
On singular values of matrices with

independent rows

SHAHAR MENDELSON 1 and ALAIN PAJOR2

1Centre for Mathematics and its Applications, Institute of Advanced Studies, Australian National

University, Canberra, ACT 0200, Australia. E-mail: shahar.mendelson@anu.edu.au
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We present deviation inequalities of random operators of the form N�1
PN

i¼1X i � X i from the average

operator E(X � X ), where X i are independent random vectors distributed as X , which is a random

vector in Rn or in ‘2. We use these inequalities to estimate the singular values of random matrices

with independent rows (without assuming that the entries are independent).
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1. Introduction

The goal of this paper is to present deviation inequalities of random operators defined via

independent copies of a random vector X in Rn or in the Hilbert space ‘2. To be more

exact (and for the sake of simplicity), let X be a random vector taking values in Rn and

consider (X i)
n
i¼1 which are independent random vectors distributed as X . Our aim is to

estimate the deviation of operators of the form N�1
PN

i¼1X i � X i from the average operator

E(X � X ), where X � X is the operator defined by (X � X )(v) ¼ hX , viX. Our

investigation is motivated by two seemingly unrelated questions concerning the eigenvalues

of some random matrices.

First, let X be a random point selected from a convex symmetric body in Rn which is in

isotropic position. By this we mean the following: let K � Rn be a convex and symmetric

set (i.e. if x 2 K then �x 2 K) with a non-empty interior. We say that K is in isotropic

position if for any t 2 Rn,

1

vol(K)

ð
K

jht, xij2 dx ¼ ktk2, (1:1)

where the volume and the integral are with respect to the Lebesgue measure on Rn, and h�, �i
and k � k respectively denote the scalar product and the norm in the Euclidean space ‘n

2 or in

the infinite-dimensional space ‘2. In other words, if one considers the normalized volume

measure on K and X is a random vector with that distribution, then a body is in isotropic

position if for every t 2 Rn, EjhX , tij2 ¼ ktk2. It is easy to verify that for every convex,

symmetric set K in Rn with a non-empty interior, there is some T 2 GLn(R) such that TK is
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isotropic. Note that we use a slightly different normalization than the standard definition of

the isotropic position used in asymptotic geometry (for the more standard notion, see Milman

and Pajor 1989), but for our purposes (1.1) is the correct normalization.

Consider the random operator ˆ : Rn ! RN defined by

ˆ ¼

X1

X2

..

.

X N

0
BBB@

1
CCCA,

where (X i)
N
i¼1 are independent random variables distributed according to the normalized

volume measure on the body K. The ability to bound the largest and the smallest singular

values of ˆ has several applications (which will be explored in Section 3). For example, it is

natural to ask whether the largest singular value of ˆ is of the order
ffiffiffiffiffi
N

p
with high

probability. Unfortunately, it seems that the standard method of estimating the largest

eigenvalue fails here, unless one has much more information on the geometry of the body

than the fact that it is in isotropic position.

For example, if the body has the property that for some constant c and every t 2 Rn

the random variable Z t ¼ hX , ti has a sub-Gaussian tail (i.e. Pr(fjZ tj > ug) <
2 exp(�cu2=ktk2)), then one can show using a standard �-net argument that the largest

singular value of ˆ is indeed of the order
ffiffiffiffiffi
N

p
. Unfortunately, most bodies do not exhibit

this sub-Gaussian behaviour (for a characterization of such bodies, see Paouris 2005), and

thus one must resort to a different approach to obtain an estimate on the largest singular

value of ˆ.
A difficulty arises because the matrix ˆ has dependent entries, whereas in the standard

set-up in the theory of random matrices, one investigates matrices with independent,

identically distributed entries.

The method we use to address this problem is surprisingly simple. Note that if N > n,

the first n eigenvalues of ˆˆ� ¼ (hX i, X ji)N
i, j¼1 are the same as the eigenvalues of

ˆ�ˆ ¼
PN

i¼1X i � X i. We will show that under very mild assumptions on X , with high

probability, ����� 1

N

XN

i¼1

X i � X i �¸

�����
‘n
2
!‘n

2

(1:2)

tends to 0 quickly as N tends to infinity, where ¸ ¼ E(X � X ), and we provide quantitative

bounds on the rate of convergence and the ‘high probability’. In particular, with high

probability the eigenvalues of N�1
PN

i¼1X i � X i are close to the eigenvalues of ¸.

This general approximation question was motivated by an application in complexity

theory, investigated by Kannan et al. (1997), regarding algorithms which approximate the

volume of convex bodies. Previous results in the direction of estimating (1.2) were obtained

by Bourgain and by Rudelson. Bourgain (1999) proved the following theorem:

Theorem 1.1. For every � . 0, there exists a constant c(�) for which the following holds. If K
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is a convex symmetric body in Rn in isotropic position and N > c(�)n log3 n, then with

probability at least 1� �, for any t 2 S n�1,

1� � <
1

N

XN

i¼1

hX i, ti2 ¼ 1

N
kˆtk2 < 1þ �:

Giannopoulos and Milman (2000) showed that Bourgain’s method can actually give a

better estimate of N > c(�)n log2 n.

Equivalently, the previous inequalities say that N�1=2ˆ : ‘n
2 ! ‘N

2 is a good embedding of

‘n
2 .

Remark. When the random vector X ¼ (gi)
n
i¼1 where (gi)

n
i¼1 are independent, standard

Gaussian variables, it is known that for any t 2 S n�1,

1� 2

ffiffiffiffiffi
n

N

r
<

1

N

XN

i¼1

hX i, ti2 < 1þ 2

ffiffiffiffiffi
n

N

r

holds with high probability (see Davidson and Szarek 2001: Theorem II.13). This implies that

in the Gaussian case, Theorem 1.1 is true for N > 4n=�2, and that this estimate is

asymptotically optimal, up to a numerical constant.

Bourgain’s result was improved by Rudelson (1999), who removed one power of the

logarithm while proving a more general statement:

Theorem 1.2. There exists an absolute constant C for which the following holds. Let Y be a

random vector in Rn such that E(Y � Y ) ¼ Id. Then

E

����� 1

N

XN

i¼1

Yi � Yi � Id

�����
‘n
2
!‘n

2

< C

ffiffiffiffiffiffiffiffiffiffi
log n

N

r
(EkYklogN )1=logN :

Our main result, which is a deviation estimate for (1.2), implies the result of Rudelson,

and its proof follows a similar path to his work.

The second application we present has a different flavour. Let � � Rd and set � to be a

probability measure on �. Let t be a random variable on � distributed according to � and

set X (t) ¼
P1

i¼1

ffiffiffiffi
ºi

p
�i(t)�i, where (�i)

1
i¼1 is an orthonormal basis in L2(�, �) and

(ºi)
1
i¼1 2 ‘1.
This choice of X (t) originates in a question in nonparametric statistics which we

now formulate. Let L : �3� ! R be a bounded, positive-definite kernel. Under

mild assumptions, by Mercer’s theorem, there is an orthonormal basis of L2(�, �), de-

noted by (�i)
1
i¼1, such that �� �-almost surely, L(t, s) ¼

P1
i¼1ºi�i(t)�i(s). Hence,

hX (t), X (s)i ¼ L(s, t) and the squares of the singular values of the random matrix ˆ are

the eigenvalues of the Gram matrix (hX (ti), X (t j)i)N
i, j¼1, where t1, . . . , tN are independent

random variables distributed according to �. It is natural to ask whether the eigenvalues of

this Gram matrix converge in some sense to the eigenvalues of the integral operator

TL ¼
Ð

L(x, y) f (y)d�(y). This question was explored by Koltchinskii (1998) and
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Koltchinskii and Giné (2000) and some partial results were obtained on the expected

distance (with respect to the distance d(x, y) ¼ inf� (
P1

i¼1(xi � y� (i))
2)1=2, with the infimum

taken with respect to all permutations) between the set of empirical eigenvalues and the set

of eigenvalues of the integral operator.

The significance of this question is that the eigenvalues of the integral operator play a

key role in the analysis of kernel-based methods, often used in various statistical

applications (for some theoretical results in this context, see Mendelson 2003 and references

therein) but it is not clear how those should be estimated from the given data in the form of

the Gram matrix. Our results enable us to do just that; indeed, if X (t) ¼
P1

i¼1

ffiffiffiffi
ºi

p
�i(t)�i

then

E(X � X ) ¼
X1
i¼1

ºih�i, �i�i ¼ TL:

Hence, a deviation inequality for kN�1
PN

i¼1X i � X i �¸k‘2!‘2 enables one to estimate with

high probability the eigenvalues of the integral operators using the eigenvalues of the Gram

matrix.

We end this introduction with a notational convention. Throughout, all absolute constants

are positive and will be denoted by C or c. Their values may change from line to line, or

even within the same line. By k � k we denote either the ‘2 norm or the operator norm

between ‘2 spaces. Other norms we use will be clearly specified.

2. The deviation inequality

Our starting point is the definition of the family of Orlicz norms. Recall that for a random

variable Y and Æ > 1, the łÆ norm of Y is

kYkłÆ ¼ inf C . 0; E exp
jY jÆ
CÆ

� �
< 2

� �
:

A standard argument (de la Peña and Giné 1999; van der Vaart and Wellner 1996) shows

that if Y has a bounded łÆ norm then the tail of Y decays faster than 2 exp(�uÆ=kYkÆłÆ
).

Moreover, a straightforward computation shows that for every Æ > 1, if, for every integer

p > 1, (EjY pj)1= p < Kp1=Æ, then kYkłÆ < cÆK, where cÆ is a constant which depends only

on Æ.
Let us turn to the assumptions we need to make on the random vector X.

Assumption 2.1. Let X be a random vector on Rn (or ‘2). We will assume the following:

(i) There is some r . 0 such that for every Ł of norm 1, (EjhX , Łij4Þ1=4 < r.

(ii) Set Z ¼ kXk. Then kZkłÆ , 1 for some Æ > 1.

Observe that Assumption 2.1 implies that the average operator ¸ satisfies k¸k < r2.
Indeed, denoting by S the sphere in either ‘n

2 or ‘2,
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k¸k ¼ sup
Ł1,Ł22S

h¸Ł1, Ł2i ¼ sup
Ł1,Ł22S

EhX , Ł1ihX , Ł2i

< sup
Ł2S

EhX , Łi2 < r2:

The main result we shall establish is the following:

Theorem 2.1. There exists an absolute constant c for which the following holds. Let X be a

random vector in Rn (or ‘2) which satisfies Assumption 2.1 and set Z ¼ kXk. For any

integers n and N let d ¼ minfn, Ng if X is essentially supported in a finite-dimensional

space and d ¼ N otherwise. If

Ad,N ¼ kZkłÆ

ffiffiffiffiffiffiffiffiffiffi
log d

p
(log N )1=Æffiffiffiffiffi

N
p and Bd,N ¼ r2ffiffiffiffiffi

N
p þ k¸k1=2Ad,N

then, for any x . 0,

Pr

�����
XN

i¼1

(X i � X i �¸)

����� > xN

 !
< exp � cx

maxfBd,N , A2
d,Ng

 !�
2
4

3
5,

where � ¼ (1þ 2=Æ)�1 and ¸ ¼ E(X � X ).

As we show below, the probability we wish to estimate is the tail of the supremum of a

centred empirical process. It is impossible to use standard concentration results for such

processes (for example, Talagrand’s inequality; see Ledoux 2001) because the indexing class

of functions at hand is not bounded in L1.

The first step in the proof of Theorem 2.1 is a well-known symmetrization theorem (van

der Vaart and Wellner 1996) which originated in the works of Kahane and Hoffman-

Jørgensen. Recall that a Rademacher random variable is a random variable taking values

�1 with probability 1
2
.

Theorem 2.2. Let Z be a stochastic process indexed by a set F and let N be an integer. For

every i < N, let �i : F ! R be arbitrary functions and set (Zi)i<N to be independent copies

of Z. Under mild topological conditions on F and (�i) ensuring the measurability of the

events below, for any x . 0,

�N (x)Pr sup
f 2F

����XN

i¼1

Zi( f )

���� . x

 !
< 2Pr sup

f 2F

����XN

i¼1

�i Zi( f )� �i( f )ð Þ
���� . x

2

 !
,

where (�i)
N
i¼1 are independent Rademacher random variables and

�N (x) ¼ inf
f 2F

Pr

����XN

i¼1

Zi( f )

���� , x

2

 !
:

Observe that it is possible to express the operator norm of
PN

i¼1(X i � X i �¸) as the
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supremum of an empirical process. Indeed, let U be the set of tensors v� w, where v and

w are vectors in the unit Euclidean ball (or the unit ball in ‘2). Then

kX � X �¸k ¼ sup
U2U

hX � X �¸, Ui,

where hX � X , v� xi ¼ hX , vihX , wi.
Consider the process indexed by U defined by

Z(U ) ¼ 1

N

XN

i¼1

hX i � X i �¸, Ui:

Clearly, for every U, EZ(U ) ¼ 0 and

sup
U2U

Z(U ) ¼
����� 1

N

XN

i¼1

(X i � X i �¸)

�����:
Hence, to apply Theorem 2.2 one has to estimate, for any fixed U 2 U,

Pr

����XN

i¼1

hX i � X i �¸, Ui
���� . Nx

 !
:

It is easy to verify that for any U 2 U,

var(hX � X �¸, Ui) < sup
Ł2S

EjhX , Łij4 < r4:

In particular, var(Z(U )) < r4=N , implying by Chebyshev’s inequality that

�N (2x) > 1� r4

Nx2
:

Corollary 2.3. Let X be a random vector in Rn (or ‘2) which satisfies Assumption 2.1 and let

X 1, . . . , X N be independent copies of X. Then,

Pr

�����
XN

i¼1

(X i � X i �¸)

����� . xN

 !
< 4Pr

�����
XN

i¼1

�i X i � X i

����� .
xN

2

 !
,

provided that x > c
ffiffiffiffiffiffiffiffiffiffiffiffi
r4=N

p
, for some absolute constant c.

The next step is an estimate on the norm of the symmetric random variablePN
i¼1�i X i � X i.

We apply the following result of Rudelson (1999), which builds on an inequality due to

Lust-Piquard and Pisier (1991).

Theorem 2.4. There exists an absolute constant c such that for any integers n and N, any

x1, . . . , xN 2 Rn (or ‘2) and any p > 1,
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E

�����
XN

i¼1

�ixi � xi

�����
p !1= p

< cmaxf
ffiffiffiffiffiffiffiffiffiffi
log d

p
,
ffiffiffiffi
p

p g
�����
XN

i¼1

xi � xi

�����
1=2

max
1<i<N

kxik,

where (�i)
N
i¼1 are independent Rademacher random variables and d ¼ minfn, Ng.

Remark. The reason why one can select d ¼ minfn, Ng is that, for every realization of the

Rademacher random variables, the norm of the operator
PN

i¼1�ixi � xi is determined on the

span of fx1, . . . , xNg which is a Euclidean space of dimension at most d.

Note that this moment inequality immediately leads to a ł2 estimate on the random

variable k
PN

i¼1�ixi � xik.

Corollary 2.5. There exists an absolute constant c such that for any integers n and N, any

x1, . . . , xN 2 Rn (or ‘2) and any t . 0,

Pr

�����
XN

i¼1

�ixi � xi

����� > t

( ) !
< 2 exp � t2

˜2

� �
,

where ˜ ¼ c
ffiffiffiffiffiffiffiffiffiffi
log d

p
k
PN

i¼1xi � xik1=2 max1<i<Nkxik and d ¼ minfn, Ng.

We are now ready to prove the main deviation inequality:

Proof of Theorem 2.1. First, by a result due to Pisier (1983; see also van der Vaart and

Wellner 1996), if T is a random variable with a bounded łÆ norm for Æ > 1 and if

T1, . . . , TN are independent copies of T , then����� max
1<i<N

Ti

�����
łÆ

< CkTkłÆ log
1=Æ N

for an absolute constant C. Hence, for any integer p,

E max
1<i<N

jTij p

� �1= p

< Cp1=ÆkTkłÆ log
1=Æ N : (2:1)

Consider the random variables

S ¼
����� 1

N

XN

i¼1

�i X i � X i

����� and V ¼
����� 1

N

XN

i¼1

(X i � X i �¸)

�����:
It follows from Corollaries 2.3 and 2.5 that, for any t > c

ffiffiffiffiffiffiffiffiffiffiffiffi
r4=N

p
,

Pr(V > t) < 4Pr(S > t=2) ¼ 4EXPr�(S > t=2jX1, . . . , X N )

< 8EX exp � t2N2

˜2

� �
,

where ˜ ¼ c
ffiffiffiffiffiffiffiffiffiffi
log d

p
k
PN

i¼1X i � X ik1=2 max1<i<NkX ik for some absolute constant c and
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d ¼ minfn, Ng. Setting c0 to be the constant from Corollary 2.3, then by Fubini’s theorem

and dividing the region of integration into t < c0
ffiffiffiffiffiffiffiffiffiffiffiffi
r4=N

p
(in this range one has no control

over Pr(V > t)) and t . c0
ffiffiffiffiffiffiffiffiffiffiffiffi
r4=N

p
, it is evident that

EV p ¼
ð1
0

pt p�1Pr(V > t)dt

<

ðc0

ffiffiffiffiffiffiffiffi
r4=N

p

0

pt p�1 dt þ 8EX

ð1
0

pt p�1 exp � t2N 2

˜2

� �
dt

< (c0
ffiffiffiffiffiffiffiffiffiffiffiffi
r4=N

p
) p þ c p p p=2 EX

˜

N

� � p

for some new absolute constant c.

The second term is bounded by

c p p log d

N

� � p=2

E

����� 1

N

XN

i¼1

X i � X i

�����
p=2

max
1<i<N

kX ik p

0
@

1
A

< c p p log d

N

� � p=2

E

����� 1

N

XN

i¼1

X i � X i �¸

�����þ k¸k
 !p=2

max
1<i<N

kX ik p

0
@

1
A

< c p p log d

N

� � p=2

(E(V þ k¸k) p)1=2 E max
1<i<N

kX ik2 p

� �1=2

for some other absolute constant c. Hence, setting Z ¼ kXk and applying Assumption 2.1

and (2.1), we arrive at

(EV p)1= p < c
r2ffiffiffiffiffi

N
p þ p1=Æþ1=2 log d

N

� �1=2

log1=Æ NkZkłÆ EV pð Þ1= pþ k¸k
� 	1=2 !

,

for some absolute constant c. Set Ad,N ¼ (N�1 log d)1=2(log1=Æ N )kZkłÆ and � ¼
(1þ 2=Æ)�1. Thus,

(EV p)1= p < c
r2ffiffiffiffiffi

N
p þ p1=2�k¸k1=2Ad,N þ p1=2�Ad,N (EV p)1=2 p

� �
,

from which it is evident that

(EV p)1= p < cp1=� max
r2ffiffiffiffiffi

N
p þ k¸k1=2Ad,N , A2

d,N

� �
,

and the assertion of the theorem follows. h

Let us present two corollaries which are relevant to the applications we have in mind.

First, consider the case when ar X is a bounded random vector. Thus, for any Æ,
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kZkłÆ < supkXk � R, and by taking Æ ! 1 one can select � ¼ 1 and Ad,N ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1 log d

p
, and obtain the following:

Corollary 2.6. There exists an absolute constant c for which the following holds. Let X be a

random vector in Rn (or ‘2) bounded by R and satisfying Assumption 2.1. Then, for any

x . 0,

Pr

�����
XN

i¼1

(X i � X i �¸)

����� > xN

( ) !
< exp � cx

R2
min

ffiffiffiffiffi
N

pffiffiffiffiffiffiffiffiffiffi
log d

p ,
N

log d

� �� �
:

The second case is when X is a vector on Rn and kZkł2
< c

ffiffiffi
n

p
, which corresponds to the

geometric application we have in mind, where X is a random vector associated with a convex

body in isotropic position.

Corollary 2.7. There exists an absolute constants c for which the following holds. Let X be a

random vector in Rn which satisfies Assumption 2.1 with kZkł2
< c1

ffiffiffi
n

p
. Then, for any

x . 0,

Pr

�����
XN

i¼1

(X i � X i �¸)

����� > xN

( ) !

< exp �c x=max
r2ffiffiffiffiffi

N
p þ rc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n log n)log N

N

r
, c21

(n log n)log N

N

( ) !1=2
0
@

1
A:

3. Applications

The first application we present is when the random variable X corresponds to the volume

measure of some convex symmetric body in isotropic position, which fits our assumptions

perfectly. Indeed, as shown by Alesker (1995), there exists an absolute constant C such that

if K is in isotropic position and if Z ¼ kXk then kZkł2
< C

ffiffiffi
n

p
. Moreover, by the Brunn–

Minkowski inequality, if K is in isotropic position then its volume measure is log-concave

and EjhX , tij2 ¼ ktk2 for any t 2 Rn. Hence, if Ł 2 S n�1 then Pr(fjhX , Łij > 2g) < 1
4
, and

by Borell’s inequality, khX , Łikł1
< C for some new absolute constant (see Ledoux 2001;

Milman and Schechtman 1986). In particular, Assumption 2.1 is verified for Æ ¼ 2,

kZkł2
< C

ffiffiffi
n

p
and r ¼ C, which is the situation in Corollary 2.7. Moreover, by the

definition of the isotropic position, E(X � X ) ¼ Id.

Let us note a few simple outcomes of these observations; similar results can be obtained

equally easily.

Corollary 3.1. There are absolute constants c1, c2, c3, c4 for which the following holds. Let
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K � Rn be a symmetric convex body in isotropic position, let X1, . . . , X N be independent

points sampled according the normalized volume measure on K, and set

ˆ ¼

X1

X2

..

.

X N

0
BBB@

1
CCCA

with non-zero singular values º1, . . . , ºn.

(i) If N > c1n log2 n, then for every x > 0,

Pr(f8i, (1� x)1=2
ffiffiffiffiffi
N

p
< ºi < (1þ x)1=2

ffiffiffiffiffi
N

p
g)

> 1� exp �c2x1=2
N

log Nð Þ n log nð Þ

� �1=4
 !

:

(ii) If N > c3n, then with probability at least 1
2
, º1 < c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N log n

p
.

In particular, this estimate shows that if N is polynomial in n one can get the correct

estimate on the largest singular value of ˆ, and with relatively high probability. Also, as long

as N > cn log2 n, the bound on all singular values is non-trivial. With as little as

N � n5 log2 n one obtains that the same holds with probability exp(�cn), which

complements a result from Litvak et al. (2005) but is, most likely, a suboptimal estimate.

The fact that one can bound the smallest singular value has a geometric interpretation, as

it implies that the symmetric convex hull of X 1, . . . , X N contains a ‘large’ Euclidean ball.

Indeed, let A be the symmetric convex hull of fX1, . . . , X Ng. By duality, it is easy to

verify that rBn
2 � A if and only if rkxk2 < kˆxk1 for every x 2 Rn. Hence it suffices to

show that r
ffiffiffiffiffi
N

p
kxk2 < kˆxk2, which is a condition on the smallest singular value of ˆ.

Corollary 3.2. Let K be as in Corollary 3.1 and let A be the symmetric convex hull of

X 1, . . . , X N . Then, for every 0 , � , 1
2

and integers N > n,

Pr(f(1� �)Bn
2 � Ag)

> 1� exp �C� min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

(log N )(n log n)

s
,

N

(log N )(n log n)

( ) !1=2
0
@

1
A:

In particular, if N > c(�)n log2 n then (1� �)Bn
2 � A with probability larger than 1

2
.

Note that the ‘in particular’ part also follows from Rudelson’s result (Theorem 1.2), but it

does not imply the better concentration if one takes N 	 cn log2 n.

This estimate is almost optimal in the following sense: by the log-concavity of the

volume measure on K, combined with Borell’s inequality (see Ledoux 2001; Milman and

Schechtman 1986),
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Pr(fX =2 K \ cr
ffiffiffi
n

p
Bn
2g) < c(1þr)=2

for some c , 1. Hence, with high probability, X 1, . . . , X N 2 c log N �
ffiffiffi
n

p
Bn
2 , and by the

Carl–Pajor inequality (Carl and Pajor 1988; see also Bárány and Füredy 1988; Gluskin 1988)

for N � n log2 n,

vol1=n(absconv (X1, . . . , X N )) < c log N �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(N=n)

n

r
< c

log n � (log log n)1=2ffiffiffi
n

p ,

while with probability at least 1
2
,

vol1=n(absconv (X 1, . . . , X N )) >
cffiffiffi
n

p ,

because the symmetric convex hull contains a ball of radius 1
2
.

The second application we present deals with the eigenvalues of integral operators. Let L

be a positive-definite kernel on some probability space (�, �). Assume that L is continuous

and that � is compact. Thus, by Mercer’s theorem, L(x, y) ¼
P1

i¼1ºi�i(x)�i(y), where

(ºi)
1
i¼1 are the eigenvalues of TL, the integral operator associated with L and �, and (�i)

1
i¼1

is a complete orthonormal basis in L2(�). Also, TL is a trace-class operator, sinceP1
i¼1ºi ¼

Ð
L(x, x)d�(x).

Let X (t) ¼
P1

i¼1

ffiffiffiffi
ºi

p
�i(t)�i 2 L2. We would like to apply Theorem 2.1 to this vector for

two reasons. First, observe that E(X � X ) is the integral operator TL and for every

t1, . . . , tN , the squares of the singular values of the matrix ˆ are the eigenvalues of the

Gram matrix L(ti, t j)

 �N

i, j¼1
. Hence, a successful application of Theorem 2.1 would yield a

deviation inequality between the eigenvalues of the Gram matrix and those of the integral

operator.

The second reason uses the whole power of the approximation result. In some

applications in nonparametric statistics, one sometimes has the fixed mapping t ! X (t)

without having additional information on the Mercer representation of the integral operator

(e.g. if the eigenfunctions are not known). Our result enables one to approximate the

integral operator using a finite-dimensional approximation in such cases (of course, if one

has the Mercer representation of L, finding such a finite-dimensional approximation is

trivial).

Observe that kX (t)k2 ¼ hX (t), X (t)i ¼ L(t, t). Hence, if we set R ¼ kL(t, t)k1=21 then

kX (t)k < R. Also, recall that for compact, self-adjoint operators A, B : ‘2 ! ‘2,
supijºi(A)� ºi(B)j < kA � Bk, where (ºi(A)) denotes the sequence of the singular values

of the operator A arranged in a non-increasing order (Gohberg and Goldberg 1980).

Applying this fact to the operators A ¼ N�1
PN

i¼1X i � X i and B ¼ E(X � X ), then by

Corollary 2.6 we obtain the following theorem:

Theorem 3.3. There exists an absolute constant c for which the following holds. Let L be as

above and let º̂º1 > . . . > º̂ºN be the eigenvalues of the Gram matrix (L(ti, t j))
N
i, j¼1. Then, for

every x . 0,
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Pr sup
i

jº̂ºi � ºij > x

� �
< 2 exp � cx

kL(t, t)k1

ffiffiffiffiffiffiffiffiffiffiffi
N

log N

s !
,

where (ºi)
1
i¼1 are the eigenvalues of the integral operator T L and, for i . N, º̂ºi ¼ 0.
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