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We study suf®ciency in terms of the extent to which the Taylor series expansion of the normed log-

likelihood function generated by the sampling distribution of a statistic conforms to that of the sample

normed log-likelihood function, and give an associated self-similar property of mathematical likeli-

hood (not self-similarity in the sense of self-similar stochastic processes).
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1. Introduction

This paper is a study of the process of information recovery concerning a full parameter

vector è � (è1, è2, . . . , è p), where è 2 È � R p in parametric inference. Fisher (1934)

identi®ed the two complementary aspects of this process. The ®rst is associated with the

subset of the universe of p-dimensional parametric models called prime ( p, p) exponential

families (Barndorff±Nielsen and Cox 1994, p. 63) for which the maximum likelihood

estimator è̂ is suf®cient for è. Its sampling distribution provides a basis for constructing

unconditional inference procedures for è. The second is associated with the subset of the

universe referred to as transformation models for which complete recovery of the information

is achieved by conditioning the maximum likelihood estimator è̂ on the maximal invariant of

the group action (Barndorff±Nielsen et al. 1989). The conditional sampling distribution of è̂
is suf®cient for è and allows conditional inference procedures for è to be constructed.

Let l(è; x) be the log-likelihood function,

l=i1 i2...i k
(è; x) � @ k l(è; x)=@èi1 . . . @èi k

and l̂=i1 i2...i k
� l=i1 i2...i k

(è̂; x). Fisher (1925) also suggested that an initial step towards a

process of information recovery more generally could be achieved by reducing the sample

information to the maximum likelihood estimate è̂ and the log-likelihood derivative arrays or

likelihood shape statistics f l̂=i1 i2g, . . . , f l̂=i1 i2...i m
g which specify the Taylor series expansion

of l(è; x) as a function of è about è � è̂ up to some ®nite order m.

As discussed by Barndorff±Nielsen and Cox (1994, p. 226), it is typically argued that,

since the normed log-likelihood function l(�) � l(�; x)ÿ l(è̂; x) is a minimal suf®cient

statistic and l can be approximated to any degree of accuracy by its associated Taylor series

expansion, è̂ and the likelihood shape statistics to order m are approximately suf®cient for

è. The most rigorous formulation is attributed to Michel (1978). Michel (1978) showed that

for certain model sequences associated with ordinary repeated sampling one could construct

a new sequence of models for which these statistics are exactly suf®cient and such that the

Bernoulli 5(4), 1999, 677±682

1350±7265 # 1999 ISI/BS



variational distance between the constructed model sequence and the target model sequence

is O(nÿm=2) uniformly for è in compact subsets of È.

The purpose of the present paper is to show that mathematical likelihood has in fact an

elegant property, under projection onto the ó-algebra generated by è̂ and the likelihood

shape statistics, which establishes their joint approximate suf®ciency in terms of the

reproduction of the Taylor series expansion of l(è) to a given order for ®xed sample size

and without the restriction to the ordinary repeated sampling framework.

To this end, we consider a parametric model P � fPèg where è 2 È � R p and

X 2 X � Rn, for which the probability measures in P have common support. Then for

any speci®ed è0,

L(è; x) � dPè

dPè0

(x) (1:1)

is a version of the likelihood function of è generated by the sampling distribution of X and

~L(è; A(x)) � Eè0
[L(è; X )jA(X ) � A(x)] (1:2)

is a version of the likelihood function of è generated by the sampling distribution of the

statistic A(X ) for the observation x.

The extent to which the likelihood function (1.2) based on the marginal distribution of

A(X ) reproduces the sample likelihood function (1.1) for the observed x will be called its

®delity. This terminology was introduced by Chamberlin and Sprott (1991). For example, in

the case of prime exponential family models the likelihood function generated by the

sampling distribution of the maximum likelihood estimator è̂(X ) has perfect ®delity for

every observed x.

One way to assess the extent of likelihood reproduction under the data reduction to A(X )

is to compare the Taylor series expansion of the normed log-likelihood ~l(è; A(x)) ÿ
~l(~è(A(x)); A(x)) based on the marginal distribution of A(X ) with the corresponding

expansion of the original normed log-likelihood l(è; x)ÿ l(è̂(x); x) based on the

distribution of X . Here, l(è; x) is the original log-likelihood, ~l(è; A(x)) is the log-

likelihood based on the marginal distribution of A(X ), è̂(x) is a maximum likelihood

estimate of è from the original model, and ~è(A(x)) maximizes ~L(è; A(x)). Then ®delity to

®rst order means that the estimate ~è(A(x)) based on the marginal distribution of A(X )

satis®es ~è(A(x)) � è̂(x). Fidelity to order m requires this as well as

~l=i1 i2...i k
(~è(A(x)); A(x)) � l=i1 i2...i k

(è̂(x); x), k < m: (1:3)

Thus, ®delity to order m implies that the two Taylor series expansions agree to order m.

Fidelity to ®rst order implies that è̂(x) is a function of x through A(x). Therefore, any

statistic A(x) that achieves ®delity to ®rst order is of the form A(x) � (è̂(x), T1(x)). Fidelity

to second order implies furthermore that ĵ(x), the observed Fisher information matrix

evaluated at è̂, is a function of x through A(x). Thus in this case A(x) is of the form

A(x) � (è̂(x), ĵ(x), T2(x)). More generally, ®delity to order m implies that the maximum

likelihood estimator and the likelihood shape statistics up to that order can be expressed as

a function of x through A(x). We show below that this necessary condition on the form of

A(x) is in fact suf®cient to achieve ®delity to order m.
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A range value è of the maximum likelihood estimator è̂(X ) is said to be stationary if,

for almost all x 2 fx: è̂(x) � èg, the log-likelihood l(è; x) admits a Taylor series expansion

as a function of è about è̂(x), where è̂(x) is a root of the score equations and a relative

maximum of l(è; x).

In what follows, L=i1 i2...i k
(è; x) � @ k L(è; x)=@èi1 . . . @èi k

, and similarly for derivatives of

l(è; x), ~L(è; A(x)) and ~l(è; A(x)). The observed Fisher information matrix generated by
~L(è; A(x)) and evaluated at è � ~è(A(x)) is denoted by ~j(x).

In the following we often interchange the order in which we apply the operations of

differentiation with respect to è and expectation with respect to Pè0
. The regularity

conditions required to do this are of the standard kind required for likelihood calculations.

2. Self-similarity of the method of maximum likelihood

In this section, we show that the method of maximum likelihood applied to the likelihood

function generated by the sampling distribution of any statistic A(X ) � (è̂(X ), T1(X )) yields
~è(A(x)) � è̂(x) for all x. Also, if è̂(x) is a stationary value of è̂(X ) the estimate ~è(A(x)) is a

root of the corresponding score equation.

If è̂(x) is observed then ~L(è̂; A(x)) is a weighted average of possible sample likelihood

functions L(è; x) each of which achieves its supremum at è̂, and hence, by (1.2),

~L(è̂(x); A(x)) � ~L(è̂(x); [è̂(x), T1(x)])

� Eè0
[L(è̂(x); X )j(è̂(X ), T1(X )) � (è̂(x), T1(x))]

� Eè0
[L(è̂(X ); X )j(è̂(X ), T1(X )) � (è̂(x), T1(x))]

> Eè0
[L(è; X)j(è̂(X ), T1(X )) � (è̂(x), T1(x))]

� ~L(è; [è̂(x), T1(x)])

� ~L(è; A(x)),

irrespective of the value of T1(x). Hence, for each x,

~è(A(x)) � è̂(x) (2:1)

is a point which maximizes ~L(è; A(x)) and ~è(A(X )) is a maximum likelihood estimator of è
based on the sampling distribution of A(X ) alone. This observation simply says that the

principle of maximizing a likelihood function is self-similar with respect to any information

reduction of the form X ! (è̂(X ), T1(X )). That is, this likelihood characteristic is exactly

preserved under the projection (1.2).

If ~L(è; A(x)), given by (1.2), is differentiated with respect to èi one obtains, for each

i � 1, 2, . . . , p,

~L=i(è; A(x)) � Eè0
[L=i(è; X)j(è̂(X ), T1(X )) � (è̂(x), T1(x))]: (2:2)
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If è̂(x) is a stationary value, evaluating (2.2) at è � è̂(x) yields

~L=i(è̂(x); [è̂(x), T1(x)]) � Eè0
[L=i(è̂(x); X )j(è̂(X ), T1(X )) � (è̂(x), T1(x))]

� Eè0
[L=i(è̂(X ); X )j(è̂(X ), T1(X )) � (è̂(x), T1(x))]

� Eè0
[0j(è̂(X ), T1(X )) � (è̂(x), T1(x))]

� 0, (2:3)

irrespective of the value of T1(x). Hence, ~è(A(x)) � è̂(x) is also a root of the score equations

obtained from ~l(è; A(x)) whenever è̂(x) is a stationary value. Moreover, the Hessian matrix

~L=ij(è̂(x); A(x)) � Eè0
[L=ij(è̂(X ); X )j(è̂(X ), T1(X )) � (è̂(x), T1(x))] (2:4)

is negative de®nite. It is a weighted average of negative de®nite matrices since è̂ is a relative

maximum for almost all X giving rise to è̂. Hence, solving the score equations associated

with the likelihood function generated by the sampling distribution of A(X ) � (è̂(X ), T1(X ))

yields, irrespective of the choice of T1(X ), the same value of the optimum as that obtained

when this method is applied to the sampling distribution of X . This self-similarity of the

method of maximum likelihood was evidently ®rst stated by Fisher (1922). More generally,

note that if one chooses a relative maximum of the sample likelihood function which is not

necessarily a global maximum in repeated sampling, the sampling distribution of the resulting

estimator will satisfy the self-similar property (2.3).

Of course, if A(X ) is a suf®cient statistic for è the self-similar properties (2.1) and (2.3)

are trivially true since then ~L(è; A(x)) � L(è; x) for every x. Note further that the minimal

choice of A(X ) to recover in our sense the point that maximizes the sample likelihood

function is to take A(X ) � è̂(X ). The sampling distribution of è̂ satis®es the self-similar

properties (2.1) and (2.3) and therefore has ®delity to ®rst order. The data reduction

X ! è̂(X ) is the ®rst iteration in Fisher's process of iterative information recovery. If è̂(X )

were suf®cient one would stop. Otherwise, we can proceed to the next stage.

3. Higher-order aspects of self-similarity

To achieve ®delity to second order we can re®ne T1(X ) as T1(X ) � (̂ j(X ), T2(X )), where

T2(X ) is arbitrary and ĵ(x) is the observed Fisher information matrix evaluated at è̂(x), with

ĵij(x) � ÿl=ij(è̂(x); x). Then A(X ) � (è̂(X ), ĵ(X ), T2(X )) and we can generate a likelihood

function based on the distribution of A(X ) using (1.2). Then ~L(è; A(X )) satis®es (2.1) and

(2.3), and A(X ) has ®delity to ®rst order. Differentiating ~L(è; [è̂(x), ĵ(x), T2(x)]) with respect

to èi and è j using (1.2) and evaluating the resulting expression at è � ~è(A(x)) � è̂(x), where

è̂(x) is a stationary value, yields
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~L=ij(~è(A(x)); [è̂(x), ĵ(x), T2(x)])

� ~L=ij(è̂(x); [è̂(x), ĵ(x), T2(x)])

� Eè0
[L=ij(è̂(x); X )j(è̂(X ), ĵ(X ), T2(X )) � (è̂(x), ĵ(x), T2(x))]

� Eè0
[L=ij(è̂(X ); X )j(è̂(X ), ĵ(X ), T2(X )) � (è̂(x), ĵ(x), T2(x))]

� Eè0
[ÿ ĵij(X )L(è̂(X ); X )j(è̂(X ), ĵ(X ), T2(X )) � (è̂(x), ĵ(x), T2(x))]

� ÿ ĵij(x)Eè0
[L(è̂(X ); X )j(è̂(X ), ĵ(X ), T2(X )) � (è̂(x), ĵ(x), T2(x))]

� ÿ ĵij(x)~L(è̂(x); [è̂(x), ĵ(X ), T2(x)])

� ÿ ĵij(x)~L(è̂(A(x)); [è̂(x), ĵ(x), T2(X )]), (3:1)

since ĵij(x) � ÿL=ij(è̂(x); x)=L(è̂(x); x). Now ~jij(x) � ÿ~l=ij(~è(A(x)); A(x)), which can be

written as ~jij(x) � ÿ~L=ij(~è(A(x)); A(x))=~L(~è(A(x)); A(x)). Hence, we obtain, regardless of the

choice of T2(x), in addition to (2.1) and (2.3) the identity

~j(x) � ĵ(x) (3:2)

for x, yielding a stationary value of è̂(X ). In particular, the sampling distribution of

(è̂(X ), ĵ(X )) satis®es the self-similar properties (2.1), (2.3) and (3.2) and therefore has

®delity to second order. The data reduction X ! (è̂(X ), ĵ(X )) is the second iteration in

Fisher's process of iterative information recovery. If (è̂(X ), ĵ(X )) were suf®cient one would

stop. Otherwise, we can proceed to the next stage.

This process of iterative information recovery can be extended to any ®nite order m. Let

A(x) be any statistic for which the maximum likelihood estimator and the likelihood shape

statistics to order m can be expressed as a function of x through A(x). One can then easily

show that the statistic L=i1 i2...i k
(è̂; x)=L(è̂; x) depends on x through A(x). To see this, note

that for every k one can express l=i1 i2...i k
(è) algebraically in the form

l=i1 i2...i k
(è) � L=i1 i2...i k

(è)

L(è)
� h(fl= j1g, fl= j1 j2g, . . . , fl= j1... j kÿ1

g): (3:3)

Following exactly our previous pattern given by (3.1), one can obtain that

~L=i1 i2...i k
(~è(A(x)); A(x))=~L(~è(A(x)); A(x)) � L=i1 i2...i k

(è̂(x); x)=L(è̂(x); x)

for arbitrary i1, i2, . . . , ik and each k � 1, 2, . . . , m. Using these identities, one can

sequentially construct the identities (1.3) since both ~l(è; A(x)) and l(è; x) follow identical

patterns of the form (3.3) under differentiation. Hence, the sampling distribution of A(X ) has

®delity to at least order m.

In particular, the joint sampling distribution of è̂(X ) and the likelihood shape statistics up

to order m has ®delity to at least order m. In this sense we can say that è̂(X ) and the

likelihood shape statistics up to order m are necessary and suf®cient to order m. That is,

these statistics characterize ®delity to order m.
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