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Let fZn, n > 0g be an aperiodic irreducible recurrent (not necessarily positive recurrent) Markov

chain taking values on a countable unbounded subset S of Rd , ð(.) its invariant measure and f is a

non-negative function de®ned on S. We ®rst ®nd suf®cient conditions under which
�

S
f (z)ð(dz) � 1

(the corresponding result for the ®niteness of
�

S
f (z)ð(dz) was obtained by Tweedie). Then we obtain

lower and upper bounds for the values of the invariant measure ð on the subsets B of S, that is, ð(B).

These bounds are expressed in terms of ®rst passage probabilities and the ®rst exit time from B. We

also show how to estimate the latter quantities using sub- or supermartingale techniques. The results

are ®nally illustrated for driftless re¯ected random walks in Z2
� and for Markov chains on non-

negative reals with asymptotically small drift of Lamperti type. In both cases we obtain very precise

information on the asymptotic behaviour of their stationary measures.

Keywords: occupation time; recurrent Markov chain; re¯ected random walk; stationary measure;

submartingale; supermartingale

1. Introduction

The main object of this paper is the study of the asymptotic behaviour of the stationary

distributions for recurrent Markov chains. This question appears as a natural development of

the classical problem of existence and uniqueness of stationary measures and is known to be

important for the ergodic theory of Markov chains. In the particular situation of Markov

chains satisfying the condition of so-called geometric ergodicity, the characterization of the

invariant measure is well understood ± for further information, see Fayolle et al. (1994),

Nummelin and Tweedie (1978; 1994), Nummelin and Tuominnen (1982), Meyn and Tweedie

(1993) and references therein. However, as far as we know, even in the case of subgeometric

ergodicity, there are only few results providing similar information. One of the ®rst was

obtained by Tweedie (1983), who found suf®cient conditions under which the stationary

distribution ð admits moments of the general form
�

f (x)ð(dx) for non-negative functions f.

We have recently learned that Menshikov and Popov (1995) have proved some results

concerning the values of ð on some subsets B of the state space for subgeometric positive
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recurrent Markov chains with bounded increments based on relations between ®rst passage

times and stationary probabilities. More dif®cult appears to be the case of null recurrent

Markov chains when ®rst passage times and the ®rst return times have in®nite expectations

and the stationary probabilities cannot be expressed in terms of the ®rst return times.

Our principal goal is to propose a uni®ed approach that enables one to obtain a

description of the stationary measure ð of recurrent (not necessarily positive recurrent)

countable Markov chains. The main results are proved in Section 2. Here we ®rst complete

Tweedie's result by obtaining suf®cient conditions for divergence of
�

f (x)ð(dx) for non-

negative functions f (Theorem 19). In passing, we note that when f is bounded by some

positive constant c these conditions imply the null recurrence of a Markov chain. Next we

give upper and lower bounds for ð(B) in terms of ®rst passage probabilities and the ®rst

exit time from the set B (Theorems 2 and 3). We do this by directly counting excursions of

the Markov chain hitting B outside a ®xed ®nite set A which in turn enables us to estimate

the total occupation time of B between two successive visits of A. We ®nally show how to

estimate the quantities appearing in these bounds by means of sub- or supermartingale

techniques (Lemmas 1 and 2).

Then, in Sections 3±4, we illustrate the results obtained on two classes of Markov chains.

The ®rst is driftless re¯ected random walks in a quadrant, studied recently in Fayolle et al.

(1992), Aspandiiarov et al. (1996) and Aspandiiarov and Iasnogorodski (1997; 1998). The

other class is countable Markov chains on non-negative real numbers with asymptotically

small drift of Lamperti type, introduced in Lamperti (1963). In both cases applying the

results of the ®rst part, and constructing appropriate sub- or supermartingales, we obtain

very sharp conditions of integrability (non-integrability) of functions with respect to the

stationary measures, as well as bounds on the `tails' of these measures (Theorems 7±10 and

4±5). Moreover, we are able to distinguish the asymptotic behaviour of the invariant

measure on the boundary and in the interior of the quadrant. These results turn out to be

very important for the recurrent classi®cation of the three-dimensional driftless re¯ected

random walks. Finally, it should be said that the results for re¯ected random walks are in

concordance with corresponding results for re¯ected Brownian motion in a wedge obtained

by Williams (1985), which is not surprising bearing in mind one recent result in

Aspandiiarov (1994) on the convergence of re¯ected random walks to a Brownian motion.

Moreover, the results obtained go beyond the Brownian motion case covering the situation

when the Brownian motion is absorbed at the origin.

2. General results on stationary distributions for countable
recurrent Markov chains

Let (Ù, F , P) be a probability space with a ®ltration fF ngn>0. Throughout this section,

fZn, n > 0} is a discrete-time fF ng-adapted irreducible aperiodic Markov chain taking

values in an unbounded countable subset S of Rd . We assume that the chain is recurrent with

unique (up to a multiplicative constant) stationary measure ð (see Chung 1967).
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2.1. Integrability/non-integrability of functions with respect to stationary

distribution

One of ®rst questions regarding the measure ð to be asked is the ®niteness of

Eð f �
X
z2S

f (z)ð(z) �
�

f (z)ð(dz)

� �
,

for a non-negative function f de®ned on S. An answer to this question is provided by

Tweedie, which we reproduce here in a slightly different form.

De®nition 1. For any subset A of S and any initial state Z0 � z, we will denote by ôA,z the

®rst passage time into A: ôA,z � inffn > 1; Zn 2 Ag. Notice that since the chain is

recurrent, ôA,z is ®nite with probability 1. We will omit the superscript z when this will not

cause any notational confusion.

Theorem 1 (Tweedie 1983, Theorem 1). Let f be a non-negative function de®ned on S. In

order that

Eð f ,1,

it is suf®cient that for some set A and some function g such that g(u) > f (u) on Ac, we have

that for any n > 1 and z 2 A, for all z 2 A, Ez(g(Z1)1(ôA.1)) is ®nite and

E(g(Z n�1)1(ôA. n�1)jF n) < g(Zn)ÿ f (Zn)Pz-a:s: on fôA . ng: (1)

A slight modi®cation of the conditions of Theorem 1 provides the following conditions for

divergence of Eð f .

Theorem 19. Let f be a non-negative function de®ned on S. In order that

Eð f � 1,

it suf®ces that for some ®nite set A, some z 2 A and some function g such that

lim supn!1Ez(g(Zn)1(ôA. n)) � 1 and Ez(g(Z1)1(ôA . 1)) is ®nite, we have, for any n > 1,

E(g(Z n�1)1(ôA. n�1)jF n) < g(Zn)� f (Zn)Pz-a:s: on fôA . ng: (2)

Remark 1. We need another convention. In what follows we will omit the hypothesis `de®ned

on S' and `subset A of S ', `2 A \ S', implicitly assuming that all sets under study are

assumed to be subsets of the state set S, and all functions are de®ned only on S.

Proof of Theorems 1 and 19. The proof is easy and is based on the following well-known

fact from the theory of Markov chains (see, for example, Tweedie 1983): for any B � Ac,

ð(B) � Eð(1( Z02A)E Z0
(ó A

B)) � Eð 1( Z02A)E Z0

X1
n�1

1( Z n^ôA2B)

 ! !
, (3)
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where ó A
B is the occupation time of B before the ®rst passage into A, that is,

ó A
B � f#n; Zn 2 B, ôA . ng: (4)

It is then immediate that for any ®nite set A,

Eð f ,1, 8z 2 A, Ez

X1
n�1

f (Z n^ôA
)1(ôA. n)

 !
,1: (5)

Finally, iterating (1)±(2) and using the last observation, we immediately see that the desired

conclusions follow from other conditions of Theorems 1 and 19. h

Remark 2. Notice that if f is bounded from below (above) by some positive constant c, then

Theorem 1 (Theorem 19) gives suf®cient conditions for positive recurrence (null recurrence)

of the Markov chain fZn, n > 0g. In the positive recurrent case we simply obtain the well-

known Foster theorem (see Foster 1953).

Remark 3. Obviously, condition (1) (condition (2)) is satis®ed, if whenever z 2 Ac we have,

for any n > 0,

E(g(Z n�1)ÿ g(Zn)jF n) < ÿ f (Zn)(< f (Zn))Pz -a.s. on fôA . ng: (6)

Remark 4. In applications the ®rst condition on g in the Theorem 19 can be veri®ed by virtue

of the following observation. Suppose:

1. There is a non-negative function h such that (g(z))=(h(z))!1 as jzj ! 1 and

jzj ! 1 whenever h(z)!1.

2. Whenever z9 belongs to some subset Z of Ac, the process fh(Z n^ôA
), n > 0g is a Pz9-

submartingale.

3. Ez(g(Zn)1(ôA. n)) is ®nite for any n > 1.

Then, whenever z 2 A satis®es A Pn0

z,z9 . 0 for some z9 2Z and n0 . 0, such that

h(z9) . supx2A h(x), we have lim supn!1Ez(g(Zn)1ôA . n) � 1 (A Pn0

z,z9 here is a usual n0-

step transition probability from z to z9 of fZn, n > 0g with taboo set A).

Proof. Let z, z9 2Z and n0 . 0, satisfy A Pn0

z,z9 . 0 and h(z9) . sup x2A h(x). The strong

Markov property at ôfz9g shows that in order to prove the divergence of Ez9(g(Zn)1ôA. n) as

n!1 it suf®ces to verify that the family fEz9(g(Z n^ôA
)), n > 0g is not uniformly bounded.

Suppose the former assertion concerning the uniform boundedness is false. Then, using our

assumptions on h we would get that the family fh(Z n^ôA
), n > 0g is uniformly integrable and

consequently limn!1Ez9 h(Z n^ôA
) � Ez h(ZôA

). But this, with the choice of z9,h(z9) .
supx2A h(x), contradicts

Ez9(h(Z n^ôA
)) > h(z9), 8n > 0: h
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2.2. Upper bounds for stationary distributions

The martingale ideas of the proofs of Theorems 1 and 19 can be developed further, providing

us with information on ð(B) for some sets B.

De®nition 2. Let @A � fz 2 A; Pz(Z1 2 Ac) . 0g. The set @A is non-empty since

fZn, n > 0g is an irreducible Markov chain.

Proposition 1. Under the conditions of Theorem 1 for any subset B of Ac,

ð(B) <
ð(@A) supz2@AEz(g(Z1)1(ôA.1))

inf z92B f (z9)
,

provided f is positive on Ac.

Proof. For any z 2 @A,

Pz(Z n^ôA
2 B) � Ez(1( Z n2B)1(ôA. n)) <

Ez( f (Zn)1(ôA. n))

inf z92B f (z9)
:

Substituting this into (3) and iterating (1)

ð(B) <
ð(@A)supz2@A(ÿlimn!1Ez(g(Zn)1(ôA. n))� Ez(g(Z1)1(ôA.1)))

inf z92B f (z9)
:

The proof is concluded by recalling that the function g(z) is non-negative on Ac. h

De®nition 3. Let A, B be non-intersecting sets. Set íB � ôBc and de®ne the sets

ÃA,B � fz 2 Sn(A [ B); Pz(ôA , ôB) . 0 and 9z9 2 B such that Pz9(ZíB
� z) . 0g;

Ã9A,B � fz 2 Sn(A [ B); Pz(ôA , ôB) � 0g;
Ã 0A,B � Ã9A,B [ B:

Remark 5. Notice that by this construction the trajectory starting in Ã9A,B cannot hit either A

or ÃA,B before hitting B. Similarly, if for any z 2 B, Pz(ôA � 1) � 0, then the trajectory

starting in Ã 0A,B cannot hit A before hitting ÃA,B.

The principal result of this section gives an upper bound for ð(B) expressed in terms of

the ®rst passage probabilities Pz(ôÃ 0A, B
, (.)ôA), and the ®rst exit time íB from B.

Theorem 2. Let A be a ®nite subset of S and B be a subset of Ac such that ÃA,B is non-empty

and for any z 2 B, Pz(ôA � 1) � 0. Then

ð(B) <
ð(@A)supz2@A Pz(ôÃ 0A, B

, ôA)supz2BEz(íB)

inf z2ÃA, B
Pz(ôA , ôÃ 0A, B

)inf z2B Pz(ZíB
2 ÃA,B)

: (7)
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Proof. Start with (3) which, together with the de®nition of @A, implies that

ð(B) � Eð(1( Z02@A)E Z0
(ó A

B)) < ð(@A) sup
y2@A

E y(ó A
B): (8)

Let z be any ®xed element from @A. Then, by the strong Markov property of the Markov

chain Z,

Ez(ó
A
B) � Ez(ó

A
B1(ôB,ôA)) � Ez(1(ôB,ôA)Ez(ó

A
BjF ôB

))

� Ez(1(ôB,ôA)E ZôB
(ó A

B)) < Pz(ôB , ôA)supz2BEz(ó
A
B): (9)

Now rewrite the total occupation time ó A
B of B between two successive visits to A as the sum

over k of the times spent by the `stopped' process fZ n^ôA
, n > 0g in B between the kth and

(k � 1)th consecutive visits of the set ÃA,B. More precisely, de®ne for k > 1,

î(0)
B � 0, ç(1)

B � inffn > 0; Zn 2 Ã 0A,Bg;

î(k)
B � inffn > ç(k)

B ; 8l 2 [ç(k)
B , n), Z l 2 Ã 0A,B and Zn 2 ÃA,Bg;

ç(k�1)
B � inffn > î(k)

B ; Zn 2 Ã 0A,Bg;

ìA
B � maxfk > 0; î(k)

B , ôAg � maxfk > 0; ç(k)
B , ôAg, (10)

with the usual convention infÆ � �1. Therefore, by the de®nition of ìA
B and the strong

Markov property at ç(k)
B , for any y 2 B,

E y(ó A
B) � E y

XìA
B

k�1

Xî( k)

B

n�ç( k)

B

1( Zn2B)

0B@
1CA � E y

X1
k�1

1(ìA
B

>k)

Xî( k)

B

n�ç( k)

B

1( Zn2B)

0B@
1CA

�
X1
k�1

E y 1(ìA
B

>k)E
Xî( k)

B

n�ç( k)

B

1( Zn2B)jF ç k
B

0B@
1CA

0B@
1CA

�
X1
k�1

E y 1(ìA
B

>k)E Z
ç

( k)

B

Xî(1)

B

n�0

1( Zn2B)

0@ 1A0@ 1A (11)

<
X1
k�1

Py(ìA
B > k) sup

y92B

E y9

Xî(1)

B

n�0

1( Zn2B)

0@ 1A:
Let us now have a closer look at the random time

Pî(1)

B

n�01( Zn2B) on the set Z0 2 B. De®ne

new stopping times ô(k)
B í(k)

B by:
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ô(0)
B � 0,

í(1)
B � íB, ô(1)

B � ôB � inffn > í(1)
B ; Zn 2 Bg,

í(k�1)
B � inffn > ô(k)

B ; Zn =2 Bg, ô(k�1)
B � inffn > í(k�1)

B ; Zn 2 Bg,
rA

B � maxfk > 0; ô(k)
B , ôAg,

(12)

(notice that rA
B < ó A

B). By this construction and the strong Markov property at ô(k)
B , for any

y9 2 B,

E y9

Xî(1)

B

n�0

1( Zn2B)

0@ 1A �X1
k�0

E y9(1
(r

ÃA, B
B

>k)
(í(k�1)

B ÿ ô(k)
B ))

< 1�
X1
k�1

Py9(r
Ã

A, B

B > k)

 !
sup y 02BE y 0(íB): (13)

Set c(B) � sup y92B Py9(Zk 2 Ã9A,B, 8k 2 [íB, ôB)). The strong Markov property at ô(kÿ1)
B and

the de®nition of rÃA, B

B , ô(k)
B imply that for any y9 2 B and any k > 1,

Py9(r
Ã

A, B

B > k) � Py9(ô
k
B , ôÃA, B

) � Py9(Zn 2 (ÃA,B)c, 8n 2 [í( l)
B , ô( l)

B ), 8l 2 [1, k])

< c(B)Py9(Zn 2 (ÃA,B)c, 8n 2 [í( l)
B , ô( l)

B ), 8l 2 [1, k ÿ 1]) < (c(B))k :

Also

1ÿ c(B) � inf y92B Py9(9k0 2 [íB, ôB); Z k0
=2 Ã9A,B)

> inf y92B Py9(ZíB
=2 Ã9A,B) � inf y92B Py9(ZíB

2 ÃA,B):

Hence,

1�
X1
k�1

sup
y92B

Py9(r
ÃA, B

B > k) < 1� c(B)

1ÿ c(B)
<

1

inf y92B Py9(ZíB
2 ÃA,B)

: (14)

Substituting this in (13)

sup
y92B

E y9

Xî(1)

B

n�0

1( Zn2B)

0@ 1A <
sup y 02BE y 0(íB)

inf y92B Py9(ZíB
2 ÃA,B)

: (15)

The remaining term
P1

k�1E y(1(ìA
B

>k)) in the right-hand side of (11) can be estimated using

the same idea that led to (14). For any k > 1 and any y 2 B,

Py(ìA
B > k) � Py(Zn 2 Ac, 8n 2 [î( l)

B , ç( l�1)
B ), 8l 2 [1, k ÿ 1]) < (c(B))kÿ1, (16)

where c(B) � sup y2B Py(Zn 2 Ac, 8n 2 [î(1)
B , ç(2)

B )). Therefore, applying again the strong

Markov property at î(1)
B ,X1

k�1

Py(ìA
B > k) <

1

1ÿ c(B)
<

1

inf y2ÃA, B
Py(ôA , ôÃ 0A, B

)
: (17)

Combining (8), (9), (11), (15) and (17) we obtain (7). h
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We now obtain some useful bounds for the quantities appearing in (7). An example of

their applications will be given later in this paper.

Remark 6. Suppose there exist an integer m and ã. 0 such that inf z2B Pz(íB < m) > ã.

Then

sup
z2B

Ez(íB) <
m

ã
: (18)

Proof. The bound is an immediate consequence of the Markov property and of the following:

Fact. Let æ be a random variable taking values in f1, 2, . . .g. Suppose there exist an integer

m > 1 and ã. 0 such that for any n > 0,

P(æ < n� mjæ. n) > ã:

Then E(æ) < m=ã. h

Finally, the probabilities appearing in (7) can sometimes be estimated using the following

result.

Lemma 1. Let A be a ®nite subset of S and let D be any subset of Ac. Suppose that, for some

z 2 (A [ D)c and a non-negative function g, the process fg(Z n^ôA
), n > 0g is a Pz-

supermartingale. Suppose also that there exists a positive constant d � d(D) such that Pz-

a.s. g(ZôD
) > d. Then the following two statements hold:

(i)

Pz(ôA . ôD) <
g(z)

d
: (19)

(ii)

Pz(ôA , ôD) >
d ÿ g(z)

d
: (20)

Proof. The recurrence of the Markov chain fZn, n > 0g implies that the random time

ôA ^ ôD is ®nite. Then, by Fatou's lemma applied to the positive sequence fg(Z n^ôA
^ ôD),

n > 0g, g(z) > Ez(g(ZôA^ôD
)). The proof is concluded by observing that

Ez(g(ZôA^ôD
)) > Ez(g(ZôD

)1(ôA.ôD))

and using the assumptions on g. h

2.3. Lower bounds for stationary distributions

Theorem 3. Let A be a ®nite subset of S and B be a subset of Ac such that ÃA,B is non-empty

and for any z 2 B, Pz(ôA � 1) � 0. Then for any z9 2 @A, the following lower bound holds:
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ð(B) >
ð(z9)Pz9(ôÃ 0A, B

, ôA)inf z2BEz(íB)

supz2ÃA, B
Pz(ôA , ôÃ 0A, B

)supz2B Pz(Z(íB) 2 ÃA,B)
(21)

(by de®nition, Ez(íB) > 1 for any z 2 B).

Proof. The proof is very similar to that of Theorem 2. Let z9 be any state in @A. The

application of the strong Markov property at ôB, ôfz9g gives

ð(B) > ð(z9)Ez9(ó
A
B) � ð(z9)Ez9(ó

A
B1(ôB,ôA)) > ð(z9)Pz9(ôÃ 0A, B

, ôA)inf
z2B

Ez(ó
A
B): (22)

Let the random times î(k)
B , ç(k)

B , í(k)
B , ô(k)

B , ìA
B and rA

B be de®ned as in (10), (12). From the

de®nitions of Ã 0A,B, ÃA,B and the strong Markov property of the Markov chain Z as in (11),

(13), for any z 2 B,

Ez(ó
A
B) >

X1
k�1

Pz(ì
A
B > k)inf z2BEz

Xî(1)

B

n�0

1( Zn2B)

0@ 1A
>
X1
k�1

Pz(ì
A
B > k)(1� inf z2BEz(r

Ã
A, B

B )) inf z2BEz(íB): (23)

Set c(B) � inf z92B Pz9(Z[íB, ôB) 2 Ã9A,B). Notice that c(B) , 1. Again, as in the proof of

lower bounds, the strong Markov property at ô(kÿ1)
B and the de®nition of rÃA, B

B
, ô(k)

B imply that

1� inf
z2B

Ez(r
Ã

A, B

B ) > 1� c(B)

1ÿ c(B)
>

1

sup z2B Pz(ZíB
2 ÃA,B)

: (24)

Let us now ®nd a bound for
P1

k�1 Pz(ìA
B > k) from (23). Similarly to (16), for any k > 1 and

any z 2 B,

Pz(ì
A
B > k) � Pz(Z[î l

B, ç l�1
B ) 2 Ac, 8l < k ÿ 1) > (c(B))kÿ1,

where c(B) � inf z2B Pz(Z[î(1)
B , ç(2)

B ) 2 Ac). HenceX1
k�1

Pz(ì
A
B > k) >

1

1ÿ c(B)
>

1

supz2ÃA, B
Pz(ôA , ôÃ 0A, B

)
, (25)

which, together with (22)±(24), proves (21). h

The following counterpart of Lemma 1 indicates a way to estimate the probabilities

appearing in (21).

Lemma 2. Let A be a ®nite subset of S and let D be some subset of Ac. Suppose, for some

z 2 (A [ D)c and a non-negative function g, that:

(a) The process fg(Z n^ôA^ôD
), n > 0g is a Pz-submartingale.

(b) On fôA ^ ôD . ng the family fg(Z n^ôA^ôD
), n > 0g is Pz-a.s. bounded.

Then the following two statements hold:
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(i) If there exist positive constants d � d(D), a � a(A) such that g(z) . a and, Pz-a:s:,

g(ZôD
) < d, g(ZôA

) < a,

then

Pz(ôA . ôD) >
g(z)ÿ a

d
: (26)

(ii) If there exist positive constants d � d(D), a � a(A) such that

g(ZôA
) < a , d < g(ZôD

) Pz-a:s:,

then

Pz(ôA , ôD) <
Ez(g(ZôD

))ÿ g(z)

d ÿ a
: (27)

Proof. The proof proceeds similarly to that of Lemma 1. The submartingality assumption

implies that, for any n > 0,

g(z) � g(Z0) < Ez(g(Z n^ôA^ôD
)) � Ez(g(Zn)1(n , ôA^ôD))� Ez(ZôA^ôD

1(n>ôA^ôD)):

Boundedness of g(Z n^ôA^ôD
), the recurrence of fZn, n > 0g, the dominated convergence

theorem applied to Ez(g(Zn)1(n , ôA^ôD)), and the monotone convergence theorem applied to

another term show that

g(z) < Ez(g(ZôA^ôD
)):

But trivially,

g(z) < Ez(g(ZôA^ôD
)) � Ez(g(ZôD

))ÿ Ez((g(ZôD
)ÿ g(ZôA

))1(ôA,ôD))

< Ez(g(ZôA
))� Ez(g(ZôD

)1(ôA.ôD)): (28)

Inequalities (26) and (27) now follow immediately from the second and the ®rst lines in (28)

respectively and the assumptions of the lemma. h

3. Stationary measures for non-negative processes with
asymptotically small drifts

In this section we investigate the invariant measures of some non-negative Markov chains

with asymptotically small drifts. Let (Ù, F , P) be a probability space with a ®ltration

fF ngn>0. Let S be a countable unbounded set of R� such that its intersection with any

compact subset of R� is ®nite. We are given a discrete-time fF ng-adapted non-negative

irreducible aperiodic time-homogeneous Markov chain fXn, n > 0g taking values in S. We

assume that it has bounded jumps, that is, there exists a positive constant K such that for all

n > 0, jX n�1 ÿ Xnj < K. As usual, for any subset F of S, ôF � inffn . 0; X n 2 Fg. For all

a > 0 the symbol ôa will stand for ôa � ô[0,a].
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Theorem 4. Suppose the Markov chain X has asymptotically small drift in the following

sense: there exist constants A . 0, å. 0, a > 0 such that for any n > 0, whenever x . A,

E(X n�1 ÿ X njF n) < ÿåä(X n)(X n)ÿa, Px-a:s: on fôA . ng, (29)

where ä(x) � Ex((X1 ÿ x)2). Suppose also there is a positive constant ì such that

lim inf
x!1 Px(X 1 ÿ x ,ÿì) . 0: (30)

Then the Markov chain is recurrent and the following statements hold:

(i) If a , 1, then for any positive å0 , 2å=(1ÿ a),�
S

eå0 x1ÿa

ð(dx) ,1,

and there exists a positive constant c such that for all suf®ciently large b,

ð([b, b� K)) < ceÿå0 b1ÿa

:

(ii) If a � 1, then for any positive å0 , 2å,�
S

xå0ÿ1ð(dx) ,1,

and there exists a positive constant c such that for all suf®ciently large b,

ð([b, b� K)) < cbÿå0 :

(iii) If a . 1, then for any positive å0.

�
S

logÿå0ÿ1x

x
ð(dx) ,1,

and there exists a positive constant c such that for all suf®ciently large b,

ð([b, b� K)) < c logå0 b:

Remark 7. Since for any ì. 0, ä(x) > ì2 Px(X 1 ÿ x ,ÿì), then (30) implies that

lim inf x!1ä(x) . 0.

Remark 8. As will be seen below, the proof of integrability results only needs the condition

lim inf x!1ä(x) . 0 instead of (30).

Proof. Let å0 be any ®xed number satisfying the corresponding conditions of the theorem.

For any å. 0, let the functions gå, f å be de®ned by

gå(x) �

�x

0

eås1ÿa

ds, if a , 1,

xå�1, if a � 1,

x logÿåx, if a . 1:

8>><>>: (31)
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f å(x) �
xÿaeåx1ÿa

ä(x), if a , 1,

xåÿ1, if a � 1,

xÿ1 logÿåÿ1x, if a . 1:

8<: (32)

It is easy then to see that there exists a positive a0 such that for all a . a0, whenever x . a,

the process fgå0
(X n^ôa

), n > 0g is a Px-supermartingale. Let us show this, for instance, in

the case a , 1. By Taylor's formula of second order, there exists a random variable în such

that

E(gå0
(X n�1)ÿ gå0

(X n)jF n) < eå0 x1ÿa

E(X n�1 ÿ XnjF n)

� å0(1ÿ a)

2
eå0 x1ÿa

Xÿa
n ä(X n)� 1

6
E(g 0å0

(în)jX n�1 ÿ X nj3jF n)

< ÿ f å0
(X n)lim inf

x!1 ä(x)� o( f å0
(X n)):

Hence there exists a positive constant c1 such that for all a . a0, whenever x . a,

E(gå0
(X n�1)ÿ gå0

(X n)jF n) < ÿc1 f å0
(Xn)Px-a:s: on fôa . ng:

This, Remark 7 and Theorem 1 prove the integrability results of the theorem. By Proposition

5.3 of Asmussen (1987) it also follows that the Markov chain fX n, n > 0g is recurrent.

Let us now prove the upper bounds. For all suf®ciently large b . a0 _ 2K, set

A � (0, a0), B � [b, b� K). Then, ÃA,B � [bÿ K, b), Ã9A,B � [b� K, b� 2K), Ã 0A,B �
[b, 1) and, immediately, for all x 2 (a0, b),

gå0
(b) < gå0

(X TÃ�A, B
) , g(b� K), with Px-probability 1:

Notice that (30) implies that there exist positive constants n0, p0 such that for any x 2 ÃA,B

there exists x9 2 [bÿ 2K, bÿ K) satisfying (A[B) P
n0

x,x9 . p0. Therefore, by Lemma 1 there

exist positive constants c1, c2 such that for all suf®ciently large b,

inf x2ÃA, B
Px(ôA , ôÃ 0A, B

) > p0

gå0
(b)ÿ supx2[bÿ2K,bÿK) gå0

(x)

g(b� K)
< p0

gå0
(b)ÿ gå0

(bÿ K)

gå0
(b� K)

< p0

inf [bÿK,b] g9å0

gå0
(b� K)

, (33)

supx2@A Px(ôÃ 0A, B
, ôA) < sup y2(a0 ÿ K, a0)Py(ôA . ôÃ 0A, B

) <
gå0

(a0)

gå0
(b)

:

Let us denote the value of the limit in (30) by p2. Then because of (30), there exists an

n1 . K=ì such that for any z 2 B, Pz(Z(íB) 2 ÃA,B) >Pz(Z(íB) 2 ÃA,B, íB < n1) > p1,

where p1 � p
K=ì
2 . Furthermore, by Remark 6 it follows from these bounds that

supx2BEx(íB) < n1=p1. Substituting these bounds and (33) in Theorem 2 gives the desired

upper bounds. h

Remark 9. Theorem 4 implies that in the case a , 1 and a � 1, å. 1
2

the Markov chain

fX n, n > 0g is positive recurrent.
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Theorem 5. If in the conditions of Theorem 4 we replace (30) with the assumption that the

Markov chain fX n, n > 0g is recurrent and there exist constants A . 0, å. 0, a > 0 such

that for any n > 0, whenever x . A,

E(X n�1 ÿ X njF n) > ÿåä(Xn)(X n)ÿa Px-a:s: on fôA . ng, (34)

then:

(i) If a , 1, then for any positive å0 . 2å=(1ÿ a),�
S

eå0 x1ÿa

ð(dx) � 1,

and there exists a positive constant c such that for all suf®ciently large b,

ð([b, b� K)) > ceÿå0 b1ÿa

:

(ii) If a � 1, then for any positive å0 . 2å,�
S

xå0ÿ1ð(dx) � 1,

and there exists a positive constant c such that for all suf®ciently large b,

ð([b, b� K)) > cbÿå0 :

(iii) If a . 1, then for any positive å0,�
S

logå0ÿ1x

x
ð(dx) � 1,

and there exists a positive constant c such that for all suf®ciently large b,

ð([b, b� K)) > c logÿå0 b:

Remark 10. Notice that in fact the conditions on the boundedness of increments of the

Markov chain fXn, n > 0g can be relaxed. For instance, for the integrability (non-

integrability) results it suf®ces to assume that there exists a positive constant ã. 2 such that

sup
x2S

Ex(jX1 ÿ xjã) ,1: (35)

In this way one can recover Lemma 3 of Borovkov et al. (1992) from Statement (ii) of

Theorem 4 (the case a � 1). Moreover, statement (ii) of Theorem 5 completes it, giving the

corresponding divergence result. As for estimates of the invariant measure, one can obtain

similar results assuming simply the condition of lower boundedness of the increments by

some constant K9 and (35).

Remark 11. The previous remark and Theorems 4 and 5 suggest a way of estimating the

stationary probabilities of some countable Markov chains in some situations. Suppose we are

given an irreducible aperiodic recurrent Markov chain fZn, n > 0g on some countable state

space S and a positive function F (called a Lyapunov or test function) de®ned on S such that
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the process X � fF(Zn), n > 0g satis®es the conditions of Theorem 4 or 5 and Remark 10.

Then the latter results permit one to estimate the stationary measures of the sets

Fÿ1(b, b� K) � fz 2 S; F(z) 2 (b, b� K)g for all suf®ciently large b and give suf®cient

conditions of (non-)integrability of certain functions f with respect to the stationary measure.

Proof of Theorem 5. Let å0 be any constant satisfying the conditions of the theorem and gå0

be de®ned by (31). It can then be seen that there exists a positive a0 such that for all a . a0

whenever x . a, the process fgå0
(X n^ôa

), n > 0g is a Px-submartingale. Moreover, there

exists a positive constant c1 such that for all a . a0, whenever x . a,

E(gå0
(X n�1)ÿ gå0

(Xn)jF n) < c1 f å0
(Xn)Px-a:s: on fôa . ng, (36)

where the function f å0
is de®ned in (32). Let us now consider the function h � gå1

with some

å1 , å0 satisfying the conditions imposed on å of the theorem. Then we can see that there

exists a positive constant a1 such that for all a . a1 whenever x . a, the process fh(X n^ôa
),

n > 0g is a Px-submartingale. This, (36), Theorem 19 and Remark 4 imply the desired

divergence. The proof of other statements of the theorem can be carried out by using

Theorem 3 and Lemma 2 and is left to the reader. h

Remark 12. Theorem 5 implies that in the case a . 1 and a � 1, å, 1=2 the Markov chain

fX n, n > 0g is null recurrent.

Remark 13. The bounds in statements (i) (case 0 , a , 1) of Theorems 4 and 5 were recently

obtained by different methods in Menshikov and Popov (1995).

4 Re¯ected random walks in a quadrant

4.1. Statement of the results

Let ~G be the quadrant given by ~G � f(x, y) 2 R2; x > 0, y > 0g. The two sides of the

quadrant are denoted by @ ~G1 and @ ~G2, where @ ~G1 � f(x, y) 2 ~G; x 6� 0, y � 0g and

@ ~G2 � f(x, y) 2 ~G; y 6� 0, x � 0g. The interior of ~G is referred to as ~G0 and the boundary

of the wedge (i.e. @ ~G1 [ @ ~G2 [ (0, 0)) will be denoted by @ ~G. We consider the discrete-time

homogeneous irreducible aperiodic fF ng-adapted Markov chain f~Z n, n > 0g taking values

in Z2
� de®ned inductively for n > 0 by

~Z n�1 � ~Z n � Y (0)
n 1( Zn2~G0) � Y (1)

n 1( ~Z n2@ ~G1) � Y (2)
n 1( ~Z n2@ ~G2) � Y (3)

n 1( ~Z n�(0,0)),

where for each l � 0, 1, 2, 3 the random vectors Y ( l)
n , n > 0 are i.i.d. and have the following

probability distributions:

P(Y ( l) � (i, j)) � p
( l)
i, j , i, j > ÿ1, p

( l)
0,0 � 0:

In order to keep the process in Z2
� it is assumed that for all i, j > ÿ1, p1

i,ÿ1 �
p2
ÿ1, j � p3

i,ÿ1 � p3
ÿ1, j � 0. We also assume that ã de®ned by
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ã � sup k;
X

i, j

(jijk � j jjk) pl
i, j ,1, for all l � 0, 1, 2

( )
. 2, (37)

E(Y (0)
n ) � (0, 0) and the covariance matrices (denoted Al) of Y ( l)

n are positive de®nite. The n-

step transition probabilities (n-step transition probabilities with taboo set A) of fZn, n > 0g
are denoted by Pn

z,z9, z, z9 2 Z2
� (A Pn

z,z9, z, z9 2 Z2
�).

Let us now introduce one useful transformation of the state space which permits us to

simplify the presentation of the results. Namely, let Ö be any linear isomorphism of R2

such that the vector Ö(Y (0)) has the unit covariance matrix. For instance, we can de®ne Ö
as in Aspandiiarov and Iasnogorodski (1997) (see formulae (13)±(14) therein). Set

G4 � Ö(Z2
�), G � Ö( ~G), G0 � Ö( ~G0),

@G1 � Ö(@ ~G1), @G2 � Ö(@ ~G2), @G � Ö(@ ~G); (38)

and denote the angle of the wedge G by î. We also introduce the following family of non-

negative harmonic functions on Gn(0, 0). For any â1, â2 2 (ÿð=2, ð=2) we set â �
(â1 � â2)=î and de®ne the function Øâ1,â2

: G! R� in standard polar coordinates (r, è) by

Øâ1,â2
(z) � ø1=â

â1,â2
(z), if â 6� 0,

exp(øâ1,â2
(z)), if â � 0,

(
(39)

where the function øâ1,â2
is given by

øâ1,â2
(r, è) �

râ cos(âè ÿ â1), â1 � â2 6� 0, r. 0, è 2 [0, î],

logr� jtan â1jè, â1 � â2 � 0, r. 0, è 2 [0, î],

0, r � 0:

8<:
We can now de®ne the crucial parameters for our study. Let á1, á2 be the angles

between the vectors Ö(E(Y 1
n)), Ö(E(Y 2

n)) and the inward normals to the corresponding axes

@G1 and @G2, with positive angles towards the corner. By our assumptions on the transition

mechanism of the Markov chain ~Z, the distributions of Y 1, Y 2 are non-degenerate so that

the angles ~á1, ~á2 between the vectors E(Y (1)
n ), E(Y (2)

n ) and the inward normals to the

corresponding axes @ ~G1 and @ ~G2 are different from ÿð=2, ð=2. Consequently, á1,

á2 2 (ÿð=2, ð=2). De®ne the function ~Ø on ~G by

~Ø(z) � Øá1,á2
(Ö(z)), z 2 ~G: (40)

As is easy to see from the de®nitions of Ö and Øá1,á2
, there exists a positive constant cá1, á2

such that, for all z1, z2 2 ~G,

j ~Ø(z1)ÿ ~Ø(z2)j < cá1,á2
jz1 ÿ z2j: (41)

Set

á � á1 � á2

î
(42)

and de®ne a function h on R� by
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h(b) � b1ÿá, if á 6� 0;

b=log (b), if á � 0:

�
(43)

The importance of the parameter á is explained by the following recurrence criterion for

the Markov chain f~Z n, n > 0g whose proof can be found in Aspandiiarov et al. (1996,

Theorem 5) and Aspandiiarov and Iasnogorodski (1997, Remark 4).

Theorem 6. The Markov chain f~Z n, n > 0g is recurrent if and only if á > 0.

Throughout the rest of this paper we will suppose that á > 0. Our main results

describing the asymptotic behaviour of the stationary measure of the re¯ected random walk
~Z in the case á > 0 are stated as follows.

Theorem 7 (Integrability). For any ì. 0 and any integer k > 1,�
~G0

jzjáÿ2

ök(ì, jzj) ~ð(dz) ,1,

�
~G0

jzjáÿ2

ök(ÿì, jzj) ~ð(dz) � 1, (44)

�
(@ ~G1[@ ~G2)

jzjáÿ1

ök(ì, jzj) ~ð(dz) ,1,

�
(@ ~G1[@ ~G2)

jzjáÿ1 log
ì
k(jzj)~ð(dz) � 1, (45)

where the functions ök : R 3 R� ! R� are de®ned, for all suf®ciently large x, by

ök(s, x) � log(x) . . . logkÿ1(x) log1�s
k (x), if k . 1;

log 1�s(x), if k � 1,

�
(46)

and logk are iterated logarithms.

To simplify the presentation of the remaining results of this section the following is also

assumed (see Remark 17):

Boundedness of increments. The increments Z n�1 ÿ Zn are almost surely bounded, that is,

there is a positive constant K9 such that, with probability 1, jY ( l)j < K9 for any l � 0, 1, 2, 3.

Set

Ká � cá1,á2

��������
2K9
p

, (47)

where cá1,á2
satis®es (41).

Theorem 8 (Local bounds). There exist positive constants K, b0, c1, and c2 such that, for all

b . b0,

c1 h(b) < ~ð(b , ~Ø(z) < b� K) < c2 h(b) log(b): (48)

Theorem 9 (Global bounds on the boundary @ ~G). Let ök(ì, b) be de®ned as in (46). Then,

for any ì. 0 and for any integer k > 1, there exist positive constants b1, c3, c4 such that for

all b . b1:
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(i) If á. 1, then ~ð(@ ~G) ,1 and

~ð(jzj. b, z 2 @ ~G) < c4b1ÿáök(ì, b): (49)

(ii) If á < 1, then

c3 h(b) < ~ð(jzj, b, z 2 @ ~G) < c4b1ÿáök(ì, b): (50)

Theorem 10 (Global bounds in the interior ~G0). For any ì. 0 and for any integer k > 1,

there exist positive constants b2, c5, c6 such that the following statements hold for all b . b2:

(i) If á 6� 2, then

c5bh(b) < ~ð(jzj. b, z 2 ~G0) < c6bh(b)log(b): (51)

(ii) If á � 2, then

c5log(b) < ~ð(jzj, b, z 2 ~G0) < c6log2(b): (52)

Remark 14. In the case á 2 (1, 2] the invariant measure of the boundary is ®nite, which

means that the time which an excursion of the Markov chain outside the origin spends on the

boundary has a ®nite mean. In other words, the embedded Markov chain constructed by

observing the original Markov chain when it hits the boundary is ergodic. This result can be

seen as a discrete-time analogue of the fact that the re¯ected Brownian motion with the same

oblique re¯ection in the wedge G is not a semimartingale (see Williams 1985).

Remark 15. The results of Theorems 8 and 10 in the case á 2 [0, 2) give almost the same

asymptotics as those for the corresponding Brownian motion with oblique re¯ection in a

wedge that can be derived from Theorem 6.1 in Williams (1985), giving an exact expression

for the invariant measure of a re¯ected Brownian motion a wedge. In this sense Theorems 8

and 10 can be viewed as random walk analogues of Theorem 6.1 in Williams (1985). It

should be said that our results provide bounds for the `tails' of the stationary measure on the

boundary which have no counterparts for re¯ected diffusions.

Remark 16. In Menshikov and Popov (1995) the following result related to (49) and (51) has

been proved by a different method. If á. 2, then for any ì. 0 there exist positive constants

b0, c1, c2 such that for all b . b0,

c1b2ÿáÿì < ~ð(jzj. b) < c2b2ÿá�ì:

As a by-product of Theorem 7 we recover the following criterion of positive recurrence of the

Markov chain f~Z n, n > 0g from Aspandiiarov et al. (1996) and Aspandiiarov and

Iasnogorodski (1997).

Corollary 1. The Markov chain f~Z n, n > 0g is positive recurrent if and only if á. 2.

Before proving the results let us say a few words on the boundedness of increments
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restriction (the existence of K9) which was imposed on the transition mechanism of the

Markov chain ~Z.

Remark 17. If one does not impose the condition of boundedness of increments (existence of

K9), then Theorem 9 remains valid whereas Theorems 8 and 10 need some changes. Theorem

8 is valid only in the case á > 1 and we make the following change: for any ç. 0 there exist

positive constants b0, c1, c2 such that

c1 h(b)bÿ1=(ãÿ1)ÿç < ~ð(b , ~Ø(z) < b� K) < c2 h(b)log(b): (53)

As far as Theorem 10 is concerned, its upper bounds and the lower bound in the case

á 2 [0, 2] remain unchanged. But the lower bound in the case á. 2 is stated differently: for

any ç. 0 there exist positive constants b2, c5 such that, for all b . b2,

c5b2ÿáÿ1=(ãÿ1)ÿç < ~ð(jzj. b, z 2 ~G0): (54)

Similarly, if one imposes the existence of exponential moments of the random vectors Y ( l)
n ,

then one can replace bÿ1=(ãÿ1)ÿç in the lower bounds of (53) and (54) by logÿ1(b).

The proof of these claims can be found in Aspandiiarov and Iasnogorodski (1995).

We will prove Theorems 7±10 by demonstrating the analogues of these results for the

Markov chain fZn, n > 0g de®ned as the image of the Markov chain f~Z n, n > 0g under

the linear isomorphism Ö, the measure ð de®ned by ð(.) � ~ð(Öÿ1(.)) instead of ~ð, the

function Ø instead of ~Ø, G0, @G, @G1, @G2, G4 instead of ~G0, @ ~G, @ ~G1, @ ~G2, Z2
�

respectively. The proof of the latter assertions will be based on the results of Section 2.

The plan of the rest of the paper is as follows. First we prove the local bounds of

Theorem 8 and show a technique for constructing sub- or supermartingales which will be

used throughout the proofs. Then we will move on to the (non-)integrability assertions of

Theorem 7. Once we prove these results, the remaining global bounds of Theorems 9±10

will be obtained easily as their consequences. Finally, in Appendix A we will prove some of

auxiliary martingale results and in Appendix B we deal with some geometrical properties of

the Markov chain Z.

5. Proof of the main results

5.1. Preliminary results and notation

An important role in the proof will be played by so-called `monotonicity' property of øâ1,â2
:

there exists a positive constant c1 such that for any z 2 Gn(0, 0), jzj. 2,

logjzj, if â � 0

jzjâcos(jâ1j _ jâ2j), if â. 0

�
< øâ1,â2

(z) <
c1logjzj, if â � 0;

jzjâ, if â. 0:

�
(55)

We need more notation. For any â1, â2 2 (ÿð=2, ð=2), a . 0, we will denote by Fâ;a the

following set:
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Fâ;a � fz 2 G; Øâ1,â2
(z) < ag: (56)

Again for simplicity the index â in Fâ;a will be omitted if â1 � á1, â2 � á2, and we will

simply write Fa. Let us also introduce a positive constant c(â) given by

c(â) � cosÿ1=â(jâ1j _ jâ2j), if â 6� 0;

exp(ÿîjtan â1j), if â � 0:

�
(57)

As usual, for any subset F of G we let ôF � inffn . 0; Zn 2 Fg. In particular, for each

a . 0, we will simplify the notation, writing ôâ;a instead of ôFâ;a
and ~ôa instead of ôF c

a
.

Similarly, we will write ~ôâ;a instead of ôF c
â;a

and ~ôa instead of ôF c
a
.

Lemma 3. Let a0 be some positive constant and â1, â2 2 (ÿð=2, ð=2).

(i) There exist b0 . 0, p0 . 0, n0 . 0 such that for all b . b0 and for any

z 2 Fâ;b�KnFâ;b, satisfying pz 0,z . 0 for some z 0 2 Fâ;b, there is some z9 2 Fc
â;b�K

such that

Fâ;b
P

(n0)
z,z9 . p0: (58)

(ii) There exist b0 . 0, p0 . 0, n0 . 0 such that for all b . b0 and z 2 ÃFâ;a0
,Fâ;b

, there is

some z9 2 Fâ;bÿK such that

(F c
â;b
[Fâ;a0

) P
(n0)
z,z9 . p0: (59)

The proof will be given in Appendix B.

Convention. Throughout the proof the quantities c1, c2, c3, . . . will denote positive constants

that do not depend on b. As usual, all sets and initial states appearing below are assumed to

be subsets of the appropriate state spaces of the Markov chain under consideration. A similar

convention is applied to all functions f , g.

5.2. Lower local bounds of Theorem 8

We will only prove the lower bounds for K � Ká, which immediately provides the same

bounds for an arbitrary K > Ká.

Proposition 2. Let á > 0. There is a positive constant c such that for all suf®ciently large a,

b satisfying b . a and for any z 2 FbnFbÿKá, Pz(ôA , ~ôb) < c=b.

Proof. Let k. 1 be a suf®ciently large number which will be de®ned later. Let us de®ne the

function g by g(z) � T (øá1,á2
)(z), where T (x) � xk if á 6� 0 and T (x) � exp(kx) if á � 0.

Lemma 4. For any a, b and z satisfying the hypothesis of Proposition 2, the process

fg(Z n^ôa
), n > 0g is a Pz-submartingale.

Proof. By the second-order Taylor formula for any function f 2 C3,
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f � øâ1,â2
(Z n�1)ÿ f � øâ1,â2

(Zn) � f 9 � øâ1,â2
(Zn)(,øâ1,â2

(Zn), Än)

� 1

2
f 0 � øâ1,â2

(Zn)(,øâ1,â2
(Zn), Än)2 (60)

� 1

2
f 9 � øâ1,â2

(Zn)D2øâ1,â2
(Zn, Än, Än)� Rn(Zn, Än, f , â, 2),

where

Rn(Zn, Än, f , â, 2) � 1

2!

�1

0

d3

dt3
f � øâ1,â2

(Zn � tÄn)
� 	

(1ÿ t)2dt:

In the proof of Lemma 11 (see Aspandiiarov and Iasnogorodski 1997) it was shown that for

any f and â1, â2 satisfying the assumptions of the lemma there exists a positive ~ç such that

for all suf®ciently large jZnj,
E Z n

(jRn(Zn, Än, f , â, 2)j) < ~cjZnj2âÿ2ÿ~çj f 0 � øâ1,â2
(Zn)j: (61)

Although the function f (x) � exp(kx) does not satisfy the conditions of Lemma 11, it can be

shown using arguments similar to those used in the proof of Lemma 11 that if â � 0, then

(61) still holds (we leave this to the reader).

From the moment conditions of the transition mechanism and the form of the mapping Ø
it follows that on fZn 2 G0g,

E Zn
(,øâ1,â2

(Zn), Än) � 0,

E Zn
(,øâ1,â2

(Zn), Än)2 � j,øâ1,â2
(Zn)j2 � d2(â)jZnj2âÿ2 and

E Zn
(D2øâ1,â2

(Zn, Än, Än)) � nøâ1,â2
(Zn) � 0,

(62)

where d(â) is a positive constant (whose precise expression can be found in (24) of

Aspandiiarov and Iasnogorodski (1997). Hence, (60) and (61) imply that there are positive

constants a0, b0, C such that for any n > 0 and for any jzj. a0, Pz-a.s.,

E Z n
(g(Z n�1)ÿ g(Zn)) > CT 0(øá1,á2

)(Zn)jZnj2áÿ2 > 0, on fZn 2 G0g \ fjZnj. Ag:
(63)

Let us now prove that the conditional increments on the boundary @G1 [ @G2 can be

made positive by an appropriate choice of k. Observe that by formula (57) in Aspandiiarov

and Iasnogorodski (1997) we have E Z n
(,øá1,á2

(Zn), Än) � 0. On the other hand, easy

calculations for the gradient and the second partial derivatives of the function øá1,á2
show

that for each k � 1, 2 on fZn 2 @Gkg,
E Zn

(g 0(Zn)(,øá1,á2
(Zn), Än)2 � g9(Zn)D2øá1,á2

(Zn, Än, Än))

� T 0(øá1,á2
)(Zn)jZnj2áÿ2[c1(á)E Zn

((~vk , Än)2)� 1

c2(k)
hk(èZn

)] (64)

� T 0(øá1,á2
)(Zn)jZnj2áÿ2[c1(á)(Ak~vk , ~vk)� 1

c2(k)
hk(èZn

)],
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where èZ n
is the angular coordinate of Zn, Ak are the covariance matrices of the transition

mechanism from the boundaries @Gk , ~v1 � (cos(á1), ÿsin(á1)), ~v2 � (cos(îÿ á2),

sin(îÿ á2)), hk are some bounded functions and

c1(á) � á2, if á 6� 0,

cosÿ2(á1), if á � 0,

�
c2(k) � kÿ 1, if á 6� 0,

k, if á � 0:

�
Recall that by assumption Ak , k � 1, 2, are positive de®nite. Hence, for any

k. 1�max(ihk i)=min(c1(á)(Ak~vk , ~vk)) there exists a constant c3 such that

E Zn
(g 0(Zn)(,øá1,á2

(Zn), Än)2 � g9(Zn)D2øá1,á2
(Zn, Än, Än))

> c3T 0(øá1,á2
)(Zn)jZnj2áÿ2: (65)

From (65) and (61) it can be seen that there exists a positive constant c2 such that for all

suf®ciently large a and for all n on fZn 2 @Gkg \ fjZnj. ag, k 2 f1, 2g,
E Z n

(g(Z n�1)ÿ g(Zn)) > 0: (66)

This and (63) together ®nish the proof of Lemma 4 for all suf®ciently large a and a certain

number k. h

We now ®x such k. Let z be any initial state from FbnFbÿKá . By the boundedness of

jumps Pz-a.s., bká < g(Z ~ôb
) < (b� Ká)ká. Moreover, inf z2FbnFbÿKá

g(z) > (bÿ Ká)ká. By

assertion (ii) of Lemma 2, for all suf®ciently large b and any z 2 FbnFbÿKá,

Pz(ôa , ~ôb) <
(b� Ká)ká ÿ (bÿ Ká)ká

bká ÿ aká <
c1

b
, (67)

where the constant c1 does not depend on b, and Proposition 2 is proved. h

Let k and å be any positive numbers such that k, min(1, áÿ1). Since á > 0 and

ái 2 (ÿð=2, ð=2), there are ®xed â1 and â2 such that âi 2 (ÿð=2, ð=2), â1 � â2 . 0 and

ái , âi (ái . âi) for i � 1, 2, if á. 1 or á � 0 (0 ,á < 1). Set â � (â1 � â2)=î and

í � (áÿ 1)=â. De®ne the function g by g(z) � T1(øá1,á2
)(z)� T2(øâ1,â2

)(z), where

T1(x) �
x(1ÿ xÿk), if á 6� 0,

x(1ÿ logÿk(x)), if á � 0,

(

T2(x) �
xílogå(x), if á 6� 0, á 6� 1,

log1�å(x), if á � 1,

(1ÿ xÿ1=â)log(x), if á � 0:

8>>><>>>: (68)

The following result will be proved in Appendix A.

Lemma 5. There exists a0 . 0 such that for all a > a0 and for any z 2 Fc
a, the process

fg(Z n^ôa0
), n > 0g is a Pz-submartingale.
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Let b be any ®xed suf®ciently large positive number greater than (a0 _ Ká) (Ká is the

constant from (47)). Set

A � Fa0
; B � Fb�KánFb: (69)

From the de®nition (47) of Ká and (41) it is immediate that

ÃA,B � FbnFbÿKá , Ã9A,B � Fc
b�Ká

, Ã 0A,B � Fc
b: (70)

As will now be shown, the function g satis®es the conditions of Lemma 2 with g, A and

D � Ã 0A,B. This will then provide necessary bounds for the terms appearing in the bound of

Theorem 3 and complete the proof of the desired lower bound.

The `monotonicity' property of øá1,á2
, øâ1,â2

and the choice of í, â1 and â2 imply that

whenever Z0 � z 2 (A [ B)c,

d(b) > g(ZôÃ 0A, B
) > d(b) and a > g(ZôA

), Pz-a:s:, (71)

where a � supz2A g(z), and the functions d(x), d(x) are de®ned for all suf®ciently large

positive x by d(x) � d1(x)� d2(x); d(x) � d1(x)� d2(x), where d2(x) � 0,

d1(x) � T1((x� Ká)á), if á 6� 0,

T1(log(x� Ká)), if á � 0,

�
d1(x) � T1(xá), if á 6� 0,

T1(log x), if á � 0,

�
(72)

and

d2(x) � (c(â))1ÿáxáÿ1logå((c(á)(x� Ká))â), if á 2 (0, 1),

T2((c(á)(x� Ká))â), otherwise:

�
(73)

Plainly, for all suf®ciently large b, d(b) . a. Next, the irreducibility of the Markov chain

fZn, n > 0g implies that there exist n . 0, p0 . 0, a1 . a0, z9 2 @A and the state y such that

Øá1,á2
(z9) < a0 ,Øá1,á2

(y) , a1, g(y) . a� 1 and

(A[F c
a1

) Pn
z9, y . p0: (74)

Let us ®x such z9, y. By the ®rst assertion of Lemma 2 and recalling the expression for d,

one easily sees that there exists c1 . 0 such that for all large enough b,

Pz9(ôA . ôÃ 0A, B
) > p0 Py(ôA . ôÃ 0A, B

) > p0

g(y)ÿ a

d(b)
>

c1

bá
, if á 6� 0,

c1

log(b)
, if á � 0:

8><>: (75)

By Proposition 2 there exists a positive constant c3 such that for all b . b1, supz2ÃA, B

Pz(ôA , ôÃ 0A, B
) < c3=b. The end of the proof is immediate. Let us ®x any b0 .(a1 _ Ká _ b1)

such that for all b . b0 inequality (75) holds. By the de®nition of íB, Ez(íB) > 1 and

Pz(Z(íB) 2 ÃA,B) < 1, for any z 2 B. We have thus estimated all the quantities appearing in

(21) of Theorem 3. The proof is concluded by substituting the bounds just obtained into (21)

applied to sets B from (69) with b . b0.
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5.3. Upper local bounds of Theorem 8

As in the proof of the lower bounds, we start with a preliminary result which complements

Lemma 2.

Proposition 3. Let á > 0. There are positive constants c, K > Ká such that for all

suf®ciently large a, b satisfying b . a and for any z 2 FbÿKnFbÿ2K, Pz(ôA , ~ôb) >
c=[b log(b)].

Proof. Fix any â1 and â2 such that âi 2 (ÿð=2, ð=2), â1 � â2 . 0 and ái , âi. Let k be any

positive number such that k, 1. De®ne the function g by g(z) � T1(øá1,á2
)(z) �

T2(øâ1,â2
)(z), where T2(x) � c(á, â)xÿ1=â,

T1(x) � log(x), if á 6� 0,

x(1� xÿk), if á � 0,

�
and c(á, â) is a positive constant to be chosen later. h

Lemma 6. fg(Z n^ôa
), n > 0g is a Pz-supermartingale for all suf®ciently large a.

Proof. Consider ®rst the increments of g(Zn) when Zn belongs to the interior of the domain

G0. In this subcase Lemma 11 implies the existence of positive constants a, c1, c2 such that,

for any n > 0 on fZn 2 G0g \ fjZnj. ag,
E Zn

(T1 � øá1,á2
(Z n�1)ÿ T1 � øá1,á2

(Zn)) < ÿc1 f 1(Zn),

jE Zn
(T2 � øâ1,â2

(Z n�1)ÿ T2 � øâ1,â2
(Zn))j < c2 f 2(Zn),

where

f 1(z) � øÿ2
á1,á2
jzj2áÿ2, if á 6� 0,

øÿ1ÿk
á1,á2
jzjÿ2, if á � 0

�
and f 2(z) � c(á, â)øÿ1=âÿ2

â1,â2
(z)jzj2âÿ2. By the `monotonicity' property of the functions

øá1,á2
, øâ1,â2

, as jzj ! 1, f 1(z)= f 2(z)!1. Choosing suf®ciently large A and using again

the `monotonicity' property of øá1,á2
, it is seen that, for any c(á, â), there exist positive

constants c3, a such that for all n > 0, on fZn 2 G0g \ fjZnj. ag,
E Z n

(g(Z n�1)ÿ g(Zn)) < ÿc3 f 1(Zn) < 0: (76)

We can now handle the boundary subcase where we will have to choose the constant

c(á, â). Again, Lemma 11 yields the existence of a, c4, c5 such that for all n > 0 on

fZn 2 @Gig \ fjZnj. ag with i � 1, 2,

jE Zn
(T1 � øá1,á2

(Z n�1)ÿ T1 � øá1,á2
(Zn))j < c4 f 4(Zn),

E Zn
(T2 � øâ1,â2

(Z n�1)ÿ T2 � øâ1,â2
(Zn)) < ÿc5c(á, â) f 5(Zn),

�
where f 4(z) � jzjÿ2 and f 5(z) � sin(âi ÿ ái)ø

ÿ1=âÿ1

â1,â2
(z)jzjâÿ1. By the `monotonicity' property

of øá1,á2
, øâ1,â2

, there exists a positive constant c6 such that as jzj ! 1, f 4(z)= f 5(z) < c6.
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Hence, choosing a suf®ciently large a and c(á, â) such that for all n > 0, on

fZn 2 @Gig \ fjZnj. ag,
E Z n

(g(Z n�1)ÿ g(Zn)) < ÿc7 f 5(Zn), (77)

for some constant c7. The bounds (76) and (77) conclude the proof of the supermartingale

property of the process g(Z). h

We are now ready to resume the proof of the proposition. Let K be any positive number

greater than Ká which is to be de®ned later. Also let z be any arbitrary vector from

FbÿKnFbÿ2K . Set

H(x) � xá, if á 6� 0,

log(x), if á � 0:

�
(78)

Observe that Pz-a.s.,

T1(H(b)) < g(Z ~ôb
) < 2T1(H(b� Ká)),

supFbÿKnFbÿ2 K
g(z) < T1(H(bÿ K))� supFbÿKnFbÿ2 K

T2(øâ1,â2
)(z):

(79)

Applying Lemma 1, we see that there exists a positive constant K such that for all

suf®ciently large b and any z 2 FbÿKnFbÿ2K,

Pz(ôA , ~ôb) >
T1(H(b))ÿ T1(H(bÿ K))ÿ supFbÿKnFbÿ2 K

T2(øâ1,â2
)(z)

2T1(H(b� Ká))
>

áK

b
ÿ c1c(á, â)

bÿ 2K
2T1((b� Ká)á)

,

(80)

where as usual c1 does not depend on b. Choosing suf®ciently large K . c1c(á, â)=á we

obtain that there exists a positive constant c2 such that for all suf®ciently large b,

Pz(ôA , ~ôb) > c2=[b log(b)], as was to be proved. h

Let us now ®x any K satisfying the conditions of Proposition 3. Let k and å be any

positive numbers such that k, min(1, áÿ1). Fix â1 and â2 such that âi 2 (ÿð=2, ð=2),

â1 � â2 . 0 and ái . âi, (ái , âi) for i � 1, 2, if á > 1, á � 0 (0 ,á, 1). Set

â � (â1 � â2)=î and í � (áÿ 1)=â. Let us de®ne the function g by g(z) �
T1(øá1,á2

)(z)� T2(øâ1,â2
)(z), where T1(x) � x(1� xÿk) and

T2(x) � xílog(x), if á 6� 0,

c(á, â)xÿ1=â, if á � 0,

�
(81)

where the constant c(á, â) is chosen as in Lemma 6. Again the main reason for the choice of

í, c(á, â), k, â1, â2 is given by the following result.

Lemma 7. There exists a0 . 0 such that for any a > a0 and for any z 2 Fc
a, the process

fg(Z n^ôa0
), n > 0g is a Pz-supermartingale.

The proof of this lemma is postponed until Appendix A.

Remark 18. It can be proved that in the case á. 1, the process flog(øá1,á2
(Z n^ôa

)), n > 0g
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is a supermartingale for all suf®ciently large a. Although in this case the existence of such

simple supermartingale simpli®es the consequent proof, it does not cover the remaining case

á < 1 and, therefore, we use the generic function de®ned in Lemma 7.

Let a0 be any number satisfying the conditions of Lemma 7. For all suf®ciently large

b . a0 _ 2K, de®ne the sets A and B by (69). For such sets A, B property (70) holds. It

will be now shown that the function g, the process Z and the sets A, D � Ã 0A,B satisfy the

conditions of Lemma 1 for some initial values z.

The `monotonicity' property of øá1,á2
, øâ1,â2

and the choice of í, â1, and â2 imply that

(71) holds with the functions d(x) and d(x) de®ned, for all suf®ciently large x . 0, by

d(x) � d1(x)� d2(x), d(x) � d1(x)� d2(x),

d2(x) � 0, d1, d1 de®ned in (72) and

d2(x) � T2(c(á)(x� K)), if á > 1,

T2(x=c(â)), if á, 1:

�
(82)

Recall that ÃA,B � FbnFbÿK and ÃA,B � FbÿKnFbÿ2K . Assertion (ii) of Lemma 3 yields that

there exist positive constants b1, n1, p1 independent of b such that for all b . b1 and for any

z 2 ÃA,B there exists z9 2 ÃA,B satisfying (A[Ã 0A, B) Pn1

z,z9 . p1. Therefore,

inf
z2ÃA, B

Pz(ôA , ôÃ 0A, B
) > p1 inf

z2ÃA, B

Pz(ôA , ôÃ 0A, B
): (83)

But by Proposition 3, there exists c1 . 0 such that for all suf®ciently large b,

inf
z2ÃA, B

Pz(ôA , ôÃ 0A, B
) >

c1

b log(b)
: (84)

The Markov property and assertion (i) of Lemma 1 show that there exists b2 . b1 such that,

for all b . b2 and for any z 2 @A,

Pz(ôÃ 0A, B
, ôA) � Ez(1( Z12Ac) PZ1

(ôÃ 0A, B
, ôA)) <

Ez(1( Z12Ac) g(Z1))

d(b)
: (85)

Recall that from the `monotonicity' property of øá1,á2
and the boundedness of the jumps of

the Markov chain Z it follows that there exists c2 . 0 such that for any z 2 @A,

Ez(1( Z12Ac) g(Z1)) < c2. Hence, there exists c3 . 0 such that for all b . b2 and for any

z 2 @A,

Pz(ôÃ 0A, B
, ôA) <

c3bÿá, if á 6� 0,

c3log(b), if á � 0:

�
(86)

Obviously, b2 can be chosen in such a way that for all b . b2 inequality (84) holds. Finally,

according to statement (ii) of Lemma 3 there exist n2, p2, b3 such that for any b . b3 and for

any z 2 B, Pz(ZíB
2 ÃA,B, íB < n2) > p2 and, trivially, inf z2B Pz(ZíB

2 ÃA,B) > p2. Further-

more, it follows from the latter bounds, applying Remark 6, that for any b . b3,

supz2BEz(íB) < n2=p2.

Applying Theorem 2 to the sets A and B with any b . b1 _ b2 _ b3 and combining (7)

with estimates (83)±(86) concludes the proof of the local bounds.
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5.4. Integrability results of Theorem 7

Let ì, æ, k be any ®xed positive numbers such that ì, æ and k > 1. Let âi, i � 1, 2, be

some ®xed real numbers such that âi 2 (ÿð=2, ð=2) and âi ,ái, â1 � â2 . 0 (âi .ái) for

i � 1, 2, in the case á 6� 0 (á � 0). Set â � (â1 � â2)=î and í � á=â. We de®ne

g(z) � T1(øá1,á2
)(z)� T2(øâ1,â2

)(z), where T1(x) � x log
ÿì
k (x) and

T2(x) �
xí

ök(æ, x)
, if á 6� 0,

log
ÿæ
k�1(x), if á � 0:

8<:
The proof of the next result is similar to that of Lemma 7 and is left to the reader.

Lemma 8. There exist positive constants c1 and a0 such that for all a > a0 and for all

n > 0, whenever z 2 Fc
a,

E Z n
(g(Z n�1)ÿ g(Zn)) < ÿc1 f (Zn), Pz-a:s: on fôa . ng, (87)

where the function f is de®ned by

f (z) �

jzjáÿ2=ök(ì, jzj), if z 2 G0, á 6� 0,

jzjâíÿ1=ök(æ, jzj) � jzjáÿ1=ök(æ, jzj), if z 2 (@G1 [ @G2), á 6� 0,

jzjÿ2=ök�1(ì, jzj), if z 2 G0, á � 0,

jzjÿ1=ök�1(æ, jzj), if z 2 (@G1 [ @G2), á � 0,

0, if z � (0, 0):

8>>>><>>>>:
The `monotonicity' property of øá1,á2

, øâ1,â2
and the choice of æ, ì, â1, â2 show that there

exists a1 . a0 such that g(u) . f (u) if u 2 Fc
a1

. The boundedness of jumps of the Markov

chain Z implies that for any z 2 Fc
a1

, Ez(g(Z1)1(ôa1
.1)) is ®nite. Remark 3 and (87) ®nish the

veri®cation of conditions of Theorem 1 with A � Fa1
, concluding the proof of the

integrability results.

5.5. Non-integrability results of Theorem 7

We ®rst prove the divergence results from (45). Suppose that the functions described in the

theorem are integrable. Let ì be any ®xed positive number, k > 1 and âi, i � 1, 2, be some

®xed real numbers such that âi 2 (ÿð=2, ð=2) and âi .ái for i � 1, 2. Set â � (â1 � â2)=î.

Let us de®ne the function g(z) by g(z) � T (øâ1,â2
)(z), where

T (x) � xá=â log
ì
k(x), if á 6� 0,

log(x)log
ì
k�1(x), if á � 0:

�
(88)

Lemma 9. There exist a0 . 0, c1 . 0 such that for all a > a0 and for all n > 0, whenever

z 2 Fc
a, Pz-a.s.,

E(g(Z n�1)ÿ g(Zn)jF n) < 0, on fôFa
. ng \ fZn 2 G0g,

E(g(Z n�1)ÿ g(Zn)jF n) < f (Zn), on fôFa
. ng \ fZn 2 @Gg,

�
(89)
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where

f (z) � c1jzjáÿ1log
ì
k (jzj), if á 6� 0,

c1jzjÿ1 log
ì
k�1(jzj), if á � 0:

�
Recall that the bound (75) implies the existence of a1 . a0, c2 . 0, z 2 G4 such that

Øá1,á2
(z) 2 (a0, a1) and for all suf®ciently large b . a1,

Pz(ôa
1

. ~ôb) >

c2

bá
, if á 6� 0,

c2

log(b)
, if á � 0:

8><>: (90)

Set A � Fa1
and ®x any z for which (90) holds. For all suf®ciently large b . a1, set B � Fc

b.

Then, (89) easily implies that for all suf®ciently large b,

Ez(g(Z n�1^ôA^ôB
)ÿ g(z)) <

Xn

k�0

Ez(1(ôA^ôB . k)1( Zk2@G1[@G2)E(g(Z k�1)ÿ g(Z k)jF k))

<
X1
k�0

Ez(1(ôA^ôB . k)1( Zk2@G1[@G2) f (Z k))

<
X1
k�0

Ez(1(ôA . k)1( Zk2@G1[@G2) f (Z k)): (91)

Passing to the limit as n!1 in the last estimate and using Fatou's lemma, we immediately

obtain that

ð(z)Ez(g(ZôB
)1(ôA . ôB) ÿ g(z)) < ð(z)Ez(g(ZôA^ôB

)ÿ g(z))

<
X1
k�0

Ez(1(ôA . k)1( Zk2@G1[@G2) f (Z k)): (92)

As above, the `monotonicity' property of the functions øá1,á2
, øâ1,â2

implies that there exists

c3 . 0 such that Pz-a.s.,

g(ZôB
) >

c3bá log
ì
k (b), if á. 0,

c3 log(b)log
ì
k�1(b), if á � 0:

�
Putting this estimate and (90) into (92) and passing to the limit as b!1,X1

k�0

Ez(1(ôA . k)1( Z k2@G1[@G2) f (Zk))

should be in®nite. By (5), the integral
�
@G1[@G2

f (z)ð(dz) diverges and the desired

contradiction follows. Hence
�
@ ~G1[@ ~G2

f (z)~ð(dz) also diverges.

We now prove the divergence result in (44). To this end we will construct functions f, g,

h and a set A satisfying the conditions of Remarks 3±4. Let us ®x any positive numbers ì,

ì9, and æ such that ì. ì9. Let â1, â2 be some ®xed real numbers such that
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âi 2 (ÿð=2, ð=2) and âi .ái, for i � 1, 2. Set â � (â1 � â2)=î and í � á=â. De®ne

g(z) � T1(øá1,á2
)(z)� T2(øâ1,â2

)(z) and h(z) � T3(øá1,á2
)(z)� T2(øâ1,â2

)(z), where T1(x) �
x log

ì
k (x), T3(x) � x log

ì9
k (x) and

T2(x) � xí logÿ1ÿæ(x), if á 6� 0,

1ÿ log
ÿæ
k�1(x), if á � 0:

�
Observe that g(z)=h(z)!1 as jzj ! 1.

Lemma 10. There exist positive constants a0 and c1 such that for all a > a0 and n > 0,

whenever z 2 Fc
a, Pz-a.s. on fôa . ng, we have

0 < EZn
(g(Z n�1)ÿ g(Zn)) < c1 f (Zn),

0 < E Zn
(h(Z n�1)ÿ h(Zn)),

�
(93)

where the function f is de®ned by

f (z) �

jzjáÿ2=ök(ÿì, jzj), if z 2 G0, á 6� 0;

jzjâíÿ1=log1�æ(jzj) � jzjáÿ1=log1�æ(jzj), if z 2 (@G1 [ @G2), á 6� 0;

jzjÿ2=ök�1(ÿì, jzj), if z 2 G0, á � 0;

jzjÿ1=ök�1(æ, jzj), if z 2 (@G1 [ @G2), á � 0;

c, if z � (0, 0),

8>>>><>>>>:
with an arbitrary positive constant c. In particular, for any a > a0 and for any z 2 Fc

a the

processes fg(Z n^ôa
), n > 0g, fh(Z n^ôa

), n > 0g are Pz-submartingales.

The proof of the lemma is straightforward and is again left to the reader.

Let us now ®x any a > a0 and de®ne A � Fa. Choose a1 . a such that

supz2A h(z) , inf z92F c
a1

h(z9) and ®x any z 2 A, z9 2 Fc
a1

such that Fa1
Pn0

z,z9 . 0 for some

n0. Such z, z9, n0 exist by the irreducibility of fZn, n > 0g. The `boundedness' of the

jumps and the `monotonicity' property of øá1,á2
, øâ1,â2

readily imply that for all a and for

all z 2 Fa, Ez(g(Z1)1(ôa . 1)) and Ez( f (Z n^ôa
)) are ®nite. Therefore, by Remark 4,

lim sup
n!1

Ez(g(Zn)1(ôa . n)) � 1:

All conditions of Theorem 19 have now been veri®ed. Hence
�

~G f (z)~ð(dz) diverges. On the

other hand, we have already shown in (45) that
�

(@ ~G1[@ ~G2) f (z)~ð(dz) converges. This

immediately implies the desired divergence results in (44).

5.6. Global bounds on the boundary

The upper bounds in (49) and (50) easily follow from Proposition 1. To see this, recall that in

Lemma 8 it was proved that there exist a . 0, functions f , g such that the set A � Fa, f , g

satisfy the conditions of Theorem 1 and Ez(g(Z1)1(ôa . 1)) is ®nite whenever z 2 Fa. For all

b . a, we now set B � (FbnFa) \ (@G1 [ @G2) and B � Fc
b \ (@G1 [ @G2) in the respective

cases á < 1 and á. 1 and apply Proposition 1. The asserted global upper bounds follow

from the `monotonicity' property of øá1,á2
.
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We now prove the global lower bounds. The case á � 1 is trivial, so suppose that

0 ,á, 1. Let us ®rst notice that since 0 ,á, 1, and î,ð, there exists a vector

v � (v1, v2) such that v1 . 0, v2 . 0, the function g(z) � z . v is non-negative on G and

max(Ö(E(Y (1)
n )) . v, Ö(E(Y (2)

n )) . v) . 0 (recall that the vectors Ö(E(Y (1)
n )), Ö(E(Y (2)

n )) are the

images of the vectors of the boundary re¯ection under the mapping Ö de®ned in Section

3.1). It can then be easily seen that (89) from the proof of the divergence results of

Theorem 7 is valid with the function f (z) � c1, where c1 � max(Ö(E(Y (1)
n )) . v,

Ö(E(Y (2)
n )) . v) and a0 � 0. This easily leads to (90) and (91) which, together with (3)

and the `monotonicity' property of øá1,á2
, imply that there exist a1, c2, c3, c4 . 0 such that

for all b . a1 and z 2 @Fa1
,

c2ð(c3a1 , jzj, c4b, z 2 @G) > ð(z)Ez(g(ZôB
)1(ôA.ôB) ÿ g(z)): (94)

The `monotonicity' property of øá1,á2
implies the existence of c5 . 0 such that for all large

b, Pz-a.s., g(ZôB
) > c5b. This, (90) and (94) concludes the proof of the lower bound in (50).

5.7. Global bounds in the interior

Lower and upper bounds in (51)±(52) in the case á 6� 0 follow from (48), the upper bounds

of Theorem 9 and `monotonicity' property of øá1,á2
by summation over n of

ð(Fb�(n�1)KánFb�nKá ) and ð(Fa�(n�1)KánFa�nKá ) in the respective cases á. 2 and

0 ,á < 2 and the `monotonicity' property of øá1,á2
.

Appendix A. Auxiliary sub- and super-martingale properties

We now give the proof of Lemmas 5±9. All the proofs are based upon Lemma 2 from

Aspandiiarov and Iasogonorodski (1997).

De®nition 4. Let G be the following class of non-negative functions de®ned on R�:

G �fT : R� ! R�; T 2 C3(0, 1),

T -(x)

T 0(x)
� O

1

x

� �
and

T 0(x)

T 9(x)
� O

1

x

� �
as x!1,

8í. 0, lim inf
x!1

���� T 0(x)x1�í

T 9(x)

����. 0 and lim inf
x!1

���� T 9(x)x1�í

T (x)

����. 0,

there exist positive aT . 1 and ~AT such that lim sup
x!1

jT 0(aT x)j
jT 0(x)j < ~ATg:

The key to the proofs of the lemmas is the following result.

Lemma 11 (Aspandiiarov and Iasnogorodski 1997, Lemma 2). Let è1 and

è2 2 (ÿð=2, ð=2) be real numbers such that è1 � è2 > 0. Set è � (è1 � è2)=î. Let T be a
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function from G such that in the case è 6� 0 (è � 0)jT 0(xè)jx2èÿ2 (jT 0(log x)jxÿ2) is

monotone on some interval [B, 1). Suppose there exist positive constants ÷ 2 (0, 1) and c

such that for all n > 0 and for all z, Pz-a.s.,

E Zn
(jÄnj2�÷ max(1, jT 0(jÄnjè)iÄnj2èÿ2) < c, if è 6� 0,

E Zn
(jÄnj2�÷jmax(1, jT 0(jlogjÄn i)iÄnjÿ2) < c, if è � 0,

�
(95)

where, as usual, we write for each n > 0, Än � Z n�1 ÿ Zn. Then there exist positive

constants A, b, C such that for any n > 0 and for any jzj. A the following two statements

hold Pz-a.s.:

(a) On fZn 2 G0g \ fjZnj. Ag,
jE Z n

(T � øè1,è2
(Z n�1)ÿ T � øè1,è2

(Zn))j < bjT 0 � øè1,è2
(Zn)i Znj2èÿ2: (96)

Furthermore,

sgn(T 0 � øè1,è2
(Z n))E Z n

(T � øè1,è2
(Z n�1)ÿ T � øè1,è2

(Zn)) > CjT 0 � øè1,è2
(Zn)i Znj2èÿ2:

(97)

(b) For each i � 1, 2, we have on fZn 2 @Gig \ fjZnj. Ag,

jE Z n
(T � øè1,è2

(Z n�1)ÿ T � øè1,è2
(Zn))j < bjT 9 � øè1,è2

(Zn)i Znjèÿ2, if èi � ái,

bjT 9 � øè1,è2
(Zn)i Znjèÿ1, otherwise:

�
(98)

Furthermore,

sgn(T 9 � øè1,è2
(Zn)sin(èi ÿ ái))E Zn

(T � øè1,è2
(Z n�1)ÿ T � øè1,è2

(Zn))

> CjT 9 � øè1,è2
(Zn)sin(èi ÿ ái)i Znjèÿ1: (99)

Proof of Lemma 5. As is easy to see, the triplets (T1, á1, á2) and (T2, â1, â2) satisfy the

conditions of Lemma 11. Let us now see consequences of this.

Consider ®rst the increments of g(Zn) when Zn belongs to the interior of the domain G0.

In this subcase Lemma 11 implies that there exist positive constants A, c1, c2 such that, for

any n > 0 on fZn 2 G0g \ fjZnj. Ag,
E Zn

(T1 � øá1,á2
(Z n�1)ÿ T1 � øá1,á2

(Zn)) > c1 f 1(Zn),

jE Zn
(T2 � øâ1,â2

(Z n�1)ÿ T2 � øâ1,â2
(Zn))j < c2 f 2(Zn),

where

f 1(z) � (kÿ k2)øá1,á2
(z)ÿ(k�1)øá1,á2

(z)jzj2áÿ2, if á 6� 0;

logÿìÿ1(øá1,á2
(z))øÿ1

á1,á2
(z)jzjÿ2, if á � 0:

�

f2(z) � øíÿ2
â1,â2

(z)loge(øâ1,â2
(z))jzj2âÿ2, if á 6� 0;

øÿ2ÿ1=â
â1,â2

(z)jzj2âÿ2 log(øÿ1ÿ1=â
â1,â2

(z)), if á � 0:

(
But, by the choice of k, í and the `monotonicity' property of the functions øá1,á2

, øâ1,â2
we

know that as jzj ! 1, f 1(z)= f 2(z)!1. Choosing suf®ciently large A and again using the
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`monotonicity' property of øá1,á2
, we see that there exists a positive constant c3 such that for

all n > 0, on fZn 2 G0g \ fjZnj. Ag,
E Z n

(g(Z n�1)ÿ g(Zn)) > c3 f 1(Zn): (100)

We can now handle the boundary subcase. Again, Lemma 11 yields the existence of

A, c4, c5 such that, for all n > 0 on fZn 2 @Gig \ fjZnj. Ag, i � 1, 2,

jE Zn
(T1 � øá1,á2

(Z n�1)ÿ T1 � øá1,á2
(Zn))j < c4 f 4(Zn),

E Zn
(T2 � øâ1,â2

(Z n�1)ÿ T2 � øâ1,â2
(Zn)) > c5 f5(Zn),

�
where f4(z) � jzjáÿ2 and

f 5(z) �
í sin(âi ÿ ái)øíÿ1

â1,â2
(z)logå(øâ1,â2

(z))jzjâÿ1, if á 6� 0, á 6� 1;

sin(âi ÿ ái)logå(øâ1,â2
(z))jzjâÿ1, if á � 1;

sin(âi ÿ ái)ø
ÿ1ÿ1=â
â1,â2

(z)jzjâÿ1 log(øÿ1ÿ1=â
â1,â2

(z)), if á � 0:

8>>><>>>:
Again the choice of í, â1, â2 and the `monotonicity' property of øá1,á2

, øâ1,â2
imply that as

jzj ! 1, f 4(z)= f 5(z)! 0. Hence, for a suf®ciently large A and a positive constant c6, for all

n > 0, on fZn 2 @Gig \ fjZnj. Ag,
E Z n

(g(Z n�1)ÿ g(Zn)) > c6 f 5(Zn): (101)

Inequalities (100) and (101) conclude the proof. h

Proof of Lemma 7. The case á � 0 has already been considered, so that the case á. 0 is all

that is left. Again we separate two subcases.

(i) Interior G0. Lemma 11 ensures that there exist positive constants A, c1, c2 such that,

for any n > 0 on fZn 2 G0g \ fjZnj. Ag,
E Zn

(T1 � øá1,á2
(Z n�1)ÿ T1 � øá1,á2

(Zn)) < ÿc1 f 1(Zn),

jE Zn
(T2 � øâ1,â2

(Z n�1)ÿ T2 � øâ1,â2
(Zn))j < c2 f 2(Zn),

where f1(z) � (kÿ k2)øÿ1ÿk
á1,á2

(z)jZnj2áÿ2 and

f2(z) �
øíÿ2

â1,â2
(z)log(øâ1,â2

(z))jzj2âÿ2, if á 6� 0, 6� 1,

jzj2âÿ2=ø2
â1,â2

(z), if á � 1:

8<:
The choice of k and and the `monotonicity' property of the functions øá1,á2

, øâ1,â2
ensure

that as jzj ! 1, f 1(z)= f 2(z)!1. Recalling the `monotonicity' property of øá1,á2
and

choosing suf®ciently large A and a positive constant c3, it follows that for all n > 0, on

fZn 2 G0g \ fjZnj. Ag,
E Z n

(g(Z n�1)ÿ g(Zn)) < ÿc3 f 1(jZnj): (102)

(ii) In the remaining case, when the process jumps from the boundary @G1 \ @G2,

Lemma 11 ensures the existence of A, c4, c5 such that, for all n > 0 on

fZn 2 @Gig \ fjZnj. Ag, i � 1, 2,
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E Zn
(T1 � øá1,á2

(Z n�1)ÿ T1 � øá1,á2
(Zn))j < c4 f 3(Zn),

E Zn
(T2 � øâ1,â2

(Z n�1)ÿ T2 � øâ1,â2
(Zn)) < ÿc5í sin(ái ÿ âi) f 4(Zn),

�
where f 3(z) � øá1,á2

(z)jzjÿ2 and

f4(z) � øíÿ1
â1,â2

(z)log(øâ1,â2
(z))jzjâÿ1, if á 6� 0, 6� 1,

jzjâÿ1=øâ1,â2
(z), if á � 1:

(
In this case f 4(z)= f 3(z)!1 as jzj ! 1. Hence, there exists a positive constant c6 such that

for all suf®ciently large jZnj, E Z n
(g(Z n�1)ÿ g(Zn)) < ÿc6 f 4(Zn) which concludes the

proof. h

Appendix B. Proof of auxiliary results on the geometry of the
two-dimensional re¯ected random walks

We start with one useful consequence of the moment condition in the interior of G4.

Lemma 12. (i) For any straight line L and for any z 2 G0 \ L, there exist at least two one-

step transitions from z to z1 and z2, where z1 and z2 belong to two open half-spaces

separated by L.

(ii) For any a 2 R2 and for any ä 2 (0, 2ð) there exist a9 2 R2, n1 . 0, b1 . 0, M . 0

and p1 . 0 such that jèa ÿ èa9j, ä and for any z satisfying jzj. b1 and dist(z, @G) . M

we have Pz(Z n1
� z� a9) � p1 and Pz-a.s., maxk�1,n1

jZk ÿ zj < M .

Proof. (i) The assertion is an immediate consequence of the mean-zero drifts condition

E(Y (0)) � (0, 0) and the positive de®niteness of the covariance matrix A0.

(ii) The proof is almost immediate. It suf®ces to observe that zero drifts, the positive

de®niteness of the covariance matrix A0 and the assertion of the ®rst part of the lemma

imply that there exist at least three directions of one-step transitions a1, a2, a3 such that R2

is generated by their linear combinations with positive coef®cients. Moreover, these

transitions do not depend on z because of the homogeneity of increments distributions in

G0. h

We need another auxiliary result whose proof is easy and is omitted.

Lemma 13. Let á and b be any positive constants. Let fá,b be the curve de®ned by

Øá1,á2
(z) � b, with z 2 G. Let us also de®ne the set K � fè 2 (0, î);

sin((áÿ 1)èÿ á1) � 0g. Then, only the following situations are possible:

(i) K is empty and fá,b is concave in G.

(ii) K is empty and fá,b is convex in G.

(iii) There exists a unique è 2 K such that either fá,b is concave in G \ fè 2 [0, è)g
and is convex in G \ fè 2 (è, î]g or fá,b is convex in G \ fè 2 [0, è)g and is

concave in G \ fè 2 (è, î]g.
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Proof of Lemma 3. Let us ®rst study the increments of Øá1,á2
. Let a be any ®xed vector

from R2. For each integer n we will let

Äa,n(Øá1,á2
(z)) � Øá1,á2

(z� na)ÿØá1,á2
(z):

Plain calculations and the `monotonicity' property of øá1,á2
show that for any a 2 R2 there

exist positive constants c2, c3 such that as jzj ! 1,

c2 njajcos((áÿ 1)èz ÿ á1 � èa)� o(1) < Äa,n(Øá1,á2
(z))

< c3 njajcos((áÿ 1)èz ÿ á1 � èa)� o(1) (103)

(here o(1)! 0 as jzj ! 1, uniformly on a).

(i) Let us now ®x any vector a9 such that èa9 2 [0, (ð=2ÿ á2 � î)) in the case á > 1

and èa9 2 [(ÿð=2ÿ á2 � î)�, î ^ (á1 � ð=2)) in the case á, 1. The reason for this choice

of a9 lies in the fact that

min
è2[0,î]

cos((áÿ 1)èÿ á1 � èa9) . 0: (104)

Obviously, we can also suppose that for this vector a9 Lemma 12 is applicable with some

positive constants M , b1, n1, p1. Let us now ®x them. Next, easy geometrical arguments

based on statement (i) of Lemma 12, on Lemma 13, and on the non-degeneracy condition of

the boundary re¯ection show that there exist positive constants b2, n2, p2 such that for all

b > b2, whenever z 2 ÃFa0
,Fb

, we have

Pz(dist(Z n2
, fá,b) . M , dist(Z n2

, @G) . M , ôFb,á1,á2,î . n2) > p2: (105)

Making n2-step transitions away from the boundary and from the curve fá,b and then n1-step

transitions along a9 we get the desired assertion from the choice of a9, (103) and (104).

(ii) The proof of the second statement needs more care, but the idea is basically the

same and consists in using (103). Let a1 be a vector such that

èa1
2

ð� î,
3ð

2
� á1

� �
, if á, 1 and î,á1 � ð

2
,

ð� î,
3ð

2
ÿ á2 � î

� �
^ 2ð

� �
, otherwise:

8>><>>:
Set also

è1 �
ÿ

3ð

2
ÿ á1 � èa1

1ÿá , if á, 1 and î > á1 � ð

2
,

0, otherwise:

8><>:
(ii) Similarly, ®x another vector a2 such that
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èa2
2

ð

2
� îÿ á2, ð

� �
, if á, 1 and î,á2 � ð

2
,

ð

2
� á1, ð

� �
, otherwise,

8>><>>:
and èa2

.ð� èa1
if î > (á1 _ á2)� ð

2
. Set also

è2 �
ÿ
ð

2
ÿ á1 � èa1

1ÿá , if á, 1 and î > á2 � ð

2
,

ð, otherwise:

8<:
Notice that the choice of a1, a2 ensures that è1, è2 2 [0, î], è1 , è2,

max

è2
è1 � è2

2
, î

� � cos((áÿ 1)èÿ á1 � èa1
) , 0,

max

è2 0,
è1 � è2

2

� �cos((áÿ 1)èÿ á1 � èa2
) , 0:

8>>><>>>: (106)

As above, we can assume that the vectors a1, a2 satisfy the conditions of Lemma 12. Let us

®x corresponding constants p1, n1, b1, M1 and p2, n2, b2, M2. We set M � M1 _ M2.

Next, easy geometrical arguments based on statement (i) of Lemma 12, on Lemma 13,

and on the non-degeneracy condition of the boundary re¯ection show that there exist

positive constants b3, n3, p3 such that for all b > b3, whenever z 2 ÃFa0
,Fb

, we have

Pz(dist(Z n3
, fá,b) . M , dist(Z n3

, @G) . M , ôFb,á1,á2,î . n3) > p3: (107)

Let us now take any z 2 ÃFa0
,Fb

. Making n3-step transitions in such a way that they

satisfy (107) and then moving along the vector a1 (a2), if èz 2 [(è1 � è2)=2, î]

(èz 2 [0, (è1 � è2)=2]) we see from the left-hand side of (103) that in a ®nite time

depending only on the vectors a1, a2 and K we reach FbÿK , as asserted. h
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