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Peter offers to play exactly one St Petersburg game with each of n > 2 players, Paul1, . . . , Pauln,

whose conceivable pooling strategies are described by all possible probability distributions

pn ¼ ( p1,n, . . . , pn,n). Comparing infinite expectations, we characterize among all pn those admissible

strategies for which the pooled winnings, each distributed as V pn
¼
Pn

k¼1 pk,n X k , yield a finite added

value for each and every one of Paul1, . . . , Pauln in comparison with their individual winnings

X 1, . . . , X n, even though their total winnings Sn ¼ X 1 þ . . . þ X n is the same. We show that the

added value of an admissible pn is just its entropy H(pn), and we determine the best admissible

strategy p�n. Moreover, for every n > 2 and pn we construct semistable approximations to

S pn
¼ V pn

� H(pn). We show in particular that S pn
has a proper semistable asymptotic distribution

as n ! 1 along the entire sequence of natural numbers whenever maxf p1,n, . . . , pn,ng ! 0 for a

sequence pn of admissible strategies, which is in sharp contrast to Sn=n, and the rate of convergence

is very fast for S p�n .

Keywords: added value; asymptotic distributions; best admissible pooling strategies; comparison of

infinite expectations; several players; St Petersburg games

1. Introduction

Peter offers to let Paul toss a fair coin repeatedly until it lands heads and pays him 2k

ducats if this happens on the k th toss, k 2 N ¼ f1, 2, . . .g. What is the price for Paul to

pay to make the game ‘equal and fair’? Since, for Paul’s winning X ,

PfX ¼ 2kg ¼ 1

2k
and E(X ) ¼

X1
k¼1

2kPfX ¼ 2kg ¼
X1
k¼1

2k

2k
¼ 1, (1)

it is an infinite number of ducats, but, as Nicolaus Bernoulli wrote, ‘there ought not be a sane

man who would not happily sell his chance for forty ducats’. This is the St Petersburg

paradox. The question was asked by Nicolaus Bernoulli (1713), and the excerpt is from a

letter to his cousin Daniel Bernoulli in 1728. Citing his ‘most illustrious uncle’ and Gabriel

Cramer’s 1728 contribution through him, Daniel’s (1738) St Petersburg paper initiated what,

through three centuries of extensive discussions, has become, in Samuelson’s (1977) words,

‘an honored corner in the memory bank of the cultured analytic mind’. (Since we use the
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more convenient payoff system 2, 4, 8, . . . instead of the original 1, 2, 4, . . . , we doubled the

‘twenty ducats’ in the original text.) Other recent overviews are due to Jorland (1987) and

Dutka (1988), and a fuller historical analysis with numerous new findings will appear in

Csörgő and Simons (2008).

Since PfX < xg ¼
PbLog xc

k¼1 2�k , the distribution function of Paul’s gain X is

F(x) ¼ PfX < xg ¼
0, if x , 2,

1 � 1

2bLog xc ¼ 1 � 2hLog xi

x
, if x > 2,

8<
: (2)

where, with Z ¼ f0, �1, �2, . . .g denoting the integers, for any y within the real line R,

byc ¼ maxfk 2 Z : k < yg denotes its integer part, dye ¼ minfk 2 Z : k > yg ¼ �b�yc,

required later, denotes its ‘upper integer part’, and hyi ¼ y � byc ¼ y þ d�ye denotes its

fractional part. The symbol Log (with a capital L) denotes the base 2 logarithm, and log will

denote the natural logarithm. Beginning with D. Bernoulli (1738), the ideas concerning a

single gain X spawned the development of modern economic theory based on the notion of

utility. Yet, from a mathematical standpoint, equation (2) summarizes all that can be said

about a single X ; surely Nicolaus Bernoulli must have calculated that

PfX . 40g ¼ PfX . 32g ¼ 1
32
¼ 0:031 25, for example. So the first real mathematical

question is Paul’s price for the cumulative gain Sn ¼ X1 þ X 2 þ . . . þ X n in n games, where

X 1, X2, . . . are independent copies of X defined on a probability space (�, A, P).

The subject reached a level of mathematical maturity when Feller (1945) proved a weak

law of large numbers for this total gain, stating that

Sn

n Log n
!P 1 as n ! 1, (3)

where !P denotes convergence in probability, thereby suggesting (Feller 1968: Section 10.4)

that the ‘fair price’ for n games is n Log n ducats for large n 2 N. Using results from Csörgő

and Simons (1996), it is explained in Csörgő (2002) why n Log n ducats will not satisfy

Peter, the banker, and that in general no satisfactory solution can be based on laws of large

numbers. But, since the function 2hLog xi in (2) is not slowly varying at infinity, the classical

Doeblin–Gnedenko criterion (Gnedenko and Kolmogorov 1954: 175) implies that Sn has no

asymptotic distribution for any centring and norming sequences as n ! 1 over the entire

sequence N of natural numbers.

However, opening a new phase in the exploration of the problem, Martin-Löf (1985)

proved along the subsequence f2kg1k¼1 that limk!1Pf2�k S2 k � k < xg ¼ G(x), x 2 R, for

a non-stable semistable distribution function G of exponent 1, specified through its

characteristic function given below. As was pointed out by Csörgő and Dodunekova (1991),

Martin-Löf’s result itself implies that there are as many non-degenerate asymptotic

distributions of different types along subsequences of N as the cardinality of the continuum

(and, in a friendly manipulation of his article’s title, exactly that many clarifications of the

paradox). To find all these different limiting types, they showed that it suffices to restrict

attention to subsequences of n�1Sn � Log n, and, with ªn ¼ n=2dLog ne 2 (1
2
, 1], n 2 N, for

any given subsequence fnkg1k¼1 of N, the sequence n�1
k Sn k

� Log nk converges in
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distribution as k ! 1 if and only if ªn k
!cir ª 2 (1

2
, 1], meaning that either limk!1ªn k

¼ ª
for some ª 2 (1

2
, 1] or the sequence fªn k

g1k¼1 has the limit point 1
2
, and possibly 1 as well,

in which case we put ªnk
!cir 1. For later use we observe that the interval (1

2
, 1] becomes a

compact space under the circular limiting operation ‘!cir’. If this circular convergence

ªn k
!cir ª takes place for some ª 2 (1

2
, 1], as k ! 1, then

lim
k!1

P
Sn k

nk

� Log nk < x

� �
¼ Gª(x) ¼ PfWª < xg, x 2 R,

where

Wª ¼ 1

ª

X�1

m¼0

2m Ym(ª) � ª

2m

h i
þ
X1
m¼1

2m Ym(ª)

( )
þ Log

1

ª
: (4)

Here . . . , Y�2(ª), Y�1(ª), Y0(ª), Y1(ª), Y2(ª), . . . are independent random variables such that

PfYm(ª) ¼ jg ¼ (ª=2m) j

j!
e�ª=2 m

, j ¼ 0, 1, 2, . . . ,

that is, Ym(ª) has the Poisson distribution with mean ª=2m, m 2 Z. With i standing for the

imaginary unit, the limiting characteristic function is

gª(t) ¼ E(ei tWª) ¼
ð1
�1

ei tx dGª(x) ¼ e yª( t), t 2 R, (5)

where

yª(t) ¼ it Log
1

ª
þ
X�1

k¼0

exp
it2k

ª

� �
� 1 � it2k

ª

� �
ª

2k
þ
X1
k¼1

exp
it2k

ª

� �
� 1

� �
ª

2k
:

Since ª2 k ¼ 1 for all k 2 N, we see that G(�) ¼ G1(�) for Martin-Löf’s limiting distribution.

In general, for every ª 2 (1
2
, 1], E(jWªj�) , 1 for � 2 (0, 1) but E(jWªj) ¼ 1, and it can be

shown that Gª(�) is positive and strictly increasing over the whole real line, while it is shown

in Lemma 3 of Csörgő (2002) that Gª(�) is infinitely many times differentiable on R, with all

derivatives vanishing at �1. In particular, the p-quantile Qª( p) ¼ G�1
ª ( p) is unique,

Gª(Qª( p)) ¼ p, for all p 2 (0, 1). Furthermore, it follows from the standard Lévy form of

the infinitely divisible gª(�), given in Csörgő (2002), that all these subsequential limiting

distributions of different types are semistable with exponent 1. There is no limiting

distribution for Sn because there are very many.

The trouble with having many asymptotic distributions is resolved by a merging

approximation constructed from them: since the class G ¼ fGª(�) : 1
2
, ª < 1g of

subsequential limiting distributions is indexed by the subsequential circular limits of

ªn ¼ n=2dLog ne, with the parameter ªn describing the location of n ¼ ªn2dLog ne between

two consecutive powers of 2, it is reasonable to expect that Pfn�1Sn � Log n < xg and

Gªn
(x) merge together for all x 2 R as n ! 1 along the entire sequence N. In fact, this

happens at a fast rate: the special case p ¼ 1
2

of the case Æ ¼ 1 of Theorem 1 in Csörgő

(2002) states that for every � . 0 there is a threshold n� 2 N such that
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sup
x2R

����P Sn

n
� Log n < x

� �
� Gªn

(x)

���� < (1 þ �)
�

8

Log2 n

n
(6)

whenever n > n�. It is thought that the rate O((Logn)2=n) here is best possible.

Concerning Feller’s n Log n ducats from (3), we have PfSn < n Log ng � Gªn
(0) by (6),

and it turns out that 0:2070 < Gª(0) < 0:2073 for all ª 2 (1
2
, 1]. With this entrance fee, not

only may Paul win hugely, but his approximate probability of winning the series is between

0.7927 and 0.7930. So, clearly, Feller’s price is not enough for Peter, who cannot win more

than n(Log n � 2) ducats. Since the left-hand side of (6) may be written as

sup0, p,1jPfSn < n(Qªn
( p) þ Log n)g � pj, if Peter and Paul can agree that Peter should

win the series of n games with probability p ¼ pn 2 (1
2
, 1), then, attached to this contract,

the fair price for Paul to pay for the series is n(Qª n
( p) þ Log n) ducats. There is no equity,

to answer Nicolaus Bernoulli’s question, but fairness is still possible! The superficially

appealing median choice p ¼ 1
2

(‘half the time you win, half the time I win’, Paul would

argue), for which 2:5844 < Qª(1
2
) < 2:6050 for all ª 2 (1

2
, 1], will still be very far from

satisfying for most sane Peters. Noting here only that Qª( p) is a more violent function of ª
for larger values of p, the negotiations in the bargaining process to secure an acceptable

value of p will be helped by an extensive mix of graphs and tabular data in Csörgő and

Simons (2008).

The whole problem comes from the explosion of expectation in (1) 293 years ago. Our

refinement or correction of Feller’s variable entrance fee of Log n ducats to Qªn
( p) þ Log n

ducats per game, for some contracted p 2 (1
2
, 1), is from an asymptotic approximation. One

of the aims of the present paper is to show that the necessity of variable entrance fees per

game may in fact be established for each fixed n > 2, using nothing more than the notion

of expectation itself, a slight extension of the usual form of which may result in a finite

mean for the difference of random variables that individually may have infinite expectations

in the usual sense.

2. Two Pauls, three Pauls and more: comparison of infinite
expectations

The two-Paul problem, introduced in Csörgő and Simons (2002), arises when Peter agrees

to play exactly one St Petersburg game with each of two players, Paul1 and Paul2. Are

Paul1 and Paul2 better off accepting their individual winnings, X 1 and X2, say, or agreeing,

before they play, to divide their total winnings in half, so that each receives 1
2
X1 þ 1

2
X 2?

Surprisingly, this averaging strategy is demonstrably better for both Pauls than the

individualistic strategy of accepting their individual winnings – the validation of this

assertion turning on the observation that the pooled winnings, 1
2
X 1 þ 1

2
X 2, are stochastically

larger than the individual winnings, X 1 and X2. More specifically, we showed in Proposition

1.1 in Csörgő and Simons (2002) the distributional equality

X 1 þ X2 ¼ S2 ¼
D

T2 ¼ 2X 1 þ X 2 IfX 2 < X1g, (7)
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where IfAg is the indicator of the event A 2 A. (An almost sure version of (7) is presented

in Lemma 5 below.) Thus, T2 > 2X 1, with a strict inequality holding when X 2 < X 1. So,

clearly, Paul1 should prefer T2=2 to X 1, and, consequently, prefer S2=2 ¼ 1
2
X1 þ 1

2
X 2 to X 1.

Likewise, Paul2 should prefer 1
2
X 1 þ 1

2
X 2 to X 2.

We refer to this surprising phenomenon as the two-Paul paradox. As with the original

one, the heart of this paradox is the infinite expectation appearing in (1): were the

expectation finite, then X 1 and 1
2
X 1 þ 1

2
X2 would share the same finite expectation – thereby

precluding the possibility that one is stochastically larger than the other.

How much better is the averaging strategy? Since, with empty sums understood as 0,

PfX1 > 2k jX 2 ¼ 2kg ¼ PfX 1 > 2kg ¼ 1 �
Xk�1

j¼1

1

2

� � j

¼ 1 � 1 � 1

2k�1

� �
¼ 2

2k

for all k 2 N, and hence PfX1 > X 2 j X 2g ¼ 2=X 2, we see that

E(X2 IfX 2 < X1g) ¼ E(X 2PfX1 > X 2jX2g) ¼ E X 2

2

X2

� �
¼ 2: (8)

Thus, in this precise sense, the averaging strategy provides an extra ducat (2=2 ¼ 1) of added

value for each of Paul1 and Paul2 in comparison with their individualistic strategy.

More than a charming mathematical curiosity, this example suggests a precise comparison

of infinite expectations more generally. Indeed, this is possible for many pairs of random

variables ar U and V through the use of the comparison operator

E[U , V ] ¼
ð1
�1

[PfU . xg � PfV . xg] dx: (9)

Both versions of the integral in (9) are considered in Csörgő and Simons (2002), Lebesgue

and improper Riemann, and the calculus of these operators is described there in Theorem 2.2.

One finds, as one would want, that E[U , V ] ¼ E(U ) � E(V ), whenever E(U ) and E(V ) are

defined with at least one of them finite, with the conventions �1� c ¼ �1 ¼ c ��1 for

a finite c. In Csörgő and Simons (2002) the original ideas are attributed to Fréchet and

Hoeffding with references, and both referees pointed out that (9) is a special case of a

pseudomoment in Zolotarev (1978). Of course, if the Lebesgue version is defined, then so is

the improper Riemann, but the examples constructed in Csörgő and Simons (2002) show that

the converse is not true in general. The two interpretations are of course the same if the

integrand in (9) is non-negative for all x 2 R, in particular when U is stochastically larger

then V .

Consistent with (8), it is shown in Csörgő and Simons (2002) that E[1
2
X 1 þ 1

2
X 2, X 1] ¼ 1.

Thus the comparison operator defined in (9) properly evaluates the added value, one ducat,

secured by each of Paul1 and Paul2 when they agree to adopt the averaging strategy

described above. In fact, we were able to extend this for the average Sn=n of independent

winnings X 1, X 2, . . . , X n of n ¼ 2k Pauls and prove in Proposition 3.1 that

E[S2 k=2k , X 1] ¼ k for every k 2 N. Furthermore, it was possible to continue from here

and finally arrive in Csörgő and Simons (2002) at Proposition 3.3 and Theorem 5.2, which,

accompanying (6), state that
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E
Sn

n
� Log n, Wªn

� �
¼ 0, for all n 2 N, (10)

in the Lebesgue sense, and for specially constructed distributionally equivalent copies

W [n]
ªn

¼D Wªn
, defined on a rich enough probability space,

E

���� Sn

n
� Log n

� �
� W [n]

ªn

����
� �

¼ O

ffiffiffiffiffiffiffiffiffiffi
log n

p ffiffiffi
n

p
� �

: (11)

The statements (6), (10) and (11) all become special cases of results in the present paper.

However, the three-Paul problem is more complicated, and more interesting. Suppose

Peter agrees to play one St Petersburg game with each of three Pauls: Paul1, Paul2 and

Paul3. Denote their respective individual winnings by X1, X 2 and X3, and let

S3 ¼ X1 þ X 2 þ X 3. How does the averaging strategy, which yields S3=3 for each of the

Pauls, compare with the individualistic strategy, yielding X 1, X2 and X 3, respectively?

Surprisingly, they are incomparable in the sense that the integral

E
S3

3
, X1

� �
¼
ð1

0

P
S3

3
. x

� �
� PfX 1 . xg

� �
dx (12)

is not defined even as an improper Riemann integral. What one finds is that the (Lebesgue)

integrals of the positive and negative parts of the integrand in (12) are each equal to

þ 1. Necessarily, S3=3 cannot be stochastically larger or stochastically smaller than

X 1 : PfX 1 ¼ 2g ¼ 0:5 while PfS3=3 ¼ 2g ¼ 0:125 , 0:5, and PfX 1 , 8g ¼ 0:75 while

PfS3=3 , 8g ¼ 0:761 718 75 . 0:75. Indeed, the plots of the distribution functions of S3=3

and X 1 cross over each other infinitely often, and it is possible to demonstrate thatðb

0

P
S3

3
. x

� �
� PfX1 . xg

� �
dx ¼ Log 3 þ �(b) � �(3b) þ o(1), as b ! 1, (13)

where

�(s) ¼ 1 þ hLog si � 2hLog si, s . 0: (14)

One finds that �(s) is a non-negative periodic function in the transformed variable u ¼ Log s,

and that it assumes the value 0 if and only if u is integer valued, that is, if and only if s is an

integer power of 2. Since this function plays a role in the main results, we include its graphs

in Figure 1. The limit supremum of the integral in (13) as b ! 1 is 12
3

and the limit infimum

is 11
2
. So, to conclude: there seems to be no rational justification for the three Pauls to use the

averaging strategy. This strategy is incapable of providing added value.

But there are two other pooling strategies for the three Pauls, investigated in Csörgő and

Simons (2002), that do yield added value. The simplest calls for each Paul to give all of his

winnings to the other two Pauls, half to each. Under this strategy, Paul1 ends up with
1
2
X2 þ 1

2
X 3, Paul2 with 1

2
X1 þ 1

2
X 3, and Paul3 with 1

2
X1 þ 1

2
X 2. Analogous to averaging in the

two-Paul problem, this strategy provides one ducat of added value for each of the three

Pauls. The second strategy is for each Paul to share one-half of his winnings evenly with

the other two Pauls. Under this strategy, Paul1 ends up with 1
2
X1 þ 1

4
X 2 þ 1

4
X 3, Paul2 with
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1
2
X2 þ 1

4
X 1 þ 1

4
X3, and Paul3 with 1

2
X 3 þ 1

4
X1 þ 1

4
X 2. This strategy provides 11

2
ducats of

added value for each of the three Pauls.

More generally, let p ¼ ( p1, p2, p3) denote an arbitrary vector with non-negative

components adding to unity, and consider the pooling strategy which earns Paul1 the

amount p1 X 1 þ p2 X2 þ p3 X 3, Paul2 the amount p3 X1 þ p1 X 2 þ p2 X3, and Paul3 the

amount p2 X1 þ p3 X 2 þ p1 X3. We see that the averaging strategy p ¼ (1
3
, 1

3
, 1

3
) is not

comparable to the individualistic strategy (1, 0, 0), while the pooling strategies p ¼ (0, 1
2
, 1

2
)

and p ¼ (1
2
, 1

4
, 1

4
) are comparable and provide 1 and 11

2
extra ducats of added value,

respectively. What remains to be determined is the set of comparable vectors

p ¼ ( p1, p2, p3), and then the p in this set that maximizes the comparison operator

A( p) ¼ E[ p1 X 1 þ p2 X2 þ p3 X3, X 1]. We address these same questions for n Pauls, n > 2.

3. Admissible pooling strategies for n Pauls and semistable
approximations

We are assuming that Peter agrees to play exactly one St Petersburg game with each of n

players, Paul1, Paul2, . . . , Pauln, n ¼ 2, 3, . . .. Their individual winnings are X 1,

X 2, . . . , X n, respectively, independent copies of X as in the Introduction. The focus of

attention here is on a pooling strategy pn ¼ ( p1,n, . . . , pn,n), consisting of non-negative

components that sum to unity, to which all players agree before any of them plays. Under

this strategy, Paul1 is to receive the amount p1,n X 1 þ p2,n X 2 þ . . . þ pn,n X n, Paul2 is to

receive the amount pn,n X1 þ p1,n X2 þ . . . þ pn�1,n X n, Paul3 is to receive the amount

pn�1,n X 1 þ pn,n X 2 þ p1,n X 3 þ . . . þ pn�2,n X n, . . . , and Pauln is to receive the amount

p2,n X 1 þ p3,n X 2 þ . . . þ pn,n X n�1 þ p1,n X n. Under these rotating assignments of weights,

Figure 1. The function �(s), s . 0.
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every bit of all of the individual winnings is distributed. Moreover, the strategy is fair to

every Paul in the sense that their winnings have the same distribution and, from the exercise

of the strategy, each receives the same added value equal to

A( pn) ¼ E[ p1,n X1 þ . . . þ pn,n X n, X 1]

¼
ð1

0

[Pf p1,n X1 þ . . . þ pn,n X n . xg � PfX 1 . xg] dx, (15)

whenever the integral is defined, so that a comparison is possible. Anticipating the result

below, we shall call a strategy pn ¼ ( p1,n, . . . , pn,n) admissible if each of its components is

either zero or an integer power of 2. Individualistic strategies are thus admissible, otherwise

the powers in non-zero components are negative integers. By continuity, p Log p is

interpreted as zero whenever p ¼ 0.

Theorem 1. The n Pauls realize the added value A(pn) if and only if the pooling strategy

pn ¼ ( p1,n, . . . , pn,n) is admissible. Moreover, when pn is admissible, then the added value

A( pn) is equal to

H( pn) ¼ �fp1,n Log p1,n þ . . . þ pn,n Log pn,ng, (16)

the entropy of pn. Furthermore, the independent St Petersburg variables X 1, . . . , X n can be

defined on a rich enough probability space that carries, for each admissible strategy

pn ¼ ( p1,n, . . . , pn,n), a St Petersburg random variable X pn
and a non-negative random

variable Y pn
such that

p1,n X 1 þ . . . þ pn,n X n ¼ X pn
þ Y pn

(17)

almost surely.

Equation (17) in the third statement identifies the source for the added value: it implies

that
Pn

j¼1 pj,n X j is stochastically larger than X 1 for every admissible strategy

pn ¼ ( p1,n, . . . , pn,n), and hence the integral A( pn) in (15) is in fact finite as a Lebesgue

integral, and the added value can be thought of as arising from Y pn
, that is,

E(Y pn
) ¼ A( pn) ¼ H(pn). This is indeed so, as will be pointed out after the proof of

Theorem 1. All the proofs are given in the next section.

Significantly, the added value represents, simultaneously for all Pauls, a genuine

anticipated benefit, arising solely from their agreement to use pooling strategy pn; in no

way is this ‘sleight of hand’. And yet, paradoxically, they (and Peter) all know that their

total winnings are Sn ¼ X 1 þ . . . þ X n, the same amount with or without the pooling

strategy. Stated in economic terms: through cooperation, the microeconomic perspective is

sweetened for all of the Pauls while the macroeconomic perspective is unaltered.

So how well can n Pauls do by pooling? And how do they pool their winnings in order

to maximize their added value? These questions are addressed in the next theorem.

Theorem 2. For every admissible strategy pn ¼ ( p1,n, . . . , pn,n) the entropy H( pn) in (16) is

bounded above by
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H n ¼ bLog nc þ 2hLog ni � 1 ¼ Log n � �(n), (18)

where �(�) is the function defined in (14). Moreover, the bound H n is attainable by means of

the admissible strategy

p�n ¼ ( p�1,n, . . . , p�n,n) ¼ (2 p�n , . . . , 2 p�n , p�n , . . . , p�n ), with p�n ¼ 1

2dLog ne ¼
ªn

n
, (19)

where the numbers of p�n s and 2 p�n s are, respectively,

m1(n) ¼ 2n � 2dLog ne and m2(n) ¼ 2dLog ne � n : (20)

Apart from reorderings of the components of p�n in (19), the point of maximum is unique.

It is well known that the unrestricted maximum of the entropy H( pn) is attained uniquely

when pn is pen ¼ (1=n, . . . , 1=n), and the maximum is equal to Log n. Whenever n is an

integer power of 2, this pen is admissible, and, correctly, the p�n in (19) has only p�n s

(m1(n) ¼ n and m2(n) ¼ 0), so that p�n ¼ pen and (18) reduces to Log n, as it should. For

other values of n, the unrestricted maximum Log n cannot be obtained and the strictly

positive �(n), appearing in (18), can be thought of as the ‘cost’ for n not being an integer

power of 2. Since the function �(s) is bounded above by 1 � (1 þ log log 2)=log 2 � 0:0861,

attained whenever hLog si ¼ �(log log 2)=log 2 � 0:5288 (see Figure 1), this cost is small

for all n. And for large n, the relative cost �(n)=Log n is negligible.

Notice also when n is not an integer power of 2 that the two different component values

of the strategy appearing in (19), p�n and 2 p�n , ‘straddle’ the value 1=n. So in a certain

sense, the maximizing strategy p�n is as close to the unrestricted maximal point

(1=n, . . . , 1=n) as it can be while maintaining the requirement that it be admissible. The

first ten values of H n, n > 2, with their maximizing strategies, are as follows:

H2 ¼ 1, p�2 ¼ (1
2
, 1

2
),

H3 ¼ 11
2
, p�3 ¼ (1

2
, 1

4
, 1

4
),

H4 ¼ 2, p�4 ¼ (1
4
, 1

4
, 1

4
, 1

4
),

H5 ¼ 21
4
, p�5 ¼ (1

4
, 1

4
, 1

4
, 1

8
, 1

8
),

H6 ¼ 22
4
, p�6 ¼ (1

4
, 1

4
, 1

8
, 1

8
, 1

8
, 1

8
),

H7 ¼ 23
4
, p�7 ¼ (1

4
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
),

H8 ¼ 3, p�8 ¼ (1
8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
),

H9 ¼ 31
8
, p�9 ¼ (1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

16
, 1

16
),

H10 ¼ 32
8
, p�10 ¼ (1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

16
, 1

16
, 1

16
, 1

16
),

H11 ¼ 33
8
, p�11 ¼ (1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 1

16
, 1

16
, 1

16
, 1

16
, 1

16
, 1

16
):

The evolving pattern as n grows is that every time n increases by one, a single component

1=2 j with smaller exponent j is replaced by two components, each equal to 1=2 jþ1.

The main focus now is the study of the distribution of
Pn

k¼1 pk,n X k . Allowing any

probability distribution pn ¼ ( p1,n, . . . , pn,n) for a strategy, consider

S pn
¼
Xn

k¼1

pk,n X k � H( pn) ¼
Xn

k¼1

pk,n(X k þ Log pk,n): (21)

In this compact notation the centred average gain Sn=n � Log n discussed in the first two

sections appears as S pen
for pen ¼ (1=n, . . . , 1=n). Parallel to this, let
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W pn
¼
Xn

k¼1

pk,nW
(k)
1 � H( pn) ¼

Xn

k¼1

pk,n(W
(k)
1 þ Log pk,n), (22)

where W
(1)
1 , W

(2)
1 , . . . are independent copies of Martin-Löf’s (1985) generic asymptotic

random variable W1, with distribution function G1(x) ¼ PfW1 < xg, x 2 R, and character-

istic function given by g1(t) ¼ E(ei tW1 ) ¼
Ð
Rei tx dG1(x) ¼ e y1( t), where

y1(t) ¼
X�1

k¼0

(ei t2 k � 1 � it2k)
1

2k
þ
X1
k¼1

(ei t2 k � 1)
1

2k
, t 2 R, (23)

the special case ª ¼ 1 of Wª and gª(�) in (4) and (5). The description of the sufficiently rich

probability space in the theorem below is given in the proof of Lemma 8 in Section 4.

Theorem 3. For every n ¼ 2, 3, . . . and any strategy pn ¼ ( p1,n, . . . , pn,n),

E[S pn
, W pn

] ¼ 0: (24)

Furthermore, on a rich enough probability space there exist distributionally equivalent copies

W [n]
pn
¼D W pn

such that

E(jS pn
� W [n]

pn
j) < Cnffiffiffiffiffi

ªn

p
ffiffiffiffiffiffi
rn

2rn

r
¼ Cn

ffiffiffiffiffiffiffiffiffiffi
pn rn

p
, (25)

where the numbers pn 2 (0, 1), rn 2 N and ªn 2 (1
2
, 1] are given as

pn ¼ maxfp1,n, . . . , pn,ng, rn ¼
	

Log
1

pn



and ª ¼ 1

pn2rn
,

and, with the constant C greater than 16:587,

Cn ¼ 4
ffiffiffi
2

pffiffiffi
2

p
� 1

ffiffiffiffiffi
ªn

pffiffiffiffiffi
rn

p þ 1

2

X1
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rn þ k

rn 2k

s
< C :¼ 4

ffiffiffi
2

pffiffiffi
2

p
� 1

þ 1

2

X1
k¼0

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

2k

r
, 16:588: (26)

Consequently,

sup
x2R

jPfS pn
< xg � PfW pn

< xgj <
ffiffiffiffiffiffiffiffiffi
2Cn

p

ª1=4
n

rn

2rn

� �1=4

¼
ffiffiffiffiffiffiffiffiffi
2Cn

p
( pn rn)1=4: (27)

The proof of (25) is unusual and reveals the underlying reason for the approximation

very clearly: it is the result of an infinite sequence of almost sure coupling statements in

Lemma 8, in each step of which we double the number of the n gambling Pauls, and finally

apply Martin-Löf’s limit theorem. Lemma 9 controls the remainder term in the construction

and yields the bound in (25). The bound in (27) is
ffiffiffi
2

p
times the square root of the bound

in (25), where 2 is the reciprocal of the bound on the density in (32) below. We emphasize

that the approximation in (27) holds for each fixed n and is applicable even when pn 6! 0,

as in Example 2 below; here and henceforth all asymptotic relationships are meant as

n ! 1 unless otherwise specified. If, however, pn ! 0, then the uniform rate of

approximation in (27) is far from what may be achieved by Fourier methods. The latter is
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contained in the next theorem, the only genuinely asymptotic result in the paper, where the

rate obtained, the order of the upper bound, is thought to be best possible.

Theorem 4. For any sequence of strategies pn ¼ ( p1,n, . . . , pn,n) for which

pn ¼ maxfp1,n, . . . , pn,ng ! 0, for every � . 0 there is a threshold n� 2 N such that

sup
x2R

jPfS pn
< xg � PfW pn

< xgj < (1 þ �)
�

8
pn Log2 1

pn

(28)

whenever n > n�.

To elucidate the contents of Theorems 3 and 4, we observe that the characteristic

function of the approximating distribution function G pn
(x) :¼ PfW pn

< xg, x 2 R, is

g pn
(t) :¼ E(ei tW pn ) ¼

ð1
�1

ei tx dG pn
(x) ¼

Yn

k¼1

ei tpk, nLog pk, n g1( pk,n t)

¼
Yn

k¼1

ei tpk, nLog pk, nþ y1( pk, n t), t 2 R, (29)

where g1(�) ¼ e y1(�) is Martin-Löf’s characteristic function with y1(�) given in (23). The

semistable nature of the distribution of W1 is expressed by the ‘scaling law’ found by Martin-

Löf (1985) in his Theorem 2:

y1(2ms) ¼ 2m y1(s) � i 2m ms, s 2 R, for every m 2 Z,

which can be checked directly from (23). Setting

rk,n ¼
	

Log
1

pk,n



and ªk,n ¼ 2�rk, n

pk,n

,

so that

2rk, n�1 ,
1

pk,n

< 2rk, n

and hence pk,n ¼ 2�rk, n=ªk,n and ªk,n ¼ 2�hlog pk, ni 2 (1
2
, 1] for all k 2 f1, . . . , ng for which

pk,n . 0, and using this scaling law, for every t 2 R we obtain

g pn
(t) ¼

Y
f1<k<n : pk, n.0g

exp it
2�rk, n

ªk,n

�rk,n þ Log
1

ªk,n

� �
þ y1 2�rk, n

t

ªk,n

� �� �

¼ exp
X

f1<k<n : pk, n.0g

it

2rk, n

1

ªk,n

Log
1

ªk,n

þ y1(t=ªk,n)

2rk, n

� �8<
:

9=
;

¼ exp
Xn

k¼1

pk,n it Log
1

ªk,n

þ ªk,n y1

t

ªk,n

� �� �( )
¼ exp

Xn

k¼1

pk,n yª k, n
(t)

( )
, (30)
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comparing (5) and (23). For the real part Rey1(�) of y1(�) we know from (4) in Csörgő (2002)

that

Rey1(t) < � 2

�
jtj, for all t 2 R, (31)

so that the function t 7! jtjrjg pn
(t)j is integrable over R for any power r 2 N, and hence, by

a standard result in Fourier analysis, the distribution function G pn
(�) is infinitely many times

differentiable on R, with all derivatives vanishing at �1. In particular, by the density

inversion theorem,

sup
x2R

jG9pn
(x)j < 1

2�

ð1
�1

jg pn
(t)j dt <

1

�

ð1
0

exp � 2

�

Xn

k¼1

pk,n

tªk,n

ªk,n

( )
dt ¼ 1

�

ð1
0

e�2 t=� dt ¼ 1

2

(32)

for the corresponding density function G9pn
(�), uniformly for all strategies pn.

Now, for an admissible strategy pn ¼ ( p1,n, . . . , pn,n), ª1,n ¼ . . . ¼ ªn,n ¼ 1 ¼ ªn,

so the characteristic function g pn
(�) in (30) becomes g pn

(t) ¼ expfy1(t)
Pn

k¼1 pk,ng ¼
e y1( t) ¼ g1(t) ¼

Ð1
�1 ei tx dG1(x), t 2 R. This implies the equality W pn

¼D W1 in distribution,

meaning that G pn
(�) ¼ G1(�). In particular, as perhaps the biggest mathematical surprise so

far in this disquisition, we see that whenever pn ! 0, admissible winnings have a proper

asymptotic distribution in the classical sense as n ! 1 along the entire sequence N,

always converging to Martin-Löf’s (1985) generic asymptotic random variable W1.

Corollary 1. If pn ¼ ( p1,n, . . . , pn,n) is any admissible strategy for n ¼ 2, 3, . . . , then

E[S pn
, W1] ¼ 0, inequality (25) holds with W [n]

pn
¼D W1 and ªn ¼ 1, and

sup
x2R

jPfS pn
< xg � G1(x)j <

ffiffiffiffiffiffiffiffiffi
2Cn

p rn

2rn

� �1=4

,

where rn 2 N is defined by the equation maxfp1,n, . . . , pn,ng ¼ 2�rn and, with ªn ¼ 1 in it,

the constant Cn and C > Cn are as in (26). Furthermore, if pn ¼ ( p1,n, . . . , pn,n) is any

sequence of admissible strategies such that pn ¼ maxfp1,n, . . . , pn,ng ! 0, then for every

� . 0 there is a threshold n� 2 N such that

sup
x2R

jPfS pn
< xg � G1(x)j < (1 þ �)

�

8
pnLog2 1

pn

¼ (1 þ �)
�

8

r2
n

2rn
, (33)

whenever n > n�.

Of course, if ln ¼ 2rn foolish executive Pauls force pd

n with pd

1,n ¼ . . . ¼ pd

l n,n ¼ 2�rn�1,

pd

l nþ1,n ¼ . . . ¼ pd

l nþmn,n ¼ 2�s n�1, where mn ¼ 2sn with sn ¼ bLog(n � l n)c, and

pd

l nþm nþ1,n ¼ . . . ¼ pd

n,n ¼ 0, then they not only reduce the expectations of all

n > 65 536 Pauls to only H( pd

n) ¼ 1 þ 2�1(rn þ sn) extra ducats, but also make the rate

in (33) very slow when rn ¼ bLog Log Log Log nc.

However, if n wise Pauls use the best admissible strategy p�n ¼ ( p�1,n, . . . , p�n,n) from

Theorem 2, then p�n ¼ maxfp�1,n, . . . , p�n,ng ¼ 2ªn=n, and so

982 S. Csörgő and G. Simons



sup
x2R

jPfS p�n < xg � G1(x)j < (1 þ �)
�ªn

4

Log2 n

n
, n > n�, (34)

with the best admissible entropy H( p�n ) ¼ Log n � �(n) in S p�n ¼
Pn

k¼1 p�k,n X k � H(p�n ).

On the other hand, if pn is pen ¼ (1=n, . . . , 1=n), the generally inadmissible uniform

averaging strategy for every n ¼ 2, 3, . . . , then r1,n ¼ . . . ¼ rn,n ¼ dLog ne and ª1,n ¼
. . . ¼ ªn,n ¼ ªn ¼ n=2dLog ne ¼ ªn, so that, again by (30), g pen

(�) ¼ e yª n (�) ¼ gªn
(�). Thus

W pen
¼D Wªn

, and all the results in (10), (11) and (6) follow from Theorems 3 and 4.

The merge theorem in (6) is of mutual interest to Peter and the n Pauls. If they agree on

p ¼ pn 2 (1
2
, 1), Peter’s winning probability for the series of n games, then Peter expects for

his net gain, and the n Pauls expect for their joint net loss, that

Pfn[Qªn
( p) þ Log n] � Sn > xg ¼ P

Sn

n
� Log n < Qªn

( p) � x

n

� �
� Gªn

Qªn
( p) � x

n

� �
for every x 2 R, which is p for x ¼ 0, where the order of approximation is O((Logn)2=n),

since fQªn
( pn)g is a bounded sequence if 0 , lim inf n!1 pn < lim supn!1 pn , 1. But now

each of Paul1, . . . , Pauln, using the best admissible strategy among themselves, is also

interested in the distribution of his personal net winning in his one game, for which

P
Xn

k¼1

p�k,n X k � [Qªn
( p) þ Log n] . x

( )
¼ P

Xn

k¼1

p�k,n X k � H(p�n ) . x þ Qªn
( p) þ �(n)

( )

� 1 � G1(x þ Qªn
( p) þ �(n))

for every x 2 R by (34), where, again, the order of approximation is O((Logn)2=n). Peter,

representing the bank or the insurance company, may not be interested in the fine structure of

cooperation on the other side. However, in order to facilitate the possibility of an unequal but

fair resolution, and a sense of comfort among the customers, he must tell each Paul not only

the number of other participants, but also their names and (e-mail) addresses. Numerical and

graphical illustrations will appear in Csörgő and Simons (2008).

We consider two more illustrative examples as special cases of Theorems 3 and 4.

Example 1. Suppose that n � n=2 bright Pauls are unable to convince otherwise the

remaining n=2 dumb Pauls, who collectively want to use the halved average strategy

pebn=2c=2, so that the bright Pauls are forced to use the halved best-admissible strategy

p�
n�bn=2c=2 only among themselves. Then g pn

(t) ¼ expfy1(t)=2gexpfyªbn=2c (t)=2g, t 2 R, for

the united strategy pn of the n Pauls, so that the distribution of W pn
is a convolution of

‘spectrally halved’ versions of those in Corollary 1 and (6) with the adjusted ªbn=2c.

Example 2. Consider the strategy pn ¼ ( p, (1 � p)=(n � 1), . . . , (1 � p)=(n � 1)) for some

p 2 (0, 1) and n . 1=p. This will be popular for n Pauls who are cautious but firmly trust

their own luck, and may be viewed as a generally inadmissible extension of p3 ¼ (1
2
, 1

4
, 1

4
)

in Section 2. Here we obtain g pn
(t) ¼ expfpyª( p)(t)gexpf(1 � p)yª( p,n)(t)g, t 2 R, for

ª( p) ¼ 2�dLog (1= p)e=p and ª( p, n) ¼ (n � 1)2�dLog ((n�1)=(1� p))e=(1 � p), so that the
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distribution of W pn
is again a convolution of two spectrally rescaled members of the class G

discussed in Section 1. If p ¼ 1=6 500 000 000, for example, then, calculating the constant in

(27) exactly, supx2RjPfS pn
< xg � PfW pn

< xgj , 0:0246 for all n > 6 500 000 001, that is,

for all St Petersburg gamblers on Earth at this moment.

Finally, with stochastic compactness of sequences fS pn
g in mind, notice that

g pn
(t) ¼ exp

ð1

1=2

it Log
1

ª
þ ªy1

t

ª

� �� �
dT pn

(ª)

( )
¼ exp

ð1

1=2

yª(t) dT pn
(ª)

( )
(35)

for all t 2 R by (30) and (5), for every strategy pn ¼ ( p1,n, . . . , pn,n), where T pn
(�) is a

distribution function on (1
2
, 1] defined by

T pn
(ª) ¼

X
f1 < k < n: pk, n.0g

pk,n Ifªk,n < ªg,
1

2
, ª < 1, (36)

since ªk,n ¼ 2�hLog pk, ni 2 (1
2
, 1] when pk,n . 0, hereafter called the parameter distribution

function associated with S pn
. In turn, since the right-hand-side Lévy function, appearing in

the canonical Lévy form (Gnedenko and Kolmogorov 1954: 83–84) of gª(�) in (5) is

Rª(x) ¼ �2hLog (ªx)i=x, x . 0, for each ª 2 (1
2
, 1], it follows from the details in Csörgő (2002:

823–824) that the Lévy form of g pn
(�) in (35), for the infinitely divisible distribution of W pn

,

assumes the form

g pn
(t) ¼ exp it

ð1

1=2

uª þ Log
1

ª

� �
dT pn

(ª) þ
ð1

0

ei tx � 1 � itx

1 þ x2

� �
dRpn

(x)

( )
, t 2 R,

with uª ¼
P1

j¼1ª
2=(ª2 þ 4 j) �

P1
j¼01=(1 þ ª24 j) and Lévy function

Rpn
(x) ¼

Xn

k¼1

pk,n Rª k, n
(x) ¼

ð1

1=2

Rª(x) dT pn
(ª) ¼ � 1

x

ð1

1=2

2hLog (ªx)i dT pn
(ª) ¼: � L pn

(x)

x

for all x . 0. Since L pn
(2x) ¼ L pn

(x) 2 [1, 2), x . 0, this distribution is in fact semistable of

exponent 1; for discussion and references, see Section 2 of Csörgő (2002).

In what follows, we find it convenient and natural to work with the topology associated

with circular convergence !cir (as described just before equation (4)) when working with

functions on (1
2
, 1], such as T pn

(ª), and let ¼)
cir

denote the associated form of weak

convergence for functions defined on the compact space (1
2
, 1] (under this topology). In

particular, for distribution functions Tn(ª) and T (ª) defined on (1
2
, 1], Tn(�)¼)

cir
T (�) requires

T n(b) � Tn(a) ! T (b) � T (a) for every pair of continuity points a and b of T (�) within

(1
2
, 1], thereby allowing any probability mass that is moving towards 1

2
as n ! 1 to

accumulate, in the limit, at the point 1. Moreover, let !D denote convergence in distribution.

Then the following consequence of Theorem 4 is now an easy adaptation of Helly–Bray

theory and a classical result (Gnedenko and Kolmogorov 1954: 88–91) for the convergence

of infinitely divisible distributions.
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Corollary 2. Let f pn ¼ ( p1,n, . . . , pn,n)g1n¼1 be any sequence of strategies such that pn ! 0.

Then for every subsequence fn jg1j¼1 � N there exist a further subsequence fn j m
g1m¼1 and a

distribution function T (�) on (1
2
, 1] such that T pn j m

(�)¼)
cir

T (�) and S pn j m
!D WT as m ! 1,

where WT is a semistable infinitely divisible random variable of exponent 1, the characteristic

function of which is given by

gT (t) ¼ E(ei tWT ) ¼ exp

ð1

1=2

yª(t) dT (ª)

( )

¼ exp it

ð1

1=2

uª þ Log
1

ª

� �
dT (ª) þ

ð1
0

ei tx � 1 � itx

1 þ x2

� �
dRT (x)

( )
, t 2 R,

where the Lévy function is

RT (x) ¼
ð1

1=2

Rª(x) dT (ª) ¼ � 1

x

ð1

1=2

2hLog (ªx)i dT (ª), x . 0:

Moreover,
Pn

k¼1 pk,n X k=H( pn)!P 1 as n ! 1 along the entire sequence N.

The last statement here generalizes Feller’s weak law of large numbers in (3).

Every possible distribution function T (�) on (1
2
, 1] occurs as the weak limit of a suitable

sequence fT pm n
(�)g1n¼1, for which S pm n

!D WT . This plausible, but technically non-trivial

statement is demonstrated by the following construction of Vilmos Totik: for any given T (�)
and � . 0, first we find s ¼ s(�), n0 ¼ n0(�) 2 N, 0 ¼ � sþ1 , � s , . . . , �1 , �0 ¼ 1 and

k0 ¼ k0,n, . . . , ksþ1 ¼ ksþ1,n 2 N, k0 þ . . . þ ksþ1 ¼ 2n, such that for the intermediate

approximation T�s,n(ª) ¼
Psþ1

j¼0 k j2
�n If2�� j < ªg we have sup1=2<ª<1jT�s,n(ª) � T (ª)j < �

for all n > n0, and then for m ¼ m(s, n) ¼ m0 þ . . . þ msþ1 þ 1 we put

pm ¼ ( p1, . . . , pm), in which the lth block of ml ¼ bk l=2� lc elements are all equal to

2� l=2n, l ¼ 0, . . . , s þ 1, while 0 < pm ¼ 1 �
Pm�1

j¼1 pj < 2(s þ 1)=2n. Taking T pm(s, n)
(�),

pertaining to this pm(s,n) in (36), one can show that sup1=2<ª<1 jT pm(s, n)
(ª) �

T�s,n(ª)j < 4(s þ 1)=2n for all n > n0.

We conjecture not only that the parameter distribution function T is uniquely determined

by the distribution of WT , but also that the random variables WT (1) and WT (2) are

incomparable for different parameter distribution functions T (1) and T (2).

Lastly, we point out that all the results in this paper will likely acquire a more general

form that includes those generalized St Petersburg games, considered in Csörgő and Simons

(1996) and Csörgő (2002), and in their earlier references, in which all of the Pauls play the

game with the same possibly biased coin, for which the probability of heads is some

number p 2 (0, 1), so that PfX ¼ r kg ¼ q k�1 p, k 2 N, where q ¼ 1 � p and r ¼ 1=q.

The generalizations are non-trivial, and a student of one of us, Péter Kevei, is working on

these problems.
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4. Proofs

Lemmas 2–4 are needed for the proof of the first two statements of Theorem 1, while

Lemma 1 is used in the proof of Lemma 2.

Lemma 1. If U and V are non-negative random variables for which

E(min(U , V )) , 1, (37)

then, viewed as a Lebesgue integral,

A2 :¼
ð1

0

[PfU þ V . xg � PfU . xg � PfV . xg] dx ¼ 0:

Proof. When the use of Fubini’s theorem can be justified in what follows, one has

A2 ¼
ð1

0

E(IfU þ V . xg � IfU . xg � IfV . xg) dx

¼ E

ð1
0

[IfU þ V . xg � IfU . xg � IfV . xg] dx

� �
¼ E((U þ V ) � U � V ) ¼ 0,

proving the statement. As to this interchange of the integral and the expectation, observe that

jIfU þ V . xg � IfU . xg � IfV . xgj < Ifmin(U , V ) . xg

þ Ifmax(U , V ) < x , U þ Vg

for all x > 0, so that for Z :¼
Ð1

0
jIfU þ V . xg � IfU . xg � IfV . xgj dx we have

Z <

ð1
0

[Ifmin(U , V ) . xg þ Ifmax(U , V ) < x , U þ Vg] dx

¼ min(U , V ) þ [U þ V � max(U , V )] ¼ 2 min(U , V ):

Thus E(Z) < 2E(min(U , V )) , 1 by the assumption in (37). This justifies the use of

Fubini’s theorem, and completes the proof. h

Lemma 2. For every n 2 N, if U1, U2, . . . , U n are non-negative random variables for which

E(min(U j, Uk)) , 1, for 1 < j, k < n, j 6¼ k,

then, viewed as a Lebesgue integral,

An :¼
ð1

0

P
Xn

j¼1

U j . x

( )
�
Xn

j¼1

PfU j . xg
" #

dx ¼ 0:

Proof. The proof is by induction. For n ¼ 1, the assumption is vacuous and the integrand is

identically zero. Thus the statement holds for n ¼ 1. Next, assume that the statement holds

for some n 2 N. To establish it for n þ 1, we have

986 S. Csörgő and G. Simons



Anþ1 ¼
ð1

0

P
Xnþ1

j¼1

U j . x

( )
� P

Xn

j¼1

U j . x

( )
� PfUnþ1 . xg

" #
dx

þ
ð1

0

P
Xn

j¼1

U j . x

( )
�
Xn

j¼1

PfU j . xg
" #

dx:

The last integral is zero by virtue of the induction hypothesis. So it remains to show that the

penultimate integral is also equal to zero. But this follows from Lemma 1 with U and V set

equal to
Pn

j¼1U j and Unþ1 respectively, and from the observation that

E(min(U , V )) ¼ E min
Xn

j¼1

U j, U nþ1

 ! !
< E

Xn

j¼1

min(U j, Unþ1)

 !

¼
Xn

j¼1

E(min(U j, Unþ1)),

which is finite, so that assumption (37) of Lemma 1 holds. This completes the induction

step. h

Lemma 3. If X 1 and X2 are independent St Petersburg random variables and c1 and c2 are

non-negative constants, then E(min(c1 X 1, c2 X2)) , 1.

Proof. Of course, this is obvious if either constant is zero. So assume that c1, c2 . 0. When

x > 2max(c1, c2), the distribution function F appearing in (2) yields

Pfmin(c1 X 1, c2 X2) . xg ¼ 1 � F
x

c1

� �� �
1 � F

x

c2

� �� �
,

4c1c2

x2
:

Consequently, E(min(c1 X 1, c2 X2)) ¼
Ð1

0
Pfmin(c1 X1, c2 X 2) . xg dx is finite. h

Lemma 4. If X is a St Petersburg random variable and b > 1, then

ðb

0

PfX . xg dx ¼ bLog bc þ 2hLog bi ¼ 1 þ Log b � �(b),

with the function �(�) defined in (14).

Proof. The second equality here follows directly from the definition of �(�) in (14). In

view of (2), noticing that the formula PfX . xg ¼ 1 � F(x) ¼ 2�bLog xc still produces the

correct value 1 for 1 < x , 2, the first equality requires us to show thatÐ b

1
2�bLog xc dx ¼ bLog bc þ 2hLog bi � 1 for b > 1, that is,

Ð 2c

1
2�bLog xc dx ¼ bcc þ 2hci � 1

for c > 0. But
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ð2c

1

2�bLog xc dx ¼ (log 2)

ðc

0

2�b yc 2 y dy ¼ (log 2)

ðbcc

0

2h yi dy þ
ðbccþhci

bcc
2h yi dy

( )

¼ (log 2) bcc
ð1

0

2 y dy þ
ðhci

0

2 y dy

( )
¼ bcc(21 � 20) þ (2hci � 20),

which is the desired equation, completing the proof. h

The next lemma is a basic block in the proof of the third statement of Theorem 1. It is

the almost sure version of the distributional equation in (7).

Lemma 5. The independent St Petersburg random variables X and Y can be defined on a rich

enough probability space that carries another pair of independent St Petersburg random

variables X 9 and Y 9 such that X þ Y ¼ 2X 9þ Y 9IfY 9 < X 9g almost surely.

Proof. Let X and Y be defined on a probability space that carries a third St Petersburg

random variable Z such that X , Y , Z are independent. We claim that this space will do if we

define

X 9 ¼ X IfX ¼ Yg þ max(X , Y )

2
IfX 6¼ Yg and

Y 9 ¼ XZIfX ¼ Yg þ min(X , Y ) IfX 6¼ Yg:

Indeed, checking the algebra first, if X ¼ Y , then

2X 9þ Y 9IfY 9 < X 9g ¼ 2X þ XZIfXZ < Xg ¼ 2X ¼ X þ Y ,

while if X 6¼ Y , then

2X 9þ Y 9IfY 9 < X 9g ¼ 2
max(X , Y )

2
þ min(X , Y ) I min(X , Y ) <

max(X , Y )

2

� �

¼ max(X , Y ) þ min(X , Y ) ¼ X þ Y ,

again, since max(X , Y ) is at least twice as large as min(X , Y ) if X 6¼ Y .

To check that X 9 and Y 9 have the desired joint distribution, note that for all j, k 2 N,
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PfX 9 ¼ 2 j, Y 9 ¼ 2kg ¼ PfX 9 ¼ 2 j, Y 9 ¼ 2k , X ¼ Yg þ PfX 9 ¼ 2 j, Y 9 ¼ 2k , X . Yg

þ PfX 9 ¼ 2 j, Y 9 ¼ 2k , X , Yg

¼ PfX ¼ 2 j, XZ ¼ 2k , X ¼ Yg þ PfX ¼ 2 jþ1, Y ¼ 2k , X . Yg

þ PfY ¼ 2 jþ1, X ¼ 2k , X , Yg

¼ PfX ¼ 2 j, Y ¼ 2 j, Z ¼ 2k� jg þ 2PfX ¼ 2 jþ1, Y ¼ 2k , X . Yg

¼
PfX ¼ 2 j, Y ¼ 2 j, Z ¼ 2k� jg, if k > j þ 1,

2PfX ¼ 2 jþ1, Y ¼ 2k , X . Yg, if k , j þ 1,

(

¼
PfX ¼ 2 j, Y ¼ 2 j, Z ¼ 2k� jg, if k > j þ 1,

2PfX ¼ 2 jþ1, Y ¼ 2kg, if k , j þ 1,

(

so that in either case,

PfX 9 ¼ 2 j, Y 9 ¼ 2kg ¼ 1

2 j

1

2k
¼ PfX ¼ 2 j, Y ¼ 2kg,

completely proving the lemma. h

Lemma 6. The number of the smallest strictly positive components of an admissible strategy

pn ¼ ( p1,n, . . . , pn,n), different from individualistic strategies, is even.

Proof. If not, with the smallest non-zero component of pn denoted as 1=2k for some k 2 N,

the integer 2k ¼
Pn

j¼1 2k pj,n would have to be odd, since the sum would contain an odd

number of ones and, possibly, additional even integers. h

Proof of Theorem 1. In the proof of the first two statements we shall restrict our attention to

the improper-Riemann-integral interpretation of (15). As already mentioned, it will follow

from the third assertion of the theorem, the proof of which is independent of the proof of the

first two statements, that whenever (15) is defined as an improper Riemann integral (if and

only if pn is admissible, once the first statement is proved), the integrand in (15) is non-

negative, so that (15) is also defined in the more demanding Lebesgue sense, necessarily with

the same value. For a given strategy pn ¼ ( p1,n, . . . , pn,n), the integral A( pn) in (15) in turn

is defined in the improper Riemann sense if and only if A( pn, b) ! A( pn) as b ! 1, where

A( pn, b) ¼
ðb

0

[Pf p1,n X1 þ . . . þ pn,n X n . xg � PfX 1 . xg] dx: (38)

Surprisingly, it is possible to show that

A(pn, b) ¼ H( pn) þ R(pn, b) þ o(1), as b ! 1, (39)

where H(pn) is the entropy function defined in (16), and
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R( pn, b) ¼ �(b) � [ p1,n�(b=p1,n) þ . . . þ pn,n�(b=pn,n)], (40)

where �(�) refers to the function defined in (14) and where p�(b=p) is interpreted as zero

whenever p ¼ 0; it will be clear that the latter convention is in accord with the similar

convention for the terms of the entropy function just before the statement of Theorem 1.

The ‘if part’ in the first statement of the theorem is already obvious from (39) and (40):

for whenever a component pj,n is an integer power of 2, �(b=pj,n) ¼ �(b) for every value

of b . 0, due to the periodicity property discussed following the definition of the function

�(�) in (14). Consequently, R(pn, b) ¼ �(b) � �(b)
Pn

j¼1 pj,n ¼ 0 for every b . 0, and then

A( pn, b) ¼ H( pn) þ o(1) ! H( pn) as b ! 1. So A(pn) ¼ H( pn) for every admissible

strategy pn ¼ ( p1,n, . . . , pn,n), as claimed in the second statement.

Conversely, still taking (39) for granted, suppose the improper Riemann integral A(pn) in

(15) is defined, so that A( pn, b) ! A( pn) as b ! 1. Then it follows from (39) that

R( pn, b) ¼ A(pn) � H( pn) þ o(1), as b ! 1: (41)

Now, in view of the previously noted periodicity property of �(s) in the variable u ¼ Log s, it

follows from the definition in (40) that

R( pn, 2k b) ¼ �(2k b) � [ p1,n�(2k b= p1,n) þ . . . þ pn,n�(2k b=pn,n)]

¼ �(b) � [ p1,n�(b=p1,n) þ . . . þ pn,n�(b=pn,n)] ¼ R( pn, b)

for every k 2 N. Fixing b . 0 and letting k ! 1, so that 2k b ! 1, we see that the o(1)

term appearing in (41) must be identically zero. Whence,

R(pn, b) ¼ A(pn) � H(pn), b . 0, (42)

a constant function in the variable b.

At this point, we must examine more closely the function �(�) defined in (14) and

graphed in Figure 1. It is apparent that �(s) is continuous in s, and even differentiable in s

except at integer powers of 2, where �(s) ¼ 0 and where there are unequal left and right

derivatives. Let Dþ denote the right-hand-side differential operator and D� denote the left-

hand-side differential operator, and consider the linear operator D ¼ Dþ � D� that applies

to a subset of real functions on R. As applied to �(�), it can be easily checked that

Dþ�(s)js¼2 k ¼ 1

2k

1

log 2
� 1

� �
. 0 and D��(s)js¼2 k ¼ 1

2k

1

log 2
� 2

� �
, 0

for any k 2 Z, the multiplying factor of 1=2k in the first of these being approximately 0:4426

while that in the second �0:5574, in accord with the first graph in Figure 1. So,

D�(s) ¼
1

2k
, for s ¼ 2k when k 2 Z,

0, for all other s . 0,

8<
:

from which, when pj,n . 0, we find that
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D pj,n�(b=pj,n) ¼
1

2k
, for b ¼ 2k pj,n when k 2 Z,

0, for all other b . 0,

8<
:

j ¼ 1, . . . , n. Viewing R( pn, b) as a function of b . 0, using (40) and the last two formulae

for s ¼ 1 ¼ b, we obtain

DR( pn, b)jb¼1 ¼ 1 �
X
j2A

pj,n,

where A is the set of indices j 2 f1, . . . , ng for which pj,n is an integer power of 2. But

DR( pn, b) ¼ 0 by (42) for every b . 0, and so
P

j2A pj,n ¼ 1. So every non-zero pj,n is an

integer power of 2. This completes the ‘only if’ part for the first statement.

It remains to validate (39). To this end, set U j ¼ pj,n X j in Lemma 2 for j ¼ 1, . . . , n.

By Lemma 3 the condition E(min(U j, U k)) , 1 for 1 < j, k < n, j 6¼ k, is met, so thatð1
0

P
Xn

j¼1

pj,n X j . x

( )
�
Xn

j¼1

Pfpj,n X j . xg
" #

dx ¼ 0:

Consequently, ðb

0

P
Xn

j¼1

pj,n X j . x

( )
dx ¼

Xn

j¼1

ðb

0

Pfpj,n X j . xg dx þ o(1)

as b ! 1, so that, from (38),

A( pn, b) ¼
Xn

j¼1

ðb

0

Pfpj,n X j . xg dx �
ðb

0

PfX1 . xg dx þ o(1)

¼
X

f1< j<n: pj, n .0g
pj,n

ðb= pj, n

0

PfX1 . yg dy �
ðb

0

PfX 1 . xg dx þ o(1)

as b ! 1. All of the latter integrals can be evaluated for sufficiently large values of b by

applying Lemma 4. With these applications, and with the definitions of H(pn) and R(pn, b)

in (16) and (40), we obtain

A( pn, b) ¼
X

f1< j<n: pj, n .0g
pj,n 1 þ Log

b

pj,n

� �
b

pj,n

� �� �
� [1 þ Log b � �(b)] þ o(1)

¼
X

f1< j<n: pj, n .0g
pj,nLog

1

pj,n

þ �(b) �
X

f1< j<n: p j, n .0g
pj,n�

b

pj,n

� �8<
:

9=
;þ o(1)

¼ H( pn) þ R(pn, b) þ o(1) as b ! 1:

This completes the validation of (39), and hence the proof of the first two statements.

We turn to the proof of the third assertion. Given an arbitrary admissible strategy
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pn ¼ ( p1,n, . . . , pn,n), let m ¼ mn > 1 denote the number of its non-zero components.

Starting with this strategy p(1)
n ¼ pn and the independent St Petersburg random variables

X
(1)
1 ¼ X1, . . . , X (1)

n ¼ X n, we shall define recursively a sequence of admissible strategies

p(i)
n ¼ ( p

(i)
1,n, . . . , p(i)

n,n), i ¼ 2, . . . , m, terminating with p(m)
n ¼ (1, 0, . . . , 0), and corre-

sponding sequences of independent St Petersburg random variables X
(i)
1 , . . . , X (i)

n ,

i ¼ 2, . . . , m, which yield a monotone non-increasing sequence of pooled winnings:

p1,n X 1 þ . . . þ pn,n X n ¼ p
(1)
1,n X

(1)
1 þ . . . þ p(1)

n,n X (1)
n

> p
(2)
1,n X

(2)
1 þ . . . þ p(2)

n,n X (2)
n >. . .

> p
(m)
1,n X

(m)
1 þ . . . þ p(m)

n,n X (m)
n

¼ X
(m)
1

almost surely. To complete the proof, following this construction, one only needs to set

X pn
¼ X

(m)
1 and Y pn

¼ p1,n X 1 þ . . . þ pn,n X n � X pn
.

Now to the details of the construction: beginning with i ¼ 2, but otherwise proceeding

from the already constructed (i � 1)th level in exactly the same way at each step, we seek

out within the strategy p(i�1)
n ¼ ( p

(i�1)
1,n , . . . , p(i�1)

n,n ) a pair of the smallest non-zero

components, p
(i�1)
j,n and p

(i�1)
k,n , say, with 1 < j , k < n. Since all of our constructed

strategies are admissible, beginning with the given admissible strategy p(1)
n ¼ pn, it follows

by Lemma 6 that p
(i�1)
j,n and p

(i�1)
k,n are equal. Call the common value c ¼ c

(i�1)
j,k;n . Then let

p
(i)
l,n ¼

2c, for l ¼ j,

0, for l ¼ k,

p
(i�1)
l,n , for l ¼ 1, . . . , n, l 6¼ j and l 6¼ k:

8>><
>>:

Finally, identifying the St Petersburg random variables X and Y appearing in the statement of

Lemma 5 with the variables X
(i�1)
j and X

(i�1)
k appearing in the (i � 1)th stage of the

construction, corresponding to the two smallest components of the strategy singled out, let

X 9j,k;i and Y 9j,k;i be the new independent St Petersburg random variables, also independent of

X
(i�1)
l , l ¼ 1, . . . , n, l 6¼ j, l 6¼ k, provided by Lemma 5, and set

X
(i)
l ¼

X 9j,k;i, for l ¼ j,

Y 9j,k;i, for l ¼ k,

X
(i�1)
l , for l ¼ 1, . . . , n, l 6¼ j and l 6¼ k:

8>><
>>:

Clearly, the new strategy p(i)
n ¼ ( p

(i)
1,n, . . . , p(i)

n,n) is admissible and

992 S. Csörgő and G. Simons



p
(i)
1,n X

(i)
1 þ . . . þ p(i)

n,n X (i)
n ¼ p

(i�1)
1,n X

(i�1)
1 þ . . . þ p(i�1)

n,n X (i�1)
n

� c[X
(i�1)
j þ X

(i�1)
k ] þ 2c X 9j,k;i þ 0 � Y 9j,k;i

¼ p
(i�1)
1,n X

(i�1)
1 þ . . . þ p(i�1)

n,n X (i�1)
n

� c[2X 9j,k;i þ Y 9j,k;i IfY 9j,k;i < X 9j,k;ig] þ 2cX 9j,k;i

¼ p
(i�1)
1,n X

(i�1)
1 þ . . . þ p(i�1)

n,n X (i�1)
n � cY 9j,k;i IfY 9j,k;i < X 9j,k;ig

> p
(i�1)
1,n X

(i�1)
1 þ . . . þ p(i�1)

n,n X (i�1)
n

almost surely by Lemma 5. This completes the recursive construction for indices

i ¼ 2, . . . , m. It should be noted that the number of non-zero components in p(i)
n is one

fewer than in p(i�1)
n . By the time the index i reaches m, the strategy p(m)

n has only one non-

zero component, and it takes the stated form (1, 0, . . . , 0). The proof of the third statement

of the theorem is now complete, and so the whole theorem is proved. h

In line with what it should be, one can show – after carefully tracing through the

construction above in the proof of the third assertion of Theorem 1, and using (8) – that

E(Y pn
) ¼ H( pn). Thus the third statement of Theorem 1 provides a stochastic route for

evaluating the added value of an admissible strategy pn ¼ ( p1,n, . . . , pn,n).

Proof of Theorem 2. Simplifying notation, we shall let —n denote the collection of all n-

dimensional admissible strategies p ¼ ( p1, . . . , pn) ¼ ( p1,n, . . . , pn,n) ¼ pn with non-

increasing components p1 > p2 > . . . > pn. Since the value of H( p) ¼ H( pn) is

independent of the order of the components of p, the ordering of the component sizes

within —n is imposed as a matter of convenience. By Lemma 6, for p 2 —n, the last

two terms, u p ¼ pn�1 and v p ¼ pn, can assume one of the three patterns:

(u p, v p) ¼ (0, 0), (1=2k , 0) or (1=2k , 1=2k) for some k 2 N. In all three cases, the sum

u p þ v p is either zero or an integer power of 2. Thus, when n > 3, we can form a new

admissible strategy p̂p ¼ ( p̂p1, . . . , p̂pn�1) 2 —n�1 consisting of the n � 1 components

p1, . . . , pn�2, u p þ v p, ordered from largest to smallest. Further, we observe (with

0 Log 0 ¼ 0) that

H( p) � H( p̂p) ¼ �
Xn

j¼1

pj Log pj þ
Xn�1

j¼1

p̂pj Log p̂pj

¼ (u p þ v p)Log (u p þ v p) � u p Log u p � v p Log v p

¼
0, when v p ¼ 0,

2u p Log 2u p � 2u p Log u p ¼ 2u p, when v p . 0:

(

Thus
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H(p) ¼ H( p̂p), when v p ¼ 0,

H( p̂p) þ 2u p, when v p . 0:

�
(43)

Equation (43) will play an essential role in an induction argument below.

After these preliminaries, we also note that the second equality in (18) follows directly

from the definition of the function �(�) in (14). Moreover, writing any n ¼ 2, 3, . . . as

n ¼ 2bLog nc þ rn with the remainder term rn 2 f0, 1, . . . , 2bLog nc � 1g, we see that

H n ¼ bLog nc þ 2hLog ni � 1 ¼ bLog nc þ n

2bLog nc � 1 ¼ bLog nc þ 2bLog nc þ rn

2bLog nc � 1

¼ bLog nc þ rn

2bLog nc ,

so what we have to prove is that

H( p) < k þ r

2k
, p 2 —2 kþr, r ¼ 0, 1, . . . , 2k � 1; k 2 N, (44)

and that equality is attained in (44) for a given k and r, uniquely within —2 kþr, when the first

2k � r components of p ¼ p� ¼ p�n ¼ p�
2 kþr

¼ ( p�1 , . . . , p�
2 kþr

) are equal to 1=2k and the

remaining 2r components are equal to 1=2kþ1. To see that this is consistent with the

description of p�n in (19) and (20), we note that when n ¼ 2k þ r with r . 0, then

dLog ne ¼ dLog (2k þ r)e ¼ k þ 1, so that, appropriately, m2(n) ¼ 2kþ1 � (2k þ r) ¼ 2k � r

and 2 p�n ¼ 2=2kþ1 ¼ 1=2k . Likewise, appropriately, m1(n) ¼ 2(2k þ r) � 2kþ1 ¼ 2r and

p�n ¼ 1=2kþ1. Also, when n ¼ 2k , then dLog ne ¼ dLog 2ke ¼ k, so that m2(n) ¼
2k � (2k þ 0) ¼ 0, m1(n) ¼ 2(2k þ 0) � 2k ¼ 2k , and, appropriately, p�n ¼ p�

2 k is a vector

with all of its components equal to p�
2 k ¼ 1=2k .

Addressing the claim of equality first, for the strategy p�
2 kþr

¼ ( p�1 , . . . , p�
2 kþr

) described

above we have

X2 kþr

j¼1

p�j ¼ 2k � r

2k
þ 2r

2kþ1
¼ 1

and

H( p�2 kþr) ¼
X2 kþr

j¼1

p�j Log
1

p�j
¼ (2k � r)

k

2k
þ 2r

k þ 1

2kþ1
¼ k2k þ r

2k
¼ k þ r

2k
:

It remains to prove (44) and the attendant claim that p�
2 kþr

is the only strategy in —2 kþr

for which equality obtains in (44). By the unconstrained result mentioned after Theorem 2

in the previous section, this statement is valid for every k 2 N when r ¼ 0. Suppose that

the statement is true for some k 2 N and r 2 f0, 1, . . . , 2k � 2g, and consider

n ¼ 2k þ r þ 1 and any p ¼ ( p1, . . . , pn) 2 —2 kþrþ1. Let u p and v p be the penultimate

and ultimate components of p. Then with p̂p 2 —2 kþr defined from p as described above,

we can conclude from (43) and from part of the induction hypothesis that
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max
p2—n

H(p) < max
p̂p2— n�1

H( p̂p) þ 2 max
f p2—n:v p.0g

u p < k þ r

2k
þ 2 max

f p2—n:v p.0g
u p: (45)

Thus, to show the inequality

H( p) < k þ r þ 1

2k
, p 2 —2 kþrþ1, (46)

the case v p ¼ 0 being of no relevance here, it is only necessary to show that u p can never

exceed 1=2kþ1 when u p ¼ v p . 0. If this were not so, we would need to have a

p ¼ ( p1, . . . , pn) 2 —2 kþrþ1 for which u p ¼ v p > 1=2k and, consequently,

p1 þ . . . þ pn >
n

2k
¼ 2k þ r þ 1

2k
. 1:

So, necessarily, u p ¼ v p < 1=2kþ1, and (46) follows.

The case of equality in (46) arises from two equalities in (45). Necessarily, a

p 2 —2 kþrþ1 for which equality obtains in (46) must be such that p̂p ¼ p�n�1 ¼ p�
2 kþr

, which

by the other part of the induction hypothesis is the unique maximizing member of

—n�1 ¼ —2 kþr, and u p ¼ v p ¼ 1=2kþ1. The first condition says that

p̂p ¼ 1

2k
, . . . ,

1

2k|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2 k�r times

,
1

2kþ1
, . . . ,

1

2kþ1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
2r times

0
BB@

1
CCA:

Quite obviously, this and the second condition can hold together if and only if

p ¼ 1

2k
, . . . ,

1

2k|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2 k�(rþ1) times

,
1

2kþ1
, . . . ,

1

2kþ1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
2(rþ1) times

0
BB@

1
CCA,

which is p�n ¼ p�
2 kþrþ1

, completing the proof of the theorem. h

The next lemma is for the proof of (24) in Theorem 3. As discussed in Csörgő and

Simons (2002), this lemma is not true in general: it is valid here because of the

independence assumptions.

Lemma 7. If U1, . . . , Un are independent random variables and V1, . . . , Vn are also

independent random variables, n > 2, such that E[U1, V1], . . . , E[Un, Vn] are all finite

either in the Lebesgue or in the improper Riemann sense, then

En :¼ E[U1 þ . . . þ Un, V1 þ . . . þ Vn] ¼ E[U1, V1] þ . . . þ E[U n, Vn]

in the corresponding sense.

Proof. It suffices to prove the statement for n ¼ 2, which we formally do in the Lebesgue

case; the other case is analogous. Using first the law of total probability twice, combined with
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independence, adding and subtracting a term, integrating by parts and changing variables, by

Fubini’s theorem we obtain

E2 ¼
ð1
�1

ð1
�1

PfU1 þ v . xg dPfU2 < vg �
ð1
�1

PfV1 þ v . xg dPfV2 < vg
� �

dx

¼
ð1
�1

ð1
�1

PfU1 þ v . xg dv(PfU2 < vg � PfV2 < vg)

� �
dx

þ
ð1
�1

ð1
�1

(PfU1 þ v . xg � PfV1 þ v . xg) dvPfV2 < vg
� �

dx

¼
ð1
�1

ð1
�1

(PfV2 þ y . xg � PfU2 þ y . xg) d yPfU1 . yg
� �

dx

þ
ð1
�1

ð1
�1

(PfU1 þ v . xg � PfV1 þ v . xg) dvPfV2 < vg
� �

dx

¼
ð1
�1

E[V2, U2] dvPfU1 . yg þ
ð1
�1

E[U1, V1] dvPfV2 < vg

¼ E[U1, V1] � E[V2, U2] ¼ E[U1, V1] þ E[U2, V2],

where, in the fourth and sixth equations, we also used properties (10c) and (10a) of Theorem

2.2 in Csörgő and Simons (2002). h

The last two lemmas were roughly described following Theorem 3. We use the notation

S pn
from (21) with the emphasized convention that such centred sums are always built on n

independent St Petersburg random variables for any strategy pn. For any given n ¼ 2, 3, . . .
and strategy pn ¼ ( p1,n, p2,n, . . . , pn,n) and every k 2 f0, 1, 2, . . .g we consider the

associated strategy

pk
n ¼ ( p1,n2 k , p2,n2 k , . . . , pn2 k ,n2 k ) ¼ p1,n

2k
, . . . ,

p1,n

2k|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2 k times

,
p2,n

2k
, . . . ,

p2,n

2k|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2 k times

, . . . ,
pn,n

2k
, . . . ,

pn,n

2k|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2 k times

0
BB@

1
CCA

of n2k components, so that p0
n ¼ pn. Thus, according to our convention, S p k

n
is based on n2k

independent St Petersburg random variables. Whenever S
p

j
n

is defined on the probability

space of Lemma 8 below, for some j 2 f0, 1, 2, . . .g, based on the independent St Petersburg

random variables X1,n2 j , . . . , X n2 j ,n2 j , the space will be rich enough to carry an independent

sequence X�
1,n2 j , . . . , X�

n2 j ,n2 j of independent St Petersburg random variables, from which we

form the independent random variables

Z1,n2 j ¼
X�

1,n2 j IfX�
1,n2 j < X1,n2 jg

2
� 1, . . . , Z n2 j,n2 j ¼

X�
n2 j ,n2 j IfX�

n2 j ,n2 j < X n2 j,n2 jg
2

� 1

and define

996 S. Csörgő and G. Simons



T
p

j
n
¼
Xn2 j

m¼1

pm,n2 j Z m,n2 j ¼ p1,n

2 j

X2 j

m¼1

Z m,n2 j þ . . . þ pn,n

2 j

X2 j

m¼1

Z(n�1)2 jþm,n2 j :

We note right away that Z m,n2 j has mean zero by (8) for all m ¼ 1, . . . , n2 j, and hence

E(T
p

j
n
) ¼ 0 whenever T

p
j
n

is defined.

Lemma 8. For any fixed n ¼ 2, 3, . . . and strategy pn ¼ ( p1,n, p2,n, . . . , pn,n) the

independent St Petersburg random variables X 1, X 2, . . . , X n, on which S pn
is based, can

be given on a rich enough probability space (�, A, P) such that

S p k
n
¼ S pn

þ
Xk�1

j¼0

T
p

j
n

for every k 2 N, (47)

almost surely.

Proof. Let the probability space (�, A, P) be such that, besides the given initial sequence

fX 1,n20 , X2,n20 , . . . , X n,n20g ¼ fX1, X2, . . . , X ng, it carries all the independent sequences

fX�
1,n2 j , . . . , X�

n2 j ,n2 jg and fB�1,n2 j , . . . , B�n2 j ,n2 jg, j ¼ 0, 1, 2, . . . ,

that are independent of the initial sequence fX1, X 2, . . . , X ng such that for each

j 2 f0, 1, 2, . . .g the sequence fX�
1,n2 j , . . . , X�

n2 j ,n2 jg consists of independent St Petersburg

random variables, while the sequence fB�1,n2 j , . . . , B�n2 j ,n2 jg consists of independent mean-

one-half Bernoulli random variables. We claim that this space does the job.

Starting from the initial sequence fX 1,n20 , X2,n20 , . . . , X n,n20g ¼ fX1, X2, . . . , X ng, we

inductively construct the desired sequences for (47). Consider a sequence X n2 k ¼
fX 1,n2 k , . . . , X n2 k ,n2 kg of independent St Petersburg random variables for some

k 2 f0, 1, 2, . . .g. Match this with X�
n2 k ¼ fX�

1,n2 k , . . . , X�
n2 k ,n2 kg, and construct

Z1,n2 k , . . . , Z n2 k ,n2 k and T p k
n

from the two sequences as described above. Finally, define

the independent random variables fY1,n2 kþ1 , . . . , Yn2 kþ1,n2 kþ1g ¼: Yn2 kþ1 in the following way:

Y2i�1,n2 kþ1 ¼ X i,n2 k IfX i,n2 k , X�
i,n2 kg þ 2X i,n2 k IfX�

i,n2 k < X i,n2 k , Bi,n2 k ¼ 0g

þ X�
i,n2 k IfX�

i,n2 k < X i,n2 k , Bi,n2 k ¼ 1g

and

Y2i,n2 kþ1 ¼ X i,n2 k IfX i,n2 k , X�
i,n2 kg þ 2X i,n2 k IfX�

i,n2 k < X i,n2 k , Bi,n2 k ¼ 1g

þ X�
i,n2 k IfX�

i,n2 k < X i,n2 k , Bi,n2 k ¼ 0g

for i ¼ 1, . . . , n2k. The proof of Theorem 5.1 in Csörgő and Simons (2002) establishes that

all the components in Yn2 kþ1 are St Petersburg random variables and

pi,n2 k

Y2i�1,n2 kþ1 þ Y2i,n2 kþ1

2
� 1

� �
¼ pi,n2 k [X i,n2 k þ Zi,n2 k ], i ¼ 1, . . . , n2k ,

from which, summing over all indices i ¼ 1, . . . , n2k ,

Pooling strategies for St Petersburg gamblers 997



Xn2 kþ1

i¼1

pi,n2 kþ1 Yi,n2 kþ1 � 1 ¼
Xn2 k

i¼1

pi,n2 k X i,n2 k þ T p k
n

almost surely. Building S p kþ1
n

on the sequence X n2 kþ1 ¼ Yn2 kþ1 , this may be rewritten as

S p kþ1
n

þ H(pkþ1
n ) � 1 ¼ S p k

n
þ H( pk

n) þ T p k
n
,

which, since, clearly,

H(p j
n) ¼ H( pn) þ j for all n 2 f2, 3, . . .g and j 2 f0, 1, 2, . . .g, (48)

yields S p kþ1
n

¼ S p k
n
þ T p k

n
. On the one hand, this gives S p1

n
¼ S p0

n
þ T p0

n
to initiate the

induction and, on the other, using the induction hypothesis that the equality in (47) holds for

some k 2 f0, 1, 2, . . .g, also that S p kþ1
n

¼ S pn
þ
Pk

j¼0T
p

j
n

holds almost surely. h

Lemma 9. For every m 2 f2, 3, . . .g and strategy pm ¼ ( p1,m, p2,m, . . . , pm,m) with

pm ¼ maxf p1,m, . . . , pm,mg, let X 1, . . . , X m, X�
1 , . . . , X m� be independent St Petersburg

random variables and Z j ¼ 1
2
X�

j IfX�
j < X jg � 1, j ¼ 1, . . . , m. Then

E(jT pm
j) ¼ E(jp1,m Z1 þ . . . þ p1,m Z mj) ,

1

2
ffiffiffiffiffiffi
ªm

p
ffiffiffiffiffiffiffi
rm

2rm

r
þ 4ffiffiffiffiffiffiffi

2rm

p ,

where rm ¼ dLog (1=pm)e 2 N and ªm ¼ 2�rm=pm 2 (1
2
, 1] for which pm ¼ 2�rm= ªm.

Proof. Adjusting the end of the proof of Lemma 5.1 in Csörgő and Simons (2002), from the

average of Z1, . . . , Z m to their present linear combination, for all k 2 f0, 1, 2, . . .g we

obtain

E(jT pm
j) ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

p2
j,m

vuut ffiffiffi
k

2

r
þ 2

2k
<

ffiffiffiffiffiffi
pm

p ffiffiffi
k

2

r
þ 2

2k
:

Choosing k ¼ brm=2c > 0, the lemma follows by elementary manipulation. h

Applying Lemma 9 to any of the T
p

j
n

in (47), since rn2 j ¼ rn þ j and ªn2 j ¼ ªn for

every n 2 f2, 3, . . .g and j 2 f0, 1, 2, . . .g, as is easy to see, we obtain

X1
j¼0

E(jT
p

j
n
j) ,

X1
j¼0

1

2
ffiffiffiffiffi
ªn

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rn þ j

2rnþ j

r
þ 4ffiffiffiffiffiffiffiffiffiffiffi

2rnþ j
p

" #

¼ 1ffiffiffiffiffi
ªn

p
ffiffiffiffiffiffi
rn

2rn

r X1
j¼0

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ j=rn

2 j

r
þ 4

ffiffiffiffiffi
ªn

pffiffiffiffiffi
rn

p ffiffiffiffiffi
2 j

p
" #

¼ Cnffiffiffiffiffi
ªn

p
ffiffiffiffiffiffi
rn

2rn

r
, (49)

identifying the constant Cn in (26) of Theorem 3 by elementary calculation. This implies that

the right-hand side of (47) converges almost surely on the probability space of Lemma 8, as

k ! 1, to the limiting random variable S pn
þ
P1

j¼0T
p

j
n
, which we denote by W [n]

pn
. On the

other hand, using (48), for the left-hand side random variable in (47) we notice that

998 S. Csörgő and G. Simons



S p k
n
¼D p1,n

P2 k

j¼1 X j

2k
� k

" #
þ . . . þ pn,n

Pn2 k

j¼(n�1)2 kþ1 X j

2k
� k

" #
� H(pn)

for a sequence X 1, . . . , X n2 k of independent St Petersburg random variables, and hence by

Martin-Löf’s (1985) Theorem 1, or the corresponding special case of a result in Csörgő and

Dodunekova (1991), both described in Section 1, S p k
n

converges in distribution as k ! 1 to

the random variable W pn
¼ p1,nW

(1)
1 þ . . . þ pn,nW

(n)
1 � H( pn), as defined in (22). In

conclusion,

W pn
¼D W [n]

pn
¼ S pn

þ
X1
j¼0

T
p

j
n
, (50)

where the right-hand side random variable is well defined on the probability space of Lemma

8.

Proof of Theorem 3. Since E[X 1, W1] ¼ 0 by the case n ¼ 1 in equation (10), the first

statement in (24) follows directly from Lemma 7 by properties (10b) and (10c) of

Theorem 2.2 in Csörgő and Simons (2002). Next, we have E(jW [n]
pn

� S pn
j) ¼

E(j
P1

j¼0T
p

j
n
j) <

P1
j¼0E(jT

p
j
n
j), so the second statement in (25) follows from (49).

Finally, we derive (27) from (25). Using the notation in (21), (22) and (50), and denoting

the bound in (25) by �n ¼ Cn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rn=2rn

p
=
ffiffiffiffiffi
ªn

p
¼ Cn

ffiffiffiffiffiffiffiffiffiffi
pn rn

p
, on the special probability space

(�, A, P) of Lemma 8 and (25), we have

PfS pn
< xg ¼ PfW [n]

pn
< x þ (W [n]

pn
� S pn

), ��n < W [n]
pn

� S pn
< �ng

þ PfW [n]
pn

< x þ (W [n]
pn

� S pn
), jW [n]

pn
� S pn

j . �ng

for every x 2 R, where �n ¼
ffiffiffiffiffiffiffiffi
2�n

p
. Since PfA \ Bg > PfAg � PfBcg for any two events A

and B and the complement Bc of B, using Lemma 9 and the Markov inequality, this implies

G pn
(x � �n) � �n

�n

< PfS pn
< xg < G pn

(x þ �n) þ �n

�n

,

on any probability space (�, A, P) where the X 1, . . . , X n in S pn
are defined. Since for the

density function G9pn
(x) of G pn

(x) ¼ PfW pn
< xg we have supx2RG9pn

(x) < 1
2

by (32), from

these inequalities, using the Lagrange mean value theorem, we obtain

sup
x2R

jPfS pn
< xg � G pn

(x)j < �n

2
þ �n

�n

¼
ffiffiffiffiffiffiffiffi
2�n

p
¼

ffiffiffiffiffiffiffiffiffi
2Cn

p

ª1=4
n

rn

2rn

� �1=4

¼
ffiffiffiffiffiffiffiffiffi
2Cn

p
( pn rn)1=4,

proving (27). (The choice of �n was to make the two terms in the last bound equal.) h

Proof of Theorem 4. Since the proof is a direct extension of that of (6) in Csörgő (2002), we

only sketch it, using all applicable ingredients from Csörgő (2002), including (a close match

to) the notation, and concentrating mainly on the differences.

By (29),
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g pn
(t) ¼ expf�itH( pn)gexp

Xn

k¼1

y1( pk,n t)

( )
,

and for f pn
(t) ¼ E(ei tS pn ) we obtain

f pn
(t) ¼ expf�itH(pn)gexp

Xn

k¼1

log(1 þ yk,n(t))

( )
,

where

yk,n(t) ¼ E(ei tpk, n X � 1) ¼
ð1

0

(expfitpk,n2dLog (1=s)eg � 1) ds, jtj < Tn:

Here T n ¼ 2K n=pn for K n ¼ 1=Log (1= pn) and we take n large enough to make

p1þk
n < Kn < 4=e2 and Ln ¼ 2K n(2 � Log K n) , 1 for an arbitrarily given k . 0. Of

course, yk,n(t) ¼ 0 if pk,n ¼ 0. If pk,n . 0, then for xk,n(t) ¼ yk,n(t)=pk,n we obtain as

extensions of the corresponding special cases of (10) and (11) in Csörgő (2002) that

Re xk,n(t) < � 2

�
� 8 pk,n

�2
jtj

� �
jtj, t 2 R,

jxk,n(t)j < 2 þ Log
2

pk,njtj

� �
jtj, jtj < Tn:

The latter implies jyk,n(t)j < Ln and, setting wk,n(t) ¼ log(1 þ yk,n(t)) � yk,n(t), also that

jwk,n(t)j < M n p2
k,njxk,n(t)j2 for jtj < Tn, where

M n ¼ 1

6
þ 1

3

1

1 � Ln

! 1

2
:

So we obtain

j f pn
(t) � g pn

(t)j <
����ePn

k¼1
log(1þ yk, n( t)) � e

Pn

k¼1
yk, n( t)

����þ
����ePn

k¼1
yk, n( t) � e

Pn

k¼1
y1( pk, n t)

����
< e

Pn

k¼1
Re yk, n( t)e

Pn

k¼1
jwk, n( t)j Xn

k¼1

jwk,n(t)j

þ 1

2
e
Pn

k¼1
Re yk, n( t) þ e

Pn

k¼1
Re y1( pk, n t)

n oXn

k¼1

jyk,n(t) � y1( pk,n t)j

¼: �(1)
n (t) þ �(2)

n (t)

as an analogue of (7) in Csörgő (2002). Using the bounds above, the fact that the function

x 7! x[3 � Log ( pk,nx)]2 is increasing on [0, Tn] if pk,n . 0, and the fact that for each

jtj 2 (0, T n] the function x 7! x[3 � Log (xjtj)]2 is also increasing on [0, pn], for every

t 2 [�Tn, Tn] we obtain
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�(1)
n (t) < M n expf�Cn tgpnf3 � Log ( pnjtj)g2jtj2,

where

Cn ¼ 2

�
� 16

�2
K n � 2K n M n(2 � Log K n)2 ! 2

�
:

Since by Lemma 4 in Csörgő (2002) we have

Xn

k¼1

jyk,n(t) � y1( pk,n t)j ¼
Xn

k¼1

����X1
j¼0

ei tpk, n=2 j � 1 � itpk,n

2 j

� �
2 j

���� < t2

2

Xn

k¼1

p2
k,n

X1
j¼0

2 j

22 j
< pn t2,

we see that

�(2)
n (t) <

1

2
exp � 2

�
� 16

�2
K n

� �
jtj

� �
þ exp � 2

�
jtj

� �� �
pn t2 for all t 2 R,

where we have again used the bound for Re xk,n(�) and also that for Re y1(�) in (31).

By Esseen’s classical smoothing lemma (Lemma 1 in Csörgő 2002), using the bound in

(32), for the deviation ˜n ¼ supx2RjPfS pn
< xg � PfW pn

< xgj in (28) we obtain

˜n <
b

2�

ðTn

�Tn

�(1)
n (t)

jtj dt þ b

2�

ðTn

�Tn

�(2)
n (t)

jtj dt þ cb

supx2RG9pn
(x)

Tn

<
bM n

�

ð2K n= pn

0

e�C n t t
2 þ Log (2=pn t)

Log (1=pn)

� �2

dt

( )
pn Log2 1

pn

þ b

2�

ð1
0

t exp � 2

�
� 16

�2
K n

� �
t

� �
dt þ

ð1
0

t exp � 2

�
t

� �
dt

� �
pn þ

cb

4
pn Log

1

pn

for all n large enough and all b . 1, where the constant cb depends only on b. Since

K n ! 0, the coefficient of pn in the second term has a finite limit. But since K n > p1þk
n , a

version of the argument in Csörgő (2002: 842–843) also shows that the limsup of the

coefficient of pn Log2 (1=pn) is not greater than b(1 þ k)2�=8, which proves (28). h
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Martin-Löf, A. (1985) A limit theorem which clarifies the ‘Petersburg paradox’. J. Appl. Probab., 22,

634–643.

Samuelson, P.A. (1977) St. Petersburg paradoxes: defanged, dissected, and historically described.

J. Economic Lit., 15, 24–55. (Republished as Chapter 298 in K. Crowley (ed), The Collected

Scientific Papers of Paul A. Samuelson, Vol. 5, pp. 133–164. Cambridge, MA: MIT Press, 1986.)

Zolotarev, V.M. (1978) Pseudomoments. Teor. Verojatnost. i Primenen., 23, 284–294 (in Russian).

Received September 2005 and revised February 2006

1002 S. Csörgő and G. Simons
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