end up with Cp < M for all p and

our proof is complete. u

3. Main results

The aim of this section is to prove that the p-optimal measures converge to the minimal-

entropy martingale measure with respect to the norm of L1(P) under our assumptions for the

process S. In order to do this, we need some concepts, which have been developed by

Schachermayer (1992). These concepts are necessary to prove our results for the Rd-valued

case, which is slightly more technical then the real-valued case.

De®nition 3.1. Let G � F be two ó-algebras on the probability space (Ù, P). Let Y be an

Rd-valued bounded F -measurable random variable. Then we de®ne the following subspaces

of L0(Ù, G , P; Rd):

N (Y ) � fk 2 L0(Ù, G , P; Rd): (k(ù), Y (ù)) � 0 P a:s:g,
N?(Y ) � fh 2 L0(Ù, G , P; Rd): (k(ù), h(ù)) � 0 P a:s: for each k 2 N (Y )g:
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For an interpretation of this de®nition and for a proof of the following lemma we refer to

Lemma 2.4 of Schachermayer (1992).

Lemma 3.1. There is a continuous surjective projection

ð: L0(Ù, G , P; Rd)! N (Y )?

with ker(ð) � N (Y ). In other words,

L0(Ù, G , P; Rd) � N (Y )� N (Y )?:

We then have, for each h 2 L0(Ù, G , P; Rd),

(h(ù), Y (ù)) � (ð(h)(ù), Y (ù)) P a:s:

The ®rst step in the proof of our main theorem is to ®nd arbitrary large sets, on which

the p-optimal measures are bounded. We need the following lemmata.

Lemma 3.2. Let G � F be two ó-algebras on the probability space (Ù, P). Let Y be an Rd-

valued bounded F -measurable random variable which (seen as an one-step process with the

®ltration F 0 � G and F 1 � F ) satis®es (NA). Then

g1A . 0 P a:s:

holds, where g is de®ned by

g(ù) � inf
h2N? ,i h(ù)i�1

E[(h, Y )�jG ]

and A by

A � fùjE[iY ijG ] . 0g:
i:i denotes the maximum norm in Rd .

Proof. Assuming the contrary, namely the existence of a set B 2 G with B � A and

P(B) . 0, s.t. g1B � 0 holds, yields the existence of a sequence fhkg1k�1 2 N? with

ihk(ù)i � 1, s.t.

gk1B <
1

k
1B P a:s:,

where gk denotes E[(hk , Y )�jG ]. Taking the expectational value of this inequality gives

E[(hk , Y )�1B] <
1

k
P[B] 8k

or

E[(~hk , Y )�] <
1

k
P[B] 8k,

where we have de®ned ~hk � hk1B. This is a contradiction to Lemma 2.5. of Schachermayer

(1992). u
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Lemma 3.3. Let fpigi�1
i�1 be a sequence with limi!1 pi � 1. Then for the densities of the pi-

optimal martingale measures ZT ( pi)

jZT ( pi)j < M(ù) P a:s:

holds 8i 2 N, and for some positive F T -measurable function M.

Proof. By Lemma 2.2, ZT ( pi) has the form

ZT ( pi) � Ci

YT

k�1

����1� (âi,k , ÄSk)

n( pi)

����n( pi)

sgn 1� (âi,k , ÄSk)

n( pi)

� �
:

Ci are normalizing constants, which are bounded as has been shown in the second part of the

proof of Proposition 2.1. Note that we write âi,k for â pi ,k and Ci for Cpi
. The proof is by

induction.

(a) We claim the existence of an F Tÿ1-measurable positive function mT s.t.

ið(âi,T )i < mT (ù) P a:s: 8i 2 N,

holds, where ð is the projection introduced in Lemma 3.1 for the random variable ÄST and

the ó-algebras F Tÿ1, F T .

In the sequel we denote ð(âi,k) by ði,k. Using Lemma 2.2, the de®nitions Ù�i,k �
fùj(ði,k , ÄSk) > 0g, ð̂i,k � iði,k i and ei,k � (ði,k=ð̂i,k)1fð̂ i, k . 0g, we get

1 > E

����1� (ði,T , ÄST )

n( pi)

����n( pi)�1

jF Tÿ1

" #

> E

����1� (ði,T , ÄST )�

n( pi)

����n( pi)�1

1Ù�i,T
jF Tÿ1

" #

> E 1� (ði,T , ÄST )�

n( pi)

� �n( pi)�1

jF Tÿ1

" #
ÿ 1

> E[(ði,T , ÄST )�jF Tÿ1]

� ð̂i,T E[(ei,T , ÄST )�jF Tÿ1]:

Now the last term is equal to ð̂i,T gT (ù), where gT is strictly positive on Ai,T �
fùjE[iÄST ijF Tÿ1] . 0g \ fùjð̂i,T . 0g by Lemma 3.2, and we end up with

ð̂i,T < mT � gÿ1
T P a:s: on Ai,T 8i 2 N:

On (Ai,T )c we de®ne ði,T � 0, ®nishing the case k � T .

(b) We claim the existence of an F kÿ1-measurable positive function mk s.t.

iði,k i < mk(ù) P a:s: 8i 2 N:

Let li,k be de®ned by
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li,k � E
YT

r�k�1

����1� (ði,r, ÄSr)

n( pi)

����n( pi)�1

jF k

" #
:

By Lemma 2.2, li,k . 0 holds P a.s. for all i 2 N and k � 0, . . . , T ÿ 1. In addition we have

lim inf
i

li,k � lim inf
i

E
YT

r�k�1

����1� (ði,r, ÄSr)

n( pi)

����n( pi)�1

jF k

" #

> E lim inf
i

YT

r�k�1

����1� (ði,r, ÄSr)

n( pi)

����n( pi)�1

jF k

" #

> E lim inf
i

����1ÿPT
r�k�1dmr iÄSr i L1

n( pi)

����n( pi)�1

jF k

" #

> E[e
ÿ2(
PT

r� k�1
dmr iÄSr i L1 )jF k]

. 0 P a:s:,

where we have used the induction assumption in the second inequality. Hence lk �
inf i li,k . 0 holds P a.s. Using this and Lemma 2.2, we conclude that, similarly as in (a),

1 > E

����1� (ði,k , ÄSk)

n( pi)

����n( pi)�1

E
YT

r�k�1

����1� (ði,r, ÄSr)

n( pi)

����n( pi)�1

jF k

" #
jF kÿ1

" #

> E

����1� (ði,k , ÄSk)

n( pi)

����n( pi)�1

lk jF kÿ1

" #

> E 1� (ði,k , ÄSk)�

n( pi)

� �n( pi)�1

1Ù�
i, k

lk jF kÿ1

" #

> E 1� (ði,k , ÄSk)�

n( pi)

� �n( pi)�1

lk jF kÿ1

" #
ÿ E[lk jF kÿ1]

> E[(ði,k , ÄSk)� lk jF kÿ1]

� ð̂i,kE[(ei,k , ÄSk)� lk jF kÿ1]

holds. Now denote the last term by ð̂i,k gk(ù), where g k is strictly positive on

Ai,k � fùjE[iÄSk ijF kÿ1] . 0g \ fùjð̂i,k . 0g, and we end up with

ð̂i,k < mk � gÿ1
k P a:s: on Ai,k 8i 2 N:

On (Ai,k)c we de®ne ði,k � 0, ®nishing the proof. u
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An immediate consequence of the proof is the following.

Corollary 3.1. Let fpigi�1
i�1 be a sequence with limi!1 pi � 1. Then the densities of the pi-

optimal martingale measures ZT ( pi) can be written as

ZT ( pi) � Ci

����1� (H pi
. S)T

n( pi)

����n( pi)

sgn 1� (H pi
. S)T

n( pi)

� �
and

jH pi ,k j < L(ù) for k � 1, . . . , T , i 2 N

holds for some positive F Tÿ1-measurable function L.

The next lemma is crucial for the limiting process p! 1.

Lemma 3.4. Let (Ù, F , P) be a probability space. Let frng1n�1 be measurable functions,

which are uniformly bounded and let l 2 L1(P). Further rn ! 0 in the weak� topology, but

not in the topology of convergence in probability. Then the following holds true:

9ä. 0 s:t:

�
e l�rn rn dP . ä

for a subsequence nk, which we have again denoted by n, and for n > N (ä).

Proof. De®ning dQ=dP � e l=E[e l] yields that rn does not converge to 0 in probability with

respect to the measure Q. Therefore and because of the weak� convergence we can ®nd an

ç. 0 and an E� ç (E � ç=100 will do), s.t.�
jrnj dQ 2 [ç, ç� E],

����� rn dQ

����, E

hold, after extracting a subsequence and for n > N (E(ç)). Hence�
r�n dQ 2 çÿ E

2
,
ç

2
� E

� �
,

�
rÿn dQ 2 çÿ E

2
,
ç

2
� E

� �
,

and using the Jensen inequality yields
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�
ern rn dQ �

�
er�n r�n dQÿ

�
eÿrÿn rÿn dQ

> exp

�
r�n dQ

� � �
r�n dQ

� �
ÿ
�

eÿrÿn rÿn dQ

> e(çÿE)=2 çÿ E
2

� �
ÿ ç

2
� E

� �

>
ç2

8
:

We ®nally ®nd that �
e l�rn rn dP >

ç2

8
E[e l] � ä

for n > N (E(ç)). u

Our next lemma is of purely technical nature.

Lemma 3.5. Let (Ù, F , P) be a probability space and fgng1n�1, fhng1n�1 be real measurable

functions with absolute values uniformly bounded by M. Then 8E. 0 9N (E), s.t.����� 1� gn

n

� �n

hn dPÿ
�

e g n hn dP

����, E

holds for all n > N � max(N , M).

Proof. As the fgng are uniformly bounded, we have

1� gm

n

� �n

! e g m

for n!1 uniformly in m with respect to the norm of L1. Since the fhng are uniformly

bounded, we conclude that

lim
n!1

�
1� gm

n

� �n

hm dP �
�

e g m hm dP

holds uniformly in m. Hence����� 1� gn

n

� �n

hn dPÿ
�

e g n hn dP

����, E

for n large enough, and the proof is complete. u

Returning to our original ®ltered probability space we can now formulate the following.

Proposition 3.1. Let fpigi�1
i�1 be a sequence with limi!1 pi � 1. Then there exists a
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subsequence, again denoted by pi, s.t.

lim
i!1

ZT ( pi)! C e( H :S)T

holds in the norm of L1(P) for some predictable process H.

Proof. Remember that ZT ( pi) has the form

ZT ( pi) � Cpi
sgn 1� f pi

n( pi)

� �����1� f pi

n( pi)

����n( pi)

with f pi
� (H pi

. S)T . Owing to Corollary (3.1) we may write Ù � S1l�1 Kl, where equality

means that the symmetric difference is a P null set, s.t. i H pi
i L1 , l holds on Kl for i 2 N.

Of course the Cpi
2 R are bounded.

We prove that the asserted convergence holds P a.s. on K, where K denotes Kl for some

®xed l. After an extraction of a subsequence, which we denote again by pi, we

simultaneously have Cpi
� Ci ! C and 1K fpi

� 1K f i ! 1K f in the weak� topology for a

constant C and a function f bounded on K. This is possible, since L1(P) is weakly

compactly generated, and therefore the closed unit ball in L1(P) is weak� sequentially

compact (Diestel 1975, Section 5.2, Corollary 3; 1975, p. 143). De®ning f i � ri � f yields

1K ri ! 0 weak�. Our claim is now

1K ri ! 0 in probability: (7)

Because ZT ( pi) is the density of a martingale measure for S, f i is a stochastic integral with

respect to S and K is F Tÿ1 measurable, we have for m and i large enough�
K

1� f i

n( pi)

� �n( pi)

fm dP � 0

or �
K

1� f i

n( pi)

� �n( pi)

(ri ÿ rm) dP � 0

and, after m!1, we end up with�
K

1� f i

n( pi)

� �n( pi)

ri dP � 0: (8)

Using now Lemma 3.5 with gi � f i, hi � ri and the measure P restricted to the set K, we get

8E. 0 9N1(E) s.t. �����
K

1� f i

n( pi)

� �n( pi)

ri dPÿ
�

K

e f i ri dP

����, E

8i > N1(E). If (7) were false, we could ®nd by Lemma 3.4 (l � f ) a ä. 0, s.t., after

extracting a subsequence,
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�
K

e f i ri dP . ä

holds for i > N2(ä). Choosing now E small enough and i > max(N1, N2), we arrive, by

combining the last two inequalities, at�
K

1� f i

n( pi)

� �n( pi)

ri dP . äÿ E. 0,

which is a contradiction to (8). Therefore (7) is true, and we ®nd after a further extraction of

a subsequence

lim
i!1

1K f i � 1K f P a:s:

Since we have this for each K � Kl, diagonalization yields a subsequence with f i ! f P

a.s., where f � (H . S)T holds for some predictable H, because of the closedness of the

space of stochastic integrals in L0(P) with respect to convergence in probability (see

Proposition A1.1 in Appendix 1). This gives

lim
i!1

Ci sgn 1� f i

n( pi)

� �����1� f i

n( pi)

����n( pi)

� C e( H :S)T P a:s:

and, because of boundedness of the ZT ( p) in L log L (Proposition 2.1), we get the existence

of a sequence fpig1i�1 with pi ! 1, s.t.

lim
pi!1

ZT ( pi) � C e( H :S)T

with respect to the norm of L1(P), and our proof is ®nished. u

Remark 3.1. C e( H :S)T is the density of a martingale measure for S, because the space M s(S)

is closed in L1, since S is assumed to be bounded.

The ®nal theorem says that we need not extract subsequences in the previous proposition.

Theorem 3.1.

lim
p!1

ZT ( p) � Z E
T � C e( H :S)T ,

where Z E
T is the minimal-entropy martingale measure, and the convergence holds with

respect to the norm of L1(P).

Proof. Assuming the contrary, we ®nd a ä. 0, s.t. i ZT ( pk)ÿ Z E
T i L1 . ä for all k and a

sequence fpkg, tending to 1. By Proposition 3.1 these ZT ( pk) have a convergent subsequence

with limit ~Z E
T � ~C e

~f 6� Z E
T , ~f � ( ~H . S)T for some predictable ~H and ~Z E

T 2M s(S), but there

is only one martingale measure for S of this form (see Remark 2.1), and we have a

contradiction. u
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4. A counterexample

It has been shown by Frittelli and Lakner (1996) that for an unbounded process S, which has

an equivalent martingale measure, the minimal-entropy martingale measure need not exist.

We now give an example, where this measure exists, but the convergence of Theorem 3.1

does not hold.

Example 4.1. Let (Ù, (F 0, F 1), P, (S0, S1)) be a one-step process with Ù � (0, 1],

F 0 � fÆ, Ùg, F 1 � ó (S1), P the Lebesgue measure, S0 � 0, S1(ù) � lnù� k, where

ù 2 Ù and k 2 R. This is easily seen to be an exponentially distributed random variable plus

a constant. We con®ne ourselves here to 0 , k, 1, since this turns out to be the most

interesting case. For brevity we write S for S1.

It is simple to calculate ó � supfrj � erjSj dP ,1g � 1 . 0, which is equivalent to say

S 2 Lexp (Bennet and Sharpley 1988). Solution of the equation�
e(ln ù�k)rE

(lnù� k) dP � 0

yields rE � 1=kÿ 1 which, together with the normalizing constant C E � ekÿ1=k, determines

the density of the minimal-entropy measure Z E � C E er
E S (see Remark 2.1).

The p-optimal martingale measure for S exists for all p . 1 by the same reasons as in

the case of bounded S (see the arguments after De®nition 2.3), except that we use now the

closedness of M s(S) with respect to i:i L p(P) instead of i:i L1(P). Z( p) is given by

Z( p) � Cp

����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
,

where Cp is a normalizing constant, and r p is determined by�����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
S dP � 0:

Note that r p . 0 by our assumption E[S] , 0.

For later use we prove the following easy lemmata.

Lemma 4.1. Let S be as in Example 4.1, and

Z( p) � Cp

����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
the p-optimal martingale measures. Then the normalizing constants Cp of Z( p) ful®l

Cp < ì 8p . 1

and some constant ì. 0.

p-optimal martingale measure 241



Proof. We have

ã >

�
jZ( p)j dP � Cp

�����1� r pS

n

����n dP > Cp

�
fS .0g

����1� r pS

n

����n dP > Cp

�
fS .0g

1 dP � Cpá,

where the ®rst inequality holds by the arguments used for the last inequality in the proof of

Proposition 2.1, á � P[S . 0] . 0 holds, and ã is some positive constant. De®ning ì � ã=á
concludes the proof. u

Lemma 4.2. Let S be as in Example 4.1, and

Z( p) � Cp

����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
the p-optimal martingale measures. Then we have���������1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
S

���� dP < 2iS i L1(P) 8 p . 1:

Proof. Similarly as in Proposition 2.1 we de®ne

Ap � ùj1� r pS

n( p)
< 0

� �
,

Bp � ùj1� r pS

n( p)
. 0

� �
\ fùjS < 0g,

Cp � fùjS . 0g:
We have

sgn

�
Ap

����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
S dP

 !

� sgn

�
Cp

����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
S dP

 !

� ÿsgn

�
Bp

����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
S dP

 !
and therefore, using

� j1� r pS=n( p)jn( p) sgn(1� r pS=n( p)) S dP � 0, we conclude that���������1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
S

���� dP < 2

�����
Bp

����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
S dP

����
< 2

�
jSj dP

holds. u
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In the sequel we write an � bn, if ã1an < bn < ã2an holds for all n and some ã1, ã2 . 0.

Our next lemma is of purely technical nature.

Lemma 4.3. Let S be as in Example 4.1. Assume that limk!1 ó k � ó , limk!1 nk � 1 and

ó k . 0 hold. Then we have

lim
k!1

�
A k

����1� ó k S

nk

����n k

sgn 1� ó k S

nk

� �
S dP � 0 for ó , ó0,

lim
k!1

�
A k

����1� ó k S

nk

����n k

sgn 1� ó k S

nk

� �
S dP � 1 for ó . ó0,

where Ak � fùj1� ó k S=nk < 0g, and ó0 is the solution of the equation eÿ1=ó 0ÿ1ó0 � 1,

which gives ó0 � 3:6.

Proof. A lengthy but straightforward computation yields, if we denote nk by n for the

moment �
A k

����1� ó k S

n

����n sgn 1� ó k S

n

� �
S dP � eÿk eÿn=ó k

n!

(n=ó k)nÿ1

n� 1

n=ó k

� 1

� �

� eÿk eÿn=ó k
n!

(n=ó k)nÿ1

� eÿk eÿn=ó k
(n=e)n n1=2

(n=ó k)nÿ1

� (eÿ1=ó kÿ1 ó k)n eÿk n1=2 n

ó k

,

which gives the desired result. u

Using Lemma 4.2 and Lemma 4.3, we can now prove the following.

Lemma 4.4. Let S be as in Example 4.1, and

Z( p) � Cp

����1� r pS

n( p)

����n( p)

sgn 1� r pS

n( p)

� �
the p-optimal martingale measure. Then

lim sup
k!1

r pk
< ó0

holds for all sequences fpkgk�1
k�1 s.t. limk!1 pk � 1. (ó0 is de®ned in Lemma 4.3.)

Proof. Assuming the contrary, we can ®nd a sequence fpkgk�1
k�1 s.t. limk!1 pk � 1,

limk!1 r pk
� ó̂ . ó0 and ó̂ 2 R � R [1 holds. By Lemma 4.3 this implies that
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lim
k!1

�
Apk

����1� r pk
S

n( pk)

����n( pk )

sgn 1� r pk
S

n( pk)

� �
S dP � 1,

which is a contradiction to Lemma 4.2. u

Finally we have the following theorem.

Theorem 4.1. In Example 4.1 we ®nd that

lim
p!1

Z( p) � C0 eó 0 S for 0 , k, k0 � 1

ó0 � 1
(i:e: rE . ó0)

lim
p!1

Z( p) � ZE for k0 < k, 1 (i:e: rE < ó0),

where the convergence holds in i:i L1(P), and ó0 is the solution of eÿ1=ó 0ÿ1 ó0 � 1. Note that

C0 eó 0 S is not a martingale measure for S.

Proof. In Proposition 2.1 we have proved boundedness of the p-optimal martingale measures

in L log L for bounded processes S, but the boundedness of S is used in the proof only for the

estimates of the normalizing constants Cp. Therefore combining Proposition 2.1 and Lemma

4.1 we get boundedness in L log L of the Z( p) for S in Example 4.1. To prove the claimed

convergence in L1(P), we therefore have to show only P a.s. convergence, or the convergence

of r p and Cp respectively as p! 1.

Once we have shown convergence of r p, convergence of Z( p)=Cp in L1(P) follows and,

by the normalization condition
�

Z( p) dP � 1, convergence of Cp follows. Summarizing, we

have to show that lim p!1 r p is either ó0 or rE. We distinguish between two cases.

Case 1: 0 , k, k0 � 1=(ó0 � 1) (i.e. rE . ó0). Our claim is lim p!1 r p � ó0. By Lemma

4.4 it suf®ces to show lim inf k!1 r pk
� ó0 for all sequences f pkgk�1

k�1 tending to 1.

Assuming the contrary, namely the existence of a sequence fpkgk�1
k�1 s.t. limk!1 pk � 1 and

limk!1 r pk
� r̂, ó0 hold, yields by dominated convergence

lim
k!1

�
(Apk

)c

1� r pk
S

n( pk)

� �n( pk )

S dP �
�

er̂S S dP , 0,

where we have used the notation A pk
from Lemma 4.2. Note that the last inequality holds,

because the function f (r) � � erS S dP is strictly increasing, and f (rE) � 0.

On the other hand

lim
k!1

�
Apk

����1� r pk
S

n( pk)

����n( pk )

sgn 1� r pk
S

n( pk)

� �
S dP � 0

holds by Lemma 4.3, which gives a contradiction, since this implies that�����1� r pk
S

n( pk)

����n( pk )

sgn 1� r pk
S

n( pk)

� �
S dP , 0
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for k large enough.

Case 2: k0 < k, 1 (i.e. rE < ó0). Our claim now is lim p!1 r p � rE. Assuming the

contrary, namely ®rst the existence of a sequence fpkgk�1
k�1 s.t. limk!1 pk � 1 and

limk!1 r pk
� r̂, rE hold, yields in completely the same way as in case 1 a contradiction.

Finally assuming the existence of a sequence fpkgk�1
k�1 tending to 1 with limk!1 r pk

� r̂,

s.t. rE , r̂ < ó0 holds (the upper bound for r̂ comes from Lemma 4.4), gives

lim
k!1

�
(Apk

)c

1� r pk
S

n( pk)

� �n( pk )

S dP �
�

er̂S S dP . 0,

but �
Apk

����1� r pk
S

n( pk)

����n( pk )

sgn 1� r pk
S

n( pk)

� �
S dP > 0 8k

yields again a contradiction as in case 1. u

Remark 4.1. Noting that in case 1

lim
k!1

�
Ac

pk

1� r pk
S

n( pk)

� �n( pk )

S dP �
�

eó 0 S S dP � ÿá, 0

holds, we infer that �
Apk

Z( pk)S dP > â. 0

is valid for k large enough. Since S 2 Lexp, which can be identi®ed with the Banach

space dual of L log L (Bennet and Sharpley 1988, Theorem 6.5), we get

limk!1 i Z( pk)ÿ i L log L 6� 0.

Appendix 1

Proposition A1.1. Let S be a stochastic process on the stochastic basis (Ù, F , (F t)
T
t�0, P)

in discrete time, which is adapted and Rd valued. Suppose that S does not admit arbitrage or,

equivalently, that there is an equivalent martingale measure for S.

Then the space of stochastic integrals G T � f(H . S)T jH predictableg is closed in L0(P)

with respect to convergence in measure and therefore G p
T is norm closed in Lp(P) for each

1 < p ,1.

Proof. The latter assertion is an immediate consequence of the former assertion and the

observation that G p
T � G T \ L p(P).

For the proof of the closedness of G T we shall prove a lemma, which might have some

independent interest. Admitting the subsequent lemma for the moment, we can ®nish the
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proof as follows. Let (H n)1n�1 be a sequence of predictable processes such that the

sequence ( f n)1n�1 � ((H n . S)T )1n�1 converges in measure to some f 0. We have to show that

there is a predictable integrand H0 such that f 0 � (H0 . S)T .

From the subsequent lemma we infer that, for each 1 < t < T , the sequence

((H n . S) t)
1
n�1 ÿ ((H n . S) tÿ1)1n�1 converges in measure to some f 0, t; hence we may apply

Stricker (1990, Proposition 2) to ®nd, for 1 < t < T, F tÿ1-measurable functions H0
t such

that

(H0
t , St ÿ Stÿ1) � f 0, t,

which just means that the predictable integrand (H0
t )

T
t�1 does the job. u

Lemma A1.1. Under the assumptions of Proposition A.1.1 let (H n)1n�1 be a sequence of

predictable processes such that

f n � (H n . S)T

converges in measure; then

gn � (H n . S) t

converges in measure for all 0 < t < T .

Proof. It suf®ces to show the assertion for t � T ÿ 1. Suppose that the lemma were false;

then we could ®nd a sequence ( f n)1n�1 � ((H n . S)T )1n�1 as above tending to zero in measure,

while (gn)1n�1 � ((H n . S)Tÿ1)1n�1 does not so.

Hence, by passing to a subsequence and changing signs, if necessary, we may ®nd an

á. 0 such that

Pfgn < ÿág.á for n 2 N:

Consider the predictable integrands

An
t (ù) � H n

t 1T (t)1f g n<ÿág(ù)

and let an denote the random variables

an � (An . S)T ^ 1 � (( f n ÿ gn)1f g n<ÿág) ^ 1:

Note that each an 2 G ÿ L0
�(Ù, F T , P), where G is de®ned by G �

f(h, ÄST )jh 2 L0(Ù, F Tÿ1, P, Rd)g, and that the negative parts ((an)ÿ)1n�1 tend to zero in

measure or, by passing to a subsequence, even P a.s. On the other hand, for each E. 0,

lim
n!1 Pfan > áÿ Eg > á:

By lemma A1.1 of Delbaen and Schachermayer (1994) we infer that there is a sequence

of convex combinations of (a�n )1n�1, denoted by (cn)1n�1, converging almost surely to some

c: Ù! [0, 1), for which we have E[c] . 0. Applying the same convex combinations to

(aÿn )1n�1, denoting the result by (dn)1n�1, (dn) tend to zero P a.s. Summing up, we get a

c: Ù! [0, 1), for which we have E[c] . 0 and which is in G ÿ L0
�(Ù, F T , P) by
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Schachermayer (1992, Lemma 2.1). This is clearly a contradiction to the (NA)

assumption. u
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