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1CREST, Timbre J340, 3 ave. Pierre Larousse, 94240 Malakoff Cedex, France.

E-mail: patrice.bertail@ensae.fr
2MODAL’X, Université Paris X, 200 avenue de la République, 92000 Nanterre, France
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A specific bootstrap method is introduced for positive recurrent Markov chains, based on the

regenerative method and the Nummelin splitting technique. This construction involves generating a

sequence of approximate pseudo-renewal times for a Harris chain X from data X 1, . . . , X n and the

parameters of a minorization condition satisfied by its transition probability kernel and then applying a

variant of the methodology proposed by Datta and McCormick for bootstrapping additive functionals

of type n�1
Pn

i¼1 f (X i) when the chain possesses an atom. This novel methodology mainly consists in

dividing the sample path of the chain into data blocks corresponding to the successive visits to the

atom and resampling the blocks until the (random) length of the reconstructed trajectory is at least n,

so as to mimic the renewal structure of the chain. In the atomic case we prove that our method

inherits the accuracy of the bootstrap in the independent and identically distributed case up to

OP(n�1) under weak conditions. In the general (not necessarily stationary) case asymptotic validity for

this resampling procedure is established, provided that a consistent estimator of the transition kernel

may be computed. The second-order validity is obtained in the stationary case (up to a rate close to

OP(n�1) for regular stationary chains). A data-driven method for choosing the parameters of the

minorization condition is proposed and applications to specific Markovian models are discussed.

Keywords: bootstrap; Edgeworth expansion; Markov chain; Nummelin splitting technique; regenerative

process

1. Introduction

In the statistical literature there has been substantial interest in transposing the naive

bootstrap method (Efron, 1979) introduced in the independent and identically distributed

(i.i.d.) setting to dependent settings. The now well-known idea of the moving block

bootstrap (MBB) is to resample (overlapping or disjoint) blocks of observations to capture

the dependence structure of the observations (see Lahiri 2003, for a recent survey and

exhaustive references). However, as noticed by many authors, the results obtained by using

this method are not completely satisfactory for the following reasons. First, the MBB

approach usually requires stationarity for the observations and generally fails in a general

non-stationary framework. Secondly, the asymptotic behaviour of the MBB distribution

crucially depends on the estimation of the bias and of the asymptotic variance of the
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statistic of interest, which makes it difficult to apply in practice (see Götze and Künsch

1996; Lahiri 2003). From a theoretical viewpoint, the rate of convergence of the MBB

distribution is much slower than that of the bootstrap in the i.i.d. case: at best it is of order

OP(n�3=4) under restrictive conditions, stipulating the finiteness of moments at any order

and an exponential rate for the decay of the strong mixing coefficients, while the bootstrap

achieves OP(n�1) in the i.i.d. setting. Finally, the choice of the size of the blocks is a key

point in achieving an accurate estimation: this practical problem still remains open in the

general case.

Recently, various authors have been interested in bootstrapping some particular types of

Markov chain (see Lahiri 2003; Franke et al. 2002; and the references therein). However,

second-order results in this framework are scarcely available, except in Horowitz (2003) for

discrete chains. Unfortunately, these results are weakened by the unrealistic technical

assumptions (m-dependence) made on the Markovian models considered. Most bootstrap

methods proposed in the literature are asymptotically equivalent at first order. Obtaining

their exact rate of convergence is thus of prime importance in helping practitioners to

choose a particular bootstrap technique. Our goal is to propose a specific bootstrap method

based on the renewal properties of Markov chains, which almost achieves the same rate as

that in the i.i.d. case in a general (possibly non-stationary) framework.

This method originates from Athreya and Fuh (1989) and Datta and McCormick (1993),

and exploits the regeneration properties of Markov chains when a (recurrent) state is visited

infinitely often. The main idea underlying the method is to resample a deterministic number

of data blocks corresponding to regeneration cycles. However, because of some inadequate

standardization, the regeneration-based bootstrap method proposed in Datta and McCormick

(1993) is not second-order correct (its rate is OP(n�1=2) only). Bertail and Clémençon

(2005) have proposed a modification of the procedure introduced by Datta and McCormick

(1993), which is second-order correct up to OP(n�1log(n)) in the unstudentized case (i.e.

when the variance is known) when the chain is stationary. However, this method fails to be

second-order correct in the non-stationary case, as a careful look at the Edgeworth

expansion (EE) of the statistic of interest shows (see Bertail and Clémençon 2004, 2005).

As a matter of fact, the first cycle and the randomness of the number of cycles in a finite-

length trajectory play a crucial role in this asymptotic expansion. To avoid the problems

caused by the first (non-regenerative) block, it is preferable to construct estimates using the

data collected from the first regeneration time (i.e. the first visit to A) only, so as to get rid

of a first-order bias term that cannot be estimated or recovered by any resampling method

with a single realization of the chain. Our proposal (see Section 2) consists, then, in

imitating the renewal structure of the chain by sampling regeneration data blocks, until the

length of the reconstructed bootstrap series is larger than the length n of the original data

series. In this way, we approximate the distribution of the (random) number of regeneration

blocks in a series of length n and remove significant bias terms.

This resampling method, which we call the regenerative block bootstrap (RBB), has a

uniform rate of convergence of order OP(n�1), the optimal rate in the i.i.d. case. Unlike the

MBB, there is no need in the RBB procedure to choose the size of the blocks, which are

entirely determined by the data. Besides, the second-order accuracy of the RBB holds under

weak conditions (stipulating a polynomial rate for the decay of the strong mixing
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coefficients only). In Section 3 we show how these results may be extended to the much

broader class of Harris Markov chains. Our proposal is based on a practical use of the

splitting technique introduced in Nummelin (1978) and an empirical method to build

approximatively a realization drawn from an extension of the chain with a regeneration set.

We establish the asymptotic validity of this procedure, even in a non-stationary framework,

which is clearly more suitable for many applications. Its second-order validity is only shown

in the unstudentized stationary case, up to a rate close to that in the i.i.d. setting. The

technical study of the second-order properties of this method and of the optimal rate that

may be attained in the studentized case will be carried out at length in a forthcoming paper.

We give an entirely data-based procedure for choosing an ‘optimal’ regeneration set that

maximizes an estimation of the expected number of data blocks conditionally on the data.

Here we mainly focus on the case of the sample mean in the positive recurrent case, but the

ideas set out in this paper may be straightforwardly extended to much more general

functionals and even to the null recurrent case, when specific models are considered.

Technical proofs are postponed to the final Section 4.

2. Bootstrapping Markov chains with an atom

2.1. Notation and definitions

Here we introduce some notation and recall some key concepts of Markov chain theory (see

Meyn and Tweedie 1996 for further details) that are needed throughout the paper. Let

X ¼ (X n)n2N be a Markov chain on a countably generated state space (E, E), with

transition probability — and initial probability distribution � (the assumption that E is

countably generated plays a standard role in the analysis of communicating sets for the

chain and is really not restrictive in practice; see the discussion in Orey 1971). Thus for any

B 2 E and n 2 N, we have

X 0 � � and P(X nþ1 2 BjX0, . . . , X n) ¼ —(X n, B) almost surely:

Recall the following notions. The first formalizes the idea of a communicating structure

between specific subsets, while the second considers the set of time points at which such

communication may occur.

• The chain is irreducible if there exists a � -finite measure ł such that for all sets

B 2 E, when ł(B) . 0, the chain visits B with strictly positive probability, no matter

what the starting point.

• Assuming ł-irreducibility, there exist d9 2 N� and disjoints sets D1, . . . ,

Dd9(Dd9þ1 ¼ D1) weighted by ł such that ł(En [ 1<i<d9Di) ¼ 0 and, for all x 2 Di,

—(x, Diþ1) ¼ 1. The period of the chain is the greatest common divisor d of such

integers; it is aperiodic if d ¼ 1.

In what follows, P� (or Px for x in E) denotes the probability measure on the underlying

space such that X 0 � � (or X0 ¼ x), E�(�) is the P�-expectation (or Ex(�) the Px-

expectation), and IfAg is the indicator function of the event A.
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Assume that X is aperiodic, ł-irreducible and possesses an accessible atom, that is to

say, a set A 2 E such that for all x, y in A, —(x, �) ¼ —(y, �) and ł(A) . 0. Denote by

�A ¼ �A(1) ¼ inf n > 1, X n 2 Af g the hitting time on A, by �A( j) ¼ inffn .

�A( j � 1), X n 2 Ag for j > 2, the successive return times to A, and by EA(�) the

expectation conditionally on X 0 2 A. Suppose further that X is Harris recurrent, hence the

probability of returning infinitely often to the atom A is equal to one, no matter what the

starting point: for all x 2 E, Px(�A , 1) ¼ 1. Then it follows from the strong Markov

property that, for any initial law �, the sample paths may be divided into i.i.d. blocks of

random length corresponding to consecutive visits to A,

B1 ¼ (X �A(1)þ1, . . . , X �A(2)), . . . , B j ¼ (X �A( j)þ1, . . . , X �A( jþ1)), . . . ,

taking values in the torus T ¼ [1
n¼1 En. The sequence (�A( j)) j>1 defines successive times at

which the chain forgets its past, called regeneration times.

When an accessible atom exists, the stochastic stability properties of X amount to

properties concerning the speed of return time to the atom only. For instance, X is positive

recurrent if and only if EA(�A) , 1 (see Theorem 10.2.2 in Meyn and Tweedie 1996,

known as Kac’s theorem). Then the unique invariant probability law � is the occupation

measure given, for all B 2 E, by

�(B) ¼ 1

EA(�A)
EA

X�A

i¼1

IfX i 2 Bg
 !

:

For such chains, limit theorems can be derived from the application of the corresponding

results to the i.i.d. blocks (Bn)n>1 (see Smith 1955 for an introduction to the regenerative

method). Refer to Meyn and Tweedie (1996) for the law of large numbers, the central limit

theorem (CLT) and the law of the iterated logarithm, Bolthausen (1982) for the Berry–

Esseen theorem, and Malinovskii (1987, 1989) for other refinements of the CLT. The same

technique can also be applied to establish moment and probability inequalities, which are

not asymptotic results (see Clémençon 2001).

2.2. Preliminary remarks

Let X (n) ¼ (X 1, . . . , X n) be observations drawn from X with an a priori known accessible

atom A, which we suppose positive recurrent. This covers the case of countable chains, for

which any recurrent state is an atom, as well as many Markovian models with regeneration

times, widely used in operational research for modelling queuing/storage systems with the

empty state A ¼ f0g as an atom (see, for instance, Asmussen 1987; Meyn and Tweedie

1996). In the following we denote by ln ¼
Pn

i¼1IfX i 2 Ag the number of successive visits

to the atom, giving rise to ln þ 1 data blocks B0 ¼ (X 1, . . . , X �A(1)), B1, . . . , B l n�1, B(n)
l n

¼
(X �A( l n)þ1, . . . , X n), with the convention that B(n)

l n
¼ ˘ when �A(ln) ¼ n. We denote by

l(B j) ¼ �A( j þ 1) � �A( j), j > 1, the lengths of the regeneration blocks (note that

E(l(B j)) ¼ EA(�A) ¼ �(A)�1).

Let f : E ! R be a �-integrable function. Consider first the estimator

�n( f ) ¼ n�1
Pn

i¼1 f (X i) of the unknown asymptotic mean �( f ) ¼ E�( f (X1)) computed
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from the whole data segment X (n). In Bertail and Clémençon (2004) (see Proposition 3.1) it

is shown that in the non-stationary case (i.e. when the initial law � differs from �), the first

data block B0 induces a significant bias, of order O(n�1), which cannot be estimated from a

single realization X (n) of the chain starting from �. This fact is well known in the Bayesian

literature, when the matter is to control the convergence of Markov chain Monte Carlo

algorithms. It is closely related to the important problem of burn-in (time) that is, the time

that one should wait before the marginal of a (simulated) chain is close enough to the limit

distribution (see, for instance, Hobert and Robert 2004). It is naturally impossible to

approximate the second-order properties of such a statistic in the non-stationary case by

using a resampling method. Practitioners are thus recommended not to use this estimator.

The last (non-regenerative) block B(n)
l n

induces a first-order term in the bias too. And though

it seems possible to estimate its sampling distribution accurately, we shall consider statistics

based on the observations (B1, . . . , B l n�1) collected between the first and last visits to the

atom only (using B(n)
l n

would make the resampling method below more complex, but the

results would be similar). When estimating the limit mean �( f ), this leads to consideration

of the sample mean based on the segment ~XX (n) ¼ (X �Aþ1, . . . , X �A( l n)), �n( f ) ¼
(�A(ln) � �A)�1

P�A( l n)
i¼1þ�A

f (X i) with �n( f ) ¼ 0 if l n , 2 by convention. An adequate

standardization Sn ¼ Sn( ~XX (n)) is displayed in Bertail and Clémençon (2004) (see Section

2.4.1 below).

2.3. The regenerative block bootstrap algorithm

Although in this paper our asymptotic results are stated in the case of the sample mean

only, we present here a valid algorithm, applicable to general statistics Tn for which there

exists an adequate standardization Sn: this covers the case of non-degenerate U -statistics, as

well as the case of differentiable functionals. For the reasons mentioned above, both the

statistic Tn and the estimate of its asymptotic variance we consider are constructed from the

regenerative data blocks B1, . . . , B l n�1 only. We are thus interested in estimating accurately

its sampling distribution under P�, say H
(n)
P�

(x) ¼ P�(S�1
n (Tn � Ł) < x). The RBB procedure

is carried out in four steps as follows.

1. Count the number of visits ln to the atom A up to time n. Divide the observed sample

path X (n) ¼ (X 1, . . . , X n) into ln þ 1 blocks, B0, B1, . . . , B l n�1, B(n)
l n

taking values in

the torus T ¼ [1
n¼1 En, corresponding to the pieces of the sample path between

consecutive visits to the atom A. Drop the first and last (non-regenerative) blocks.

2. Draw sequentially bootstrap data blocks B�1,n, . . . , B�k,n independently of the empirical

distribution Fn ¼ (ln � 1)�1
P l n�1

j¼1 �B j
of the blocks fB jg1< j< l n�1 conditioned on X (n),

until the length l�(k) ¼
Pk

j¼1l(B�j,n) of the bootstrap data series is larger than n. Let

l�n ¼ inffk > 1, l�(k) . ng.

3. From the data blocks generated at step 2, reconstruct a pseudo-trajectory of size

l�(l�n � 1)by binding the blocks together, X�(n) ¼ (B�1,n, . . . , B�
l�n�1,n

). Compute the

RBB statistic T�n ¼ Tn(X�(n)).

4. If Sn ¼ S(B1, . . . , B l n�1) is an appropriate standardization of the original statistic Tn,

compute S�n ¼ S(B�1,n, . . . , B�
l�n�1,n

).
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The RBB distribution is then given by

HRBB(x) ¼ P�(S��1
n (T�n � Tn) < xjX (n)),

where P�(�jX (n)) denotes the conditional probability given X (n). One may naturally compute

a Monte Carlo approximation to HRBB(x) by independently repeating the procedure above B

times.

Remark 2.1. We point out that the RBB differs from the regeneration-based bootstrap

proposed by Datta and McCormick (1993), which is not second-order correct up to OP(n�1=2)

and in which the number of resampled blocks is held fixed at ln � 1, conditionally on the

sample; it also differs from the modified version due to Bertail and Clémençon (2005). Note

also that the principles underlying the RBB may be applied to any (possibly continuous-time

and not necessarily Markovian) regenerative process (see Thorisson 2000).

2.4. Second-order accuracy of the RBB

Here we study the asymptotic validity of the RBB for the mean standardized by an

adequate estimator of the asymptotic variance. This is the useful version for confidence

intervals but also for practical use of the bootstrap (see Hall 1992). The accuracy achieved

by the RBB is similar to the optimal rate of the i.i.d. bootstrap, contrary to the MBB (see

Götze and Künsch 1996).

2.4.1. Further notation and preliminary remarks

We set nA ¼ �A(ln) � �A(1) ¼
P l n�1

j¼1 l(B j) and f (B j) ¼
P�A( jþ1)

i¼1þ�A( j) f (X i), for any j > 1. We

may thus write

�n( f ) � �( f ) ¼ n�1
A

Xl n�1

j¼1

f f (B j) � l(B j)�( f )g:

By virtue of the strong Markov property, f f (B j) � l(B j)�( f )g j>1 are i.i.d. random variables

with mean 0 and variance � 2
F ¼ E(f f (B j) � l(B j) �( f )g2). In the following, we also

set Æ ¼ EA(�A) and � ¼ cov(l(B j), f (B j) � l(B j)�( f )g). Assuming the expectations

EA(
P�A

i¼1j f (X ij)2), EA(�2
A), E�(

P�A

i¼1j f (X i)j) and E�(�A) are finite, the CLT holds (see

Theorem 17.2.2 in Meyn and Tweedie 1996). We have, as n ! 1, n�1=2(�n( f ) �
�( f )) ! N (0, � 2

f ) in distribution under P�, with the asymptotic variance � 2
f ¼ Æ�1� 2

F .

The following estimate of the asymptotic variance � 2
f may be naturally constructed using

the regeneration times:

� 2
n( f ) ¼ n�1

A

Xl n�1

j¼1

f f (B j) � �n( f )l(B j)g2:

First-order properties of this estimator are studied in Bertail and Clémençon (2004). A

straightforward application of the strong law of large numbers for positive recurrent Markov
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chains shows it is strongly consistent. Under further regularity conditions, Bertail and

Clémençon (2004) have also shown that its bias is of order O(n�1) and it is asymptotically

normal.

As shown below, this standardization does not worsen the performance of the RBB, while

the standardization of the MBB distribution in the strong mixing case is the main barrier to

achieving good rates (see Götze and Künsch 1996). Moreover, contrary to the MBB, the

bootstrap counterparts in the studentized case are straightforwardly defined in our

regenerative setting. With n�A ¼
P l�n�1

j¼1 l(B�j ), define

��n ( f ) ¼ n��1
A

Xl�n�1

j¼1

f (B�j ) and ��2
n ( f ) ¼ n��1

A

Xl�n�1

j¼1

f f (B�j ) � ��n ( f )l(B�j )g2:

2.4.2. Main asymptotic result

We now state the asymptotic validity of the RBB in the atomic case.

Theorem 2.1. Assume that the chain X fulfils the following conditions:

(i) (Cramér condition) limj tj!1jEA(exp(it(
P�A

i¼1f f (X i) � �( f )g))j , 1.

(ii) (Non-degeneracy of the asymptotic variance) � 2
f . 0.

(iii) (Block moment conditions) For some s > 2,

EA(�s
A) , 1, EA

X�A

i¼1

j f (X i)j
 !s

, 1:

(iv) (Block moment conditions for the initial law �)

E�(�
2
A) , 1, E�

X�A

i¼1

j f (X i)j
 !2

, 1:

(v) (Boundedness of the N-fold convolution of the joint density) There exists N 2 N�
such that the N-fold convoluted density G�N is bounded, denoting by G the density

of the ( f (B j) � l(B j)�( f ))2.

Then, under assumptions (i)–(iv) with s . 6, the RBB distribution estimate for the

unstandardized sample mean is second-order accurate:

˜U
n ¼ sup

x2R
jHU

RBB(x) � HU
� (x)j ¼ OP� (n�1), as n ! 1,

where

HU
RBB(x) ¼ P�(n

1=2
A ��1

f f��n ( f ) � �n( f )g < xjX (n)),

HU
� (x) ¼ P�(n

1=2
A ��1

f f�n( f ) � �( f )g < x):
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Under assumptions (i)–(v) with s . 8, the RBB distribution estimate for the studentized

sample mean is also second-order correct:

˜S
n ¼ sup

x2R
jHS

RBB(x) � HS
�(x)j ¼ OP�(n�1), as n ! 1,

where

HS
RBB(x) ¼ P�(n

�1=2
A ���1

n ( f )f��n ( f ) � �n( f )g < xjX (n)),

HS
�(x) ¼ P�(n

1=2
A ��1

n ( f )f�n( f ) � �( f )g < x):

This result ensures that the RBB has the optimality of the i.i.d. bootstrap. This is

noteworthy, since the RBB method applies to countable chains (for which any recurrent

state is an atom) but also to many specific Markov chains widely used in practice for

modelling queuing/storage systems (for a detailed account of such models, see Meyn and

Tweedie 1996: Section 2.4; Asmussen 1987).

We point out that the relationship between the ‘block moment’ condition (iii) and the rate

of decay of mixing coefficients was investigated in Bolthausen (1982): for instance,

condition (iii) is typically fulfilled when f is bounded, if the strong mixing coefficients

sequence decreases at an arithmetic rate n�r, for some r . s � 1. Condition (iv) is needed

to control the EE up to O(n�1)(see the partitioning arguments used in Malinovskii 1987;

Bertail and Clémençon 2004: equation (19)). Intuitively, even if we use the truncated sum,

too large a variance of the size of the block (or of the functional on the first block) may

yield a large perturbation on the tail of the number of blocks which plays an important role

in the second-order terms. Condition (v) is a technical assumption used in Bertail and

Clémençon (2004) to obtain an EE in the studentized case. As may be shown by a

straightforward calculation, if the density of the
P�A( jþ1)

i¼1þ�A( j)( f (X i) � �( f )) is bounded then

the condition holds for N ¼ 2.

Remark 2.2. The same results holds a.s. up to OP� (n�1 log log(n)1=2), just like in the i.i.d.

case under the same moment conditions. This straightforwardly results from the law of the

iterated logarithm applied to the empirical moments of the blocks appearing in the EE of the

RBB distribution.

3. Approximate regenerative block bootstrap

3.1. General Harris chains and the splitting technique

For the sake of clarity, we briefly recall the splitting technique introduced in Nummelin

(1978), which allows us to extend in some sense the probabilistic structure of any chain in

order to artificially construct a regeneration set in the general Harris recurrent case. Here X

is a general aperiodic, ł-irreducible chain with transition kernel —, taking values in a

countably generated state space (E, E). First, consider the following notion:
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Definition 3.1. A set S 2 E is small if there exist m 2 N�, a probability measure � supported

by S, and � . 0 such that for all x 2 S, for all A 2 E, —m(x, A) > ��(A), denoting by —m

the mth iterate of —. When this holds, we say that the chain satisfies the minorization

condition M(m, S, �, �).

Recall that accessible small sets do exist for irreducible chains. Any accessible set

actually contains a small set (see Jain and Jamison 1967). And in practice, finding such a

set consists in most cases in exhibiting an accessible set, for which the probability that the

chain returns to it in m steps is uniformly bounded from below (see Section 3.6). Suppose

that the chain X satisfies M ¼ M(m, S, �, �) for some set S such that ł(S) . 0. Even if

it entails replacing the chain (X n)n2N by the chain ((X nm, . . . , X n(mþ1)�1))n2N, we suppose

that m ¼ 1. The sample space is expanded so as to define a sequence (Yn)n2N of

independent random variables with parameter � by defining the joint distribution P�,M
whose construction relies on the following randomization of the transition probability —
each time the chain X hits the set S (note that it happens a.s. since the chain is Harris

recurrent and ł(S) . 0). If X n 2 S and

• if Yn ¼ 1 (which happens with probability � 2]0, 1[), then X nþ1 is distributed

according to the probability measure �;

• if Yn ¼ 0 (which happens with probability 1 � �), then X nþ1 is distributed according to

the probability measure (1 � �)�1(—(X n, �) � ��(�)).

This bivariate Markov chain X M ¼ ((X n, Yn))n2N is called the split chain. It takes values

in E 3 f0, 1g and possesses an atom, namely S 3 f1g. The whole point of this construction

is that X M inherits all the communication and stochastic stability properties from X

(irreducibility, Harris recurrence). In particular the blocks constructed for the split chain are

i.i.d. (for the case m ¼ 1, else they are 1-dependent). Hence the splitting method enables us

to extend the regenerative method and to establish all the results known for atomic chains

to general Harris chains. For simplicity’s sake, we omit the subscript M in what follows

and, in an abuse of notation, denote by P� the extensions of the underlying probability we

consider.

3.2. Approximating the regenerative blocks

In the following, we suppose for the sake of simplicity that condition M is fulfilled with

m ¼ 1. We assume, further, that the family of conditional distributions f—(x, dy)gx2E and

the initial distribution � are dominated by a � -finite reference measure º, so that

�(dy) ¼ f (y)º(dy) and —(x, dy) ¼ p(x, y)º(dy), for all x 2 E. Note that the minorization

condition entails that � is absolutely continuous with respect to º too, and that

p(x, y) > ��(y), º(dy)-a.s. for any x 2 S, with �(dy) ¼ �(y)dy. Let Y be the binary

random sequence constructed via the Nummelin technique from the parameters of condition

M. Our proposal for approximating the Nummelin construction is based on the crucial

observation that the distribution of Y (n) ¼ (Y1, . . . , Yn) conditionally on X (nþ1) ¼
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(x1, . . . , xnþ1) is the tensor product of Bernoulli distributions given, for all �(n) ¼
(�1, . . . , �n) 2 f0, 1gn, x(nþ1) ¼ (x1, . . . , xnþ1) 2 Enþ1, by

P� Y (n) ¼ �(n)jX (nþ1) ¼ x(nþ1)
� �

¼
Yn

i¼1

P�(Yi ¼ �ijX i ¼ xi, X iþ1 ¼ xiþ1),

with, for 1 < i < n,

• if xi =2 S, P�(Yi ¼ 1jX i ¼ xi, X iþ1 ¼ xiþ1) ¼ �,

• if xi 2 S, P�(Yi ¼ 1jX i ¼ xi, X iþ1 ¼ xiþ1) ¼ ��(xiþ1)

p(xi, xiþ1)
.

Roughly speaking, conditioned on X (nþ1), from i ¼ 1 to n, Yi is drawn from the

Bernoulli distribution with parameter �, unless X has hit the small set S at time i: in this

case Yi is drawn from the Bernoulli distribution with parameter ��(X iþ1)=p(X i, X iþ1). We

denote this probability distribution by L(n)( p, S, �, �, x(nþ1)). If we were able to generate

Y1, . . . , Yn, so that X M(n) ¼ ((X1, Y1), . . . , (X n, Yn)) is a realization of the split chain X M

described in Section 3.1, then we could apply the RBB procedure to the sample path X M(n)

leading to asymptotically i.i.d. blocks. Unfortunately, as shown above, knowledge of the

transition density p(x, y) is required to make drawing Y1, . . . , Yn practical this way.

Our proposal for approximating this construction consists in computing an estimator

pn(x, y) of the transition density p(x, y) using data X1, . . . , X nþ1 (note that we may

choose the estimate pn(x, y) of the transition density such that pn(x, y) > ��(y), º(dy)-a.s.,

and pn(X i, X iþ1) . 0, 1 < i < n), and then drawing a binary random vector (ŶY1, . . . , ŶYn)

conditionally on X (nþ1) ¼ (X 1, . . . , X nþ1), from the distribution L(n)( pn, S, �, �, X (nþ1)),

approximating in some sense the conditional distribution L(n)( p, S, �, �, X (nþ1)) of

(Y1, . . . , Yn) for given X (nþ1). Our method for bootstrapping Harris chains, which we

call the approximate regenerative block bootstrap (ARBB), simply amounts, then, to

applying the RBB procedure to the data ((X1, ŶY1), . . . , (X n, ŶYn)) as if they were drawn

from the atomic chain X M.

3.3. A coupling result for (X i, ŶYi)1<i<n and (X i, Yi)1<i<n

We now prove that the distribution of (X i, ŶYi)1<i<n gets closer and closer to the distribution

of X i, Yið Þ1<i<n in the sense of the Mallows distance (also known as the Kantorovich or

Wasserstein metric in the probability literature; see Bickel and Freedmann 1981) as n ! 1.

Hence, we express here the distance between the distributions PZ and PZ 9 of two random

sequences Z ¼ Z nð Þn2N and Z9 ¼ (Z9n)n2N, taking values in Rk (see Rachev and

Rüschendorf 1998: 76), by

l r(Z, Z9) ¼ l r(P
Z , PZ9) ¼ minfLr(W , W 9); W � PZ , W 9 � PZ9g,

with r > 1 and Lr W , W 9ð Þ ¼ (E Dr W , W 9ð Þ½ �)1=r, where D denotes the metric on the space

�(Rk) ¼ (Rk)1 defined by D(w, w9) ¼
P1

k¼02�kkwk � w9kkR k, for any w, w9 in �(Rk)

(k � kR k denoting the usual Euclidian norm of Rk). Thus, viewing the sequences

698 P. Bertail and S. Clémençon



Z (n) ¼ X k , Ykð Þ1<k<n and ẐZ (n) ¼ (X k , ŶYk)1<i<n as the beginning segments of infinite series,

we evaluate the deviation between the distribution P(n) of Z (n) and the distribution P̂P(n) of

ẐZ (n) using l1(P(n), P̂P(n)).

Theorem 3.1. Assume that: (i) S is chosen so that inf x2S�(x) . 0; and (ii) p is estimated by

pn at the rate Æn for the mean squared error (MSE) when error is measured by the L1 loss

over S2. Then l1(P(n), P̂P(n)) < (� inf x2S�(x))�1Æ1=2
n .

This theorem is established by exhibiting a specific coupling of (X i, ŶYi)1<i<n and

X i, Yið Þ1<i<n (see Section 4.2)). It is a crucial tool for deriving the results stated in the

next section. It also clearly shows that the closeness between the two distributions is tightly

connected to the rate of convergence of the estimator pn(x, y) but also to the minorization

condition parameters (see Section 3.6).

3.4. The ARBB algorithm

It is now easy to see how we can execute an ARBB algorithm:

1. From the data X (nþ1) ¼ (X1, . . . , X nþ1), compute an estimate pn(x, y) of p(x, y) such

that pn(x, y) > ��(y), º(dy)-a.s., and pn(X i, X iþ1) . 0, 1 < i < n.

2. Conditionally on X (nþ1), draw a binary data vector (ŶY1, . . . , ŶYn) from the distribution

estimate L(n)( pn, S, �, �, X (nþ1)). From a practical point of view, it naturally suffices

to draw the binary ŶYis at times i when the chain visits the set S (i.e. when X i 2 S),

which are the only time points at which the split chain may regenerate: at such a time

point i, draw ŶYi according to the Bernoulli distribution with parameter

��(X iþ1)=pn(X i, X iþ1)).

3. Count the number of visits l̂l n ¼
Pn

i¼1IfX i 2 S, ŶYi ¼ 1) to the set AM ¼ S 3 f1g up

to time n. Define the successive hitting times of AM, �̂�AM (i), i ¼ 1, . . . , l̂l n, and divide

the sample path X (n) into l̂l n þ 1 blocks, B̂B i ¼ (X �̂�AM (i)þ1, . . . , X �̂�AM (iþ1)), correspond-

ing to the pieces of the trajectory between consecutive visits to AM.

4. Apply steps 2–4 of the RBB algorithm to the collection of pseudo-blocks

B̂B1, . . . , B̂B
l̂l n�1, producing the ARBB distribution

HARBB(x) ¼ P�(S��1
n (T�n � Tn) < xjX (nþ1)),

where T�n ¼ T (X�(n)) and S�n ¼ S(X�(n)) are respectively the ARBB statistic and the

ARBB standardization obtained from the reconstructed path X�(n) ¼ (B�1 , . . . , B�
l�n�1

).

3.5. Asymptotic validity of the ARBB

The asymptotic variance is � 2
f ¼ EAM (�AM )�1EAM ((

P�AM
i¼1 f f (X i) � �( f )g)2), where

�AM ¼ inffn > 1, (X n, Yn) 2 S 3 f1gg and EAM (�) denotes the expectation conditionally

on (X0, Y0) 2 AM ¼ S 3 f1g. However, in the studentized case, one cannot use the

standardization defined in Section 2.4.1 in the atomic setting for the split chain, since the
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true regeneration times are unknown. We thus consider the following estimators based on

the pseudo-regeneration times (i.e. times i when (X i, ŶYi) 2 S 3 f1g) generated by the

procedure detailed in Section 3.4,

�̂�n( f ) ¼ n̂n�1
AM

Xl̂l n�1

j¼1

f (B̂B j) and �̂� 2
n( f ) ¼ n̂n�1

AM

Xl̂l n�1

j¼1

f (B̂B j) � �̂�n( f )l(B̂B j)
n o2

of �( f ) and � 2
f respectively, with n̂nAM ¼ �̂�AM ( l̂l n) � �̂�AM (1) ¼

P l̂l n�1
j¼1 l(B̂B j) and

f (B̂B j) ¼
P�̂�A( jþ1)

i¼1þ�̂�A( j)
f (X i). By convention, �̂�n( f ) (�̂� 2

n( f ), n̂nAM ) equals 0, when l̂l n < 1. Note

that, analogously to the way we proceeded in the atomic case to avoid unrecoverable and

large bias terms that cannot be approximated by using any resampling method (see Section

2.2), data collected before the first (or after the last) pseudo-regeneration time are not used to

construct these estimators, yielding estimates that are not contaminated too much by the

starting distribution.

Define the unstandardized distribution by

HU
� (x) ¼ P�( n̂n

1=2
AM

��1
f �̂�n( f ) � �( f )ð Þ < x):

We also define the pseudo-regeneration based studentized sample mean t̂tAM,n ¼
n̂n

1=2
AM

(�̂�n( f ) � �( f ))=�̂� n( f ), with sampling distribution HS
�(x) ¼ P�( t̂tAM,n < x).

3.5.1. Further assumptions and preliminary results

We will require the following assumptions. Let k > 2 be a real number.

H1( f , k, �). The small set S is such that

sup
x2S

Ex

X�S

i¼1

j f (X i)j
 !k

0
@

1
A , 1 and E�

X�S

i¼1

j f (X i)j
 !k

0
@

1
A , 1:

H2(k, �). The set S is such that supx2SEx(�k
S) , 1 and E�(�k

S) , 1.

For a sequence of nonnegative real numbers (Æn)n2N converging to 0, we have:

H3. p(x, y) is estimated by pn(x, y) at the rate Æn for the MSE when error is measured

by the L1 loss over S 3 S:

E� sup
(x, y)2S3S

j pn(x, y) � p(x, y)j2
 !

¼ O(Æn), as n ! 1:

H4. The density � is such that inf x2S�(x) . 0.

H5. The transition density p(x, y) and its estimate pn(x, y) are bounded by a constant

R , 1 over S2.

We point out that assumptions H1( f , k, �) and H1(k, �) do not depend on the choice of

the small set S (if it is verified for some accessible small set S, it is also fulfilled for all

accessible small sets of the chain). Note also that when H1(k, �) is satisfied, H1( f , k, �) is

verified for any bounded function f .

700 P. Bertail and S. Clémençon



Remark 3.1. Numerous estimators of the transition density have been proposed in the

literature and their estimation rates have been established under various smoothness

assumptions (see, for instance, Athreya and Atuncar 1998; Clémençon 2000; and the

references therein). Under classical Hölder constraints of order s, the typical rate in this set-

up is Æn � (ln n=n)s=(sþ1).

The next result justifies the use of our estimates in an asymptotic sense.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 are fulfilled by the chain, as well

as H1( f , r, �), H2(r, �) with r > 4, H3, H4 and H5. Then we have as n ! 1,

�̂� 2
n( f ) ! � 2

f in P�-probability and

n̂n
1=2
AM

(�̂�n( f ) � �( f ))=�̂� n( f ) ! N (0, 1) in distribution under P�:

We recall that condition H1( f , r, �) may be more easily checked in practice by using

test function methods (see Kalashnikov 1978). In particular, it is well known that ‘block’

moment conditions may be replaced by drift criteria of Lyapunov’s type; see Chapter 11 in

Meyn and Tweedie (1996) for further details on such conditions and many examples, as

well as Douc et al. (2004) for recent results. We also point out that assumptions

H1( f , r, �) and H2(r, �) classically imply that the block-moment conditions (iii) and (iv)

are satisfied by the split chain for s ¼ r.

3.5.2. Main asymptotic theorem

We now define the bootstrap counterparts of the statistics introduced above. Let

B�1 , . . . , B�
l�n�1

be the bootstrapped pseudo-regenerative blocks and n�AM
¼
P l�n�1

j¼1 l(B�j ) be

the length of the ARBB data series, then set

��n ( f ) ¼ n��1
AM

Xl�n�1

j¼1

f (B�j ), ��2
n ( f ) ¼ n��1

AM

Xl�n�1

j¼1

f f (B�j ) � ��n ( f )l(B�j )g2:

The unstandardized version of the ARBB distribution is given by

HU
ARBB(x) ¼ P�(n

�1=2
AM

�̂��1
n ( f )(��n ( f ) � �̂�n( f )) < xjX (nþ1)):

Define also the bootstrap version of the pseudo-regeneration based studentized sample

mean by

t�AM,n ¼
n
�1=2
AM

(��n ( f ) � �̂�n( f ))

��n ( f )

and the studentized ARBB distribution estimate HS
ARBB(x) ¼ P�(t�AM,n < xjX (nþ1)). This is

the same construction as in the atomic case, except that it uses the approximate blocks

instead of the true regenerative ones. We have the following result.
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Theorem 3.3. Under the hypotheses of Theorem 3.2, we have the following convergences in

probability under P�:

˜U
n ¼ sup

x2R
jHU

ARBB(x) � HU
� (x)j ! 0, as n ! 1

˜S
n ¼ sup

x2R
jHS

ARBB(x) � HS
�(x)j ! 0, as n ! 1:

3.5.3. Second-order properties of the ARBB in the stationary case

In consideration of technical difficulties, the study of the second-order properties of the

ARBB distribution estimate is confined in this paper to the unstudentized case in a

stationary framework. In the stationary case, one may actually use �n( f ) ¼ n�1
Pn

i¼1 f (X i)

as a natural unbiased estimate of �( f ), thus avoiding controlling the contributions of the

first and last pseudo-regenerative blocks. In the following we deal with

HU
� (x) ¼ P�(n1=2��1

f f�n( f ) � �( f )g < x):

Because the last pseudo-regenerative block is dropped in the ARBB procedure, a bias

problem appears in the stationary case, which can be easily handled by recentring the ARBB

distribution. Hence, we now consider

H
U,s
ARBB(x) ¼ P�(t�AM,n � E�(t�AM,n) < xjX (nþ1)):

We now state a result providing an explicit rate for the ARBB in this setting.

Theorem 3.4. Assume that the Markov chain X is stationary (i.e. � ¼ �). Under the

hypotheses of Theorem 3.2 with r . 6, and if in addition the Cramér condition

lim
j t!1

sup
x2S

����Ex exp it
X�S

i¼1

f f (X i) � �( f )g
 ! !���� , 1

 

is fulfilled, then we have

˜U
n ¼ sup

x2R
jHU,s

ARBB(x) � HU
� (x)j ¼ OP� (Æ

1=2
n n�1=2), as n ! 1

Remark 3.2. Observe that only consistency of pn(x, y) over S2 in the MSE sense is required

for the ARBB to be second-order correct. Furthermore, in the geometrically recurrent case,

the best rate that can be attained is typically of order Æn ¼ n�1 log(n) (see Clémençon 2000,

for instance), yielding the validity of the ARBB up to the almost optimal rate

oP� (n�1 log(n)1=2), which clearly improves on the MBB even in the unstudentized case

(see Lahiri 2003: Section 6.5).

Remark 3.3. What makes it very hard to carry over the ideas behind the RBB to the general

ARBB case is that, by construction, pseudo-regeneration times �̂�AM ( j) and the (dependent)

data blocks B̂B j they induce all depend on the whole trajectory, owing to the transition
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estimation step. A possible construction to avoid this problem is to use a double splitting trick

(in a semiparametric sense). The idea is to construct first the transition estimator using the

first mn observations (with mn ! 1, mn=n ! 0 as n ! 1), then to drop the next qn

observations (typically qn � mn, qn ! 1 as n ! 1), allowing the split chain to regenerate

with overwhelming probability, and finally to construct the pseudo-blocks from the

n � mn � qn remaining observations. It is easy to understand that these blocks are

asymptotically i.i.d conditionally on the first mn observations. One may then prove the

second-order validity of the procedure in both the studentized and unstudentized case.

However, this splitting trick entails some loss in rate of the ARBB distribution. By standard

arguments, this rate is typically OP�(Æ
1=2
m n

(n � qn � mn)�1=2) but can be optimized when Æn is

known. In the regular case Æn ¼ n�1log(n), it is easy to see that one can choose mn ¼ n2=3

and the second-order validity of the studentized ARBB distribution holds up to

O(n�5=6 log(n)). This is still a significant improvement on the MBB rate.

3.6. Practical choice of the small set

On many examples of real-valued positive recurrent chains X , one may easily check that

any compact interval Vx0
(	) ¼ [x0 � 	, x0 þ 	] for a well-chosen x0 (typically close to its

asymptotic mean) and 	 . 0 small enough, is a small set with the uniform distribution

UVx0
(	) on Vx0

(	) as a minorization measure. To illustrate this point, consider the general

heteroscedastic autoregressive model

X nþ1 ¼ m(X n) þ � (X n)	nþ1, n 2 N,

where m : R ! R and � : R ! R�þ are measurable functions, (	n)n2N is an i.i.d. sequence of

random variables drawn from g(x)dx such that, for all n 2 N, 	nþ1 is independent of the X k ,

k < n, with E(	nþ1) ¼ 0 and var(	nþ1) ¼ 1. The transition density is given by

p(x, y) ¼ � (x)�1 g(� (x)�1(y � m(x))), (x, y) 2 R2. Assume further that g, m and � are

continuous functions and there exists x0 2 R such that p(x0, x0) . 0. Then the transition

density is uniformly bounded from below over some neighbourhood Vx0
(	)2 ¼

[x0 � 	, x0 þ 	]2 of (x0, x0) in R2: there exists � ¼ �(	) 2]0, 1[ such that

inf
(x, y)2V 2

x0

p(x, y) > �(2	)�1: (1)

Thus the chain X satisfies the minorization condition M(1, Vx0
(	), �, UVx0

(	)). Hence, in the

case when one knows x0, 	 and � such that the bound (1) holds (this simply amounts to

knowing a uniform lower bound estimate for the probability of returning to Vx0
(	) in one

step), one may effectively apply the ARBB methodology to X . The major point is essentially

to choose Vx0
(	) and estimate the corresponding �(	).

The number of pseudo-regenerative blocks to resample actually depends on how large the

small set chosen is (or more exactly, on how often it is visited by the chain in a trajectory

of finite length) and how accurate the lower bound (1) is (the larger � is, the larger is the

probability of drawing pseudo-regenerative times ŶYk ¼ 1 at randomization steps, that is,

when X k 2 Vx0
(	)). And since the larger 	 is, the smaller �(	) is, it is intuitive to think (and
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theoretically supported by the empirical EE of the bootstrap distribution) that better

numerical results for the block-resampling procedure can be obtained in practice for some

specific choices of the size 	, namely for choices corresponding to a maximum number of

regenerative data blocks given the trajectory.

When no prior information about the structure is available, a possible selection rule relies

on searching for 	 . 0 and x0 2 R so as to maximize the expected number of data blocks

conditioned on the observed trajectory:

Nn(	) ¼ E
Xn

i¼1

IfX i 2 Vx0
(	), Yi ¼ 1g jX (nþ1)

 !
(2)

¼ �(	)

2	

Xn

i¼1

If(X i, X iþ1) 2 Vx0
(	)2g

p(X i, X iþ1)
:

Since the transition density p and its minimum over Vx0
(	)2 are unknown, an empirical

criterion N̂N n(	) to optimize is obtained by replacing p by an estimate pn and �(	)=2	 by a

lower bound �̂�n(	)=2	 for pn over Vx0
(	)2 in (2).

It should be noticed that, if one uses the double splitting trick mentioned in Remark 3.3

and computes the estimates of ar Nn(	), �(	), etc. using an estimator of p based on the first

mnobservations, then the second-order properties of the ARBB with estimated parameters

still hold (provided that we have almost sure convergence of this estimator uniformly over

the small set chosen). However, giving an exact rate in that case is more difficult.

Observe, finally, that other approaches may be used for the choice of the minorization

condition; for instance, one may refer to Roberts and Rosenthal (1996) in the case of

diffusion Markov processes. Some convincing simulation studies are available in Bertail and

Clémençon (2003) as well as in a forthcoming companion paper.

4. Technical proofs

In the following, C, C1, . . . and K are constants which are not necessarily the same at each

appearance. We denote by E�(�jX (n)) the conditional expectation given X (n).

Proof of Theorem 2.1. Observe first that it suffices to consider the case EA(�A) . 1. Indeed,

if EA(�A) ¼ 1, then �A ¼ 1 a.s. and the X i are thus i.i.d. In this case the RBB exactly

corresponds to the naive bootstrap and is naturally second-order correct both in the

unstandardized and standardized cases up to O(n�1) (see Hall 1992). The proof is standard

and relies on checking that conditions for the validity of the EEs, established in Malinovskii

(1987) (see Theorem 1 therein) and in Bertail and Clémençon (2004) (see Theorem 5.1

therein) respectively, are fulfilled (uniformly in n) for the RBB reconstructed series.

To check condition (i), observe first that the characteristic function E�
(ei tf f (B�j )��n( f ) l(B�j )gjX (n)) ¼ (ln � 1)�1

P l n�1
j¼1 exp(itf f (B j) � �n( f )l(B j)g) converges to EA

(exp(itf f (B j) � �( f )l(B j)g)), P�-a.s. uniformly over any compact set. The bootstrap
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Cramér condition then follows from standard arguments (see Datta and McCormick 1993,

for instance).

Conditions (ii)–(v) follow from the strong law of large numbers for Markov chains. It

follows from Bertail and Clémençon (2004) (see their equations (8), (9)) that, as

n ! 1, HU
RBB(x) and HS

RBB(x) admit an EE up to order OP�(n�1), replacing the true

quantities by the empirical ones. Here the empirical skewness k
(n)
3 ( f ) and the bias b(n)( f )

are given by

k
(n)
3 ( f ) ¼ (E�(l(B�j )jX (n)))�1fM

(n)
3,A( f ) � 3� 2

n( f )�(n)( f )g=� 3
n( f )

b(n)( f ) ¼ �(E�(l(B�j )jX (n)))�1�(n)( f )=� n( f ),

with M
(n)
3,A( f ) ¼ E�(f f (B�j ) � �n( f )l(B�j )g3jX (n)) and �(n)( f ) ¼ E�(f f (B�j ) � �n( f )

l(B�j )gl(B�j )jX (n)). Now it is easy to show by standard CLT arguments that each of these

terms converges at the rate n�1=2 to the corresponding terms in the EE of �n( f ). The proof is

then concluded by observing that the EE of the true distributions and that of the RBB

distribution match up to OP�(n�1) in the unstandardized case and in the standardized case as

well. h

Proof of Theorem 3.1. In the following, denote by �S ¼ �S(1) ¼ inffn > 1, X n 2 Sg and

�S( j) ¼ inffn . �S( j � 1), X n 2 Sg, j > 2, the times of the successive visits to S. We

consider the joint distribution such that, conditionally on the sample path

X (nþ1) ¼ (X1, . . . , X �S (1), . . . , X �S (Ln), . . . , X nþ1), denoting by Ln ¼
Pn

i¼1IfX i 2 Sg the

number of visits of X to the small set S between time 1 and time n, the (Yi, ŶYi) are

drawn independently for 1 < i < n, so that

Y�S (k) � Ber �� X �S (k)þ1

� �
=p(X �S (k), X �S (k)þ1)

� �
,

ŶY�S (k) � Ber �� X �S (k)þ1

� �
=pn(X �S (k), X �S (k)þ1)

� �
,

and, if p(X �S (k), X �S (k)þ1) < pn(X �S (k), X �S (k)þ1),

P(ŶY�S (k) ¼ 1, Y�S (k) ¼ 0jX (nþ1)) ¼ pn(X �S (k), X �S (k)þ1) � p(X �S (k), X �S (k)þ1),

P(ŶY�S (k) ¼ 0, Y�S (k) ¼ 1jX (nþ1)) ¼ 0,

and, if p(X �S (k), X �S (k)þ1) > pn(X �S (k), X �S (k)þ1),

P(ŶY�S (k) ¼ 0, Y�S (k) ¼ 1jX (nþ1)) ¼ p(X �S (k), X �S (k)þ1) � pn(X �S (k), X �S (k)þ1),

P(ŶY�S (k) ¼ 1, Y�S (k) ¼ 0jX (nþ1)) ¼ 0,

for k 2 f1, . . . , Lng, and that for all i 2 f1, . . . , ngnf�S(k), 1 < k < Lng, Yi ¼ ŶYi � Ber(�).

Hence, we deduce that, for 1 < k < Ln,

P(ŶY�S (k) 6¼ Y�S (k)jX (nþ1)) ¼
���� �� X �S (k)þ1

� �
p(X �S (k), X �S (k)þ1)

�
�� X �S (k)þ1

� �
pn(X �S (k), X �S (k)þ1)

���� a:s:,
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l1(P(n), P̂P(n)) ¼
Xn�1

k¼1

2�kE IfX k 2 Sg
���� ��(X kþ1)

p(X k , X kþ1)
� ��(X kþ1)

pn(X k , X kþ1)

����
� �

:

Observe that we almost surely have���� ��(X kþ1)

p(X k , X kþ1)
� ��(X kþ1)

pn(X k , X kþ1)

���� < IfX kþ1 2 Sg j p(X k , X kþ1) � pn(X k , X kþ1)j
p(X k , X kþ1)

:

Consequently, using the fact that p(X k , X kþ1) > ��(X kþ1), we may write

l1(P(n), P̂P(n)) <
Xn�1

k¼1

2�kE IfX k 2 S, X kþ1 2 Sg j p(X k , X kþ1) � pn(X k , X kþ1)j
��(X kþ1)

� �
:

Hence, under (i), we have

l1(P(n), P̂P(n)) < � inf
x2S

�(x)

� ��1Xn�1

k¼1

2�kE sup
(x, y)2S2

jp(x, y) � pn(x, y)j
" #

:

Thus, the desired bound results from the asymptotic properties of pn. h

Proof of Theorem 3.2. In order to make the exposition of the proof much simpler, we only

consider the case when f is bounded. The same argument applies to the general unbounded

case with only slight and obvious modifications. The proof is based on the study of the

closeness between the distribution of the blocks B1, . . . , B l n
dividing the segment

X (nþ1) ¼ (X1, . . . , X nþ1) according to the l n consecutive visits of (X i, Yi) to the atom

AM ¼ S 3 f1g between time 1 and time n, and the distribution of the blocks B̂B1, . . . , B̂B
l̂l n

dividing X (nþ1) according to the l̂l n successive visits of (X i, ŶYi) to S 3 f1g conditioned on

X (nþ1). Let us assume that, conditionally on X (nþ1), the (Yi, ŶYi) are drawn as supposed in the

proof of Theorem 3.1. We use the notation ln ¼
Pn

i¼1IfX i 2 S, Yi ¼ 1g, �AM ¼ �AM (1) ¼
inffn > 1, (X n, Yn) 2 AMg, �AM ( j þ 1) ¼ inffn . �AM( j), (X n, Yn) 2 AMg, l(B j) ¼
�AM( j) � �AM ( j) for j > 1. Set nAM ¼ �AM (ln) � �AM (1) and let �n( f ) ¼ n�1

AM

P l n

j¼1 f (B j)

and � 2
n( f ) ¼ n�1

AM

P l n

j¼1f f (B j) � �n( f )l(B j)g2 be the respective counterparts of �̂�n( f ) and

�̂� 2
n( f ) based on the regenerative blocks.

For the sake of the simplicity, we introduce further notation and denote by �1 ¼ �AM (or

�̂�1 ¼ �̂�AM ) the (random) time corresponding to the first visit to S 3 1f g of (X i, Yi)1<i<n (or

of (X i, ŶYi)1<i<n) as well as the time �2 ¼ �AM(ln) (or �̂�2 ¼ �̂�AM( l̂l n)) corresponding to the

last visit.

Lemma 4.1. Let ª > 2. Under H2(2ª, �) and H3, there exists a constant C such that

E�(j�̂�i � �ijª) < CÆ1=2
n , for i 2 f1, 2g:

Proof. Under H4 and H5, note that �� X �S (k)þ1

� �
=p(X �S (k), X �S (k)þ1) and

�� X �S (k)þ1

� �
=pn(X �S (k), X �S (k)þ1) are bounded from below by q ¼ � inf x2S �(x)=R. Given

the joint distribution of the (Yi, ŶYi) (refer to the proof of Theorem 3.1) and in particular that,

for any k 2 f1, . . . , Lng,
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P(Y�S (k) 6¼ ŶY�S (k)jX (nþ1)) < (� inf
x2S

�(x))�1 sup
(x, y)2S2

j pn(x, y) � p(x, y)j, (3)

one obtains the following bound for the conditional expectation:

E(j�̂�1 � �1jªjX (nþ1)) < C
X

1< l,k<Ln

(�S(k) � �S(l))ªq(1 � q)k�1

3 sup
(x, y)2S2

j pn(x, y) � p(x, y)j:

Using the Cauchy–Schwarz inequality and assumption H3, easy calculations yield the

following bound for the (unconditional) expectation

E�(j�̂�i � �ijª) < CÆ1=2
n

X1
k¼1

k2(1 � q)kE�(�S(k)2ª)

 !1=2

:

Furthermore, it straightforwardly follows from the identity �S(k) ¼ �S þPk�1
l¼1 f�S(l þ 1) � �S(l)g that E�(�S(k)2ª) is bounded by 22ªfE�(�2ª

S ) þ (k � 1)2ª

3 supx2S Ex(�2ª
S )g for all k. Under H2(2ª, �) the bound is thus established when i ¼ 1.

The case i ¼ 2 follows from a similar argument. h

Let g : (E, E) ! R be measurable and bounded. Set g(B j) ¼
P�AM ( jþ1)

i¼1þ�AM ( j) g(X i) and

consider T (M)
n (g) ¼ n�1

P l n�1
j¼1 g(B j)

M , T̂T (M)
n (g) ¼ n�1

P l̂l n�1
j¼1 g(B̂Bj)

M for M > 0, where by

convention T (M)
n (g) ¼ 0 (T̂T (M)

n (g) ¼ 0) when l n < 1 (when l̂l n < 1). The following lemma

provides an asymptotic bound for D(M)
n (g) ¼ jT (M)

n (g) � T̂T (M)
n (g)j, when M 2 f1, 2, 3g.

Lemma 4.2. Let ª > 6. Under H2(ª, �) and H3 we have, as n ! 1,

D(1)
n (g) ¼ OP� (n�1Æ1=2

n ), (4)

D(k)
n (g) ¼ OP� (Æn), for k ¼ 2, 3: (5)

Proof. Bound (4) immediately follows from Lemma 4.1.

Let Nn ¼
Pmin(�̂�2,�2)

k¼max(�̂�1,�1)
IfY�S (k) 6¼ ŶY�S (k)g be the number of times when X i visits S and ŶYi

differs from Yi simultaneously between time max(�̂�1, �1) and time min(�̂�2, �2) (with the

usual convention with regard to empty summation). We introduce the corresponding

successive random times

t1 ¼ inf �S(k); max(�̂�1, �1) < �S(k) < min(�̂�2, �2), Y�S (k) 6¼ ŶY�S (k)

� 	
,

t jþ1 ¼ inf �S(k); t j , �S(k) < min(�̂�2, �2), Y�S (k) 6¼ ŶY�S (k)

� 	
,

with j ¼ 1, . . . , Nn � 1. And for 1 < j < N n, we denote by t
(1)
j (t

(2)
j ) the last time before

(the first time after) t j when, simultaneously, X i visits S and Yi or ŶYi is equal to one, between

time 0 and time n. We can check that
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jD(2)
n (g)j < kgk2

1
n

(�̂�1 � �1)2 þ (�̂�2 � �2)2 þ 2
XNn

j¼1

(t
(2)
j � t j)(t j � t

(1)
j )

( )

<
kgk2

1
n

(�̂�1 � �1)2 þ (�̂�2 � �2)2 þ
XNn

j¼1

f(t
(2)
j � t j)

2 þ (t j � t
(1)
j )2g

( )
:

Set t j ¼ t
(2)
j ¼ 0 for j . Nn. By arguments similar to those used before, one can easily

show that there exist constants cr(q) depending only on q, such that

E�((t
(2)
j � t j)

r) < cr(q)supxEx(�r
S) for any j > 1, r < ª. By the Cauchy–Schwarz inequality

we have, for any deterministic sequence of positive integers mn,

E�
XNn

j¼1

(t
(2)
j � t j)

2

 !
<
Xmn

j¼1

E�((t
(2)
j � t j)

2) þ E�
Xn

j¼1

(t
(2)
j � t j)

2IfN n . mng
 !

< C1 mn þ C2 n(P(Nn . mn))1=2,

where C1 ¼ supx2SEx(�2
S)c2(q) and C2 ¼ supx2SEx(�4

S)c4(q). The probability that Yi differs

from ŶYi is bounded by qn ¼ (� inf x2S�(x))�1Æn and the (Y�S (k), ŶY�S (k)) are drawn

independently conditionally on X (nþ1). Hence, by using the Chebyshev exponential inequality,

we derive that

P(Nn . mn) < e�m nE(e Nn ) < e�mn (1 þ qne)n: (6)

Now by choosing mn"1 such that mn=n ! 0 and nÆn=mn ! 0 as n ! 1, we deduce from

(6) that n�1E�(
PNn

j¼1(t
(2)
j � t j)

2) ¼ O(Æn), as n ! 1. By an analogous argument, one can

show that n�1E�(
PNn

j¼1(t j � t
(1)
j )2) ¼ O(Æn), as n ! 1: D(3)

n (g) may be treated similarly. h

From these lemmas, we deduce the following:

Lemma 4.3. Under the assumptions of Theorem 3.2, we have the following convergences in

P�-probability as n ! 1:

n1=2(�̂�n( f ) � �n( f )) ! 0, (7)

Æ�1=2
n j l̂l n=n � ln=nj ! 0: (8)

Moreover, we have for k ¼ 2, 3,
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n�1
Xl n�1

j¼1

l(B j)
k � n�1

Xl̂l n�1

j¼1

l(B̂B j)
k ¼ OP� (Æn), (9)

n�1
Xl n�1

j¼1

f (B j)
k � n�1

Xl̂l n�1

j¼1

f (B̂B j)
k ¼ OP� (Æn), (10)

n�1
Xl n�1

j¼1

l(B j) f (B j) � n�1
Xl̂l n�1

j¼1

l(B̂B j) f (B̂B j) ¼ OP� (Æn): (11)

Proof. From (4) in Lemma 4.2 with g � 1, it follows that j n̂n
AM

=n � nAM=nj ¼ OP�(Æ
1=2
n n�1)

as n ! 1. Given that nAM=n ! 1 P�-a.s. as n ! 1, this combined with (4) again with

g ¼ f obviously yields (7).

Now observe that j l̂l n=n � l n=nj < n�1
PLn

k¼1IfY�S (k) 6¼ ŶY�S (k)g. Using again the fact that

conditionally on X (nþ1) the (Y�S (k), ŶY�S (k)) are drawn independently for k ¼ 1, . . . , Ln and

(3), we have

E j l̂l n=n � l n=nj jX (nþ1)

 �

< n�1 Ln(� inf
x2S

�(x))�1 sup
(x, y)2S2

j pn(x, y) � p(x, y)j:

Since Ln ¼
Pn

i¼1IfX i 2 Sg < n, by taking the expectation one obtains that

E�(j l̂l n=n � l n=nj) ¼ O(Æ1=2
n ), as n ! 1.

Now (9) straightforwardly results from Lemma 4.2 with g � 1 (as does (10) with g ¼ f ).

And (11) may be proved by simply noticing that

2�( f )
Xl̂l n�1

j¼1

l(B̂B j) f (B̂B j) ¼
Xl̂l n�1

j¼1

f (B̂B j)
2 �

Xl̂l n�1

j¼1

f (B̂B j)
2 � �( f )2

Xl̂l n�1

j¼1

l(B̂B j)
2,

and applying Lemma 4.2 to each component on the right-hand side (by successively taking

g(x) equal to f (x) ¼ f (x) � �( f ), f (x) and 1). h

Now one can easily deduce from these results that �̂� 2
n( f ) � � 2

n( f ) ! 0 in P�-probability,

as n ! 1. Hence, given that � 2
n( f ) ! � 2

f in P�-probability, as n ! 1 (see the

preliminary remarks in Section 2.4.1) the consistency of �̂� 2
n( f ) is established. Finally,

combining this with (7) and the CLT for the sample mean �n( f ) related to the split chain

(see Section 2.4.1) proves that ~nn
1=2
AM

�̂� n( f )�1(�̂�n( f ) � �( f )) ! N (0, 1) in P�-distribution, as

n ! 1. The proof of theorem 3.2 is complete. h

Proof of Theorem 3.3. In what follows, we write Z n !
P�

Z in P�-probability (P�-a.s.) along

the sample when

P�(jZ n � Zj . 	jX (nþ1)) !n!1
0 in P�-probability (P�-a:s:):

The unstudentized case. The result is proved by following line by line the classical

argument establishing the CLT for regenerative processes (see Theorem 17.2.2 in Meyn and
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Tweedie 1996). The latter relies on approximating the summation over a random number of

regenerative blocks by a sum involving a deterministic number of blocks. Note first that,

conditioned on X (nþ1), the ARBB sequence (though not Markovian) defines a regenerative

process with i.i.d. segments B̂B�j , j > 1. By the law of large numbers, we have

(ln � 1)�1
P l n�1

j¼1 l(B j) ! EAM (�AM), P�-a.s. Lemma 4.3 thus entails that as n ! 1,

E�(l(B̂B�1 )X (nþ1)) ¼ 1

l̂l n � 1

Xl̂l n�1

j¼1

l(B̂B j) ! EAM (�AM ) in P�-probability:

We also have E�(l(B̂B�1 )2jX (nþ1)) ! EAM (�2
AM

) , 1 in P�-probability as n ! 1. This

implies in particular that, as n ! 1,

l(B̂B�j )

n
!P
�

0 and
n�AM

n
!P
�

1 in P�-probability along the sample: (12)

The law of large numbers and Lemma 4.3 yield l��1
n

P l�n
i¼1 l(B̂B�j ) � ( l̂l n � 1)�1

P l̂l n�1
i¼1 l(B̂Bj)!

P�
0,

P�-a.s., as n ! 1. This entails that l��1
n

P l�n
i¼1 l(B̂B�j ) � EAM (�AM )!P

�
0 in P�-probability along

the sample. We deduce that l�n=n � EAM(�AM )�1 !P
�

0 in P�-probability along the sample.

Now with the same arguments as in Theorem 17.2.2 in Meyn and Tweedie (1996), that is,

combining (12) and the Markov inequality, we obtain, for n large enough,

��n ( f ) � �̂�n( f )

n
��1=2
AM

�̂� n( f )1=2
¼
P1þbnEAM (�A)�1c

j¼1 f f (B�j � �̂�n( f )l(B�j )g
n1=2�̂� n( f )1=2

þ oP�(1)

along the sample in P�-probability, as n ! 1. Now it is sufficient to apply the classical

bootstrap CLT (see Bickel and Freedmann 1981) to the i.i.d. random variables

f f (B�j ) � �̂�n( f )l(B�j )g j>1. These random variables are centred with variance

~nnAM �̂� 2
n( f )=( l̂l n � 1), which converges to EAM (�AM)� 2

f in P�-probability under the hypotheses

of Theorem 3.3 (see Theorem 3.2 and Lemma 4.3).

The studentized case. We essentially have to prove that, as n ! 1, ��n ( f ) � �̂� n( f )!P
�

0

in P�-probability along the sample. With arguments similar to those used in the

unstudentized case, one can easily show that, in P�-probability along the sample,

��n ( f )2 ¼ n�1
X1þbn=EAM �A)c

j¼1

f f (B�j ) � �̂�n( f )l(B�j )g2 þ oP�(1),

and the result follows also from standard bootstrap results in the i.i.d case.

Proof of Theorem 3.4. The EE proved in Malinovskii (1987) – along with that in Bertail and

Clémençon (2004) in the studentized case – for atomic chains straightforwardly extends to

the case of a general positive recurrent chain X by applying the latter to the split chain (X ,

Y) constructed via the Nummelin technique from a minorization condition M: it is

noteworthy that, though expressed using the parameters of condition M, the coefficients in

the EE are independent of the latter. In the stationary setting the EE of the sample mean

in the unstudentized case is given in Malinovskii (1987), with b(n)( f ) replaced by 0. Because
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the reconstructed ARBB series is regenerative, just as in the atomic case, it is sufficient to

check the hypotheses ensuring the validity of the EE for the ARBB statistic. The proof is

thus similar to the proof of Theorem 2.1 except that the true regenerative blocks are replaced

by the approximated ones. Lemma 4.3 allows us to control the rate of convergence of all the

empirical terms appearing in the EE of the ARBB distribution up to OP(Æ1=2
n n�1=2). The

recentring ensures that the bias vanishes so that the two EEs match up to OP(Æ1=2
n n�1=2).

h
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