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1. Introduction and main results

Stein’s method for Poisson approximation was adapted by Chen (1975) from Stein’s (1972)

method for normal approximation, and it has proved to be an extremely powerful tool for

establishing Poisson approximations to sums of dependent integer-valued random variables

(see Barbour et al. 1992: Chapter 1). The method is based on the observation that a random

variable Y follows the Poisson distribution with mean º, denoted as Pn(º), if and only if

E[ºg(Y þ 1) � Yg(Y )] ¼ 0 for all functions g : N ! R such that EjYg(Y )j , 1. This can

be converted into approximation theorems with respect to any of a general class of

distances dF on probability measures on Zþ, defined by

dF (P, Q) :¼ sup
f 2F

jPf f g � Qf f gj,

where F is any suitably rich set of test functions f : Zþ ! R. To do so, take any f 2 F, and

recursively solve for the function g f which satisfies the equations

ºg f (i þ 1) � ig f (i) ¼ f (i) � Pn(º)f f g, i 2 Zþ, (1:1)

where Pn(º)f f g :¼ E f (Y ) with Y � Pn(º). Then, for any random variable W on Zþ, we have

E f (W ) � Pn(º)f f g ¼ E[ºg f (W þ 1) � Wg f (W )], (1:2)

so long as the expectations all exist. Let

M l(g) :¼ sup
w2Zþ

j˜ l g(w)j, l 2 Zþ,

where ˜g(w) :¼ g(w þ 1) � g(w). If it can be shown that

jEfºg(W þ 1) � Wg(W )gj < �0 M0(g) þ �1 M1(g) þ �2 M2(g),
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for all functions g for which M l(g) , 1, l ¼ 0, 1, 2, then it follows from (1.2) that

dF (L(W ), Pn(º)) ¼ sup
f 2F

jE f (W ) � Pn(º)f f gj

< �0 sup
f 2F

M0(g f ) þ �1 sup
f 2F

M1(g f ) þ �2 sup
f 2F

M2(g f ):

The set of test functions considered in this note is the set of Lipschitz functions on Zþ,

that is,

F ¼ FW ¼ f f : Zþ ! R : j f (x) � f (y)j < jx � yjg,

and the corresponding metric is the Wasserstein metric. The estimates of Stein’s constants

sup f 2F M l(g f ) for the Wasserstein metric are summarized in the following theorem. Here,

since (1.1) does not involve the value of g f (0), it is convenient to define it by

g f (0) :¼ g f (1).

Theorem 1.1. Defining g f (0) ¼ g f (1), with c1 ^ c2 :¼ minfc1, c2g, we have

sup
f 2FW

M0(g f ) ¼ 1, (1:3)

sup
f 2FW

M1(g f ) < 1 ^ 8

3
ffiffiffiffiffiffiffi
2eº

p < 1 ^ 1:1437ffiffiffi
º

p , (1:4)

sup
f 2FW

M2(g f ) <
4

3
^ 2

º
: (1:5)

Remark 1.1. The bounds (1.3) and (1.4) are stated in Barbour et al. (1992: Remark 1.1.6),

without detailed proof.

Remark 1.2. The bound of (1.5) is tight. From (2.24) below, we have

sup
f 2FW

˜2 g f (1) ¼ 2

º
� 4(1 � e�º � e�ºº)

º3
�

2

º
, as º ! 1,

4

3
, as º ! 0:

8>><
>>:

In Poisson approximation, the usual distance of choice is the total variation distance dTV,

for which F :¼ f1A, A � Zþg; the analogues of (1.3) and (1.4) for dTV, given in Barbour

et al. (1992: Remark 1.1.2), are

sup
f 2FW

M0(g f ) < 1 ^
ffiffiffiffiffi
2

eº

r
, sup

f 2FW

M1(g f ) < 1 ^ 1

º
: (1:6)

The Wasserstein distance between probability measures on Zþ takes into account not only the

amounts by which their probabilities differ, as in the total variation distance, but also where

the differences occur. In particular, when approximating by Pn(º), differences in probabilities
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‘typically’ occur at places separated by distances of order
ffiffiffi
º

p
, the standard deviation of

Pn(º), and are thus magnified by a factor of order
ffiffiffi
º

p
; hence dW can be expected typically to

be of order
ffiffiffi
º

p
dTV. This is reflected in the comparison between the Stein factors for dW ,

given in (1.3) and (1.4), and those for dTV, given in (1.6); the former are of larger order by a

factor of
ffiffiffi
º

p
. Correspondingly, in the very simplest example of a sum of independent random

variables W ¼
Pn

i¼1 X i, where X i � Be( pi), we have

dTV(L(W ), Pn(º)) < º�1º2, (1:7)

from Barbour et al. (1992: (1.23)), where º :¼
Pn

i¼1 pi and º2 :¼
Pn

i¼1 p2
i . Exactly the same

Stein argument, but using (1.4) to bound M1(g), gives the bound

dW (L(W ), Pn(º)) < 1:1437º�1=2º2, (1:8)

larger by a factor of order
ffiffiffi
º

p
. Nonetheless, by considering the Lipschitz function

f ( j) ¼ j j � ºj, it is easy to see that the bound in (1.8) is of the correct order in º.

In order to get a dW -bound of the same order as in (1.7), it is necessary to approximate

not by Pn(º), but by a distribution which matches the variance as well as the mean; for

example, by

P9 :¼ Pn(º� b) � �b,

where � denotes convolution, �b the point mass at b, and b ¼ bº2c. If, in fact, º2 is an

integer, then Stein’s method, together with (1.5), can be used to derive the following neat

bound.

Proposition 1.2. Let W ¼
Pn

i¼1 X i, where the X i � Be( pi) are independent, and define

º ¼
Pn

i¼1 pi, º2 :¼
Pn

i¼1 p2
i . If º2 is an integer, set b ¼ º2, a ¼ º� º2; then we have

dW (L(W ), P9) < 2a�1
Xn

i¼1

p2
i (1 � pi) þ 2E[(b � W )1fW<b�1g] < 4a�1º2: (1:9)

Of course, there are also bounds of better order than º�1º2 for dTV-approximation of

L(W ) by distributions matching the first two moments; see, for example, Barbour and Hall

(1984: Theorem 3), and C̆ekanavic̆ius and Vaitkus (2001). However, it is important now to

note that the arguments needed are more complicated, in part because there is no universal

analogue of (1.5), with a bound of order º�3=2, for dTV. In particular, it is for this reason

not so easy to improve on the Poisson approximation bounds in dTV, when W is a general

sum of weakly dependent random variables, just by fitting the second moment as well,

though various techniques have been used in particular contexts: see Barbour and Eagleson

(1987) and Röllin (2005), for example. In contrast, for proving dW -approximation to

distributions which match both mean and variance, this problem does not arise, because of

the uniform bound given in (1.5).
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2. The proofs

Splitting g f (i) ¼ h f (i) � h f (i � 1), i > 1, we can reformulate (1.1) as

º(h f (i þ 1) � h f (i)) þ i(h f (i � 1) � h f (i)) ¼ f (i) � Pn(º)f f g, (2:1)

where the left-hand side of (2.1) is the generator of the immigration–death process with

constant immigration rate º and unit per-capita death rate applied to h f . If fZi(t), t > 0g
denotes the immigration–death process with this generator and initial value Zi(0) ¼ i, then

the solution to Stein equation (2.1) can be written as

h f (i) ¼ �
ð1

0

fE[ f (Zi(t))] � Pn(º)f f gg dt; (2:2)

see Barbour (1988) or Brown and Xia (2001) for details.

Proof of ð1:3Þ. Since g f is the first difference of h f , we have for i > 1 that

g f (i) ¼ h f (i) � h f (i � 1) ¼ �
ð1

0

E[ f (Zi(t)) � f (Zi�1(t))] dt: (2:3)

Now let S be a negative exponential random variable with mean 1 and independent of

fZi�1(t), t > 0g. Construct

Zi(t) ¼ Zi�1(t) þ 1fS. tg: (2:4)

We obtain from (2.3) that

g f (i) ¼ �
ð1

0

e� tE[ f (Zi�1(t) þ 1) � f (Zi�1(t))] dt ¼ �
ð1

0

e� tE˜ f (Zi�1(t)) dt: (2:5)

Hence, for f 2 FW ,

jg f (i)j <
ð1

0

e� t dt ¼ 1,

with equality when f (k) ¼ k, k 2 Zþ. h

We shall mostly use the notation of Brown and Xia (2001) for the proof of the remaining

results. For each i > 1, write

�þi ¼ infft : Zi(t) ¼ i þ 1g, ��i ¼ infft : Zi(t) ¼ i � 1g,

�i ¼ Pn(º)fig, eþi ¼ E(�þi ), e�i ¼ E(��i ),

and for convenience, set

��0 ¼ 1, e�0 ¼ 1:

Applying Lemma 2.2 of Brown and Xia (2001) with immigration rate Æk ¼ º and death rate

�k ¼ k gives
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eþj ¼ F( j)

º� j

, e�j ¼ F( j)

j� j

, (2:6)

where

F( j) ¼
Xj

k¼0

�k , F( j) ¼
X1
k¼ j

�k : (2:7)

Let g j be the solution of the Stein equation (1.1) for the function f ¼ 1f jg. Then Brown

and Xia (2001: (2.9) and (2.10)) state that, for i > 1 and j > 0,

g j(i) ¼
�� je

þ
i�1, i < j,

� je
�
i , i > j þ 1:

(

Since it is clear that

g f (i) ¼
X1
j¼0

f ( j)g j(i),

we obtain

g f (i) ¼ �eþi�1

X
j>i

� j f ( j) þ e�i
X

j<i�1

� j f ( j), i > 1: (2:8)

Proof of ð1:4Þ. By the definition of g f (0) ¼ g f (1), we have ˜g f (0) ¼ 0, so it remains to

consider ˜g f (i) for i > 1. It follows from (2.8) that

˜g f (i) ¼ �(eþi � eþi�1)
X

j>iþ1

� j f ( j) þ (e�iþ1 � e�i )
X

j<i�1

� j f ( j) þ �i f (i)(eþi�1 þ e�iþ1): (2:9)

Replacing f by f � f (i) if necessary, we may assume that f (i) ¼ 0, so (2.9) becomes

˜g f (i) ¼ �(eþi � eþi�1)
X

j>iþ1

� j f ( j) þ (e�iþ1 � e�i )
X

j<i�1

� j f ( j): (2:10)

Lemma 2.4 of Brown and Xia (2001) shows that eþk is increasing in k and e�k is decreasing in

k, so we obtain from (2.10) that, for each f 2 FW ,

j˜g f (i)j < (eþi � eþi�1)
X
j>iþ1

� j( j � i) þ (e�i � e�iþ1)
X

j<i�1

� j(i � j), (2:11)

the maximum in (2.10) being achieved by f i1( j) ¼ �j j � ij, j 2 Zþ. This identifies the

extremal function f for evaluating ˜g f (i).

On the other hand, (2.5) implies that

˜g f (i) ¼ �
ð1

0

e� tE[˜ f (Zi(t)) � ˜ f (Zi�1(t))] dt: (2:12)

We now use the coupling (2.4) to obtain from (2.12) that
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˜g f (i) ¼ �
ð1

0

e�2 tE[˜2 f (Zi�1(t))] dt, (2:13)

which implies that

sup
f 2FW

j˜g f (i)j ¼ ˜g f i1
(i) ¼ 2

ð1
0

e�2 t P(Zi�1(t) ¼ i � 1) dt (2:14)

< 2

ð1
0

e�2 t max
j

P(Z0(t) ¼ j) dt < 2

ð1
0

e�2 t 1 ^ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eº(1 � e� t)

p
 !

dt

¼

1, if 2eº < 1,

8

3
ffiffiffiffiffiffiffi
2eº

p � 1

eº
þ 1

12e2º2
<

8

3
ffiffiffiffiffiffiffi
2eº

p , if 2eº . 1,

8>><
>>:

where the second inequality comes from the fact that Z0(t) � Pn(º(1 � e� t)) and from

Barbour et al. (1992: 262). h

To prove (1.5), we first need a technical lemma.

Lemma 2.1. For i > 1,

eþiþ1 � 2eþi þ eþi�1 > 0, (2:15)

e�iþ2 � 2e�iþ1 þ e�i > 0: (2:16)

Proof. By (2.6) and (2.7), we have

eþiþ1 � 2eþi þ eþi�1 ¼ F(i þ 1)

º�iþ1

� 2
F(i)

º�i

þ F(i � 1)

º�i�1

¼ 1

º�iþ1

Xiþ1

j¼0

� j �
2

º�i

Xiþ1

j¼1

� j�1 þ
1

º�i�1

Xiþ1

j¼2

� j�2

¼ º�i�2(i þ 1)!þ º�i�1[(i þ 1)!� 2(i!)]

þ
Xiþ1

j¼2

º�(iþ2� j) (i þ 1)!

j!
� 2

i!

( j � 1)!
þ (i � 1)!

( j � 2)!

� �
: (2:17)

It is straightforward to check that all of these coefficients are non-negative for i > 1, and

hence (2.15) follows.

Likewise, we obtain from (2.6) and (2.7) that
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e�iþ2 � 2e�iþ1 þ e�i ¼ F(i þ 2)

(i þ 2)�iþ2

� 2
F(i þ 1)

(i þ 1)�iþ1

þ F(i)

i�i

¼
X1
j¼i

º j�i (i þ 1)!

( j þ 2)!
� 2

i!

( j þ 1)!
þ (i � 1)!

j!

� �
,

and (2.16) follows from the fact that all of the coefficients are positive, for i > 1. h

Proof of ð1:5Þ. Replacing f by � f if necessary, it suffices to show that ˜2 g f (i) < 4=3 ^ 2=º
for all f 2 FW . For i ¼ 0, it follows from (2.14) and because g f (0) ¼ g f (1) that

˜2 g f (0) ¼ ˜g f (1) <

ð1
0

2e�2 t P(Z0(t) ¼ 0) dt

¼
ð1

0

2e�2 t�º(1�e� t) dt ¼ 2

º
� 2

º2
(1 � e�º) < 1 ^ 2

º
,

where, again, Z0(t) � Pn(º(1 � e� t)), so that we may take i > 1 for the rest of the proof.

Using (2.9), we obtain

˜2 g f (i) ¼ ˜g f (i þ 1) � ˜g f (i)

¼ �
X

j>iþ2

� j f ( j)(eþiþ1 � 2eþi þ eþi�1) þ
X
j<i�1

� j f ( j)(e�iþ2 � 2e�iþ1 þ e�i )

þ �iþ1 f (i þ 1)(2eþi � eþi�1 þ e�iþ2) þ �i f (i)(e�iþ2 � 2e�iþ1 � eþi�1): (2:18)

Replacing f by ~ff ¼ f � f (i), we may assume that f (i) ¼ 0, so it follows from (2.18)

and Lemma 2.1 that

˜2 g f (i) ¼ �(eþiþ1 � 2eþi þ eþi�1)
X

j>iþ2

( f ( j) � f (i þ 1))� j þ (e�iþ2 � 2e�iþ1 þ e�i )
X

j<i�1

� j f ( j)

þ f (i þ 1) �iþ1(2eþi � eþi�1 þ e�iþ2) � (eþiþ1 � 2eþi þ eþi�1)
X

j>iþ2

� j

" #

< (eþiþ1 � 2eþi þ eþi�1)
X

j>iþ2

( j � (i þ 1))� j þ (e�iþ2 � 2e�iþ1 þ e�i )
X

j<i�1

� j(i � j)

þ f (i þ 1) �iþ1(2eþi � eþi�1 þ e�iþ2) � (eþiþ1 � 2eþi þ eþi�1)
X

j>iþ2

� j

" #
, (2:19)

with equality if

f ( j) ¼ f (i þ 1) þ (i þ 1) � j, for j > i þ 2,

i � j, for j < i:

�

Poisson approximation in Wasserstein distance 949



If

�iþ1(2eþi � eþi�1 þ e�iþ2) � (eþiþ1 � 2eþi þ eþi�1)
X

j>iþ2

� j , 0, (2:20)

we may take f (i þ 1) ¼ �1, in which case the corresponding f which achieves the maximum

of ˜2 g f (i) is f i2( j) ¼ i � j, j 2 Zþ. We shall show that this is impossible. In fact, we can

use (2.13) to deduce that

˜2 g f (i) ¼ �
ð1

0

e�2 tE[˜2 f (Zi(t)) � ˜2 f (Zi�1(t))] dt,

which, together with the coupling (2.4), ensures that

˜2 g f (i) ¼ �
ð1

0

e�3 tE[˜3 f (Zi�1(t))] dt: (2:21)

Hence, ˜2 g f i2
(i) ¼ 0, and consequently

�iþ1(2eþi � eþi�1 þ e�iþ2) � (eþiþ1 � 2eþi þ eþi�1)
X

j>iþ2

� j > 0,

contradicting to (2.20). Hence the function f which maximizes ˜2 g f (i) over f 2 FW has

f (i þ 1) ¼ þ1, and is given by

f i3( j) ¼ i � j, if j < i,

i þ 2 � j, if j > i þ 1:

�

Defining

f i4( j) ¼ f i3( j) � f i2( j) ¼ 0, for j < i,

2, for j > i þ 1,

�

it follows from (2.18) and because ˜2 g f i2
(i) ¼ 0 that

sup
f 2FW

˜2 g f (i) ¼ ˜2 g f i4
(i)

¼ �2(eþiþ1 � 2eþi þ eþi�1)
X

j>iþ2

� j þ 2�iþ1(2eþi � eþi�1 þ e�iþ2)

¼ �2(eþiþ1 � 2eþi þ eþi�1)
X

j>iþ1

� j þ 2�iþ1(eþiþ1 þ e�iþ2) (2:22)

< 2�iþ1(eþiþ1 þ e�iþ2),

where the inequality is due to (2.15); and then, by (2.6),

�iþ1(eþiþ1 þ e�iþ2) ¼ �iþ1

F(i þ 1)

º�iþ1

þ F(i þ 2)

º�iþ1

� �
¼ 1

º
: (2:23)

Finally, it follows from (2.21) that
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˜2 g f i4
(i) ¼ �

ð1
0

e�3 t[2P(Zi�1(t) ¼ i � 2) � 4P(Zi�1(t) ¼ i � 1) þ 2P(Zi�1(t) ¼ i)] dt

< 4

ð1
0

e�3 t dt ¼ 4

3
,

completing the proof. h

In fact, it follows from (2.22) and (2.23) that

sup
f 2FW

˜2 g f (1) ¼ 2

º
� 2(eþ2 � 2eþ1 þ eþ0 )

X
j>2

� j;

hence, since eþ2 � 2eþ1 þ eþ0 ¼ 2=º3 from (2.17), we have

sup
f 2FW

˜2 g f (1) ¼ 2

º
� 4(1 � e�º � e�ºº)

º3
, (2:24)

which is enough to show that the bound (1.5) is asymptotically sharp.

Proof of Proposition 1.4. It is straightforward to check that (1.9) is equivalent to

dW (L(W � b), Pn(a)) < 2a�1
Xn

i¼1

p2
i (1 � pi) þ 2E[(b � W )1fW<b�1g] < 4a�1º2: (2:25)

To see (2.25), first observe that

EfWg(W )g ¼
Xn

i¼1

piEg(Wi þ 1)

for all functions g : Z ! R such that E[W jg(W )j] , 1, where Wi :¼ W � X i. Hence

Xn

i¼1

piEg(W þ 1) � EfWg(W )g ¼
Xn

i¼1

p2
i E˜g(Wi þ 1),

and also

Ef˜g(Wi þ 1) � ˜g(W )g ¼ (1 � pi)E˜
2 g(Wi);

thus we have

(º� º2)Eg(W þ 1) � Ef(W � º2)g(W )g ¼
Xn

i¼1

p2
i (1 � pi)E˜

2 g(Wi): (2:26)

Now, for f : Z ! R, let g f : N ! R be the solution to the equation

ag f ( j þ 1) � jg f ( j) ¼ f ( j) � Pn(a)f f g, j > 0,

and set g f (0) ¼ g f (1) and g f ( j) ¼ 0 for j , 0; then define ~gg f ( j) :¼ g f ( j � b). Directly

from (2.26), it follows that
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aE ~gg f (W þ 1) � Ef(W � b) ~gg f (W )g ¼
Xn

i¼1

p2
i (1 � pi)E˜

2 g f (Wi � b)

¼
Xn

i¼1

p2
i (1 � pi)E [˜2 g f (Wi � b)]1fWi>b�2g

� �
:

On the other hand, from the definition of ~gg and because g f (0) ¼ g f (1),

a ~gg f ( j þ 1) � ( j � b) ~gg f ( j) ¼ ag f ( j � b þ 1) � ( j � b)g f ( j � b)

¼

f ( j � b) � Pn(a)f f g, if j > b,

ag f (0) ¼ ag f (1), if j ¼ b � 1,

0, if j < b � 2,

8>>><
>>>:

and hence

Ef( f (W � b) � Pn(a)f f g)1[b,1)(W )g

¼
Xn

i¼1

p2
i (1 � pi)E [˜2 g f (Wi � b)]1fWi>b�2g

� �
� ag f (1)P(W ¼ b � 1)

¼
Xn

i¼1

p2
i (1 � pi)E [˜2 g f (Wi � b)]1fWi>bg

� �
(2:27)

þ g f (1)
Xn

i¼1

p2
i (1 � pi)[P(Wi ¼ b � 2) � P(Wi ¼ b � 1)] � aP(W ¼ b � 1)

( )
:

Now, arguing carefully, we have

Xn

i¼1

p2
i (1 � pi)[P(Wi ¼ b � 2) � P(Wi ¼ b � 1)] � aP(W ¼ b � 1)

¼
Xn

i¼1

p2
i [P(Wi ¼ b � 2) � P(W ¼ b � 1)] � aP(W ¼ b � 1),

this last because

P(W ¼ j) ¼ (1 � pi)P(Wi ¼ j) þ pi P(Wi ¼ j � 1), j > �2; (2:28)

hence we deduce that
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Xn

i¼1

p2
i (1 � pi)[P(Wi ¼ b � 2) � P(Wi ¼ b � 1)] � aP(W ¼ b � 1)

¼
Xn

i¼1

p2
i P(Wi ¼ b � 2) � ºP(W ¼ b � 1)

¼
Xn

i¼1

p2
i [P(Wi < b � 2) � P(Wi < b � 3)] � ºP(W ¼ b � 1)

¼
Xn

i¼1

pi[P(Wi < b � 2) � P(W < b � 2)] � ºP(W ¼ b � 1)

¼ E[(W � º)1[0,b)(W )], (2:29)

where the penultimate equality again follows from (2.28).

Without real loss of generality, we may take f (0) ¼ 0, so that then g f (1) ¼
�Pn(a)f f g=a. Thus we have from (2.27), (2.29) and (1.5) that

jE( f (W � b) � Pn(a)f f g)j

<
2

a

Xn

i¼1

p2
i (1 � pi) þ jE[( f (W � b) � Pn(a)f f g)1[0,b)(W )] þ g f (1)E[(W � º)1[0,b)(W )]j

¼ 2

a

Xn

i¼1

p2
i (1 � pi)

þ jEf[ f (W � b) � a�1Pn(a)f f g(W � b) � a�1Pn(a)f f g(a þ b � º)]1[0,b)(W )gj

<
2

a

Xn

i¼1

p2
i (1 � pi) þ 2E[(b � W )1[0,b)(W )] < 2a�1º2 þ 2º2 P(W < b � 1),

since jPn(a)f f gj < a, j f (W � b)j < jW � bj, b ¼ º2 and a þ b ¼ º. Finally, by Chebyshev’s

inequality,

P(W < b � 1) < P(jW � ºj > ºþ 1 � b) <
Ef(W � º)2g
(ºþ 1 � b)2

<
1

a
,

completing the proof of (2.25). Here, the Chernoff lower bound could be used instead,

normally resulting in a bound of much smaller order for this contribution. h

If º2 is not an integer, there is a correction due to the fact that we cannot take b ¼ º2

and have the random variable W � b on the integers. However, if � is such that b � � is an

integer, then a can be replaced by a þ � and b by b � � in (2.25), and the error bound then

has to be increased by an amount �k˜gk < 1:1437�(a þ �)�1=2.
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