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We consider nonparametric estimation of the parameter functions ai(:), i � 1, . . . , p, of a time-varying

autoregressive process. Choosing an orthonormal wavelet basis representation of the functions ai, the

empirical wavelet coef®cients are derived from the time series data as the solution of a least-squares

minimization problem. In order to allow the ai to be functions of inhomogeneous regularity, we apply

nonlinear thresholding to the empirical coef®cients and obtain locally smoothed estimates of the ai.

We show that the resulting estimators attain the usual minimax L2 rates up to a logarithmic factor,

simultaneously in a large scale of Besov classes. The ®nite-sample behaviour of our procedure is

demonstrated by application to two typical simulated examples.
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1. Introduction

Stationary models have always been the main focus of interest in the theoretical treatment of

time series analysis. For several reasons autoregressive models form a very important class of

stationary models: they can be used for modelling a wide variety of situations (for example,

data which show a periodic behaviour); there exist several ef®cient estimates which can be

calculated via simple algorithms (Levinson±Durbin algorithm, Burg algorithm); and the

asymptotic properties, including the properties of model selection criteria, are well understood.

Frequently, people have also tried to use autoregressive models for modelling data that

show a certain type of non-stationary behaviour by ®tting such models on small segments.

This method is often used, for example, in signal analysis for coding a signal (linear

predictive coding) or for modelling data in speech analysis. The underlying assumption then

is that the data are coming from an autoregressive process with time-varying coef®cients.

Suppose we have some observations fX1, . . . , XTg from a zero-mean autoregressive

process with time-varying coef®cients a1(:), . . . , ap(:). To obtain a tractable framework for

our asymptotic analysis we assume that the functions ai are supported on the interval [0, 1]
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and connected to the underlying time series by an appropriate rescaling. This leads to the

model

X t,T �
Xp

i�1

ai(t=T )X tÿi,T � ó (t=T )å t, t � 1, . . . , T , (1:1)

where the å ts are independent, identically distributed with Eå t � 0 and var(å t) � 1. To make

this de®nition complete, assume that X 0, . . . , X 1ÿ p are random variables from a stationary

AR( p) process with parameters a1(0), . . . , ap(0). As usual in nonparametric regression, we

focus on estimating the functions ai in full, although, strictly speaking, the intermediate

values ai(s), for (t ÿ 1)=T , s , t=T, are not identi®able. This time-varying autoregressive

model is a special locally stationary process as de®ned in Dahlhaus (1997). However, for the

main results of this paper we only use the representation (1.1) and not the general properties,

like analogue of CrameÂr's representation a non-stationary (see Dahlhaus (1997, p. 3)), for

example, of a locally stationary process.

The estimation problem now consists of estimating the parameter functions ai(:). Very often

these functions are estimated at a ®xed time point t0=T by ®tting a stationary model in a

neighbourhood of t0, for example, by estimating a1(t0=T ), . . . , ap(t0=T ) with the classical Yule±

Walker (or Burg) estimate over the segment X t0ÿN ,T , . . . , X t0�N ,T , where N=T is small. This

method has the disadvantage that it automatically leads to a smooth estimate of ai(:). Sudden

changes in the ai(:), common as they are for example in signal analysis, cannot be detected by this

method. Moreover, the performance of this method depends on the appropriate choice of the

segmentation parameter N. Instead, in this paper we develop an automatic alternative, which

avoids this a priori choice and adapts to local smoothness characteristics of the ai(:).
Our approach consists in a nonlinear wavelet method for the estimation of the coef®cients

ai(:). This concept, based on orthogonal series expansions, has recently been brought into

the nonparametric regression estimation problem by Donoho and Johnstone (1998), and has

been proven very useful if the class of functions to be estimated exhibits a varying degree of

smoothness. Some generalizations can be found in Brillinger (1994), Johnstone and

Silverman (1997), Neumann and Spokoiny (1995) and Neumann and von Sachs (1995). As

usual, the unknown functions, ai(u), are expanded by orthogonal series with respect to a

specially chosen orthonormal basis of L2[0, 1], a wavelet basis. Basically, the basis functions

are generated by dilations and translations of the so-called scaling function ö and wavelet

function ø, which are both localized in spatial position (here temporal) and frequency. These

basis functions, unlike most of the `traditional' ones (Fourier, (non-local) polynomials, and

so on), are able to optimally compress both functions with quite homogeneous smoothness

over the whole domain (like HoÈlder or L2-Sobolev) as well as members of certain

inhomogeneous smoothness classes (like L p-Sobolev or Besov Bm
p,q with p , 2). Note that

the better compressed a signal is (that is, the smaller the number of coef®cients representing

it), the better the performance of an estimator of the signal which is optimally tuned with

respect to bias±variance trade-off. A strong theoretical justi®cation for the merits of using

wavelet bases in this context has been given by Donoho (1993): it was shown that wavelets

provide unconditional bases for a wide variety of these inhomogeneous smoothness classes

with the result that wavelet estimators can be optimal in the above-mentioned sense.
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To actually achieve this optimality there is need to nonlinearly modify traditional linear series

estimation rules which are known to be optimal only in the case of homogeneous smoothness:

there the coef®cients of each resolution level j are essentially of the same order of magnitude,

and the loss due to a levelwise inclusion/exclusion rule, as opposed to a componentwise rule, is

only small. However, under strong inhomogeneity, the coef®cients of each ®xed level might not

only differ considerably in their orders of magnitude but also have signi®cant values on higher

levels to be included by a suitably chosen inclusion rule. Surprisingly enough, this is possible by

simple and intuitive schemes which are based on comparing the size of the empirical

coef®cients with their variability. Such nonlinear rules can dramatically outperform linear ones

in cases where the vector of coef®cients forms a sparse signal (that is, in cases of

inhomogeneous function classes represented in an unconditional basis).

In this work, we apply these locally adaptive estimation procedures to the particular

problem of estimating autoregression coef®cients which are functions of time. A basic

problem in this situation is to obtain adequate emprirical wavelet coef®cients. For example,

if one made a wavelet expansion of the function âi(:) where âi(t0=T ) was the Yule±Walker

estimate on a segment (as described above), then the information on irregularities of the

functions ai(:) would already be lost (since the segment is smooth). No thresholding

procedure of the empirical wavelet coef®cients would recover it.

To overcome this problem, we suggest in this paper using the empirical wavelet coef®cients

obtained from the solution of a least-squares minimization problem. In a second step, soft or

hard thresholding is applied. We show that in this situation our nonlinear wavelet estimator

attains the usual near-optimal minimax rate of L2 convergence, in a large scale of Besov spaces,

that is, classes of functions with different degrees of smoothness and different norms in which

smoothness is measured. The full procedure requires consistent estimators for the variance of

the empirical coef®cients. In particular, a consistent estimator of the variance function is

needed (cf. Section 3), for example the squared residuals of a local autoregressive model ®t.

Finally, with this adaptive estimation of the time-varying autoregression coef®cients, we

immediately provide a semi-parametric estimate for the resulting time-dependent spectral

density of the process given by (1.1). An alternative, fully nonparametric approach for

estimating the so-called evolutionary spectrum of a general locally stationary process (as

de®ned in Dahlhaus 1997) has been delivered by Neumann and von Sachs (1997), which is

based on nonlinear thresholding in a two-dimensional wavelet basis.

The content of our paper is organized as follows. While in the next section we describe

details of our set-up and present this main result, in Section 3 the statistical properties of

the empirical coef®cients are given. Section 4 shows the ®nite-sample behaviour of our

procedure applied to two typical (simulated) time-varying autogressive processes. Section 5

deals with the proof of the main theorem. The remaining Sections 6±7 and the Appendix

present some auxiliary results, both of interest in their own right and in this particular

context used to derive the main proof (of Section 5).

2. Assumptions and the main result

Before we develop nonlinear wavelet estimators for the functions ai, we describe the general
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set-up. First we introduce an appropriate orthonormal basis of L2[0, 1]. Assume that we have

a scaling function ö and a so-called wavelet ø such that, de®ning ö lk(x) � 2 l=2ö(2 l xÿ k)

and ø jk(x) � 2 j=2ø(2 jxÿ k), fö lk(:)gk2Z [ fø jk(:)g j> l;k2Z forms an orthonormal basis of

L2(R). The construction of such functions ö and ø, which are compactly supported, is

described in Daubechies (1988). It is well known that the boundary-corrected Meyer wavelets

(Meyer 1990) and those developed by Cohen, Daubechies and Vial (1993) form orthonormal

bases of L2[0, 1]. In both approaches Daubechies' wavelets are used to construct an

orthonormal basis of L2[0, 1], essentially by truncation of the above functions to the interval

[0, 1] and a subsequent orthonormalization step. Throughout this paper either of these bases

can be used, which we write as fö lkgk2 I0
l
[ fø jkg j> l;k2 I j

. It is known that #Ij � 2 j, and that

#I0
l � 2 l for the Cohen±Daubechies±Vial (CDV) bases, whereas for the Meyer bases,

#I0
l � 2 l � N for some integer N depending on the regularity of the wavelet basis. For

reasons of notational simplicity, in what follows we restrict our attention to the CDV bases.

Accordingly, we can expand ai in an orthogonal series

ai �
X
k2 I0

l

á(i)
lkö lk �

X
j> l

X
k2 I j

â(i)
jkø jk , (2:1)

where á(i)
lk �

�
ái(u)ö lk(u) du, â(i)

jk �
�
ái(u)ø jk(u) du are the usual Fourier coef®cients, also

called wavelet coef®cients.

Assume a degree of smoothness mi for the function ai, that is, ai is a member of a

Besov class Bmi
pi ,qi

(C) de®ned below. In accordance with this, we choose compactly

supported wavelet functions of regularity r . m :� maxfmig, that is:

Assumption 1.

(i) ö and ø are Cr[0, 1] and have compact support.

(ii)
�
ö(t) dt � 1,

�
ø(t)tk dt � 0 for 0 < k < r.

The ®rst step in each wavelet analysis is the de®nition of empirical versions of the

wavelet coef®cients. We de®ne the empirical coef®cients simply as a least-squares estimator,

that is, as a minimizer of

XT

t� p�1

X t,T �
Xp

i�1

X
k2 I0

l

á(i)
lkö lk(t=T )�

Xj�ÿ1

j� l

X
k2 I j

â(i)
jkø jk(t=T )

24 35X tÿi,T

0@ 1A2

, (2:2)

where the choice of j� will be speci®ed below. Since fö lkgk [ fø jkg l< j< j�ÿ1;k forms a basis

of the subspace V j� of L2[0, 1], this amounts to an approximation of ai in just this space V j� .
In the present paper we propose to apply nonlinear smoothing rules to the coef®cients

~â(i)
jk . It is well known (cf. Donoho and Johnstone 1998) that linear estimators can be optimal

with respect to the optimal rate of convergence as long as the underlying smoothness of ai

is not too inhomogeneous. This situation changes considerably if the smoothness varies

strongly over the domain. Then we have the new effect that even at higher resolution scales

a small number of coef®cients cannot be neglected, whereas the overwhelming majority of
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them are much smaller than the noise level. This kind of sparsity of non-negligible

coef®cients is responsible for the need for a nonlinear estimation rule. Two commonly used

rules to treat the coef®cients are: hard thresholding,

ä(h)(~â(i)
jk , ë) � ~â(i)

jk I(j~â(i)
jk j > ë);

and soft thresholding,

ä(s)(~â(i)
jk , ë) � (j~â(i)

jk j ÿ ë)� sgn(~â(i)
jk ):

To treat these coef®cients in a statistically appropriate manner, we have to tune the

estimator in accordance with their distribution. It turns out that, at the ®nest resolution

scales, this distribution actually depends on the (unknown) distribution of the X t,T s,

whereas we can hope to have asymptotic normality if 2 j � o(T ). We show in Section 3 that

we do not lose asymptotic ef®ciency of the estimator if we truncate the series at some level

j � j(T ) with 2 j(T) � T 1=2. To give a de®nite rule, we choose the highest resolution level

j� ÿ 1 such that 2 j�ÿ1 < T 1=2 , 2 j� , that is to say, we restrict our analysis to coef®cients

~á(i)
lk (k 2 I0

l , i � 1, . . . , p) and ~â(i)
jk ( j > l, 2 j < T 1=2, k 2 Ij, i � 1, . . . , p). Unlike in

ordinary regression, it is not possible in the autocorrelation problem considered here to

include coef®cients from resolution scales j up to 2 j � o(T ). This is due to the fact that the

empirical coef®cients cannot be reduced to sums of independent (or suf®ciently weakly

dependent) random variables, which results in some additional bias term.

Finally, we build an estimator of ai by applying the inverse wavelet transform to the

nonlinearly modi®ed coef®cients.

Before we state our main result, we introduce some more assumptions. The constant C

used here and in the following is assumed to be positive, but need not be the same at each

occurrence.

Assumption 2. There exists some ã > 0 such that

jcumn(å t)j < C n(n!)1�ã, for all n, t:

Assumption 3. There exists a r. 0 with

1�
Xp

i�1

ai(s)zi 6� 0, for all jzj < 1� r and all s 2 [0, 1]:

Furthermore, ó is assumed to be continuous with C1 < ó (s) < C2 on [0, 1].

Remark 2.1. Note that, besides the obvious case of the normal distribution, many of the

distributions that can be found in textbooks satisfy Assumption 2 for an appropriate choice of

ã. In Johnson and Kotz (1970) we can ®nd closed forms of higher-order cumulants of the

exponential, gamma and inverse Gaussian distribution, which show that this condition is

satis®ed for ã � 0. The need for a positive ã occurs in the case of a heavier-tailed

distribution, which could arise as the distribution of a sum of weakly dependent random

variables.
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Assumption 3 implies uniform continuity of the covariances of fX t,Tg (Lemma 8.1). We

conjecture that the continuity in Assumption 3 can, for example, be relaxed to piecewise

continuity.

In the following we derive a rate for the risk of the proposed estimator uniformly over

certain smoothness classes. It is well known that nonlinearly thresholded wavelet estimators

have the potential to adapt to spatial inhomogeneity. Accordingly, we consider Besov classes

as functional classes which admit functions with this feature. Furthermore, Besov spaces

represent the most convenient scale of functional spaces in the context of wavelet methods,

since the corresponding norm is equivalent to a certain norm in the sequence space of

coef®cients of a suf®ciently regular wavelet basis. For an introduction to the theory of

Besov spaces Bm
p,q see, for example, Triebel (1990). Here m > 1 denotes the degree of

smoothness and p, q (1 < p, q <1) specify the norm in which smoothness is measured.

These classes contain traditional HoÈlder and L2-Sobolev smoothness classes by setting

p � q � 1 and p � q � 2, respectively. Moreover, they embed other interesting functional

spaces such as Sobolev spaces W m
p , for which the inclusions Bm

p, p � W m
p � Bm

p,2 (in the

case 1 , p < 2) and Bm
p,2 � W m

p � Bm
p, p (if 2 < p ,1) hold true; see, for example,

Theorem 6.4.4 in Bergh and LoÈfstroÈm (1976).

For convenience, we de®ne our functional class by constraints on the sequences of

wavelet coef®cients. Fix any positive constants Cij, i � 1, . . . , p; j � 1, 2. We will assume

that ai lies in the set of functions

F i � f �
X

k

á lkö lk �
X

j,k

â jkø jk

����ká l:k1 < Ci1, kâ::kmi, pi,qi
< Ci2

( )
,

where

kâ::km, p,q �
X
j> l

2 jsp
X
k2 Ij

jâ jk j p
" #

q= p

 !
1=q,

s � m� 1=2ÿ 1=p. It is well known that the class F i lies between functional classes

Bmi
pi,qi

(c) and Bmi
pi ,qi

(C), for appropriate constants c and C; see Theorem 1 in Donoho and

Johnstone (1998) for the Meyer bases, and Theorem 4.2 of Cohen, Dahmen and DeVore

(1995) for the CDV bases.

To ensure suf®cient regularity, we restrict ourselves to the following:

Assumption 4. ~si . 1, where ~si � mi � 1=2ÿ 1=~pi, with ~pi � minfpi, 2g.

In the case of normally distributed coef®cients ~â(i)
jk � N (â(i)

jk , ó 2), a very popular method

is to apply thresholds ë � ó
�������������
2 log n
p

, where n is the number of these coef®cients. As

shown in Donoho et al. (1995), the application of these thresholds leads to an estimator

which is simultaneously near-optimal in a wide variety of smoothness classes. Because of

the heteroscedasticity of the empirical coef®cients in our case, we have to modify the above

rule slightly. Let J T � f( j, k)jl < j, 2 j < T 1=2, k 2 Ijg and let ó 2
ijk be the variance of the

empirical coef®cient ~â(i)
jk . Then any threshold ëijk satisfying
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ó ijk

�������������������������
2 log(#J T )

p
< ëijk � O(Tÿ1=2

��������������
log(T))

p
(2:3)

would be appropriate. Particular such choices are the `individual thresholds'

ëijk � ó ijk

�������������������������
2 log(#J T )

p
and the `universal threshold'

ë(i)
T � ó (i)

T

�������������������������
2 log(#J T )

p
, ó (i)

T � max
( j,k)2J T

fó ijkg:

Let ë̂ijk be estimators of ëijk or ë(i)
T , respectively, which satisfy at least the following minimal

condition:

Assumption 5.

(i)
P

( j,k)2J T
P(ë̂ijk , ãTëijk) � O(T ç), where ç, 1=(2mi � 1) for some ãT ! 1.

(ii)
P

( j,k)2J T
P(ë̂ijk . CTÿ1=2

�������������
log(T )
p

) � O(Tÿ1).

With such thresholds ë̂ijk we build the estimator

âi(u) �
X
k2 I0

l

~á(i)
lkö lk(u)�

X
( j,k)2J T

ä(:)(~â(i)
jk , ë̂ijk)ø jk(u), (2:4)

where ä(:) stands for ä(h) or ä(s), as appropriate.

Finally, we wish to impose an additional condition on the matrix D de®ned by (7.4) in

Section 7.1. Basically, this matrix is the analogue of the p 3 (T ÿ p) matrix

((X tÿm)) t� p�1,:::,T ;m�1,:::, p, as arising in the classical Yule±Walker equations, which describe

the corresponding least-squares problem for a stationary AR( p) process fX tg. Here, we

assume additionally the following:

Assumption 6. Ek(D9D)ÿ1k2�ä � O(Tÿ2ÿä), for some ä. 0.

Theorem 2.2. (i) If Assumptions 1±5 hold, then

sup
ai2F i

fE(kâi ÿ aik2
L2[0,1] ^ C)] � O((log(T )=T )2mi=(2mi�1)):

(ii) If, in addition, Assumption 6 is ful®lled, then

sup
ai2F i

fEkâi ÿ aik2
L2[0,1]g � O((log(T )=T )2mi=(2mi�1)):

Remark 2.3. Even without Assumption 6 we can show that D9D is close to its expectation

ED9D, >and hence ëmin(D9D) is bounded away from zero, except for an event with a very

small probability. To take this event into account, the somewhat unusual truncated loss

function is introduced in part (i) of Theorem 2.2.

Remark 2.4. In our estimator (2.4) we restricted ourselves to a ®xed primary resolution level

l, that is, l does not change with growing sample size T. In principle, we could allow l to
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increase with T at a suf®ciently slow rate. This has already been considered, for example by

Hall and Patil (1995), in a different context. We expect the same rate for the risk of our

estimator (2.4) as long as 2 l(T ) < T 1=(2m�1), which can be shown similarly to methods in Hall

and Patil (1995).

It is known that the rate Tÿ2m=(2m�1) is minimax for estimating a function with degree of

smoothness m in a variety of settings (regression, density estimation, spectral density

estimation). Although we do not have a rigorous proof for its optimality in the present

context, we conjecture that we cannot do better in estimating the ais.

Analogously to Donoho and Johnstone (1998), we can obtain exactly the rate

Tÿ2mi=(2mi�1) by the use of level-dependent thresholds ë(i)( j, T , F i). These thresholds,

however, would depend on the assumed degree of smoothness mi, and it seems to be

dif®cult to determine them in a fully data-driven way. In a simple model with Gaussian

white noise, Donoho and Johnstone (1995) showed that full adaptivity can be reached by

minimization of an empirical version of the risk, using Stein's unbiased estimator of risk.

Because of our really strong version of asymptotic normality, we are convinced that we

could attain this optimal rate of convergence in the same way.

Let us, however, note that the `log-thresholds' are much easier to apply, with only the

small loss of a logarithmic factor in the rate. The surprising fact that a single estimator is

optimal within some logarithmic factor in a large scale of smoothness classes can be

explained by methodology quite different from conventional smoothing techniques: rather

than aiming at an asymptotic balance relation between squared bias and variance of the

estimator, which usually leads to the optimal rate of convergence, we perform something

like an informal signi®cance test on the coef®cients. This leads to a slightly oversmoothed,

but nevertheless near-optimal estimator.

3. Statistical properties of the empirical coef®cients

Before we prove the main theorem in Section 5, we give an exact de®nition of the empirical

coef®cients and state some statistical properties of them.

First, note that our estimator, as a truncated orthogonal series estimator with nonlinearly

modi®ed empirical coef®cients, involves two smoothing methodologies: one part of the

smoothing is due to the truncation above some level j�. Whereas such a truncation amounts

to some linear, spatially non-adaptive technique, the more important smoothing is due to the

pretest-like thresholding step applied to the coef®cients below the level j�. This step aims

to select those coef®cients which are in absolute value signi®cantly above the noise level

and eliminating the others.

From the de®nition of the Besov norm we obtain that (cf. Theorem 8 in Donoho et al.

1995)

sup
ai2F i

X
j> j�

X
k

jâ(i)
jk j2

( )
� O(2ÿ2 j�~si ), (3:1)
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where ~si � mi � 1=2ÿ 1=minfpi, 2g. Hence, our loss due to the truncation is of order

Tÿ2mi=(2mi�1), if j� is chosen such that 2ÿ2 j�~si � O(Tÿ2mi=(2mi�1)). According to our

assumption that ~si . 1, it can be shown by simple algebra that j� with 2 j�ÿ1 < T 1=2 , 2 j� is

large enough.

A ®rst observation about the statistical behaviour of the empirical coef®cients is stated by

the following assertion.

Proposition 3.1. If Assumptions 1±4 and 6 hold, then

(i) E(~á(i)
lk ÿ á(i)

lk )2 � O(Tÿ1),

(ii) E(~â(i)
jk ÿ â(i)

jk )2 � O(Tÿ1)

hold uniformly in i, k and j , j�.

In view of the nonlinear structure of the estimator, the above assertion will not be strong

enough to derive an ef®cient estimate for the rate of the risk of the estimator. If the

empirical coef®cients were Gaussian, then the number of O(2 j�) coef®cients would be

dramatically reduced by thresholding with thresholds that are larger by a factor of�������������������������
2 log(#J T )

p
than the noise level. If we want to tune this thresholding method in

accordance to our particular case with non-Gaussian coef®cients, we have to investigate

their tail behaviour. Hence, we state asymptotic normality of the coef®cients with a special

emphasis on moderate and large deviations. To prove the following theorem we decompose

the empirical coef®cients into a certain quadratic form and some remainder terms of

smaller order of magnitude. Then we derive upper estimates for the cumulants of these

quadratic forms, which provide asymptotic normality in terms of large deviations due to a

lemma by Rudzkis et al. (1978); see Lemma 6.2 below.

It turns out that we can state asymptotic normality for empirical coef®cients ~â(i)
jk with

( j, k) from the following set of indices. Let, for arbitrarily small ä, 0 , ä, 1=2,

~J T � f( j, k)j2 j > T ä, j , j�, k 2 Ijg:

Proposition 3.2. If Assumptions 1±4 hold, then

P((~â(i)
jk ÿ â(i)

jk )=ó ijk > x) � (1ÿÖ(x))� o(minf1ÿÖ(x), Ö(x)g)� O(Tÿë)

uniformly in ( j, k) 2 ~J T , x 2 R for arbitrary ë,1.

We now derive the asymptotic variances of the ~â(i)
jk s. For notational simplicity, again,

restricting ourselves without loss of generality to the treatment of CDV bases, we identify

ø1, . . . , øÄ (Ä � 2 j�) with ö l1, . . . , ö l,2 l , ø l1, . . . , ø l,2 l , . . . , ø j�ÿ1,1 . . . , ø j�ÿ1,2 j�ÿ1 and
~è(i)

1 , . . . , ~è(i)
Ä with ~á(i)

l1 , . . . , ~á(i)

l,2 l , ~â(i)
l1 , . . . , ~â(i)

l,2 l , . . . , ~â(i)

j�ÿ1,1
, . . . , ~â(i)

j�ÿ1,2 j�ÿ1
, respectively.

Furthermore, let
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c(s, k) :�
�ð
ÿð

ó 2(s)

2ð

����1�Xp

j�1

a j(s)exp(ië j)

����ÿ2 exp(iëk) dë: (3:2)

Here c(s, k) is the local covariance of lag k at time s 2 [0, 1] (cf. Lemma 8.1).

Proposition 3.3. If Assumptions 1±4 and 6 hold, then

var(~è(i)
u ) � Tÿ1(Aÿ1 BAÿ1) p(uÿ1)�i, p(uÿ1)�i � o(Tÿ1), (3:3)

where

A p(uÿ1)�k, p(vÿ1)� l �
�
øu(s)øv(s)c(s, k ÿ l) ds,

B p(uÿ1)�k, p(vÿ1)� l �
�
øu(s)øv(s)ó 2(s)c(s, k ÿ l) ds:

Furthermore, Aÿ1 BAÿ1 > Eÿ1, where

E p(uÿ1)�k, p(vÿ1)� l �
�
øu(s)øv(s)(ó 2(s))ÿ1c(s, k ÿ l) ds:

The eigenvalues of E are uniformly bounded.

Remark 3.4. The above form of A and B suggests different estimates for the variances of ~è(i)
u

and therefore also for the thresholds. One possibility is to use (3.3) and plug in a preliminary

estimate (ó 2(s) may be estimated by a local sum of squared residuals). Another possibility is

to use a nonparametric estimate of the local covariances c(s, k). However, these suggestions

require further investigation.

4. Some numerical examples

Before proving our main theorem, we wish to apply the procedure to two simulated

autoregressive processes of order p � 2, both of length T � 1024 � 210:

X t,T � a1(t=T )X tÿ1,T � a2(t=T )X tÿ2,T � å t, t � 1, . . . , T ,

where the å t are i.i.d. standard normal, Eå t � 0 and var(å t) � 1. In both examples, the

autoregressive parameters ai � ai(t=T ), i � 1, 2, are functions which change over time, that

is to say, our simulated examples are realizations of a non-stationary process which follows

the model (1.1).

Example 1. Here a1(u) � ÿ1:69 for u < 0:6, a1(u) � ÿ1:38 for u . 0:6, whereas a2(u) �
0:81 for all 0 < u < 1; that is, the ®rst coef®cient is a piecewise constant function with a

jump at u � 0:6 and the second coef®cient is constant over time. This gives a time-varying

spectral density of the process fX t,Tg which has a peak at ð=9 for t < 0:6T and at 4ð=9 for

t . 0:6T (see Figure 1, bottom right-hand plot).
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We have applied our estimation procedure using Haar wavelets and ®xing the scale of

our least-squares (LS) procedure to be j� � 5, that is, Ä � 32. Then we feed the resulting

solution ~á(i), for each i � 1, 2, a vector of length Ä (cf. also equation (7.2)) into our fast

wavelet transform, apply hard thresholding on all resulting wavelet coef®cients ~â(i)
jk on scales

j � 0, . . . , 4, and apply fast inverse wavelet transform up to scale 10, our original sample

scale. Hereby, we use a universal data-driven
��������������
2 logÄ
p

threshold based on an empirical

variance estimator of the ®nest wavelet scale j� ÿ 1 � 4.

In Figure 1 we show, for a1 (left column) and a2 (middle column), in the upper row the

solution ~á(i) of the LS procedure (without performing nonlinear wavelet thresholding). In

the middle row the nonlinear wavelet estimators are shown, and in the bottom row the

corresponding true function, all on an equispaced grid of resolution Tÿ1 � 2ÿ10 of the

interval [0, 1]. In the right-hand column, by grey-scale images in the time-frequency plane,
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AR–spectrum by wavelets

True AR–spectrum

Figure 1. Example 1: preliminary LS solution, wavelet threshold estimator and true function for a1,

a2 and resulting AR(2) spectrum
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we plot the resulting time-varying semi-parametric spectral density, based on the respective

(estimated and true) autoregressive coef®cient functions. Note that the darker the scale the

higher the value of the 2ÿ d object as a function of time and frequency.

Note that although the number of samples used for denoising by nonlinear wavelet

thresholding is comparatively small (Ä � 32 only), this second step delivers an additional

signi®cant contribution, which differs in its smoothness considerably from the LS solution

alone.

We did not try different threshold rules, which possibly could improve a bit on the

denoising. We found that the simple automatic universal rule is quite satisfactory, as it is

also in accordance with the theoretically possibly range of thresholds as given by (2.3). Of

course, in one or the other realization we observed that randomly one of the coef®cients

contributing only by noise was not set to zero, which, not surprisingly, had some disturbing

effect on the visual appearance of the estimator, in particular of the constant autoregressive

coef®cient. Also, both in this and the next example we did not observe any signi®cant

difference between using hard or soft thresholding.

Example 2. This is a slight modi®cation of both Example 1 and the example to be found in

Dahlhaus (1997). The second autogressive coef®cient is again constant over time; however,

the ®rst shows a smooth time variation of different phase and oscillation between the imposed

jumps at u � 0:25 and u � 0:75. This was achieved by choosing a1(u) � ÿ1:8 cos(1:5 ÿ
cos(4ðu� ð)) for u < 0:25 and for u . 0:75, and a1(u) � ÿ1:8 cos(3ÿ cos(4ðu� ð=2)) for

0:25 , u < 0:75, whereas again a2(u) � 0:81 for all 0 < u < 1.

A simulation of this process with T � 1024 is shown in Figure 2. It is the same

realization that was used for the estimation procedure. Clearly one can observe the non-

stationary behaviour of this process.

Here, we chose as wavelet basis a (periodic) Daubechies with N � 4 vanishing moments

(®lter length 2N � 8), and we chose Ä � 64 ( j� � 6). Note that for this speci®c example

we replaced wavelets on the interval by a traditional periodic basis simply for reasons of

computational convenience, as our chosen example is periodic with respect to time.

However, we do not expect a big difference in performance between these two bases. In

Figure 3 we have again plotted the LS solutions, the estimators based on wavelet hard

thresholding with the same universal threshold rule as before, and the true functions, both

for a1, a2 and for the resulting time-varying autoregressive spectrum.

5. Proof of the main theorem

To simplify the treatment of some particular remainder terms which occasionally arise in the

following proofs, as for example in the decomposition (7.5), we introduce the following

notation.

De®nition 5.1. We write

ZT � ~O(çT ),
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if for each ë,1 there exists a C � C(ë) such that

P(jZT j. CçT ) < CTÿë:

(If we use this notation simultaneously for an increasing number of random variables, we

mean the existence of a universal constant only depending on ë.)

Proof of Theorem 2.2. We prove only (ii). The proof of (i) without the additional assumption

(A6) is very similar, because the stochastic properties of the ~â(i)
jk s are then nearly the same.

The only difference is that we cannot guarantee the ®niteness of moments of the ~â(i)
jk s, and

therefore we need the truncation in the loss function.

Using the monotonicity of ä(:)(~â(i)
jk , :) in the second argument we obtain

0 200 400 600 800 1000 1200
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210
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10

20
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40
Example 2: Process data, T 5 1024

Figure 2. Example 2: realization of a stretch of length T � 1024
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(ä(:)(~â(i)
jk , ë̂ijk)ÿ â(i)

jk )2 <

(~â(i)
jk ÿ â(i)

jk )2 � (ä(:)(~â(i)
jk , ãTëijk)ÿ â(i)

jk )2,

if ë̂ijk . ãTëijk ,

(ä(:)(~â(i)
jk , ãTëijk)ÿ â(i)

jk )2 � (ä(:)(~â(i)
jk , CTÿ1=2

���������������
log(T ))
p ÿ â(i)

jk )2,

if ãTëijk < ë̂ijk < CTÿ1=4
�������������
log(T )
p

,

(ä(:)(~â(i)
jk , CTÿ1=2

�������������
log(T )
p

)ÿ â(i)
jk )2 � (â(i)

jk )2,

if ë̂ijk . CTÿ1=2
�������������
log(T )
p

,

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
which implies the decomposition
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Figure 3. Example 2: preliminary LS solution, wavelet threshold estimator and true function for a1,

a2 and resulting AR(2) spectrum
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Ekâi ÿ aik2 <
X

k

E(~á(i)
lk ÿ á(i)

lk )2 �
X

( j,k)2J T

E(ä(:)(â(i)
jk , ë̂ijk)ÿ â(i)

jk )2 �
X
j> j�

X
k2 Ij

(â(i)
jk )2

<
X

k

E(~á(i)
lk ÿ á(i)

lk )2 �
X

( j,k)2J T

E(ä(:)(~â(i)
jk , ãTëijk)ÿ â(i)

jk )2

�
X

( j,k)2J T

E(ä(:)(~â(i)
jk , CTÿ1=2

�����������
log T

p
)ÿ â(i)

jk )2

�
X

( j,k)ðJ T

EI(ë̂ijk , ãTëijk)(~â(i)
jk ÿ â(i)

jk )2

�
X

( j,k)2J T

(â(i)
jk )2 P(ë̂ijk . CTÿ1=2

�����������
log T

p
)�

X
j> j�

X
k2 I j

(â(i)
jk )2

� S1 � . . . � S6: (5:1)

By (i) of Proposition 3.1 we immediately obtain

S1 � O(Tÿ1): (5:2)

Let ( j, k) 2 ~J T . We choose a constant ãijk such that

ä(:)(â, ãTëijk) > â(i)
jk , if âÿ â(i)

jk . ãijk ,

ä(:)(â, ãTëijk) < â(i)
jk , if âÿ â(i)

jk , ãijk :

Without loss of generality, we assume ä(:)(ãijk � â(i)
jk , ãTëijk) > â(i)

jk .

Let çT � CTÿ1=2
�����������
log T
p

for some appropriate C. Then we decompose the terms

occurring in the sum S2 as follows:

S
jk
21 � EI(ãijk < ~â(i)

jk ÿ â(i)
jk , çT )(ä(:)(~â(i)

jk , ãTëijk)ÿ â(i)
jk )2,

S
jk
22 � EI(ÿçT , ~â(i)

jk ÿ â(i)
jk , ãijk)(ä(:)(~â(i)

jk , ãTëijk)ÿ â(i)
jk )2

and

S
jk
23 � EI(j~â(i)

jk ÿ â(i)
jk j > çT )(ä(:)(~â(i)

jk , ãTëijk)ÿ â(i)
jk )2:

Using Proposition 3.2 we obtain, with î(i)
jk � N (â(i)

jk , ó 2
ijk), due to integration by parts with

respect to x,
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S
jk
21 � ÿ

�
[I(ãijk < x , çT )(ä(:)(â(i)

jk � x, ãTëijk)ÿ â(i)
jk )2] d P(~â(i)

jk ÿ â(i)
jk > x)

n o
�
�

P(~â(i)
jk ÿ â(i)

jk > x)
n o

d[I(ãijk < x , çT )(ä(:)(â(i)
jk � x, ãTëijk)ÿ â(i)

jk )2]

� P(~â(i)
jk ÿ â(i)

jk > ãijk)(ä(:)(â(i)
jk � ãijk , ãTëijk)ÿ â(i)

jk )2

< CT

�
P(î(i)

jk ÿ â(i)
jk > x)

n o
d[I(ãijk < x , çT )(ä(:)(â(i)

jk � x, ãTëijk)ÿ â(i)
jk )2]

�
�P(î(i)

jk ÿ â(i)
jk > ãijk)(ä(:)(â(i)

jk � ãijk , ãTëijk)ÿ â(i)
jk )2
o

� O(Tÿë)

� CT EI(ãijk < î(i)
jk ÿ â(i)

jk , çT )(ä(:)(î(i)
jk , ãTëijk)ÿ â(i)

jk )2 � O(Tÿë)

for some CT ! 1. Analogously, we obtain

S
jk
22 < CT EI(ÿçT < î(i)

jk ÿ â(i)
jk , ãijk)(ä(:)(î(i)

jk , ãTëijk)ÿ â(i)
jk )2 � O(Tÿë):

Finally, we have, for any ä1 with 0 , ä1 , ä and ä as in Assumption 6, that

S
jk
23 < (P(j~â(i)

jk ÿ â(i)
jk j > çT ))1ÿ2=(2�ä1)(Ejä(:)(~â(i)

jk , ãTëijk)ÿ â(i)
jk j2�ä1 )2=(2�ä1) � O(Tÿë),

which implies

E(ä(:)(~â(i)
jk , ãTëijk)ÿ â(i)

jk )2 < CT E(ä(:)(î(i)
jk , ãTëijk)ÿ â(i)

jk )2 � O(Tÿë): (5:3)

From Lemma 1 in Donoho and Johnstone (1994) we can immediately derive the formula

E(ä(:)(î(i)
jk , ë)ÿ â(i)

jk )2 < C ó 2
ijkj

ë

ó ijk

 !
ë

ó ijk

� 1

 !
�minf(â(i)

jk )2, ë2g
 !

, (5:4)

where j denotes the standard normal density. This implies, by Theorem 7 in Donoho et al.

(1995), thatX
( j,k)2 ~J T

E(ä(:)(î(i)
jk , ãTëijk)ÿ â(i)

jk )2

� O Tÿ1(# ~J T )1ÿã2
T

�������������
log(T )

p
�

X
( j,k)2 ~J T

minf(â(i)
jk )2, (ãTëijk)2g

 !

� O (log(T)=T )2mi=(2mi�1)
ÿ �

:

Therefore, in conjunction with (5.3), we obtain that
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X
( j,k)2 ~J T

E ä(:)(~â(i)
jk , ãTëijk)ÿ â(i)

jk

� �2

� O (log(T )=T )2mi=(2mi�1)
ÿ �

: (5:5)

Further we obtain, because of jä(:)(â, ë)ÿ âj < ë, thatX
( j,k)2J Tn ~J T

E(ä(:)(~â(i)
jk , ãTëijk)ÿ â(i)

jk )2 <
X

( j,k)2J Tn ~J T

[2E(~â(i)
jk ÿ â(i)

jk )2 � 2(ãTëijk)2]

� #(J Tn ~J T )O(Tÿ1 log(T )):

If we choose ä in the de®nition of ~J T in such a way that ä, 1=(2mi � 1), we obtain, by

#(J Tn ~J T ) � O(T ä), thatX
( j,k)2J T n ~J T

E(ä(:)(~â(i)
jk , ãTëijk)ÿ â(i)

jk )2 � O(Tÿ2mi=(2mi�1)): (5:6)

By analogous considerations we can show that

S3 � O((log(T )=T )2mi=(2mi�1)): (5:7)

From (7.14) and (7.22) we have

~â(i)
jk ÿ â(i)

jk � ~O(Tÿ1=2
�������������
log(T )

p
� 2ÿ j=2Tÿ1=2 log(T )),

which implies by Assumption 5(i) and Lemma A.2 that

S4 � O(Tÿ1(log(T ))2)
X

( j,k)2J T

P(ë̂ijk , ãTëijk)

� C
X

( j,k)2J T

(P(j~â(i)
jk ÿ â(i)

jk j. CTÿ1=2 log(T )))2=(2�ä1)(Ej~â(i)
jk ÿ â(i)

jk j2�ä1 )2=(2�ä1)

� O(Tÿ2mi=(2mi�1)): (5:8)

The relation

S5 � O(Tÿ2mi=(2mi�1)) (5:9)

is obvious, due to Assumption 5 (ii). Finally, it can be shown by simple algebra that

S6 � O(2ÿ2 j�~si ) � O(Tÿ2mi=(2mi�1)), (5:10)

which completes the proof. h

6. Asymptotic normality of quadratic forms

In this section we list the basic technical lemmas which are necessary to prove asymptotic

normality or to ®nd stochastic estimates for quadratic forms. First, we quote a lemma that

provides upper estimates for the cumulants of quadratic forms that satisfy a certain condition
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on their cumulant sums. This result is a generalization of Lemma 2 in Rudzkis (1978), which

was formulated speci®cally for quadratic forms that occur in periodogram-based kernel

estimators of a spectral density. We obtain a slightly improved estimate, which turns out to be

important, for example, for certain quadratic forms with sparse matrices.

We consider the quadratic form

çT � X 9T AX T ,

where

X T � (X 1, . . . , X T )9,

A � ((aij))i, j�1,:::,T , aij � aji:

Further, let

îT � Y 9T AYT ,

where YT � (Y1, . . . , YT )9 is a zero-mean Gaussian vector with the same covariance matrix

as X T .

Lemma 6.1. Assume EX t � 0 and, for some ã > 0,

sup
1< t1<T

XT

t2,:::, tk�1

jcum(X t1
, . . . , X t k

)j
8<:

9=; < Ck(k!)1�ã, for all T and k � 2, 3, . . . :

Then, for n > 2,

cumn(çT ) � cumn(îT )� Rn,

where

(i) |cumn(îT )| < var(îT )2nÿ2(n ÿ 1)![ëmax(A)ëmax(cov(X T ))]nÿ2,

(ii) Rn < 2nÿ2C2n((2n)!)1�ã maxs, t{|ast |}~AkAknÿ2
1 ,

~A �
X

s

max
t
fjastjg, kAk1 � max

s

X
k

jastj
( )

:

The proof of this lemma is given in Neumann (1996).

Using Lemma 6.1 we obtain useful estimates for the cumulants, which can be used to

derive asymptotic normality. For the reader's convenience we quote two basic lemmas on

the asymptotic distribution of çT . Lemma 6.2, which is due to Rudzkis et al. (1978), states

asymptotic normality under a certain relation between variance and the higher-order

cumulants of çT . Even if such a favourable relation is not given, we can still obtain

estimates for probabilities of large deviations on the basis of the Lemma 6.3, which is due

to Bentkus and Rudzkis (1980).
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Lemma 6.2. Assume, for some ÄT ! 0, that

jcumn(çT=
���������������
var(ðT )

p
)j < (n!)1�ã

Änÿ2
T

, for n � 3, 4, . . . :

Then

P(�(çT ÿ EçT )=
���������������
var(çT )
p

> x)

1ÿÖ(x)
! 1

holds uniformly over 0 < x < íT , where íT � o(Ä1=(3�6ã)
T ).

Lemma 6.3. Assume, for some ÄT ! 0, that

jcumn(çT )j < n!

2

� �1�ã
HT

Ä
nÿ2

T

, for n � 2, 3, . . . :

Then, for x > 0,

P(�çT > x) < exp ÿ x2

2[HT � (x=Ä
1=(1�2ã)

T )(1�2ã)=(1�ã)]

 !

<
exp(ÿx2=4HT ), if 0 < x < (H

1�ã
T ÄT )1=(1�2ã),

exp(ÿ1
4
(xÄT )1=(1�ã)), if x > (H

1�ã
T ÄT )1=(1�2ã):

8<:

7. Derivation of the asymptotic distribution of the empirical
coef®cients

7.1. Preparatory considerations

Before we turn directly to the proofs Propositions 3.1±3.3, we represent the empirical

coef®cients in a form that allows the nature of every remainder term to be easily recognized.

Note that throughout the rest of the paper, for notational convenience we now omit the double

index in the sequence fX t,Tg; that is, in the following let X t :� X t,T .

Although it is essential for our procedure to have a multiresolution basis, that is,

empirical coef®cients from different resolution levels, it turns out to be easier to analyse the

statistical behaviour of such coef®cients coming from a single level. Since the empirical

coef®cients of the multiresolution basis can be obtained as linear combinations of

coef®cients of an appropriate monoresolution basis, we are able to derive their asymptotic

distribution.

Since both fö l1, . . . , ö l,2 l , ø l1, . . . , ø l,2 l , . . . , ø j�ÿ1,1, . . . , ø j�ÿ1,2 j�ÿ1g and fö j�1, . . . ,

ö j�,2 j� g are orthonormal bases of the same space V j� , the minimization of (2.2) is

equivalent to that of
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XT

t� p�1

X t �
Xp

i�1

X
k2 I0

j�
á(i)

j� k
ö j� k(t=T )

24 35X tÿi

0B@
1CA

2

: (7:1)

Assume for a moment that D9D is positive de®nite, which is indeed true with a probability

exceeding 1ÿ O(Tÿë). The solution ~á � (~á(1)

j�1
, . . . , ~á( p)

j�1
, . . . , ~á( p)

j�Ä, . . . , ~á(1)

j�Ä)9, Ä � #I0
j�� 2 j� , can be written as the least-squares estimator

~á � (D9D)ÿ1 D9Y (7:2)

in the linear model

Y � Dá� ã, (7:3)

where

Y � (X p�1, . . . , XT )9,

D � ÿ

ö j�1

p� 1

T

� �
Xp � � � ö j�1

p� 1

T

� �
X1 � � � ö j�Ä

p� 1

T

� �
Xp � � � ö j�Ä

p� 1

T

� �
X1

ö j�1

p� 2

T

� �
X p�1 � � � ö j�1

p� 2

T

� �
X2 � � � ö j�Ä

p� 2

T

� �
X p�1 � � � ö j�Ä

p� 2

T

� �
X2

..

. . .
. ..

. . .
. ..

. . .
. ..

.

ö j�1

T

T

� �
X Tÿ1 � � � ö j�1

T

T

� �
X TÿP

� � � ö j�Ä
T

T

� �
X Tÿ1 � � � ö j�Ä

T

T

� �
X TÿP

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
,

(7:4)

á � (á(1)

j�1
, . . . , á( p)

j�1
, . . . , á(1)

j�Ä, . . . , á( p)

j�Ä)9

and

ã � (ã p�1, . . . , ãT )9:

The residual term in (7.3) can, for t � p� 1, . . . , T, be written as

ã t � X t ÿ (Dá) tÿ p

� ÿ
Xp

i�1

ai(t=T )X tÿi � å t �
Xp

i�1

X
k2 I0

j�
á(i)

j� k
ö j� k(t=T )X tÿi �

Xp

i�1

Ri(t=T )X tÿi � å t,

where

Ri(u) � ÿai(u)�
X

k2 I0

j�
á(i)

j� k
ö j� k(u) � ÿ

X
j> j�

X
k2 Ij

â(i)
jkø jk(u):

With the de®nitions

S �
Xp

i�1

Ri

p� 1

T

� �
X p�1ÿi, . . . ,

Xp

i�1

Ri

T

T

� �
X Tÿi

 !
9
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and

e � (å p�1, . . . , åT )9,

we decompose the right-hand side of (7.2) as

~á � (D9D)ÿ1 D9Dá� (ED9D)ÿ1 D9e� [(D9D)ÿ1 ÿ (ED9D)ÿ1]D9e� (D9D)ÿ1 D9S

� á� T1 � T2 � T3: (7:5)

Because of the above-mentioned relation between the two orthonormal bases of V j� , there

exists an orthonormal (Ä 3 Ä) matrix Ã with

(ö l1, . . . , ö l,2 l , ø l1, . . . , ø l,2 l , . . . , ø j�ÿ1,1, . . . , ø j�ÿ1,2 j�ÿ1 )9 � Ã(ö j�1, . . . , ö j�Ä)9:

This implies

(á(i)

j�1
, . . . , á(i)

j�Ä)

ö j�1

..

.

ö j�Ä

0B@
1CA � (á(i)

j�1
, . . . , á(i)

j�Ä)Ã9

ö l1

..

.

ö l,2 l

ø l1

..

.

ø j�ÿ1,2 j�ÿ1

0BBBBBBBB@

1CCCCCCCCA
:

Hence, having the least-squares estimator (~á(i)

j�1
, . . . , ~á(i)

j�Ä) according to the basis fö j�1,

. . . , ö j�Äg, we obtain the least-squares estimator in model (2.2) as

(~á(i)
l1 , . . . , ~á(i)

l,2 l , ~â(i)
l1 , . . . , ~â(i)

l,2 l , . . . , ~â(i)

j�ÿ1,1
, . . . , ~â(i)

j�ÿ1,2 j�ÿ1 )9 � Ã(~á(i)

j�1
, . . . , ~á(i)

j�Ä)9:

In other words, every empirical coef®cient ~â(i)
jk which is part of the solution to (2.2) can be

written as

~â(i)
jk � Ã9ijk ~á, (7:6)

where kÃijkk l2
� 1. (Analogously, ~á(i)

lk � Ã9ik ~á.)

7.2. Proofs of the Propositions 3.1, 3.2 and 3.3

Proof of Proposition 3.1. For notational convenience we write down the proof for empirical

coef®cients ~â(i)
jk only. The proof for the ~á(i)

lk s is analogous.

According to (7.5), we have

~â(i)
jk � â(i)

jk � Ã9ijk T1 � Ã9ijk T2 � Ã9ijk T3: (7:7)

From (i) and (iii) of Lemma A.3 we conclude

E(Ã9ijk T1)2 � Ã9ijk(ED9D)ÿ1 cov(D9e)(ED9D)ÿ1Ãijk

< kÃijkk2
2k(ED9D)ÿ1k2

2kcov(D9e)k2 � O(Tÿ1): (7:8)

Nonlinear wavelet estimation of time-varying autoregressive processes 893



The vector Ãijk has a length of support of O(2 j�ÿ j), which impliesX
l

j(Ãijk) lj < kÃijkk2

��������������������������������
#flj(Ãijk) l 6� 0g

q
� O(2( j�ÿ j)=2): (7:9)

We have, by Taylor expansion of the matrix (D9D)ÿ1, T2 � T21 � T22, where

T21 � (ED9D)ÿ1((ED9D)ÿ D9D)(ED9D)ÿ1 D9e

and

kT22k2 � ~O(k(ED9D)ÿ1k3
2k(ED9D)ÿ D9Dk2

2kD9ek2):

Using (i) of Lemma A.3, (A.8) and (A.9) we obtain

kT21k1 < k(ED9D)ÿ1k2
1k(ED9D)ÿ D9Dk1kD9ek1

� ~O(2 j�=2Tÿ1 log(T )): (7:10)

Since we have enough moment assumptions, we obtain the analogous rate, but without the

logarithmic factor, for the second moment of Ã9ijk T21, that is,

E(Ã9ijk T21)2 � O(2 j�ÿ j2 j�Tÿ2): (7:11)

Further, we have

Ã9ijk T22 � ~O(23 j�=2Tÿ3=2 log(T )): (7:12)

Using (i) of Lemma A.3 and (i) of Lemma A.4, we obtain

k(D9D)ÿ1k2 < k(ED9D)ÿ1k2 � k(D9D)ÿ1 ÿ (ED9D)ÿ1k2 � O(Tÿ1)� ~O(2 j�=2Tÿ3=2
�������������
log(T )

p
),

which yields, in conjunction with Lemma A.5, that

Ã9ijk T3 � O(k(D9D)ÿ1k2kD9Sk2)

� ~O((2ÿ j�minf~sig � Tÿ1=22ÿ j�minfmiÿ1=2ÿ1=(2 pi)g)
�������������
log(T )

p
)

� ~O(Tÿ1=2ÿô), (7:13)

for some ô. 0. Now we infer from (7.7), (7.8) and (7.11)±(7.13), which are in part ~O-results

rather than estimates for the expectations, that

EI(Ù0)((~â(i)
jk ÿ â(i)

jk )2) � O(Tÿ1),

where Ù0 is an appropriate event with P(Ù0) > 1ÿ O(Tÿë) for ë,1 chosen arbitrarily

large. This implies in conjunction with Lemma A.2, with 0 , ä1 , ä, that

EI(Ùc
0)((~â(i)

jk ÿ â(i)
jk )2) < (Ej~â(i)

jk ÿ â(i)
jk j2�ä1 )2=(2�ä1)(P(Ùc

0))1ÿ2=(2�ä1) � O(Tÿ1),

which ®nishes the proof. h

Proof of Proposition 3.2. It will turn out that the asymptotic distribution of ~â(i)
jk ÿ â(i)

jk is
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essentially determined by the behaviour of Ã9ijk T1. By (7.9), (7.10), (7.12) and (7.13) from the

proof of Proposition 3.1 we infer that

Ã9ijk(T2 � T3) � ~O(2ÿ j=2Tÿ1=2 log(T )� Tÿ1=2ÿk), (7:14)

for some k. 0.

First, note that the process fX t,Tg admits an MA(1) representation

X t,T �
X1
s�0

ã t,T (s)å tÿs, (7:15)

with X1
s�0

sup
t,T

fjã t,T (s)jg < C, for all T ;

see KuÈnsch (1995).

Now we turn to the derivation of the asymptotic distribution of Ã9ijk T1. It is clear that,

because of the MA(1) representation of the process, Ã9ijk T1 can be rewritten asP
u,v Au,våuåv for some symmetric matrix A � A(i, j, k). In the following, without writing

down the explicit form of this matrix, we derive upper estimates for kAk1 and
~A �Pu maxvfjAu,vjg.

We have

Ã9ijk T1 � ÿ
XT

t� p�1

å t

Xp

l�1

X tÿ l

XÄ
u�1

ö j�u(t=T )
X

v

((ED9D)ÿ1) p(uÿ1)� l,v(Ãijk)v

�
X

l,s

X
t

å tå tÿ lÿswt(l, s)

" #
, (7:16)

where

wt(l, s) � ã tÿ l(s)
XÄ
u�1

ö j�u(t=T )
X

v

((ED9D)ÿ1) p(uÿ1)� l,v(Ãijk)v:

If we write the expression in brackets on the right-hand side of (7.16) as
P

ij
~Wijåiå j, we

obtain, by supvfj(Ãijk)vjg � O(2ÿ( j�ÿ j)=2), that

k ~Wk1 � O(Tÿ1sup
t

fjã tÿ l(s)jg2 j=2): (7:17)

We can also rewrite wt(l, s) as

wt(l, s) � ÿã tÿ l(s)
X

v

(Ãijk)v

X
u

((ED9D)ÿ1)v, p(uÿ1)� lö j�u(t=T ),

which implies, by
P

vj(Ãijk)vj � O(2( j�ÿ j)=2) and by
P

tö j�u(t=T ) � O(2ÿ j�=2T ), that
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X
i

sup
j

fj ~Wijjg �
X

t

jwt(l, s)j � O(2ÿ j=2): (7:18)

Because of Assumption 3, the summation over s does not affect the rates in (7.17) and (7.18),

and neither does the (®nite) sum over l. Hence, with the notation of Lemma 6.1, we obtain

kAk1 � O(Tÿ12 j=2), (7:19)

~A � O(2ÿ j=2): (7:20)

Let ( j, k) 2 ~J T . Using Lemma 6.1, we obtain

jcumn(Ã9ijk T1)j < C nTÿ1(n!)2�2ã(Tÿ12 j=2)nÿ2, (7:21)

which implies, by Lemma 6.2,

P(�(Ã9ijk T1)=ó ijk > x) � (1ÿÖ(x))(1� o(1)) (7:22)

uniformly in 0 < x < kT , kT � T í for some í. 0. This relation can obviously be extended

to x 2 (ÿ1, kT ].

Recall that

~â(i)
jk ÿ â(i)

jk � Ã9ijk T1 � ~O(Tÿ1=2ÿk) (7:23)

holds for some k. 0. Therefore we have, for arbitrarily large ë,1, that

P(�(Ã9ijk T1)=ó ijk ÿ CTÿk > x)ÿ CTÿë < P(�(~â(i)
jk ÿ â(i)

jk )=ó ijk > x)

< P(�(Ã9ijk T1)=ó ijk � CT ÿk > x)� CT ÿë,

which implies

P(�(~â(i)
jk ÿ â(i)

jk )=ó ijk > x) � [1ÿÖ(x)](1� o(1))� O(jÖ(x)ÿÖ(x� CT ÿk)j)

� O(jÖ(x)ÿÖ(xÿ CT ÿk)j)� O(Tÿë): (7:24)

Fix any c . 1. For x < c we obviously have

jÖ(x)ÿÖ(x� CTÿk)j < CTÿkö(0) � o(1ÿÖ(x)): (7:25)

For c , x < (2ë log(T ))1=2 we obtain by a formula for Mill's ratio (see Johnson and Kotz

1970, Vol. 2, p. 278) that

jÖ(x)ÿÖ(x� CTÿk)j < CTÿkö(x)

< CTÿkx 1ÿ 1

x2

� �
ÿ1(1ÿÖ(x))

< CTÿkx 1ÿ 1

c2

� �
ÿ1(1ÿÖ(x)) � o(1ÿÖ(x)): (7:26)

The third term on the right-hand side of (7.24) can be treated analogously.

For x . C(2ë log(T ))1=2 we obviously have
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P(�(~â(i)
jk ÿ â(i)

jk )=ó ijk > x) � O(Tÿë) � (1ÿÖ(x))(1� o(1))� O(Tÿë), (7:27)

which completes the proof. h

Proof of Proposition 3.3. Because of ET1 � 0 we have

cov (T1) � ET1T 91 � (ED9D)ÿ1 cov(D9e)(ED9D)ÿ1,

which implies by (ii) and (iii) of Lemma A.3 that

kcov(T1)ÿ Fÿ1GFÿ1k1 � o(Tÿ1),

where

F � T

�
ö j�u(s)ö j�v(s)c(s, k ÿ l)ds

� �
p(uÿ1)�k, p(vÿ1)� l

� �
and

G � T

�
ö j�u(s)ö j�v(s)ó 2(s)c(s, k ÿ l)ds

� �
p(uÿ1)�k, p(vÿ1)� l

� �
:

This yields

kcov(ÃT1)ÿ ÃFÿ1Ã9ÃGÃ9ÃFÿ1Ã9k1 � kcov(ÃT1)ÿ Aÿ1 BAÿ1k1 � o(Tÿ1):

Further, due to (6.13), we have

E(Ã9ijk(T2 � T3))2 � o(Tÿ1),

which proves the ®rst assertion (3.3).

The matrix (B A
A E) is non-negative de®nite, which leads, with Theorem 12.2.21(5) of

Graybill (1983), to Aÿ1 BAÿ1 > Eÿ1. Furthermore, we have, with x 2 CÄ p,

x�Ex �
�1

0

�ð
ÿð
jA(s, ë)j2(ó 2(s))ÿ1

����X
u,k

x p(uÿ1)�køu(s) exp(iëk)

����2 dë ds

< C

�1

0

�ð
ÿð

����X
u,k

x p(uÿ1)�køu(s)exp(iëk)

����2 dë ds

� 2ðCkxk2,

which implies that the eigenvalues of E are uniformly bounded.

Appendix

In order to preserve a clear presentation of our results, we include some of the technical

calculations into this separate section. We suppose throughout this section that Assumptions

1±5 are satis®ed.

Let Ó t,T � cov((X tÿ1,T , . . . , X tÿ p,T )9).
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Lemma A.1. By Assumption 3, with some constants C1, C2 . 0,

(i) ëmax(Ó t,T ) < C2 and ëmin(Ó t,T ) > C1 � o(1), where the o(1) is uniform in t;

(ii) there exists some function g, with g(s)! 0 as s! 0, such that

kÓ t1,T ÿ Ó t2,Tk < g
t1 ÿ t2

T

� �
, for all t1, t2, T ;

(iii) c(s, k ÿ l) is uniformly continuous in s and

lim
T!1, t=T!s

cov(X tÿ l,T , X tÿk,T ) � c(s, k ÿ l):

Proof. Completely analogously to the proof of Theorem 2.3 in Dahlhaus (1996), we can

show that X t,T has the representation

X t,T �
�ð
ÿð

exp(iët)A0
t,T (ë) dî(ë),

with

sup
t,ë
jA0

t,T (ë)ÿ A(t=T , ë)j � o(1),

where î(ë) is a process with mean zero and orthonormal increments,

A0
t,T (ë) � 1������

2ð
p

X1
l�0

ã t,T (l)exp(ÿiël),

with ã t,T (l) given by the MA(1) representation (7.15), and

A(s, ë) � ó (s)������
2ð
p 1�

Xp

j�1

a j(s)exp(ÿië j)

 !ÿ1

:

Then

cov(X tÿ l,T , X tÿk,T ) �
�ð
ÿð

exp(ië(k ÿ l))A0
tÿ l,T (ë)A0

tÿk,T (ÿë) dë:

Since A(s, ë) is uniformly continuous in s, this is equal to�ð
ÿð

exp(ië(k ÿ l))jA(s, ë)j2 dë� o(1) � c(s, k ÿ l)� o(1), for t=T ! s,

which implies (iii). We obtain (ii) analogously. Furthermore, we have, for x � (x1, . . . ,

x p) 2 C p,
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x�Ó t,T x �
�ð
ÿð

����Xp

j�1

xj exp(ÿië j)A0
tÿ j,T (ë)

����2 dë

�
�ð
ÿð
jA(t=T , ë)j2

����Xp

j�1

xj exp(ÿië j)

����2 dë� kxk2o(1):

Under Assumption 3 there exist constants with C1 < jA(s, ë)j < C2 uniformly in s and ë,

which implies (i). h

Lemma A.2. Suppose additionally that Assumption 6 is satis®ed, and let 0 , ä1 , ä. Then

(i) Ej~á(i)
lk ÿ á(i)

lk j2�ä1 � O(1),

(ii) Ej~â(i)
jk ÿ â(i)

jk j2�ä1 � O(1)

hold uniformly in i, k and j , j�.

Proof. (i) In this part we derive estimates for the moments of kD9ek and kD9Sk, which will

be used later in this proof.

Using the MA(1) representation of fX tg, we can write (D9e) p(uÿ1)�k as a quadratic

form å9Aå for some A � A( p, k), where å � (åT , . . . , å1, å0, åÿ1, . . .)9 is an in®nite-

dimensional vector according to the MA(1) representation of fX tg. Since, however, the

proof of Lemma 6.1 does not depend on the dimension of the matrix A, we can apply this

lemma also to this in®nite-dimensional case.

We obtain, using the notation of Lemma 6.1, that

~A � O(2ÿ j�=2T ),

maxfjastjg < kAk1 � O(2 j�=2),

which implies

jcumn((D9e) p(uÿ1)�k)j < C n(n!)2�2ãT (2 j�=2)nÿ2, for n > 2:

Since E(D9e) p(uÿ1)�k � 0, we obtain, for even s, that

Ej(D9e) p(uÿ1)�k js � O
Xn

r�1

Y
i1,:::,ir :

i1�...�ir�n,
ij>1

jcumi j
((D9e) p(uÿ1)�k)j

0BB@
1CCA < C(s)T s=2:

We obtain, with Ä � O(2 j�),
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EkD9eks � E
X
u,k

(D9e)2
p(uÿ1)�k

 !
s=2

< (Ä p)s=2ÿ1
X
u,k

E(D9e)s
p(uÿ1)�k

� O((Äp)s=2max
u,k
fE(D9e)s

p(uÿ1)�kg)

� O(2 j� s=2T s=2): (A:1)

We now treat the quantity kD9Sk in an analogous way. (D9S) p(uÿ1)�k is a quadratic form in

X � (X 1, . . . , X T )9 with a matrix A, which satis®es, according to (A.11) below,

~A � O
X

t

jö j�u(t=T )j
X

i

jRi(t=T )j
 !

� O
X

i

������������������������������X
t

ö j�u(t=T )2

s �������������������������X
t

Ri(t=T )2

s0@ 1A
� O(T (2ÿ j�minf~sig � Tÿ1=22ÿ j�minfmiÿ1=2ÿ1=(2 pi)g)) � O(T 1=2)

and, by (A.10),

kAk1 � O 2 j�=2
X

i

kRik1
 !

� O(2 j�=2):

Therefore, we obtain by Lemma 6.1, that

jcumn((D9S) p(uÿ1)�k)j < C n(n!)2�2ãT (2 j�=2)nÿ2, for n > 2,

which implies, in conjunction with E(D9S) p(uÿ1)�k � O(~A) � O(T 1=2), that

EkD9Sks � O(2 j� s=2T s=2): (A:2)

(ii) According to (7.5), we have ~áÿ á � (D9D)ÿ1(D9e� D9S), which yields that

Ej~â(i)
jk ÿ â(i)

jk j2�ä1 � EjÃ9ijk(~áÿ á)j2�ä1

< E(k(D9D)ÿ1k2(kD9ek2 � kD9Sk2))2�ä1

< (Ek(D9D)ÿ1k2�ä)
2�ä1
2�ä E(kD9ek � kD9Sk)

(2�ä1)(2�ä)

äÿä1

� �1ÿ2�ä1
2�ä

� O(Tÿ(2�ä1))O((2 j�=2T 1=2)2�ä1 )

� O((2 j�=2Tÿ1=2)2�ä1 ) � O(1): h
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Lemma A.3. Let j� � j�(T )!1 and j� � o(T ). Then

(i) k(ED9D)ÿ1k1 � O(Tÿ1),

(ii)

(ED9D)ÿ1 ÿ T

�
ö j�u(s)ö j�v(s)c(s, k ÿ l) ds

� �
p(uÿ1)�k, p(vÿ1)� l

 !ÿ1
1
� o(Tÿ1),

(iii)

cov(D9e)ÿ T

�
ö j�u(s)ö j�v(s)ó 2(s)c(s, k ÿ l) ds

� �
p(uÿ1)�k, p(vÿ1)� l)


1
� o(T )

 

hold uniformly in u, v, k, l.

Proof. (i) Let M � T diag[M1, . . . , MÄ], where M u � Ó t for any t with t=T 2 supp(ö j�u).

Because of Mÿ1 � Tÿ1 diag[Mÿ1
1 , . . . , Mÿ1

Ä ] we obtain by (i) and (ii) of Lemma A.1, that

kMÿ1k1 � O(Tÿ1): (A:3)

Further, we have, by j� � j�(T )!1 and j� � o(T ), that

(ED9Dÿ M) p(uÿ1)�k, p(vÿ1)� l �
XT

t� p�1

ö j�u

t

T

� �
ö j�v

t

T

� �
[(Ó t)kl ÿ (M u)kl]

�
XT

t� p�1

ö j�u

t

T

� �
ö j�v

t

T

� �
ÿ Täuv

24 35(M u)kl

� o(T ) (A:4)

holds uniformly in u, v, k, l. Since ö j�u and ö j�v have disjoint support for juÿ vj > C, we

obtain (ED9D)kl � 0 for jk ÿ lj > Cp. Therefore we obtain, by (A.4),

kED9Dÿ Mk1 � o(T ): (A:5)

Because of (A.4) and (A.5) there exists a T0 such that

kMÿ1=2(ED9Dÿ M)Mÿ1=2k < C , 1, for all T > T0:

Therefore, by the spectral decomposition of (I � Mÿ1=2(ED9Dÿ M)Mÿ1=2), the following

inversion formula holds:

(ED9D)ÿ1 � [M1=2(I � Mÿ1=2(ED9Dÿ M)Mÿ1=2)M1=2]ÿ1

� Mÿ1=2 I �
X1
s�1

(ÿ1)s(Mÿ1=2(ED9Dÿ M)Mÿ1=2)s

" #
Mÿ1=2, (A:6)

which implies (i).

(ii) It can be shown in the same way as (A.4) that
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(ED9D)ÿ T

�
ö j�u(s)ö j�v(s)c(s, k ÿ l) ds

� �
p(uÿ1)�k, p(vÿ1)� l

 !
1
� o(T ), (A:7)

which implies, analogously to (A.6),

(ED9D)ÿ1 ÿ T

�
ö j�u(s)ö j�v(s)c(s, k ÿ l) ds

� �
p(uÿ1)�k, p(vÿ1)� l

 !ÿ1
1

�
(ED9D)ÿ1

X1
s�1

(ÿ1)s[(ED9Dÿ (f. . .g))(ED9D)ÿ1]s


1
� o(Tÿ1):

(iii) Obviously we have

ED9e � 0,

which implies

cov((D9e) p(uÿ1)�k , (D9e) p(vÿ1)� l) �
XT

s, t� p�1

ö j�u

s

T

� �
ö j�v

t

T

� �
Eåså t X sÿk X tÿ l

�
XT

s� p�1

ö j�u

s

T

� �
ö j�v

s

T

� �
Eå2

sEX sÿk X sÿ l

� T

�
ö j�u(s)ö j�v(s)ó 2(s)c(s, k ÿ l) ds� o(T ):

The corresponding result in the k:k1-norm follows from the same reasoning, leading to

(A.5). h

Lemma A.4. We have:

(i) k(D9D)ÿ1 ÿ (ED9D)ÿ1k1 � ~O(2 j�=2Tÿ3=2
�������������
log(T )
p

);

(ii) kD9ek2
2 � ~O(2 j�T log(T )).

Proof. (i) First, observe that by Assumption 2 and the MA(1) representation of fX tg,
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XT

t2,:::, tk�1

jcum(X t1
, . . . , X t k

)j

�
XT

t2,:::, t k�1

����cum
Xt1

s1�ÿ1
ã t1

(t1 ÿ s1)ås1
, . . . ,

Xtk

s k�ÿ1
ã t k

(t k ÿ sk)åsk

 !����
<
Xt1

s�ÿ1

XT

t2,:::, t k�s_1

jã t1
(t1 ÿ s)j � � � jã t k

(t k ÿ s)j jcumk(ås)j

< sup
s

fjcumk(ås)jg
X1
s�0

jã t1
(s)j

XT

t�s_1

jã t(t ÿ s)j
 !kÿ1

< C2k(k!)1�ã:

We see that

(D9D) p(uÿ1)�k, p(vÿ1)� l �
XT

t� p�1

ö j�u(t=T )ö j�v(t=T )X tÿk X tÿ l

is a quadratic form with a matrix A satisfying, in the notation of Lemma 6.1,

kAk1 � O(2 j�), ~A � O(T ):

This implies, by Lemma 6.1, that

jcumn((D9D) p(uÿ1)�k, p(vÿ1)� l)j < C n(n!)2�2ã(2 j� )nÿ1T

<
n!

2

� �
1�(1�2ã) HT

Ä
nÿ2

T

,

where HT � 2 j�T , ÄT � 2ÿ j� . Hence, by Lemma 6.3, we obtain that

P(j(D9D) p(uÿ1)�k, p(vÿ1)� l ÿ (ED9D) p(uÿ1)�k, p(vÿ1)� lj > x) < exp ÿC
x2

2 j�=2T

� �
,

for 0 < x < (H
1�ã
T ÄT )1=(1�2ã): Since (H

1�ã
T ÄT )1=(1�2ã) � 2 j�ã=(1�2ã)T (1�ã)=(1�2ã) �

2 j�=2T 1=2, we obtain

(D9D) p(uÿ1)�k, p(vÿ1)� l ÿ (ED9D) p(uÿ1)�k, p(vÿ1)� l � ~O(2 j�=2T 1=2
�������������
log(T )

p
):

Since ö j�u and ö j�v have disjoint support for juÿ vj > C, we immediately obtain

kD9Dÿ ED9Dk1 � ~O(2 j�=2T 1=2
�������������
log(T )

p
), (A:8)

which yields, in conjunction with (i) of Lemma A.3,
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k(D9D)ÿ1 ÿ (ED9D)ÿ1k1 < k(ED9D)ÿ1k1
X1
s�1

(kD9Dÿ ED9Dk1k(ED9D)ÿ1k1)s

� O(Tÿ1) ~O(2 j�=2T 1=2
�������������
log(T )

p
Tÿ1)

� ~O(2 j�=2Tÿ3=2
�������������
log(T )

p
):

(ii) From similar arguments we obtain

(D9e) p(uÿ1)�k � ~O(T 1=2
�������������
log(T )

p
), (A:9)

which implies (ii). h

Lemma A.5. We have

kD9Sk2
2 � ~O(T 2(2ÿ2 j�minf~sig � Tÿ12ÿ j�minfsmiÿ1ÿ1= pi))log(T )):

Proof. Because of our assumption mi � 1=2ÿ 1= ~pi . 1, we get

kRik1 � O
X
j> j�

2 j=2max
k
fjâ(i)

jk jg
 !

� O
X
j> j�

2 j=22ÿ jsi

 !
� O(2ÿ j�(miÿ1= pi)) (A:10)

and

TV (Ri) � O
X
j> j�

2 j=2
X

k

jâ(i)
jk j

 !

� O
X
j> j

2 j=2
X

k

jâ(i)
jk j pi

 !
1= pi 2 j(1ÿ1= pi)

 !

� O
X
j> j�

2 j=22ÿ jsi 2 j(1ÿ1= pi)

 !
� O(2ÿ j�(miÿ1)�,

where TV(f ) denotes the total variation of a function f . This implies

Tÿ1
XT

t�1

(Ri(t=T ))2 ÿ kRik2
L2[0,1] <

XT

t�1

� t=T

( tÿ1)=T

jRi(t=T )� Ri(u)kRi(t=T )ÿ Ri(u)j du

�
X

t

O(Tÿ1kRik1TV (Ri)j[ tÿ1
T

, t
T
))

� O(Tÿ12ÿ j�(2miÿ1ÿ1= pi)):
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Since we know from Theorem 8 in Donoho et al. (1995) that

kRik2
L2[0,1] �

X
j> j�

X
k

jâ(i)
jk j2 � O(2ÿ2 j�~si ),

we have that

Tÿ1
XT

t�1

(Ri(t=T ))2 � O(2ÿ2 j�~si � Tÿ12ÿ j�(2miÿ1ÿ1= pi)): (A:11)

Now,

(D9S) p(uÿ1)�k �
XT

t� p�1

ö j�u(t=T )X tÿk

Xp

i�1

X tÿi Ri(t=T )

� ~O(2 j�=2
�������������
log(T )

p
)

X
t=T2supp(ö j� u)

Xp

i�1

jRi(t=T )j,

which implies

kD9Sk2
2 � ~O(2 j� log(T ))

Xp

i�1

XÄ
u�1

X
t=T2supp(ö j� u)

jRi(t=T )j
 !2

� ~O(2 j� log(T ))
Xp

i�1

XÄ
u�1

X
t=T2supp(ö j� u)

Ri(t=T )2

 !
T2ÿ j�

� ~O(T 2(2ÿ2 j�minf~sig � Tÿ12ÿ j�minf2miÿ1ÿ1= pig)log(T )): h
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