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The asymptotic minimax constant for
sup-norm loss in nonparametric density
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We develop the exact constant of the risk asymptotics in the uniform norm for density estimation.
This constant has already been found for nonparametric regression and for signal estimation in
Gaussian white noise. Holder classes for arbitrary smoothness index 5>0 on the unit interval are
considered. The constant involves the value of an optimal recovery problem as in the white noise case,
but in addition it depends on the maximum of densities in the function class.
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1. Introduction and main result

Recently, in Korostelev (1993), an asymptotically minimax exact constant was found for loss
in the uniform norm, for Gaussian nonparametric regression when the parameter set is a
Holder function class. This risk bound represents an analogue of the now classical L,-
minimax constant of Pinsker (1980) valid for a Sobolev function class. Donoho (1994)
extended Korostelev’s (1993) result to signal estimation in Gaussian white noise and showed
it to be related to non-stochastic optimal recovery.

Here we consider density estimation from independently and identically distributed data
with a sup-norm loss. Consider a sample X, ..., X, of iid. observations having a
probability density f = f(x) in the interval 0 < x < l Let 3, L be some positive constants,
and let 3(j3, L) be the class of densities

1
2(5,L>={ Jg—l g=0,and |g’ (xl)—gLﬁJ(x2)|$L|x1—x2|ﬂLm,Oﬁxl,ngl}

where | 3] is the greatest integer strictly less than . Assume that the density f* belongs a
priori to Z(f3, L). Consider an arbitrary estimator f n f 2(x) measurable with respect to the
observations X1, ..., X,,. We define the discrepancy of f »(x) and the true density f(x) by the
sup—norm ||f,, — f1|0, Where

1/l = sup |f(x)]-

o=x=<l
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1100 A. Korostelev and M. Nussbaum

Denote by P(") the probablhty distribution of the observations X1, ..., X, and by E(") the
expectation w1th respect to P f Let w(u), u = 0, be a continuous increasing function Wh1ch
admits a polynomial majorant w(u) < Wy(1 + u”) with some positive constants Wy, v, and
such that w(0) = 0. Introduce the minimax risk

P =ra(w(); B, L by =inf sup  EPw(p,'|[fn — fllo): (1)
fu fEXB,LD)

where v, = ((log n)/n)?/@+D is the optimal rate of convergence (cf. Khasminskii 1978;
Stone 1982; Ibragimov and Khasminskii 1982). The main goal of this paper is to find the
exact asymptotics of the risk (1). To do this we need two additional definitions. First, note
that the densities in Z(f, L) are uniformly bounded, i.e.

Bx = Bx(f3, L) = ma/;(L) [max f(x) <4co. 2)

An argument for this, based on embedding theorems, as well as further information on the
value of Bx is given in the Appendix. Second, denote by (3, L) an auxiliary class of
functions on the whole real line:

Zo(B, L) = {7 [P o) = P ) < L = xf 1P, 2, 3 € R).
Let ||g|l» denote the L,-norm of g. Define the constant
Ap = max{g(0)[[[gll. = 1, g € Zo(B, D} €)

Theorem. For any >0, L>0, and for any loss function w(u), the minimax risk (1) satisfies
lim r, = w(C),
n—o0

where

NG
C=C(B, L, Bx) = Ap (ﬁ) )

and the constants Bx = Bx(f, L) and Ag are defined by (2) and (3), respectively.

The proof of the corresponding upper and lower asymptotic risk bounds is developed in
Sections 2 and 3. A more concise argument based on asymptotic equivalence of experiments
in the LeCam sense is possible (cf. Nussbaum 1996), but only in the case > %, and under an
additional assumption that the densities are uniformly bounded away from 0. While
asymptotic equivalence is known to fail for f < % (cf. Brown and Zhang 1998), our method
here yields the sup-norm constant for density estimation for all >0. The proof via
asymptotic equivalence can be found in Korostelev and Nussbaum (1995).

2. Upper asymptotic bound

Let g be a solution of the extremal problem in (3), g € Zo(3, 1). The correctness of this
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definition follows from Micchelli and Rivlin (1977), and, as shown by Leonov (1997), g has
a compact support. Consider also the solution g; € Zy(f, 1) of the dual extremal problem

min{||g[]2[g1(0) = 1, g1 € Zo(B, D}. “4)

If g is the solution of (3) then g(u) = Aﬁ_lg(A;g/’Bu) (cf. Section 2.2 of Donoho 1994); hence
llgill> = A[;(Zﬁﬂ)/zﬁ. Since g is of compact support, so is g;; let S be a constant such that
gi(u)=0 for |u|>S. Put K(u) = gi(u)/[g1, u€ R, and choose the bandwidth A, =
(Cy,/ L)'/P. For an arbitrary small fixed ¢ > 0 define regular grid points in the interval [0, 1]
by

xp=¢ckh,, k=0,..., M,
where M = M(n, ¢) = (ch,)”" is assumed integer. Put M, = [S/e] + 1, and introduce the

kernel estimator f ;': at the inner grid-points

[ = (b)Y KX = x0)/ha), k= Mo, ..., M — M.
i=1

Lemma 1. There exists a constant py >0 such that for any a >0 the inequality

() % "
sup P ( max | f, (xp) — f(xp)| = (1 + a)CU)n) < oM
JEZ(B.L) I\ My<k<=M—M, | |

holds.
Proof. Define the bias and stochastic terms by
bue = EPL 5 (o0 = /()
and
zue = [Gx) — EPLA 5 (o)l
For any o >0 the following inequalities are true:

PP (i (560 = [0) = (1 + @) Cy)

Mo<k<M—M,

- P(f")( max  (Zu + bw) = (1 + OL)CI/),,)
. M,

Mo<k<M-—
(1)
= P\ = (1 Cy, — bn
/ (Mosllpsa]\)}—MoZ # =1+ aCy Mosgcnsaﬂ)}fMJ k|)
M—M, 00
< > PPzu=0+a)Cy, - sup J B K () by f (1) du
k=M, FE€Z(B.L).£(0)=0]J —c0

JOC K(u)f(u)du

—00

M—M,
< > PPlzu=+a)Cy,|1- sup
k=M, SE€ZH(B,1),£(0)=0

))
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where the standard renormalization technique applies (see Donoho 1994). Define
Ko(u) = é-z/aﬁ“)g(é—”@ﬂ“)“)/ J g

for any 0 >0, where g is again the solution of (3). The optimal recovery identity (Micchelli
and Rivlin 1977; Donoho 1994) implies that

o.¢]

J Ks(u) f(u)du — £(0) + (3J Ks(u)z(u) du

—0o0

sup  sup = O/ 44

SEZ(B.D) ||z[l2=<1

hence

sup + 0| Koo = 02D 44,

JE€Z(B,1),£(0)=0
A choice 0 = A,V yields

J Ko(u)f () du

Ko(u) = 41/ g(4}Pu) / |e= e / [&1 = K,
and hence

4 (2.3+1)/2ﬁ||K||

J K(u) () du| =

1-— sup
SEZH(B.1),£(0)=0

By further calculation we obtain

_ 2 1/2
V ha /(BLIIK ) Cyp 30F 8 Ky = (2 o )

and that, for any ¢ <1 and any n satisfying
logn> (2B + D(loge ' + B 'log(L/C)),

we have

5 1/2
1 = ,/2log M.
(2,8+1 Og”> °8

Thus, the latter sum of probabilities can be estimated from above by

M—M,
> P(]f’)<\/nh J(Bs||K|2)zm = (1 + a)\/2log M )

k=M,

Note that

n
V ) Bl K| Dz = 172" B,
i=1

where
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Eie =\ ha/ (Bl K (), K((X; = x0)/ h) — EP Ly K(Xs = xi)/ )

i=1,....,n k=M, ...,M— M,.

The random variables &y, i = 1, ..., n, are independent for any fixed %, and
EPE] =0, var[Ex] = By f(xp) + 0u(1) < 1+ 0,(D), (5)

where 0,(1) — 0 as n — oo uniformly in i, k, and f € Z(f3, L). Moreover, for any integer
m = 3, the following bounds hold:

BV Eu|™ < (h/ (B | K[)"* 2" B SHY [h7 ") = 2BsShu(R/\/h)", (6)

where Hx = max,cp|K(u)| and A = 2H«/+/ B«|| K ||§ The Chebyshev exponential inequality,
known as Chernoff’s upper bound, yields

PP (nax |, (500 = @) = (1+ a)C,)

Moy<ksM-
M—M,

=¥ P(")< _l/zzgzn>(1+a)\/210g )
k=M,

< Mexp(—c(l + a)y/2log M)(E[exp(cEin//n)])".
Using (5) and (6), we can estimate the moment generating function as follows:

B expled, Vi) = 1+ varlflg ] + Y (c> B l6ul”

m>3
_ czl | ZB*Slc m=3
= 1o, (o) + = e ;m,( )
2
$1+20—n<1+0n(1)+ \jﬂ exp(Ac/\/nh, ))
C2
< exp ((1 —|—on(l))). (7
2n

The latter inequality is true for any ¢ = o,(v/nh,) as n — oo. If we choose ¢ = \/2log M,
then (7) implies that

PP (pmax | (Fe) = f(x) = (14 a)Cy)

My<k<M—
< M exp(—2(1 + a)log M)exp((1 + o,(1))log M)
< Mexp(—(1 + a)logM) = M~“

for any n large enough. The probability of the random event
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{ min  (f5G) — fo) < —(1+ a)cwn}

Moy<k=<M—M,
admits the same upper bound, and this proves the lemma. O

To extend the definition of f f:(xk) to the grid-points x; which are close to the endpoints
of the interval [0, 1], we take a kernel Ky(x) with the support [0, 1] satisfying the
orthogonality conditions

1 1
JK0:1 and JufKO:O, j=1 ..., 8l
0 0

Put
L) = (uchy) ™ > " Ko(Xi = x)/(chn)), k=0,..., Mo—1, ®)
i=1

where a small positive constant k is chosen in Lemma 2 below. For the grid-points x; €
[1— Sh,, 1] we define

IR = (nehy)™! Z Ko((xx — X))/ (khy)), k=M—-—My+1,..., M.
i=1

Put . #={0,..., Mo— 1} U{M — Mo +1, ..., M}.

Lemma 2. There exist constants py and p; such that, for any n and for any o >0, the
inequality

sup P (ma’é\f?;(xk) — [ =1+ a)Cwn) < poM P )
feX(p,L) ke

holds.

Proof. To prove (9), it suffices to derive the upper bound for the probability

P(fn)( max O(fj;(xk) — fxp) = (1 +a)C1pn> < poM . (10)

0<k<M,

The bias b, of the estimator (8) at any point x; is O((xh,)’) as n — oo (see Devroye and
Gyorfi 1985). Choose k so small that

bl < Cyn/2,  k=0,..., My—1.

Taking into account our choice of k, and following the lines of the proof of Lemma 1, for all
n large enough we have the inequalities
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P (e (7500 = @) = (1 + @ Cy)

0<k<M,

My—1

=< Z PPz = (1+ )Cyp, — Cpy/2)

My—1
=y P;'.’)(\/ Pz = (ﬁa)W@)

k=0

My—1 n
=S (/ Se = >@>
k=0 i=1

where

[ 1/ 2 1 Xi_xk (n) 1 X[—xk
=\ i /C*2 D —XK —E. | — K .
S Yut /GO )(Kh,, 0< Khy, > S Lch,, '\ «h,
Similarly to (7), we obtain the inequality

E[exp(cEly/v/m)] < exp (2_ var{'[E](1 + 0”“”)

Wlth the only difference that the variance var(")[ém] 00 is bounded by some constant
= 0 which is not necessarily 1, as in (7). Note that M, is independent of n. Applying
Chebyshevs exponential inequality, we have that, uniformly in f € 2(f, L),

P‘;-“( max. (/5000 = f(x)) = (1 + ) Cy)

0=<k<

2
= Myexp <fc(% + a)y/log M) exp (C—Uo(l + 0,,(1))) .
Under the choice ¢ = y/log M/ O'O, the latter formula yields the upper bound

M, % logM ) < MM~/
oeXP< 202 0g ) 0
This completes the proof of (10), and the lemma follows. O

The derivatives "™ (x), m =1, ..., | 8], of a density f € (S, L), can be estimated in
the sup-norm with the minimax rate O(hﬁ"”) as n — oo. We need the following version of
the upper bound.

Lemma 3. For any m, m =1, ..., | 8], there exist an estimator f\™ and positive constants
po, p1 and Cy such that, for any n and for any a >0, the inequality

sup P(f”)( max | ) — £ ()| = (1 +a)C1h§"”) < poM P
fEXBL) O=k=

holds.
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Proof. Note that the upper bound in this lemma is crude since C; is not necessarily optimal.
Choose the kernel Ko(«) as in Lemma 2, i.e. Ky(u) has support in [0, 1] and satisfies the
orthogonality conditions. Assume that K, has |3] + 1 continuous derivatives. For a fixed

m, m < | 3], put

=D"E& om (X — xx . |
h1+mZK0 T 1f0$)€k$i,
n i=1 n
S =
I & xr— X;
(m) [ Ak i el
WZ KO <T> lf§<Xk$1,
P n

where K(m) is the mth derivative of K. Standard arguments show that at each point the bias
term is bounded from above by C, h/j " with a positive constant C, uniformly in f € (8, L)
and x; € [0, 1]. Take C, >2C5. Then

PP ((max, /570 = £ ™00l = (L @Cuf ) < PP ((max 272 G+ a)Cu ),
where zn'Z =f (n'”)(xk) — E(f") [f (n’")(xk)] are zero-mean random variables. Following the lines

of the proof of Lemma 2, we find that, for all »n large enough, the latter probability is
bounded from above by

2.2
2M exp(fc(% + a) Ciy/log M) exp <C gm)’

with an arbitrary positive ¢ and a constant 02, >0 independent of n. Choose Cj> /802,
and put ¢ = (2 + a)C+/log / o . Direct calculatlons show that the latter bound turns into

212 (+a) CzlogM> < 2!/ OT < g e

m

2M exp(

which proves the lemma. U]

Proof of Theorem: upper risk bound. Take the estimators f” and f (n’") as in Lemmas 1-3.
For any x € [xg, x¢q1), let £ * be the polynomial approximation

Fr@) = frr) + Z f(m)(xk)(x_xk) X Sx<Xpp1, k=0,..., M—1.
Uniformly in /' € 2(f, L) we have the inequality
15 = Sl < L(ehaY' /| B)! + max |£70ee) = f(xo)]
Sk (m) (m)
+ ;ﬁ(ehn) Jmax [£7(xe) = £kl

where the first term on the right-hand side appears from the Taylor expansion of the density
functions f € 3(3, L). When the events complementary to those in Lemmas 1-3 hold, then
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/5~ fllooe < (1 + a)(C + Coe)p,

with a positive constant C, independent of #n, a and e. Applying Lemmas 1-3, we have

sup PSS =l = (1+a)(C + Coewp,) < pp P, (11
feBL)
where p; = (14 | B])po and p; = min[1; p,]. Take an arbitrary small ag, and put
a; = jag, uj = (C + Cre)(1 + a;), j=12,....

Finally, for any continuous loss functions w(u) with the polynomial majorant, we obtain from
(11) that

o0
S EP w15 = Fllse) < w((1 + ao)(C + Cae)) + Wo (1 + 1, ) paM /%P,
€S j=1

Since the latter sum is vanishing as » — oo, and ay, € are arbitrary small, the upper bound
follows. O

3. Lower asymptotic bound

We first formulate a lemma in a general framework. For each j=1,..., M, let Q;g,
3 € [—1, 1], be a dominated family of distributions on some measurable space (.Z}, .7;). Let
R=[-1,11M, O € R, and let Qy = ® —1 Qjo,» 0 € R, be the family of product measures
indexed by 6 = (6, ..., 0y). Define ||0HM = max;<;<uy|0}|.

Lemma 4. Let 7; be discrete prior distributions with finite support on [—1, 1], and consider
the Bayes risks

rir(Ty) = ignfj Qj,3(|v§j — 9| > T)n:j(dS), j=1,..., M, (12)
j JI=L1]

where the infimum is taken over non-randomized estimators -9 of 9 depending only on data
from 2. Let 0 denote non- randomzzed estimators of 0 dependmg on the whole data vector

AAAAA

rr() = i%fJQH(Hé — 0|y > T)m(db).

Then, for any T >0,

M

ro(n) =1 -] = rir)).

=1

Proof. The jth Bayes risk 7;r(7r;) with data x; from .7} can be found as follows. Let Q;,,
be the posterior distribution for 3 and Q; be the marginal distribution for x;; then
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J[l I]Qj,9(|l§j —9>Tr(d)=1- J 25.r(xj, 8,(x,))0;(dx;),

where g; 7 is the posterior gain
gir(x;, ) = Qi (|t =9 < T).

If §; is the finite support of zz; then Q;,, is concentrated on S; C [—1, 1]. For any 7€
[—1, 1], we have

girt, =" > Qi ({9,

Y8 t—|=<T

This function of 7 takes only finitely many values, and a maximum in 7 is attained on some
closed interval € [#nin(X)), fmax(x;)]. For uniqueness, take Sj(xj) = Imax(X;) as a Bayes
estimator. We then have

tglfllxl] gj,T(Xj, ) = gj’T(Xj, Qj(xj)), (13)

i) = 1= [ g6, 50 (14)
Consider now the global problem: we have

rot) = inf [ 0u(10 - 0l > 7)w00)

M ~
i [ (1= [ TT-7n®, - 0 | 000 | o
0 j=1

M
— 1 sup [rx 00 [ ] 012 (15)
0 j=1

where g7(x, u) is the posterior gain (for u = (u;);=1,. m):

M M

gr(x, u) = H Ojx,(luj =9 < T) = H gjr(xj, uj).

j=1 j=1
Then (13) implies
M

M
max g(x, u) = ][[l max 2;7(xj, 1) = ,1:[1 g1 87 ().

Thus a Bayes estimator of 6 is

and from (15) and (14) we obtain
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M
ret) = 1= [ grtx. "0 ] ] 0
=1
M
= 1= [T [ urts o)

=1-Ja = rir@).

J=1

O

Back in our density problem, take a small value ¢ = e(a) € (0, 1); the final choice of ¢
will be made below. Let f, € 2(8, L) be such that f J(x) is constant in an interval
x€[t, ], b—t1 <¢ and f4(x) = B«/(1 +¢) for x € [#1, t] (cf. Lemma A.3 below).
Set fo = f«(#1); then fo = Bx/(1 +¢). Consider again the solution g; € Zy(f, 1) of the
extremal problem (4); recall [[gi][> = 4, J@PEDIE and that S is such that gi1(u) =0 for
|u| > S. Define

g(u)=gi(u—>9)—egi(e(u—281 +e_l))), u € R.

As is easily seen, [g =0, [g?=(1+ Ollgi]l; and g, € Zy(B, 1) for ¢ sufficiently small.
Set 1, = h,28(1 + 1/€) and redefine M = M(n, €) from Section 2 as M = [n!/(@F+D1+)],
Introduce a family of functions

M
S5 0)=f(x; 01, ..., 0n) = [+()+ LI > 02k, (x — ay), Os<x<1, (16)

J=1

where a; = t|, ajy1—a;j=1,, j=1,..., M, 0=(0,,...,0)) € R. The density f(x; 0)
differs from f,(x) only in the interval [#,, #; + MI,] C [#, t;] for n large since Mh, — 0 as
n — oo for any fixed e. Since f *ﬁ is constant on x € [f{, ], we obtain that, for ¢
sufficiently small and n sufﬁc1ently large, f(x; 8) € Z(B, L) for 6 € R. Write, for brevity’s
sake, P(") 0= Pfgn) and E(") 0= E

Deﬁne 1ntervals Jj= [a iy —|— l,,) j=1, , M, and let Pjo, be the conditional
distribution of X given that X € J; when 0 obtams. Let x(-, -) be the Kullback—Leibler
information number: for laws P;, P, such that P| < P,,

dp
K(Py, Py) = Jlog d—P; dp,.

Consider also
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e\’
K5(P1, Py) = J(log d—P;> dp,

log 421
& 4p,

Koo( Py, Po) = esssup
A

Lemma 5. Let 3 € [0, 1] and consider the quantities x = k(Py, P»), Kk = (P, P,) and

Koo = Koo(Py,Py) JOr measures Py = Pjg, P, =P;_g and j=1, ..., M. Set
u=21+e*/2B+1), no = nl, fo. (17)
Then, uniformly over j=1,..., M, as n — oo:

(1) k= 292110110’1 log n (1 + o(1)) for some positive constant wuy = uo(B, L, €), ug < u;
(i1) K% =2x(1 + o(1));
(iv) Kﬁo = O(na1 log n).

Proof. Define
WZWLA@M

The distribution P;g has density

[0 9) = (fu(x) + LW g (b (x — ap))/Lim;,  x € J;.

Observe that f(x) = fo + o(1) and 1; = fo + o(1) uniformly in ;j and x. Let us write 0*(1),
O*(1) for quantities which are o(l1) or O(1) as n — oo uniformly over x € J ; and
j=1,..., M. Recall fo = Bx/(1 + ¢). Define further

2j(0) = Lty gk, (x = ap)/f5(0;
we then obtain
[ 9 =LA+ 9z;(0)(1 +0*(1)),  x€J; (18)
Now [ g, = 0 entails
[EEYREEE
and as a consequence
sz(x)fj(x; 9y dx = 91" (Jzi(x) dx)(l + 0™ (1)). (19)
Note the following relation: for 0 <z — 0,
1
log 1—“ =224 0(2). (20)
— Zz

Note also
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2(x) = 0*(h¥F) 1)

and the following equalities of order of magnitude (denoted <), which are immediate
consequences of our definitions:

h* = (log n/ny*P/+D < ntiog n. (22)
Proof of (i). We have

K= Jlo L+ 9zj(x) Si(x; 3) dx;

1 — 8z;(x)

consequently, in view of (19) and (20),

K= 29sz(x) £i(x; 9) dx + O(|z;(x)]*)

=29%1" (Jzﬁ(x) dx)(l + 0™ (1)) + O™ ((ny " log n)*/?). (23)
Note that
lzljzi(x)dx =12 LRGP+ o)l g1 51 + 0" (1))

Recall | g1 ; an evaluation of the right-hand side above yields

— 450V,
lz‘Jzi(x)dx = (Bx/fo(1 + O)uny  log n(1 + 0*(1). (24)

Set uo = (Bx/ fo(1 + €))u; then uo depends on ¢, 3, Bx = Bx(f, L) and fy = f«(¢1), and the
function f, can be selected to depend only on  and L (cf. Lemma A.3). The inequality
Jfo = B« /(1 + ¢) now completes the proof of (i).

Proof of (ii). We have

) 14 9z;(x) 2 .
Ky = J(log %) Si(x; 3)dx

= J(292 (x) + O*((ng ' log n)*2))* £5(x; 9) dx
=49 <Jz§(x) fi(x; ) dx> + 0*((ny " log n)®)

= 492! (Jzﬁ(x) dx)(l + 0™ (1)) + 0™ ((ny ' log n*/?),

so that (ii) follows from (23) and (24).
Proof of (iii). This is an immediate consequence of (18), (21) and (22). O
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Let us state a result on large deviations for sums of i.i.d. random variables. Let Z, Z;,
Z,, ... be a sequence of independent real random variables with common law Q.

Lemma 6. Assume the following:
(1) EpZ =0, vargZ = 1;
(ii) there exists a positive constant C such that |Z| < C Q-almost surely.

Let x, be a sequence such that x, — 0o, x, = o(n'/?). Then, for every 0 >0, we have
Prg (nl/z Z Z; >xn> = exp(—x2(1 + 8)/2)(1 + o(1)), n — 00,
i=1

uniformly over all Q fulfilling (i) and (ii) for a given constant C.

Proof. For the moment generating function of Z we have an expansion
Eexp(tZ) = 1 + £*/2 + ¢,
with a remainder term satisfying
lp| < |t]>C?e“/3!

uniformly over the class of distributions fulfilling (i) and (ii). Hence uniformly over Q the
following lower bound holds:

lim (x5, ogPro((Zy + ...+ Zy)/(xu/m)>1) = —1

(see Wentzell 1990, Theorem 4.4.1; or Freidlin and Wentzell 1984, Section 5.1, Example 4.)
Thus, for all » large uniformly over Q satisfying (i), (i) we have

logPro((Zy + ... + Z,)/Vn>x,) = (= — 0)x,

and the lemma follows. ]

For measures P;, P, and Py = P, + P», let II(P;, P,) be the testing affinity between P,
and P:

H(Pl, Pz) = Jmln(dPl/dPo, dpz/dp()) dP()

Let v be natural and consider the v-fold product measure P% of P;y with itself, for fixed
3 €]0,1] and for -9, and j =1, ..., M.

Lemma 7. Let 3 € [0, 1] and assume that
no(l —e) < v < ny(1 + o).
Then, if € is sufficiently small,

(P, P y) = 2n %4 (1 + o(1))
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uniformly over j =1, ..., M, where

W=>10+/2B+1).

Proof. 1t is well known that if Py < P, and P, < P; then

(P, P,) = Pi(dP,/dP; = 1)+ P,(dP,/dP, > 1).
Set P, = P%, P = P%Zs and consider i.i.d. random variables 4y, ..., A, having the law of
A =log(dP;_5/dP;s)

under P;g. Then
v
Pi(dP,/dP, = 1) = P} (Z A= o). (25)
=1

Note that
EA = —k(P;g, Pj_s),

vard = 13(Pjg, Pj—g) — K*(Pjg, Pj_g)

= 2K(P;g, Pj—g)(1 4 0 (1)),
according to Lemma 5. Set /'L;k = (Ai — EA)/(varA)\/?, i =1, ..., v; then (25) takes the form

i=1

14
Pl(sz/dPl =1)= Pj%g (V_1/2 ZAT > _VI/ZEA/(Varl)1/2>.
We use Lemma 6 for a lower bound to this large-deviation probability. Note that varA’ = 1
and
IAF] = |4 — EA|/(var )"/ < (153(P; g, Pj—3)) /*2K0c(Pg, Pj—p),

which, according to Lemma 5, is uniformly bounded for all sufficiently large #. This lemma
also yields

—v'PEA)(var )2 < (1 4 )2 n)/*27 2 (1e(Py 9, Pj_g))' (1 + 0¥ (1))

< (14 ¢)9u'?*(log n)'/? (26)
for sufficiently large n. Moreover, since (cf. (22))
V= ny = 0P/ (log )l /OB,

it follows that the right-hand side of (26) is of order (logv)'/2, hence o(v'/?). Thus Lemma 6
is applicable for x, = (1 4 €)%u'/*(log n)'/?: for every & >0,

Pi(dPy/dP; = 1) = exp(—b? (1 + 8))(1 + 0¥ (1)).

Selecting & = ¢, we obtain
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Py(dPy/dPy = 1) = n~P0+002(1 4 5% (1))

=n"" 1+ 0*(1)).
For P,(dP;/dP, = 1) this lower bound is proved analogously. O

Define numbers
vi=Y x,(X),  j=1.... M. (27)
i=1
The joint distribution of v = (vy, ..., vy) under P’ does not depend on 6; call it P"".

Lemma 8. For the event

Ny = { sup |v;/ng — 1] <e},
j=lonM
where ng is given by (17) we have

PS5 — 1.
Proof. Note that v; is a sum of i.i.d. Bernoulli random variables y,(X;), i =1, ..., n, with

expectation [, fy and variance ([, f4)(1 — [, f+). Let n; = n [ f4. Bennett’s inequality
(Shorack and Wellner 1986, Appendix A, p. 851) yields, for any ¢’ >0,

P%(v; — nj| = nie') < exp(—¢'n}/*Co) (28)
for a constant C,. Observe l;lf 7,f s = fo+ o(1) uniformly in j, hence n;/ng — 1 uniformly.
Note also

vi/no = 1| < |v;/n; —1|(n;/no) + |n;/no — 1.
Select ¢’ <¢/3 and n sufficiently large such that |n;/ng — 1| <¢'; then (28) and M =
[n!/(@A+DO+0)] imply the assertion. O

Proof of Theorem: lower risk bound. We omit those details which are similar to the
Gaussian case in Korostelev (1993). It suffices to prove that for an arbitrary estimator f, and
for any small a >0,

liminf sup  P(If = flle > (1 = @)Cy) = 1.
"0 €SB Lb)

Standard arguments show that this is implied by
liminf sup PY°([|0, — 0lly >1—a) =1, (29)
n=00 geR
where 6, = (énl, e, énM) is an arbitrary estimator of 0 =(0y, ..., 0y), |0|m =

max <<y |0;|. For the intervals J; = [a;, a; + [,) define conditional empirical distribution
functions
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Fu() =v;" > HapayranX,  t€[0,11,j=1,..., M,
i=1
where v; are defined in (27).

Though the random variables F,; under Pﬂ,") are dependent via the sample X, ..., X,
they are conditionally independent given the number of sample points in each J;. Thus for
sets Dy, ..., Dy in the appropriate sample space,

M
P(gn)(Fnl S D], . FnM € DM|V1 =Ny, ..., Vy = }’IM) = Hpgl)(ﬁnj S Dj|Vj = }’lj). (30)
Jj=1

Let P("e) v be the conditional distribution of the process F,; given v;; define also a con-
d1t1ona1 emplrlcal for the complement of U —J; in [0, 1] and let P(") be its conditional
distribution given v = (v, ..., vy). Then P(") QY o 1P(;r2 y) ® P(") represents the
cond1t10na1 distribution of the whole sample X, ..., X, given v. Recall that PO is the
joint P )_distribution of v, which is is 1ndependent of @R Put 7, ={[|0, — 0||y>
1 —a}. Con51der a prior distribution 7 = @ ;=177 on R where each 7; has finite support in
[—1, 1]. Then

inf sup P"(7,) = ipfj J Py (%) P (dv)r(dO)
0, OcR 0, JRJ.V,

= Py, )1nf 1nfj (")((G/é)ﬂ(de)-

vedy

In view of Lemma 8 it now suffices to prove

inf 1nfjpg"3(fn)n(d0) 1+ o(1). (31)

vedy o

Applying Lemma 4, we obtain
M
inf | P27 )(@0) = 1= [J1 = raat, (32)
n J=1

where 7;_ a(nj) is the Bayes risk (12) for Q;9, = Pﬁ"g vy T =1—a. Now let us estimate
this Bayes risk in each of the M (conditionally) 1ndependent problems, for v € ./",. Note that
each measure P(] ") v, can be construed as coming from an i.i.d. sample of size v; governed by
the conditional distribution of X, given J;; i.e. by P;g. Consider a test of the hypothesis
0; =07 =1—a/2 versus ; = 0; = —(1 — a/2). Let z; be uniform on {67, 67 }; then we
have (see Strasser 1985, Sectlon 14 5 (4))

r./',l—a(”j) 1H(Pjn9)+ P2 Pi,ne);,v,)

Now apply Lemma 7, noting that
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() ()
P, . P,

)= TP L Prg)
and that on ./, we have no(l1 —¢) < v; < no(1 + ¢). We obtain

Fia_a(y) = n~ -0/ (33)
forall j=1, ..., M, if n is large enough. Hence, for the right-hand side in (32) we obtain a
lower bound of at least

M
1= JJa = n 0=y = 1 — exp(—Mn~ =/, (34)
j=1

We obtain Mn~(1-%/27¢" = (1 + o(1))n*" for an exponent
w=1/C+ 11+ — (1 —a/2y’u
=1/ + (1 +6) — (1 —a/2*(1 +6°/2B + 1).

For given a >0, ¢ can be chosen such that "> 0. In that case exp(—Mn~(1~/2’#"y — 0 and
(34) implies (31). O

Appendix: Analytic facts

The fact that densities of the class (8, L) are uniformly bounded in sup-norm follows from
standard embedding theorems.

Lemma A.1. For any L>0 and >0,

B«(f, L) = < +00.
(B, L) x| max f(x) <400

Proof. Apply Theorem 17.4 of Besov et al. (1979), using the fact that f is bounded in ;-
norm on [0, 1]. O

For f < 1, the value of Bx(f, L) can be found.

Lemma A.2. For any L>0 and 0<f < 1,
(B+ D/BPIFILNED i L= (B+ 1)/,

B«(f, L) =
<50 {1+L/(/3+1) if L<(B+1)/p.

Proof. 1t can be shown that the extremal density is

f(x) = max((f(0) — LxP), 0,  x€][o, 1].
An easy calculation from [ f(x)dx =1 yields f(0). ]
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Lemma A.3. For any L>0 and >0, and every ¢ € (0, 1) there exist ti, t, € [0, 1], 0<
ty — ) < ¢ and a function fy € Z(f, L) such that, for all x € [t, t;],

f+() = Bx(B, L)/(1 +e), (35)
Pl = i),

Proof. Let f be a solution in f of problem (2), i.e. ||f||cc = Bx(f, L). Let ¢ € (0, ¢), and let
t1, t, €0, 1], £, — t; = ¢ be such that f(x) = Bx(f, L)/(1 +¢/2) for x € [#1, t,]. Since
f € (B, L) is continuous on [0, 1], such ¢, ©, € [0, 1] exist for sufficiently small €. Let
m=|B], y=B—m, and let ty € [t1, 2] be such that f"(ty) = f"(x), for x € [, t,].
Since £ is continuous, such a f, exists. Define a function g, by

S(to) = f(1), x € [0, 1),
go(x) = { f"(19) — £ (%), x €11, 1],
fOUt) = f(r2),  x € (n 1]
Note that go(x) =0, x € [0, 1] and
lgollew < L[t — t1]" = LE".

Let O be the integral operator QOg(t) = fot g(u)du, t € [0, 1], and define g = Q™ go (m-fold
application of Q). Then g(x) =0, x € [0, 1] and

1&llec = llolloe = Le”. (36)

Define f = f + g. Since £ (1) = f"(y) on [t1, t,] while f"(£) — f")(r) is constant
outside (1, 1), it follows that

[F ") — f ()| < Lixy — xf, x1, x2 € [0, 1].
Furthermore, f = f; and, by (36),
If = flle < L.

Defining [y = f/ ff;z we see that f, is a density in X(f, L). Moreover, fy(x) =
Bx(fB, L)/(14+¢/2) [f for x € [t1, ,]. By selecting ¢ sufficiently small, we achieve (35).
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