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Weak Besov spaces play an important role in statistics as maxisets of classical procedures or for

measuring the sparsity of signals. The goal of this paper is to study weak Besov balls WBs, p,q(C)

from the statistical point of view by using the minimax Bayes method. In particular, we compare weak

and strong Besov balls statistically. By building an optimal Bayes wavelet thresholding rule, we first

establish that, under suitable conditions, the rate of convergence of the minimax risk for WBs, p,q(C) is

the same as for the strong Besov ball Bs, p,q(C) that is contained in WBs, p,q(C). However, we show

that the asymptotically least favourable priors of WBs, p,q(C) that are based on Pareto distributions

cannot be asymptotically least favourable priors for Bs, p,q(C). Finally, we present sample paths of such

priors that provide representations of the worst functions to be estimated for classical procedures and

we give an interpretation of the roles of the parameters s, p and q of WBs, p,q(C).
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1. Introduction

In this paper, we study weak Besov spaces, denoted WBs, p,q from the statistical point of

view. First, let us point out the importance of these spaces in approximation theory and

statistics and explain our interest in considering these spaces, which are defined in Section

2.2.

DeVore (1989), Donoho (1996), Donoho and Johnstone (1996) and Cohen et al. (2000a)

noticed that weak l p spaces, denoted wl p, can be viewed as collections of functions on

[0, 1] that can be approximated in L2([0, 1]) at rate N�� , � ¼ 1=p � 1=2. Cohen et al.

(2000a) linked the approach of nonlinear approximation not only to weak l p spaces but also

to weak Besov spaces that can be viewed as weighted weak l p spaces. Indeed, Cohen et al.

(2000a) showed that weak Besov spaces appear in the characterization of the approximation

performance of wavelet thresholding. In statistics, weak Besov spaces appear naturally in

the framework of maxiset theory. This approach was proposed by Cohen et al. (2000b) and

is an alternative to the classical minimax theory. Indeed, the minimax criterion asks of a

procedure ‘what is the worst performance over a given class of functions?’. The maxiset

criterion asks instead ‘what is the class of functions for which the procedure attains a given

rate of convergence?’. This class of functions is called the maxiset. We observe that, for the
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minimax approach, we have to choose the function class and this choice is quite subjective,

whereas the maxiset approach provides function spaces directly connected to the estimation

procedure. The maxiset approach revealed the following important fact. Roughly speaking,

weak Besov spaces are the maxisets of many classical estimation procedures. See for

instance, the maxiset results proved by Cohen et al. (2000b) for wavelet thresholding and by

Rivoirard (2005) for general Bayesian procedures. These authors emphasized that the

performance of these procedures depends on the smoothness and on the sparsity of the

underlying signal to be estimated. So, smoothness and sparsity are strongly linked to weak

Besov spaces. This point will be extensively developed in Section 2.2 and we shall see how

to use weak Besov spaces for measuring the smoothness and, in particular, the sparsity of

signals. Let us end this presentation of the spaces WBs, p,q by justifying the terminology of

‘weak Besov space’. Section 2.2 shows that WBs, p,q is very close to the classical Besov

space Bs, p,q that will be denoted the ‘strong Besov space’ to avoid any ambiguity. The

definition of Bs, p,q and its characterization by using wavelet coefficients are recalled in

Section 2.1. Actually, the space WBs, p,q is defined by slightly relaxing Besov constraints on

the wavelet coefficients and we have Bs, p,q � WBs, p,q. So, the space WBs, p,q appears as a

weak version of Bs, p,q.

Our first issue is to point out the minimax rate of convergence for each weak Besov ball,

denoted WBs, p,q(C), in the framework of the classical white noise model and with Besov

norms as loss functions. More precisely, we focus on the Bs9, p9, p9-loss, where 0 < s9 , 1,

1 < p9 , 1. So, our first goal is to generalize the results proved by Johnstone (1994) who

obtained the asymptotic values of the minimax risk for weak l p balls with the l2-loss.

Naturally, the next goal is to compare the rates of convergence of the minimax risk

associated respectively with WBs, p,q(C) and Bs, p,q(C). The results concerning minimax

rates are given by Theorem 1 in Section 4.2 under assumptions on the parameters s, p, q,

s9 and p9. We show that the rates for Bs, p,q(C) and WBs, p,q(C) are the same up

to constants. This result may seem surprising since, actually, the inclusion

Bs, p,q(C) � WBs, p,q(C) is strict. However, we noted that strong Besov spaces and weak

Besov spaces are close. Therefore, this result generalizes Theorem 1 of Johnstone (1994)

who proved that minimax rates for weak l p balls are the same as for l p balls.

The proofs of these results exploit the well-known Bayesian approach proposed by

Pinsker (1980). This approach consists in proving that the minimax risk is asymptotically

equal to the Bayes risk associated with a prior model; see Pinsker (1980) for more details.

Pinsker’s paper inspired a considerable literature. Of interest in the present context are

Casella and Strawderman (1981) and Bickel (1981), who used minimax Bayes methods for

the estimation of a bounded normal mean, and Donoho and Johnstone (1994b), Johnstone

(1994) and Donoho and Johnstone (1998), respectively, for the estimation over l p balls,

weak l p balls and strong Besov balls. To obtain the upper bound of the minimax risk on

WBs, p,q(C), we exploit the approach developed by Johnstone (1994) by building a minimax

Bayes wavelet thresholding estimator. More precisely, each wavelet coefficient is estimated,

at large resolution levels ar j, by the soft thresholding rule and the threshold depends on the

parameters of the prior model (see Section 4.2). Section 4.4 briefly describes the method to

apply this estimator for denoising discrete data. This paper thus makes a new contribution

to the crucial problem of choosing thresholds for wavelet thresholding. This issue has often
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been investigated, in particular, in a Bayesian framework. See, for instance, Abramovich et

al. (1998), who used the posterior median of a Gaussian prior model, and the Bayes factor

procedure of Vidakovic (1998) which mimics hard thresholding.

Our second issue deals with asymptotically least favourable priors of WBs, p,q(C). Such

priors, which maximize the Bayes risk on a given class of probability measures, have a

Bayes risk that is asymptotically equal to the minimax risk and their support belongs

asymptotically to WBs, p,q(C) (see Section 3). Since minimax risks for Bs, p,q(C) and

WBs, p,q(C) are the same, a natural question arises: are asymptotically least favourable

priors for Bs, p,q(C) and WBs, p,q(C) also the same? We shall prove that the answer is no.

Indeed, for each weak Besov ball WBs, p,q(C), we present asymptotically least favourable

priors derived from Pareto (p) distributions, but these priors are not asymptotically least

favourable priors for Bs, p,q(C) (see Theorem 1). Johnstone (1994) pointed out

asymptotically least favourable priors for strong Besov spaces based on Gaussian

distributions or on two- or three-point distributions. So, this paper shows that Pareto

distributions are typical of weak Besov spaces.

Our last issue is to obtain a representation of the ‘typical enemies’ for classical

procedures. Since maxisets for these procedures often seem to be characterized by weak

Besov spaces, it is natural to look for these signals in weak Besov balls. For this purpose,

we shall naturally use simulations of asymptotically least favourable priors of a given weak

Besov ball WBs, p,q(C) that provide a good representation of the worst functions of

WBs, p,q(C) to be estimated. These simulations will show relationships between the

parameters s, p and q and smoothness or sparsity of signals of WBs, p,q(C).

The paper is organized as follows. Section 2 is devoted to weak Besov spaces and

sparsity, after an overview of strong Besov spaces. Section 3 introduces asymptotically least

favourable priors. Section 4 presents our results. Finally, in Section 5, we recall the

minimax Bayes approach and give some elements of the proofs. Section 6 is devoted to the

proof of Theorem 3.

2. Weak Besov spaces

2.1. Overview of strong Besov spaces

Let us recall the definition of strong Besov spaces Bs, p,q when 0 , s , 1, 1 < p < 1,

1 < q , 1 (we do not consider the case q ¼ 1 in this paper). Let f 2 L p(R). For any

r 2 N� and any h 2 R, we set

˜r
h( f , x) ¼

Xr

k¼0

r!

k!(r � k)!
(�1)r�k f (x þ kh), x 2 R,

and introduce the rth modulus of smoothness of f ,

wr( f , t) p ¼ sup
0,h< t

k˜r
h( f , :)k p, t > 0:

Now, for 0 , s , 1, 1 < p < 1, 1 < q , 1,
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Bs, p,q ¼ f f : k f k p þ j f jBs, p,q
, 1g,

where

j f jBs, p,q
¼

ð1
0

[t�swr( f , t) p]
q dt

t

� �1=q

, r 2 N� such that s , r < s þ 1;

see DeVore and Lorentz (1993) for more details. Using a multiresolution analysis, we can

connect Besov norms to sequence space norms. Let us suppose that we are given a pair

consisting of a scaling function � and a wavelet ł, and a function f having the

decomposition

f (t) ¼
X
j>�1

X
k2Z

� jkł jk(t), (1)

where ł jk(t) ¼ 2 j=2ł(2 j t � k) if j 2 N, ł�1,k(t) ¼ �(t � k), and � jk ¼
Ð

f (t)ł jk(t) dt. The

sequences (��1,k)k and, for j > 0, (� jk)k are respectively the approximation and the detail

wavelet coefficients at level j. The following facts are true under standard properties of

smoothness and moment vanishing of � and ł (see Meyer 1992). If we are given

1 < p < 1, 1 < q , 1 and 0 , s , 1, the function f in (1) belongs to Bs, p,q, if and only

if � ¼ (� jk) jk satisfies

k�kBs, p,q
¼

Xþ1

j¼�1

2 jq(sþ1=2�1= p)
X

k

j� jk j p

 !q= p
0
@

1
A

1=q

, 1

(with the obvious modifications for p ¼ 1). In the following, we use this sequential

characterization of strong Besov spaces, in particular for the evaluation of the minimax risk

for Bs9, p9, p9-norms as loss functions, and we note k f kBs, p,q
¼ k�kBs, p,q

. This allows one to

consider the case s9 ¼ 0 (we observe that when s9 ¼ 0 and p9 ¼ 2, k f kBs9, p9, p9
¼ k f k2).

Furthermore, we exploit Daubechies’ construction that enables us to suppose in addition and

without loss of generality that � and ł are both supported by the interval [�A�,ł, B�,ł] (see

Daubechies 1992).

2.2. Sparsity and weak Besov spaces

Abramovich et al. (2000) introduced the notion of sparsity of an infinite vector Ł 2 RN

through the following approach. The vector Ł is said to be sparse if there is a small

proportion of relatively large entries. Therefore, they order the components of Ł according

to their size,

jŁj(1) > jŁj(2) > . . . > jŁj(n) > . . . ,

and they control the number of large entries by using the power-law bound

supn n1= pjŁj(n) , 1, where p . 0. This condition is equivalent to saying that Ł belongs to

the weak l p space wl p defined by
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wl p ¼ Ł 2 RN : sup
º.0

º p
X

n

1jŁnj.º , 1
( )

:

Let us now introduce weak Besov spaces.

Definition 1. Fix 0 , s, p, q , 1. We say that f in (1) belongs to the weak Besov space of

parameters s, p, q, denoted WBs, p,q, if

sup
º.0

ºq
X

j

2 jq(sþ1=2�1= p)N ( j, º)q= p , 1,

where N ( j, º) is the number of wavelet coefficients at level j greater than º:

N ( j, º) ¼
X

k

1j� jk j.º:

For any C > 0, the ball of radius C of the space WBs,p,q is

WBs, p,q(C) ¼ f : sup
º.0

ºq
X

j

2 jq(sþ1=2�1= p)N ( j, º)q= p < Cq

( )
:

We thus note that the weak Besov space WBs, p, p can be viewed as a weighted weak l p space.

The weights penalize the counting of the � jks greater than º for the large scales according to

the sign of p(s þ 1=2)� 1. Obviously, WBs, p, p with s ¼ 1=p � 1=2 can be identified with

wl p. Therefore, the use of weak Besov spaces may appear to be a good device for measuring

the smoothness, but in particular the sparsity, of a wavelet expanded signal. Finally, using the

Markov inequality and the sequential characterization of strong Besov spaces, it is easy to

note that Bs, p,q(C) � WBs, p,q(C).

3. Minimax risk and asymptotically least favourable priors

We consider the white noise model

dYt ¼ f (t) dt þ � dW t, t 2 [0, 1]:

Restricting our attention to functions supported by [0, 1], � jk is non-zero if k is in I j, where

I j ¼ �B�,ł þ 1, . . . , max(2 j, 1)þ A�,ł � 1
� �

:

By setting yjk ¼
Ð
ł jk(t)dYt, for any j > �1 and k 2 I j, this model is reduced to a sequence

space model, and we obtain the following sequence of independent variables:

yjk ¼ � jk þ �z jk , z jk � N (0, 1), j > �1, k 2 I j:

When 0 < s9 , 1 and 1 < p9 , 1, the minimax risk is denoted by

~RR� ¼ inf
�̂�

sup
�2WBs, p,q(C)

E�k�̂�� �k p9

Bs9, p9, p9
:
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Note that evaluating the minimax risk for Bs9, p9, p9-losses constitutes the first step to

evaluating the minimax risk for L p9-losses. In particular, the value s9 ¼ 0 provides a

conjecture for the minimax rates for the L p9-loss. The minimax risk will be evaluated by

using ‘asymptotically least favourable priors’. We say that ��, a prior distribution on

� ¼ (� jk) jk , is an asymptotically least favourable prior associated with WBs, p,q(C) and the

Bs9, p9, p9-loss, if the following conditions are satisfied:

1. �� maximizes the Bayes risk on an appropriate class of probability measures (see

Section 5.1 for the class of probability measures that is naturally introduced for the

issues of this paper).

2. The Bayes risk of ��, denoted B(��), must satisfy

C1B(��) < ~RR� < C2B(��),

where C1 and C2 are positive constants depending only on s, p, q, s9, p9. We recall

that

B(��) ¼ inf
�̂�
E��E�k�̂�� �k p9

Bs9, p9, p9
:

3. As � tends to 0, P�� (� =2 WBs, p,q(C)) goes to 0 at an exponential rate of convergence.

Similarly, by replacing WBs, p,q(C) with Bs, p,q(C), we obtain the definition of asymptotically

least favourable priors for strong Besov balls. We can easily see that conditions 2 and 3

ensure that the ‘typical enemies’ of weak Besov balls WBs, p,q(C) are well represented by

simulations of asymptotically least favourable priors associated with theses spaces. In

particular, the exponential rate for the support property is essential to provide a statistical

sense for asymptotically least favourable priors. We observe that priors with similar

properties have also been used by Johnstone (1994) who also used the terminology of

‘asymptotically least favourable priors’.

4. Results, discussions and simulations

In this section, we give results concerning the minimax risk for WBs, p,q(C). For this

purpose, we need to introduce the following two distinct zones denoted respectively as the

regular and the critical zones:

R ¼ (s, p, q) 2 (0, þ1)3 : p9 . p, p s þ 1

2

� �
. p9 s9þ 1

2

� �� �

[ (s, p, q) 2 (0, þ1)3 : p9 < p
� �

,

C ¼ (s, p, q) 2 (0, þ1)3 : p9 . p, p s þ 1

2

� �
¼ p9 s9þ 1

2

� �� �
:
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The logarithmic zone

L ¼ (s, p, q) 2 (0, þ1)3 : p9 . p, p s þ 1

2

� �
, p9 s9þ 1

2

� �� �

is very different from the other zones and will not be considered in this paper. In the critical

case, we need a minimal hypothesis on the smoothness of f to control the size of the � jks at

high levels. That is the reason why we henceforth suppose that in addition, in the critical

case, f lies in B�, p9,1(C) (with � . s9 but �� s9 eventually very small). So, let us set

¨ ¼ WBs, p,q(C) on R,

¨ ¼ WBs, p,q(C) \ B�, p9,1(C) on C,

and the minimax risk we consider is henceforth

R� ¼ inf
�̂�
sup
�2¨

E�k�̂�� �k p9

Bs9, p9, p9
: (2)

4.1. Notation and technical tools

In this section we introduce some useful notation. For this purpose, we suppose that we are

given 0 , s, p, q, C , 1. If h1 and h2 denote two positive functions of �, h1(�) ��!0
h2(�)

means that lim�!0(h1(�)=h2(�)) ¼ 1. The notation h1(�) � h2(�) means that there exist

positive constants A and B, depending only on s, p, q, s9, p9, such that

8� . 0, Ah2(�) , h1(�) < Bh2(�),

and h1(�) ’ h2(�), means that A ¼ 1, B ¼ 2. For any x, �x denotes the Dirac measure at the

point x, and, for any real number y, byc denotes the greatest integer smaller or equal to y.

Let us fix k a real number belonging to (1, 2p9(s9þ 1
2
)=(2 p9(s9þ 1

2
)� 1)). We also

consider a function of �, ª�, such that ª� � 1 is positive and goes to 0 as � tends to 0 but

not faster than a logarithmic rate. Finally, for any � . 0, we set ( j�, j�) 2 N2 such that

2 j� ’ C

�

� �1=(sþ1=2)

, 2 j� ’ C

�

� �k=(sþ1=2)

:

We now introduce a sequence of non-negative real numbers (Æ j) j and two integers j1 and j2,

depending on the zone. When j , j�, we set Æ j ¼ V�2
� j(sþ1=2), where V� is defined below.

• If (s, p, q) lies in C and if q . p, we set j1 ¼ j�, j2 ¼ j� and, for j > j�,
Æ j ¼ V�2

� j(sþ1=2) j if j 2 f j1, . . . , j2g and Æ j ¼ 0 otherwise. Then V� is the real

number independent of j such that

X
j

2 jq(sþ1=2)Æq
j ¼

C

ª��

� �q

: (3)

• If (s, p, q) lies in C and if q < p, we set j1 ¼ j2 ¼ j�, and, for j > j�, Æ j ¼ 0 if

j 6¼ j1, and Æ j1 is such that (3) is satisfied.
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• If (s, p, q) lies in R, we set j1 ¼ j2 ¼ j� and, for j > j�, Æ j ¼ 0 if j 6¼ j1, and Æ j1 is

such that (3) is satisfied.

With each sequence (Æ j) j we associate two sequences (c j) j and (� j) j such that

� p
j �(� j þ c j) ¼ Æ p

j �(c j), where � denotes the standard Gaussian density function.

Furthermore, if (Æ j) j tends to 0, we require in addition that (c j) j and (� j) j tend to þ1
with c j ¼ o(� j), which yields that �2j � �2 logÆ p

j .

4.2. Main results and comments

Using the notation defined in Section 4.1, we have the following main results:

Theorem 1. Fix 0 , s, p, q, C , 1, such that s . s9.

• If W ¼ (s � s9)=(s þ 1
2
) and

�(C, �) ¼ C p9(1�W)� p9W on R,

C p9(1�W)� p9W(log(C=�)) p9W=2þ(1� p=q)þ on C,

�

we have

C1 < lim inf
�!0

R��(C, �)�1 < lim sup
�!0

R��(C, �)�1 < C2,

where C1 and C2 are positive constants depending on s, p, q, s9, p9. On C, C2 also

depends on �.
• If we set �� as the distribution of a sequence of independent variables (� jk) jk such that

the distribution of � jk is symmetric about 0 and

j� jk j ¼
�Æ j if j , j�,
�min(Æ j X jk , � j) otherwise,

�

where X jk is a Pareto ( p) variable, then �� is an asymptotically least favourable prior

for WBs, p,q(C). Furthermore, P�� (� 2 Bs, p,q(C)) !�!0
0.

Remark 1. The upper bound of the minimax risk is obtained by pointing out a minimax

thresholding rule defined in (9) of the form

f̂f �� ¼
X

j

X
k

sign(yjk) jyjk j � �º j

� �
þł jk ,

where º j ¼ 0 if j , j� and º j ¼ (�2 log ~ÆÆp
j )

1=2 otherwise, where ~ÆÆ j is a dilation parameter of

the prior model based on Pareto distributions used in Section 5.2 and strongly depends on s,

p, q, p9, s9, �, C and �. See Section 5.2 for a precise definition of ~ÆÆ j.

We can now compare strong and weak Besov spaces statistically. On the one hand, the

previous theorem and Theorem 1 of Donoho et al. (1996) enable us to conclude that the

rates of convergence for Bs, p,q(C) and WBs, p,q(C) on regular and critical zones are the
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same. On the other hand, Theorem 1 shows that �� is an asymptotically least favourable

prior for WBs, p,q(C) but not an asymptotically least favourable prior for Bs, p,q(C). Note that

the construction of �� uses Pareto distributions that are dense; this is not necessarily the

case for the asymptotically least favourable priors of Bs, p,q(C) exploited by Johnstone

(1994). If for Pinsker’s case ( p ¼ q ¼ 2), Johnstone uses Gaussian distributions (which are

therefore dense), when p , 2, the least favourable priors are based on three- or two-point

distributions (for the coarsest levels, the prior distributions are dense, whereas they are

sparse for high levels, with a few wavelet coefficients carrying all the energy). We note that

we can certainly construct a lot of asymptotically least favourable priors for ar WBs, p,q(C)

(in particular, asymptotically least favourable priors for Bs, p,q(C) are also asymptotically

least favourable priors for WBs, p,q(C)) but priors based on Pareto distributions naturally

appear when we investigate the upper bound of the risk.

4.3. Representations of the ‘typical enemies’ of weak Besov balls

The goal of this subsection is to provide a good representation of the worst functions to be

estimated and belonging to weak Besov balls WBs, p,q(C). We use realizations of

asymptotically least favourable priors for the regular and the critical cases and for different

values of s, p and q.

Before presenting our approach, let us briefly describe the discrete wavelet transform

(DWT) that is the natural algorithm associated with the multiresolution framework

introduced previously (see, for instance, Antoniadis 1994; Johnstone 1994; Mallat 1998;

Abramovich et al. 1998). Indeed, given the approximation coefficients of a signal f at a

resolution level j, the DWT provides the approximation coefficients and the detail

coefficients of f at level j � 1. This wavelet decomposition and the associated

reconstruction are easily calculated by using discrete convolutions with the appropriate

wavelet filters and can be performed as many times as desired. This cascade algorithm has

to be initialized. For this purpose, let us assume we are given the following ar n-sample of

a 1-periodic signal f :

f ¼ f
i

n

� �
: 1 < i < n ¼ 2N

� �
:

By supposing that the wavelet basis is based on a scaling function � that has a high number

of vanishing moments (e.g. a coiflet), Lemma 3.1 of Antoniadis (1994) proves that if, in

addition, f is regular enough, we have the following approximation:

f
i

n

� �
�

ffiffiffi
n

p
3

ð1
0

f (t)2N=2�(2N t � i) dt, 1 < i < n:

Starting with f , the decomposition step described above is performed N times. Thus, we

obtain an algorithm that is invertible and whose outputs consist of approximation coefficients

(the remaining ones) and all the detail coefficients that were accumulated along the way.

All these coefficients, which can be denoted d jk, �1 < j < N � 1, k 2 I j, satisfy
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d jk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 3 � jk

p
. We note that both the DWT and the inverse DWT are available by using the

wavelet Toolbox of MATLAB.

Thus, our approach is logically the following. First, we set C ¼ 1, n ¼ 212, the classical

calibration � ¼ n�1=2 and ª� ¼ 1. Using Theorem 1 (and its notation) to represent ‘typical

enemies’ of weak Besov balls, we simulate coefficients d jk with the following prior:

d jk �
Fj, j > j�,
1

2
(�Æ j

þ ��Æ j
), j , j�,

8<
: (4)

where Fj ¼ 1
2
(Fþ

j þ F�
j ), Fþ

j is the distribution of min(Æ j X jk , � j) and F�
j is the reflection of

Fþ
j about 0. To complete the definition of this prior model, and according to Section 4.1, we

set j� 2 N such that 2 j� ’ (C=�)1=(sþ1=2), and for the critical case we set j� 2 N such that

2 j� ’ (C=�)k=(sþ1=2), where

k ¼
2p9(s9þ 1

2
)

2p9(s9þ 1
2
)� 1

¼
2p(s þ 1

2
)

2p(s þ 1
2
)� 1

,

since on C, p9(s9þ 1
2
) ¼ p(s þ 1

2
). This allows one to define the integers j1, j2 and the

sequence (Æ j) j as in Section 4.1, and we take, for all j 2 f j1, . . . , j2g, � j ¼ (�2 log(Æ p
j )Þ

1=2
.

Naturally, for the reconstruction, we use the wavelet filters associated with coiflets of order 5.

To deal with the boundary problems that naturally appear when we consider compactly

supported signals, we use the periodized form of the inverse DWT. But of course, this choice

does not alter the qualitative phenomena we wish to present here (see Mallat 1998, for

instance). Thus, we obtain a n-sample of a periodic signal f that is a good representation of

the worst functions to be estimated and belonging to WBs, p,q(C).

Figure 1 shows the sample paths we obtain. Of course, realizations for the regular case

are more regular than realizations for the critical case. This fact is illustrated by the

comparison between (c) and (a). As expected, we observe that realizations are more regular

when s is great (compare (a) and (f)) or when q is small (compare (a) and (b) or (d) and

(e)), even if q is less influential. Finally, when p decreases, the realizations are less regular

and, in particular, we also note that the size of the peaks increases (compare (a) and (d) or

(b) and (e)). For small values of p, we obtain very high peaks, as shown by (a) and (b).

Thus, we verify that the parameter p controls the proportion of large coefficients and,

consequently, measures the sparsity of the signal.

4.4. How to use f̂f �� to denoise discrete data

In this paper, we have pointed out a minimax thresholding rule f̂f �� (see Remark 1 and (9)).

Many problems arise when studying this estimator from a practical point of view, since f̂f ��
is not adaptive. These problems have been tackled by Rivoirard (2004) whose main ideas

are now recalled. In the standard nonparametric regression model reduced to the following

one by applying the DWT
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Y jk ¼ d jk þ � Z jk , �1 < j < N � 1, k 2 I j, Z jk �iid N (0, 1),

the signal to be estimated is assumed to belong to the class of the worst functions of WBs, p,q

to be estimated, where WBs, p,q is an unknown weak Besov space. Then a prior model is fixed

on its discrete wavelet coefficients (the d jks) that is very close to (4). To estimate each d jk ,

Rivoirard (2004) proposes an estimator of the form d�jk(Y jk) ¼ sign(Y jk)(jY jk j � �º j)þ, where
� is supposed to be known and º j ¼ (max(0, �2 logÆ p

j ))
1=2 (as in (4), Æ j is the dilation

parameter in the prior model). Of course, this procedure is not exactly equal to f̂f �� . However,
it takes into account the main characteristics of f̂f �� (so it is close to f̂f �� ) and necessary

adaptations; for further justification, see Rivoirard (2004). Then, instead of estimating the

parameters s, p and q, Rivoirard (2004) proposes data-driven methods to estimate p and each

Æ j. We do not describe these methods in detail, which would be too tedious, but we mention
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Figure 1. Realizations with various values of the parameters s, p and q, with C ¼ 1 and

n ¼ 212 ¼ 4096 plotting points. The critical case is illustrated by (a), (b), (d), (e) and (f ) and the

regular case, by (c). (a) s ¼ 1:2, p ¼ 1, q ¼ 2; (b) s ¼ 1:2, p ¼ 1, q ¼ 3; (c) s ¼ 1:2, p ¼ 1, q ¼ 2;

(d) s ¼ 1:2, p ¼ 2, q ¼ 2; (e) s ¼ 1:2, p ¼ 2, q ¼ 3; (f ) s ¼ 1:5, p ¼ 1, q ¼ 2.
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that the number of Y jks that are greater than a chosen threshold is used, as would be expected

in a framework based on weak Besov spaces. The resulting procedure is called ParetoThresh.

The results obtained by ParetoThresh are quite satisfactory when compared with other

efficient wavelet thresholding algorithms. Indeed, ParetoThresh outperforms VisuShrink and

SureShrink of Donoho and Johnstone (1994a) and performs similarly to the BayesThresh,

proposed by Abramovich et al. (1998), and BayesFactor, proposed by Vidakovic (1998). But

unlike them, ParetoThresh does not require a long computation time. See Rivoirard (2004)

for a precise description of the advantages and drawbacks of ParetoThresh.

5. Proof of Theorem 1

In this section, K, K1 and K2 will designate all the positive constants, depending only on s,

p, q, s9, p9, we might need. Henceforth, we suppose for sake of simplicity and without loss

of generality, that for any j, jI jj ¼ 2 j.

For any j� in f0, 1, . . . , þ1g, we consider

¨� ¼ � : � 2 ¨ with � jk ¼ 0, 8( j > j�, k 2 I j)
� �

and

R�� ¼ inf
�̂�

sup
�2¨�

E�
X
j, j�

2 jp9(s9þ1=2�1= p9)
X

k

j�̂� jk � � jk j p9: (5)

Using (2), (5) and the properties of B�, p9,1(C), we have

R�� < R� < R�� þ sup
�2B�, p9,1(C)

X
j> j�

2 jp9(s9þ1=2�1= p9)
X

k

j� jk j p9 < R�� þ K C p92 p9(s9��) j� :

In the critical case, we choose j� so that j� ¼ b(W=(�� s9))log2(C=�)c. In the regular case,

we set j� ¼ 1 and R�� ¼ R�. Thus, the first point of Theorem 1 will be proved if we prove

that

C1 < lim inf
�!0

R�� �(C, �)�1 < lim sup
�!0

R�� �(C, �)�1 < C2:

For this purpose, we use the minimax Bayes method, which is often exploited in the literature

(see the references cited in the Introduction). Most of the details are therefore omitted in the

next section.

5.1. Minimax Bayes method

When q > p, let us consider the natural set of probability measures associated with

WBs, p,q(C),

M ¼ � :
X
j, j�

2 jq(sþ1=2�1= p)[E�N ( j, º)]q= p <
C

º

� �q

8º . 0

( )
,
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which is convex and compact for the Prohorov metric, and

B(M , �) ¼ inf
�̂�

sup
�2M

E�E�
X
j, j�

2 jp9(s9þ1=2�1= p9)
X

k

j�̂� jk � � jk j p9,

the minimax Bayes risk for M. Now, by applying the minimax theorem, we have

B(M , �) ¼ sup
�2M

B(�),

where B(�) is the Bayes risk of �. For each � in M , we construct ~��, the distribution of

� ¼ (� jk) jk , such that under ~��, the � jks are independent and, for any j > �1 and any k 2 I j,

the distribution of � jk is ~�� j, where

~�� j ¼
1

2 j

X
l2I j

� jl,

and we set M ¼ f ~�� : � 2 Mg. It is relevant to note that under a prior of M, the Bayes

estimator of � jk depends only on yjk .

For F a probability measure, we denote by s�F the probability measure defined by

s�F(A) ¼ F(��1A). Using standard arguments, we obtain

B(M , �) ¼ � p9 sup
s� F2M

inf
(d j)

X
j, j�

2 jp9(s9þ1=2)EF j
Eu j1

jd j(xj1)� u j1j p9, (6)

where xj1 ¼ ��1 yj1 and u j1 ¼ ��1� j1, whose distribution is denoted Fj. Then the upper

bound of R�� relies on B(M , �). Indeed, we obviously have R�� < B(M , �). In Section 5.2, to

obtain the upper bound of B(M , �), we exploit the method exhibited by Johnstone (1994) and

Donoho and Johnstone (1994b) based on a Bayes risk restricted to soft thresholding rules that

enables us to obtain minimax thresholding rules. Since arguments are given by Johnstone

(1994) and Donoho and Johnstone (1994b), many details are omitted. Furthermore, we

naturally rely on the worst prior pointed out in Section 5.2 to construct the asymptotically

least favourable prior ��.

On R, the lower bound of R�� is provided by the lower bound of the minimax risk for

Bs, p,q(C) included in WBs, p,q(C) (see Donoho et al. 1996). On C, we cannot use this

argument, since ¨ ¼ WBs, p,q(C) \ B�, p9,1(C) does not contain Bs, p,q(C). The lower bound

of R�� is provided by the lower bound of the Bayes risk of �� whose support is

asymptotically included in ¨ when � is close to s9. Since the proof is standard (see

Johnstone (1994)), it is omitted.

Remark 2. When q , p, we use the same arguments but with the closure of the generalized

convex hull of M instead of M .

5.2. Upper bound

Our first goal is to prove that
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B(M , �) < K�(C, �), (7)

where, on C, K may depend on �. We omit the case q , p, which is covered by the case

q ¼ p (note that WBs, p,q(C) � WBs, p, p(C) if q , p). To reach our goal, we use the risk

associated with the soft thresholding estimator

dº(x) ¼ sign(x)(jxj � º)þ

denoted by

r(º, 	) ¼ E	jdº(x)� 	j p9,

where x � N (	, 1). We recall the properties of 	 ! r(º, 	) used below:

Proposition 1. For any º . 0, if � denotes the standard Gaussian density function and

�(y) ¼
Ð y

�1 �(z)dz is the standard Gaussian cumulative distribution function, then

(i) 	 ! r(º, 	) is symmetric about 0;

(ii) for all 	 . 0, @ r(º, 	)=@	 ¼ p9 	 p9�1�([�º� 	, º� 	]) and 	 ! r(º, 	) is a

strictly increasing function;

(iii) lim	!þ1 r(º, 	) ¼
Ðþ1
�1 jzj p9�(z þ º)dz;

(iv) K1 exp(�º2=2)º� p9�1 < r(º, 0) < K2 exp(�º2=2)º� p9�1.

The proof of this proposition is omitted since it is just an extension of the classical case

p9 ¼ 2 (see Donoho and Johnstone 1994a).

By (6), we have

B(M , �) < � p9 sup
s� F2M

inf
(º j)

X
j, j�

2 jp9(s9þ1=2)EF j
r(º j, 	): (8)

The condition s�F 2 M means that

X
j, j�

2 jq(sþ1=2)(EF j
(1j	j.º��1 ))q= p <

C

º

� �q

, 8º . 0:

Since 	 ! r(º j, 	) is symmetric about 0, we assume without loss of generality that Fj is

supported by Rþ. And using (ii) in Proposition 1, we prove that the supremum for (8) is

reached with Fj such that it is absolutely continuous with respect to the Lebesgue measure

and has density

fÆ j
(	) ¼ p1	>Æ j

Æ p
j 	� p�1,

such that

X
j, j�

Æq
j 2

jq(sþ1=2) <
C

�

� �q

:

And we can conclude by using (8) that
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B(M , �) < � p9 sup
X
j, j�

2 jp9(s9þ1=2) inf
º j

E fÆ j
r(º j, 	) : Æ j > 0,

X
j, j�

Æq
j 2

jq(sþ1=2) <
C

�

� �q
( )

:

Let ~ÆÆ ¼ ( ~ÆÆ j)�1< j, j� be the point where the supremum is reached. We haveX
j, j�

2 jp9(s9þ1=2) inf
º j

E f ~ÆÆ j
r(º j, 	)

¼
X
j, j�

2 jp9(s9þ1=2) inf
º j

E f ~ÆÆ j
r(º j, 	)þ

X
j�< j, j�

2 jp9(s9þ1=2) inf
º j

E f ~ÆÆ j
r(º j, 	)

:¼ S�,1 þ S�,2,

where j� is defined in Section 4.1. By using (ii) and (iii) in Proposition 1 and the value of W
given in Theorem 1,

S�,1 <
X
j, j�

2 jp9(s9þ1=2) inf
º j

ðþ1

�1
jzj p9�(z þ º j) dz

ðþ1

~ÆÆ j

	� p�1 p ~ÆÆ p
j d	 < K

C

�

� � p9(1�W)

:

To obtain an upper bound for S�,2, we need to evaluate the Bayes threshold risk

E f ~ÆÆ j
r(º j, 	) when ~ÆÆ j tends to 0. We have the following theorem, which generalizes the case

p9 ¼ 2 and p , 2 investigated by Johnstone (1994):

Theorem 2. Let us suppose that we are given 1 < p9 , 1 and p . 0. When Æ tends to 0

and for any threshold º > (�2 logÆ p^ p9)1=2, we have E fÆ r(º, 	) � J (Æ, º), where

J (Æ, º) ¼

p9

p9� p
Æ p º p9� p, if p , p9,

pÆ p log
º

Æ

� �
, if p ¼ p9,

p

p � p9
Æ p9, if p . p9:

8>>>>>>><
>>>>>>>:

Proof. Using Proposition 1, we have

E fÆ r(º, 	) ¼ r(º, Æ)þ p9Æ p

ðþ1

Æ
	 p9� p�1�([�º� 	, º� 	]) d	

¼ r(º, 0)þ
ðÆ
0

p9 	 p9�1�([�º� 	, º� 	]) d	þ p9Æ p

3

ðþ1

Æ
	 p9� p�1�([�º� 	, º� 	]) d	:

When Æ tends to 0 and º to þ 1, we prove that
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ðþ1

Æ
	 p9� p�1�([�º� 	, º� 	]) d	 � I(Æ, º),

where

I(Æ, º) ¼

1

p9� p
º p9� p, if p , p9,

log
º

Æ

� �
, if p ¼ p9,

1

p � p9
Æ p9� p, if p . p9:

8>>>>>>>><
>>>>>>>>:

Finally, by again using Proposition 1, we easily obtain the required result. h

Noting that for all j� < j , j�, ~ÆÆ j , 1, we have

S�,2 < K sup
Xj��1

j¼ j�
2 jp9(s9þ1=2)J ~ÆÆ j, (�2 log( ~ÆÆ p

j ))
1=2


 �
: ~ÆÆ j > 0,

Xj��1

j¼ j�

~ÆÆq
j2

jq(sþ1=2) ¼ C

�

� �q
( )

,

with the notation of Theorem 2. Computation of this supremum enables us to obtain (7). On

C \ fq . pg, the supremum is reached at the point whose coordinates ~ÆÆ j are equivalent to

T2� j(sþ1=2) ja, where a ¼ (p9� p)=2(q � p) and T is a constant depending on � and �. If
(s, p, q) 2 R [ (C \ fq ¼ pg), all the coordinates equal zero except one: ~ÆÆ j� on R and

~ÆÆ j� ¼ C=�ð Þ2� j�(sþ1=2), ~ÆÆ j��1 on C and if q ¼ p and ~ÆÆ j��1 ¼ C=�ð Þ2�( j��1)(sþ1=2). Finally,

the thresholding rule

f̂f �� ¼
X

j

X
k

sign(yjk) jyjk j � �º j

� �
þł jk , (9)

where º j ¼ 0 if j , j� and º j ¼ (�2 log ~ÆÆp
j )

1=2 otherwise and ~ÆÆ j is defined as before, attains

the minimax rate up to constants. h

5.3. The prior �� is an asymptotically least favourable prior for

WBs, p,q(C)

We give asymptotic values of B(��) by proving the following proposition.

Proposition 2. �� maximizes the Bayes risk on M, and we have

B(��) � �(C, �):

Proof. We recall that � . s9, but �� s9 is small. Therefore, we can assume that j2 < j�.

On the one hand, we easily show that �� 2 M . Therefore, B(��) < K�(C, �).
On the other hand, we have
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B(��) ¼ inf
�̂�

Xj2

j¼�1

2 jp9(s9þ1=2�1= p9)
X

k

E��E� jk
j�̂� jk � � jk j p9 > � p9

Xj2

j¼ j1

2 jp9(s9þ1=2) b(Æ j, p9),

where, for all j 2 f j1, . . . , j2g, b(Æ j, p9) is the univariate Bayes risk for Fj, the distribution

of ��1� jk , and, for the L p9-loss,

b(Æ j, p9) ¼ inf
d
EF j

ð
jd(x)� 	j p9�(x � 	) dx:

When p9 ¼ 1, the Bayesian estimator d(x) is easily available since it is the median of the

posterior distribution. We have the following result proved in Section 6:

Theorem 3. If p9 ¼ 1, when Æ tends to 0, b(Æ, 1) � L(Æ), where

L(Æ) ¼

1

1� p
Æ p(�2 logÆ p)(1� p)=2, if p , 1,

Æ log
1

Æ

� �
if p ¼ 1,

p

p � 1
Æ if p . 1:

8>>>>>>><
>>>>>>>:

If p9 is arbitrary and p , p9, when Æ tends to 0,

L(Æ) ¼ p9

p9� p
Æ p(�2 logÆ p)( p9� p)=2:

When p , p9, straightforward computations show that B(��) > K�(C, �). To get this

lower bound when p > p9, we use in addition the Jensen inequality, which shows that

b(Æ j, p9) > b(Æ j, 1)
p9:

h

We now show the support property for WBs, p,q(C). We deal only with the case p9 . p,

p(s þ 1
2
) ¼ p9(s9þ 1

2
) and q . p. The other cases follow easily from the same arguments.

Proposition 3. P�� (� 2 WBs, p,q(C)) !�!0
1 with an exponential rate.

Proof. This is a consequence of the asymptotic evaluation of P�� (A j)
� �

j1< j< j2
, where

A j ¼
\
º.0

1

2 j

X
k

1j� jk j.º <
�

º


 � p

ª p
� Æ p

j

( )
,

given by the following lemma:

Lemma 1. There exists ~kk . 0 such that, for � small enough and for any j in f j1, . . . , j2g,
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P�� (A
c
j) < 2 exp �2 jþ1(ª p

� � 1)2
Æ j

� j

� �2 p
 !

< 2 exp �(ª p
� � 1)2

C

�

� �~kk
 !

:

Proof of Lemma 1. For the last inequality, we use the fact that k belongs to

(1, 2p9(s9þ 1=2)=(2 p9(s9þ 1=2)� 1)). We have

A j ¼
\

(Æ j=� j) p<v<1

1

2 j

X
k

1(j��1� jk j=Æ j)� p,v < ª p
� v

( )
:

As the distribution of j��1� jk j is Fþ
j , the distribution of (j��1� jk j=Æ j)

� p is

Æ j

� j

� � p

�(Æ j=� j) p (	)þ 1(Æ j=� j) p<	<1 d	:

Since we consider values of v greater than (Æ j=� j)
p, the distribution of (j��1� jk j=Æ j)

� p

matches that of U jk , where the U jks are independent uniform observations over [0, 1].

Therefore,

P�� (A
c
j) < P sup

(Æ j=� j) p<v<1

jFu
2 j(v)� vj . (ª p

� � 1)
Æ j

� j

� � p
 !

< P sup
v2[0,1]

jFu
2 j(v)� vj . (ª p

� � 1)
Æ j

� j

� � p
 !

,

where Fu
2 j is the empirical distribution of the U jks for k in I j. Hence, using the Dvoretzky–

Kiefer–Wolfowitz inequality proved by Massart (1990),

P�� (A
c
j) < 2 exp �2 jþ1(ª p

� � 1)2
Æ j

� j

� �2 p
 !

,

which concludes the proof of the lemma. h

Since X
j< j2

2 jq(sþ1=2)Æq
j ¼

C

ª��

� �q

,

P��

X
j< j2

2 jq(sþ1=2�1= p)
X

k

1� jk.º

 !q= p

<
C

º

� �q

, 8º . 0

2
4

3
5 > P�� A�1 \

\j2
j¼ j1

A j

" # !
,

where

A�1 ¼
\
º.0

X
j, j1

2 jq(sþ1=2�1= p)
X

k

1j� jk j.º

 !q= p

< ªq
�

�

º


 �qX
j, j1

2 jq(sþ1=2)Æq
j

8<
:

9=
;:
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We have P�� (A�1) ¼ 1, and

P��

\j2
j¼ j1

A j

 !
> exp �exp � C

�

� �~kk=2
 !" #

,

for � small enough. Therefore,

P��

X
j< j2

2 jq(sþ1=2�1= p)
X

k

1� jk.º

 !q= p

<
C

º

� �q

, 8º . 0

2
4

3
5 > exp �exp � C

�

� �~kk=2
 !" #

:

Proposition 3 is proved. h

Now it is easy to show that �� cannot be an asymptotically least favourable prior for

Bs, p,q(C). Indeed, straightforward computations lead easily to the following proposition.

Proposition 4.

P�� � 2 Bs, p,q(C)
� �

!�!0
0:

6. Proof of Theorem 3

Like Johnstone (1994), we shall use the results of the following lemma that can easily be

proved:

Lemma 2. We can introduce functions of Æ, � and c defined on (0, þ1), such that, when Æ
goes to 0, � ! þ1, c ! þ1, c ¼ o(�) and �(�þ c) ¼ (Æ=�) p �(c), where � denotes the

standard Gaussian density function. These four conditions entail

�(Æ) �Æ!0
(�2 logÆ p)1=2:

We will need the following functions of Æ : T ¼ �þ c=2 ! 1, and �� ¼ 1=2T ! 0. In the

following, oÆ(1) will designate any function that is bounded by a function depending only on

Æ and tending to 0 as Æ tends to 0. We evaluate

b(Æ, p9) ¼ inf
d
E fÆ

ð
jd(x)� 	j p9�(x � 	) dx,

with

f þÆ (	) d	 ¼ pÆ p 	�1� p1Æ<	<� d	þ
Æ

�

� � p

��(	)

and

fÆ(	) ¼
f þÆ (	)þ f þÆ (�	)

2
:
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To obtain the upper bounds of Theorem 3, we notice that, with d(x) ¼ 0,

b(Æ, p9) < E fÆ

ð
j	j p9�(x � 	) dx,

which allows one to obtain the result. The following lemmas will be useful:

Lemma 3. When Æ tends to 0, for any �� < x < T,ð�
2��

�(x � 	) pÆ p	� p�1 d	 < �(x)exp(�1
2
�c)� pT p ¼ �(x)oÆ(1):

Proof. ð�
2��

�(x � 	) pÆ p	� p�1d	 < �(x)

ð�
2��

exp � 	2

2
þ T	

� �
pÆ p	�1� p d	

< �(x)exp � �2

2
þ T�

� �
Æ pT p

< �(x)exp(�1
2
�c)� pT p:

As exp(�1
2
�c)� pT p tends to 0, the lemma is proved. h

Lemma 4. When Æ tends to 0, for any �� < x < T,ð2��
Æ

�(x � 	) pÆ p	� p�1 d	 ¼ �(x)(1þ oÆ(1)):

Proof. To prove this lemma, we suppose that the random variable 	 has density

g(z) ¼ p(Æ� p � (2��)� p)�11Æ<z<2�� z� p�1:

We have ð2��
Æ

�(x � 	) pÆ p	� p�1 d	 � �(x) E g exp x	� 	2

2

� �
:

As x > ��, for any 	 in [Æ, 2��], x	� 	2=2 > 0, and����exp x	� 	2

2

� �
� 1

���� < exp 2T�� � (2��)2

2

� �
x	� 	2

2

� �
< exp(1)T	:

For any � . 0, for Æ , � exp(�1)T �1,

P g

����exp x	� 	2

2

� �
� 1

���� . �

� �
< P g 	 . � exp(�1)T �1

� �
< Æ p�� p exp(p)T p,

which tends to 0 when Æ tends to 0. Therefore, as for any 	 in

[Æ, 2��]jexp(x	� 	2=2)� 1j < exp(1),
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E g exp x	� 	2

2

� �
¼ 1þ oÆ(1):

The lemma is proved. h

In the following, we will consider the Bayesian estimators associated with fÆ and f þÆ :

d(x) ¼ arg inf
m

ð
R

fÆ(	)�(x � 	)j	� mj p9 d	,

dþ(x) ¼ arg inf
m

ð
R

f Æ þ (	)�(x � 	)j	� mj p9 d	:

We now prove that for any �� < x < T, dþ(x) < 3��. For any m in [3��, �], using Lemma

4, ð2��
Æ

�(x � 	) pÆ p	� p�1j	� mj p9 d	 > (��) p9

ð2��
Æ

�(x � 	) pÆ p	� p�1 d	

¼ �(x)(��) p9(1þ oÆ(1)),

using Lemma 3,ð�
2��

�(x � 	)pÆ p	� p�1j	� mj p9 d	 < � p9

ð�
2��

�(x � 	)pÆ p	� p�1 d	

< �(x)exp(�1
2
�c)� p9þ pT p,

and

Æ

�

� � pð
�(x � 	)j	� mj p9��(	) < �(x)Æ p� p9� p exp � �2

2
þ T�

� �

< �(x)� p9 exp(�1
2
�c):

As exp(�1
2
�c)� p9þ pT p ¼ o((��) p9), we have, for any m in [3��, �],ð

R

f þÆ (	)�(x � 	)j	� mj p9 d	 �
ð2��
Æ

f þÆ (	)�(x � 	)j	� mj p9 d	

>

ð2��
Æ

f þÆ (	)�(x � 	)j	� 3��j p9 d	

�
ð
R

f þÆ (	)�(x � 	)j	� 3��j p9 d	

and, for any x in [��, T ], Æ < dþ(x) < 3��. With f Æ � (	) ¼ f Æ þ (�	), for any 	 in R,
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b(Æ, p9) ¼ E fÆ

ð
jd(x)� 	j p9�(x � 	) dx

>
1

2
inf

m
E f þÆ

ð
jm � 	j p9�(x � 	) dx þ 1

2
inf

m
E f �Æ

ð
jm � 	j p9�(x � 	) dx

¼ E f þÆ

ð
jdþ(x)� 	j p9�(x � 	) dx

>

ð�
c=2

r(dþ, 	) pÆ p	�1� p d	þ Æ

�

� � p

r(dþ, �),

with

r(dþ, 	) ¼
ð
jdþ(x)� 	j p9�(x � 	) dx:

For any c=2 < 	 < �,

r(dþ, 	) >

ðT

��
jdþ(x)� 	j p9�(x � 	) dx > (	� 3��) p9sÆ,

with sÆ tending to 1 when Æ tends to 0. Finally, we have, when p , p9,

b(Æ, p9) > sÆ pÆ p

ð�
c=2

(	� 3��) p9	�1� p d	þ sÆ
Æ

�

� � p

(�� 3��) p9

>
p9

p9� p
Æ p(�2 logÆ p)( p9� p)=2(1þ oÆ(1)):

The second part of Theorem 3 is proved.

Now suppose that p9 ¼ 1. We prove the following lemma:

Lemma 5. For any x such that jxj lies in [��, T ], Æ < jd(x)j < Æ(1þ oÆ(1)).

Proof. Without loss of generality, we suppose that x . 0. Since p9 ¼ 1, d(x) is the median of

the posterior distribution:ðd(x)

�1
fÆ(	)�(x � 	) d	 ¼ 1

2

ðþ1

�1
fÆ(	)�(x � 	) d	:

Since x . 0, we obviously have that d(x) > Æ. From Lemmas 3 and 4, it follows thatð�
Æ

f þÆ (	)�(x � 	) d	 ¼ �(x)(1þ oÆ(1)):

By using similar arguments as previously, we have
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1

2

Æ

�

� � p

�(x þ �)þ 1

2

Æ

�

� � p

�(x � �) < �(x)exp � 1

2
�c

� �
¼ �(x)oÆ(1):

As ð�Æ

��
f þÆ (�	)�(x � 	) d	 ¼ �(x)

ð�
Æ

pÆ p	�1� pe�	2=2�x	 d	

¼ �(x)(1þ oÆ(1)),

we have ðþ1

�1
fÆ(	)�(x � 	)d	 ¼ �(x)(1þ oÆ(1)):

Sinceðd(x)

Æ
fÆ(	)�(x � 	) d	 >

ðd(x)

Æ
pÆ p	�1� p d	3

1

2
�(x � Æ)

> 1� Æ

d(x)

� � p� �
3

1

2

ðþ1

�1
fÆ(	)�(x � 	) d	3 (1þ oÆ(1)),

we have d(x) < Æ
(Æ), where 
 is a function that does not depend on x and that tends to 1

when Æ tends to 0. h

Now, to obtain the lower bound of b(Æ, 1), we write

b(Æ, 1) >

ðm2(Æ)

m1(Æ)
fÆ(	) r(d, 	) d	þ

ð�m1(Æ)

�m2(Æ)
fÆ(	) r(d, 	) d	,

with

r(d, 	) ¼
ð
jd(x)� 	j�(x � 	) dx

and

m1(Æ) ¼ Æ, m2(Æ) ¼ log
1

Æ

� ��1

, if p > 1,

m1(Æ) ¼
c

2
, m2(Æ) ¼ �, if p , 1:

From similar computations as previously, we obtain the required inequalities. h
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