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The Poisson-binomial distribution is approximated by a Poisson law with respect to a new multi-
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1. Introduction

Let S, be the sum of independent Bernoulli random variables X1, ..., X, with success
probabilities P(X; =1)=1—- P(X;=0)= p; €[0, 1] for 1 <;j<n We investigate the
approximation of the distribution P5* of S, by a Poisson law (f) with mean ¢ € (0, oo) and
also by finite signed measures derived from an expansion due to Charlier (1905). As a
measure of accuracy, a new multi-metric (difference metric) is introduced (see formula (1))
unifying a broad class of probability metrics between discrete distributions. Further, the
accompanying non-metric situation is investigated, leading to moderate- and large-deviation
results. The task is to give sharp bounds and asymptotic relations. The method used is based
on work by Shorgin (1977), Deheuvels and Pfeifer (1986a; 1986b; 1988), Deheuvels et al.
(1989) and Roos (1995). For other publications on Poisson approximations, see, for example,
Barbour (1987), Barbour et al. (1992; 1995), Chen and Choi (1992), Deheuvels (1992) and
Prohorov (1953).

We proceed with the definition of the difference metric. Some notation is needed. Let
Z,={0,1,...} and RZ+ = {f|f: Z; — R}. For f € R%, let ||f||, (p €[1, >]) be the
p-norm of f and set f(m) =0 for m <O0. In this paper, we define the difference operator
A:R% — R% by Af(m)= f(m—1)— f(m) for f € R* and m € Z; for the inverse
A™', we have A~'f(m)= -3 ",f(j). The difference metric between two finite signed
measures ) and @, concentrated on Z, is defined by
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dSN(O1, ) = H( > Ao —fQZ)(u)>

u=m—j+1 meZ.

where i€ Z, j €N, p €[l, oo], and fy,, fo, € RZ+ are the counting densities of Q;, 0. If
we consider the restriction of d(lﬁ ) to the set of all probability measures concentrated on 7,
we get the total variation distance ld(0 D the p-metric between dlstrlbutlon functions d(p LD,

the Kolmogorov metric d( LD the Fortet Mourier metric d ) and the J-point metric d(o »,

Here, the j-point metric 1ndlcates the largest difference between the probabilities of half-open
intervals of length j.

2. The bounds for the difference metric

For k€ Z, meZ,,and t € [0, c0), let (-, 1) € RZ+ with zt(m, t) = 2(H)({m}) = e 't"/m!
and write Afz(m, t) = (A*a(-, £))(m). Here and throughout the rest of the paper, we let
0 = 1. Let

k
Pi(x, t)zZ(f.)(j)j!(—t)"f, tLxeR, ke, 2)

Jj=0

be the Charlier polynomial of degree k. The following theorem is the principal tool in the
argument of this paper.

Theorem 1. For m € Z and t € (0, 00),
P(S, = m) =) _ a()A*a(m, 1), 3)
k=0
where ap(t) = (1/k)Y 0 _oP(S, = m)px(m, t), k € Z,.
For the proof of a more general theorem, see Schmidt (1933). The series (3) is called the
Charlier (B) expansion of PS5+, The coefficients a;(f) are called Charlier coefficients of P5-.
For further papers on the Charlier expansion, see Boas (1949) and the references therein.

We now give a review of some well-known relations for pi(x, £) and A¥z(m, f).

Lemma 1. (a) For x, t € R and k € N,

kpk—l(x - 1’ t) = pk(x9 t) - Pk(x - 1’ t)’ (4)
Pir1(x, 1) = (x — k — O pi(x, 1) — thpr_1(x, ?). (5)
(b) For t €(0, ), k, me Z, and z € C,
t*Afz(m, 1) = w(m, ) pr(m, 1), (6)
zoo: Afa(j, 02/ = exp(t(z — 1))(z — 1), (7)

Jj=0
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1 (* . 4
Afa(m, 1) = EJ exp(—ixm + t(e™ — 1))(e™ — 1)* dx. 8)
-
In what follows, let Ay =3_; ,lpk for k€N, A=21,>0, and 5(f) =24, + (A — #)* for
t € (0, 00). The following lemma is devoted to the Charlier coefficients of PS».

Lemma 2. Let k€N and t € (0, c0). Further, let Io(x)=> o _(x/2)°™/(m!)* be the
modified Bessel function of the first kind and order 0, S(x) = e/ 4Io(x), x € R. Then

k-2
ai(?) :% (ak—l(f)(/1 -1+ Z(l)kjlaj(t)/lk—])a ©
=0
_ (ne\"? (1A - 1v2k
lar ()| < ( %k ) ﬁ(W . (10)

Proof. Let H(z) = H;:1(1 + pi(z—1)), z € C, be the probability generating function of .S,.
As in Schmidt (1933, p. 141), Z(,’;Oak(t)zk =e¢ “H(z+1) for ze C. Let h(z) =
In(H(z + 1)) — tz and g(z) = exp(h(z)) for |z| < 1. Then (9) follows from

L (k-1
z—ozﬁ_/zO(( J ) g()dkjh()>
(t) dr=J
kz(k — Pldzk=J

Let a € (0, o). By Cauchy’s theorem,

1 df
ai(t) = Adak g(2)

z=0

z=0

1 23'[ . ix s ix
a(t) = ok Jo exp(—ikx — ate )H(l + pjae™)dx.

J=1

By 1 +x <e* and Io(x) = (1/[2x]) j()zn exp(xcos y)dy for x € R, this leads to

1 27 n
lar(D)]| < 2nakJ exp(—atcos x) H(l +2apjcosx + Rzpi)l/2 dx
0 J=1

< Y(a)f(ald — 1)),
where Y(a) := a~*exp(a®n(t)/4) attains its minimum for a = aq := \/2k/5(¢). Relation
(10) is proved by substituting o for a. O

Note that Shorgin (1977) showed (9) and (10) in the case A = z. Using (9), we derive

A=t —1y

ao(t) =1, al(t) =A— t, az(l) = 5

(11
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For the rest of this paper, let B(x) as in Lemma 2. It is clear that f(x;) < f(x;) for
0 <x, <x, and that 0 <f(]x|]) = p(x) <1 for x € R For the bounds for the difference
metric, we need the following lemma.

Lemma 3. For k € N, t € (0, ), and p € [1, <],

(k+1)/2—1/@2p)
€ _ k
HAkn(., Ny =< % (1 + \/7) (2k)1/p 1/<2p><te> ) (12)

Proof. Shorgin (1977; see the proof of his Lemma 6) proved (12) for p = co. For p =1,
(12) can be shown by using (23) (which can be proved independently) and the inequality
l+x=<¢e', xR The assertion is shown by using the convexity theorem: |f|, <

IS i 1< g<p<q’ <oo, f € RE, 0<s<1, and 1/p=s/q'+(1 - )/g. O

For x € R, let |x], [x] € Z be defined by x — 1 <|x] < x < [x] <x+ L. For ¢ € (0, 00),
let 6(¢) = n(¢)/(2¢). We now give the main result of this section.

Theorem 2. Let t€(0,00), ke Z,, se{k, k+1,k+2,...}, ie{-s, —s+1, —s+2,
hLJjeEN, pel,o0], r=(>G+1)/2-1/2p),

) = JA+/7/2) . _ JCm) exp(1/(24(s + 1))20 D/
VT2 p(s i 4 DIl i (s + D45l ’
and

V(t):ﬁ<|x t\|/_\77/§§)S7+1 )

Let Q(k, t) denote the finite signed measure concentrated on Z. with the counting density
fotkn(m) =5 _gas(DA w(m, 1), m € Z.,. Then d'")(PSr, Q(k, 1)) = H + R, where

n-| mg&j} au(t)( / ) A, 1) (13)
u=k+1| v=k+1 u—v+1 e
and N
IR| < éf,l;/(z?r U:;H By /2ol /1, (14)
[R] = Covom(n 7 (14 v/20(8) ) exp@n(). (15)
Proof. By

Z S =

u=m—j+1 w=

OM‘

(W+1)Awf(m) feR meZ.,

it is easy to see that, for m € Z,
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m oo j—1 .
S A — forn)) = D ant)y ( Wi . )A“’+v+’n(m, £)= Hp+ R,
u=m—j+1 v=k+1 w=0

where

N

j-1 :
= S a0$ ()

v=k+1 w=0

s+j—1 | min{u, s} j '
Yy aum( ) A, 1),
u=k+1| v=ktl u—v+1

00 j—1 . m
Ru= > a(d) (Wil)AW”“n(m, D= > AN(fese = foun)W).

v=s+1 w=0 u=m—j+1

Hence d'W/(PS, Q(k, 1)) = |(Hp + Rumez, |l p and H = ||(Hp)mez, || p- Relation (14) can
be shown by using

o0

> a(HA A, 1)

v=s+1

R < [|(Rmmez, [|, < J

=i > laOI A 7, Bl (16)

v=s+1

and the inequalities (10), (12), and 1 + x < e*, x € R. Relation (15) can be proved by using
(16), (10), the inequality ||A’z(-, 1)||, < 2" (v € Z), Stirling’s formula (see Feller 1968)

1 1

| — v+1/2 . R

v! 2 v exp(dy — ), I € [lvar I’ 120}, veN, (17)
and
O xm XV 2 m 1/2 U )

= < —(x+ Dexp(x 18
;j m! ﬁ%m(Lm/zj) m( )exp(x”) (18)
forveZ,, x €0, c0). o

Note that Q(0, t) = 2°(¢), O(1, 1) = (1), and that Barbour (1987) used other signed
measures for the total variation distance. Only the first two of his signed measures coincide
with Q(0, 1) and Q(2, 1). Observe that always v(¢) < 1.

3. Evaluation of the norm term

In what follows, the norm term H in Theorem 2 is evaluated in the cases p = 1 and p = oo.
Using these formulae, upper and lower estimates of the corresponding distances can be
derived. The following two propositions are generalizations of results by Deheuvels and
Pfeifer (1986a; 1986b) and Roos (1995). The proofs are easy and therefore omitted.
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Proposition 1. Let g(x) = anzocmtk_’”pmﬂ(x, 1), where te(0,00), keZ,, and
co, - Ck ER, ¢ 0. Then q(x) has at least one zero in (0, ). If q(x) has exactly
ue{l,..., k+ 1} different zeros in [0, 0), denoted by x,(f) < ... <x,(1), then

k
> A", 1)
m=0

= max
00 1=sv=<u

. (19)

k
> enh"al[xo(D), 1)
m=0

Proposition 2. Let g(x) = Zﬁzzocmtk‘mpm(x, 1), where t € (0, ), ke Z,, and cy, ...,
ck €R, ¢ #0. If, under considerations of multiplicity, q(x) has exactly u € {0, ..., k}
zeros in [0, 00), denoted by x|(t) < ... < x,(f) (if u=1), then

k
Z CmAmn:('a t)
m=0

From the theory of orthogonal polynomials it is known that the zeros of the Charlier
polynomials pg(x, £), k € N, t € (0, ), are real, simple and located in the interval (0, c0).
The preceeding propositions lead to the following corollaries.

. (20)

k u
= '(_1)%0 +2) en > (DA a([xu(0)], 1)
m=0 v=1

Corollary 1. Let ke Z,, t€ (0, ), and 0<xi(t)<...<xp1(t) be the zeros of
Pi+1(x, 1). Then

1A, oo = max [Afa((x(0)], D). 1)
sv<k+1

Corollary 2. Let k€ N, t € (0, 00), and 0<x1(t)< ... <xy(t) be the zeros of pi(x, t).
Then

1A%, Dy =2

k
D (=DPA a(xu(1)], 1)
v=1

k
=23 A a(|x(0), 0l (@2)
v=1

Proof. The first equality follows from Proposition 2. The second equality is proved if it is
shown that p;_(|xy(?)], #) alternates in sign as v varies from 1 through k. But this is a
consequence of the following lemma. O

Note that the inequalities
A 7, Oy < 2k[| A A, O] < k|| A T, 1)1, keN, e (0,00), (23)
follow from (21) and (22), where equalities hold for k£ = 1. The first inequality of (23) is used
in the proof of (12). The following lemma is needed to complete the proof of Corollary 2.

Lemma 4. Let t € (0, 00) and 0 <xp1(t) < ... <xy(t) be the zeros of p(x, t) for k € N.
Then xji1 (1) <xpp() <Xpr1p41(H) = 1 for keNand ve {1, ..., k}.

Note that the relation above without the ‘—1” is the well-known separation theorem for
the zeros of the Charlier polynomials.
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Proof. By induction over £, it can be shown that x4, 1(f) — x4 () >1 for k € {2,3, ...}
and v € {1, ..., k — 1}. Here the separation theorem and (4) are used. Now the assertion can
easily be proved. O

In the following lemma, some additional properties of the norm term are given.

Lemmas. Let ke€Z., co,...,cr €R, ¢ #0, and pe€|l, o). Then the norm
||anzocmA’”ﬂ(~, Dl p is a (0, oo)-valued, continuous function of t € [0, 00).

Proof. The assertion can easily be shown by using

k
|pr(m, 1)] < Z(fﬁ) mT =m0, kmeZ, 1e(0,00),  (24)
w=0
Minkowski’s inequality, (6), (7) and (19). (|

4. Asymptotic relations for the norm term

In what follows, let

Lx/2] n™2 k—2m
I ¢3)

be the Hermite polynomial of degree k € Z,. We need the well-known relations
Hk+1(x) = 2x Hk(x) —2k kal(x), keN,xeR, (26)
1 df —1k
Pr(x) = = 2 = D7
V2mdx V2m2k/2

For p €[1, o], let ||@||, be the p-norm of ¢y.

e V2 Hy(x/V?2), keZ.,xeR  (27)

Proposition 3. Let k € Z, and b: (0, c0) X R — R be bounded. For t — o,

sup| K2 A (| £ 4 xv/t + b(1, )], £) — (=D prx)| = O (713, (28)
xeR
sup(1 + x| D2 A (| 1+ xv/T + b(t, x) |, 1) — (=DForx)| = 0. (29)

xeR

Proof. We use Fourier techniques as in Petrov (1975). Let k € Z+, x€R, 1€(0, 00), and
m=[t+xVi+b(t x)] =0. Then m=t+x\i+b(t x), where b: (0, 00) X R — R is
bounded. We write b for (¢, x). Using (8) and

1 o]
o0 =5 | exp(oiy = 222 d,

it is easy to see that



1028 B. Roos
27| (D2 AR (m, 1) — (= 1) ()]
< t(k"'l)/zjn e V"2 exp(fe” — 1 —iy + y2/2] —iyb)(e” — DF — (iy)*|dy + I,
x
< (V2L 4 4 1)+ 1,

where
I = ZJ e ykdy,
T/t

T
L= e"lexp(teosy — 1+ y2/2]) — 1] [e? — 1]*dy,

—T

T
L= e -1k iyt dy,

—T

L= e " /lexp(ilt(siny — y) — yb]) — 1| |y|* dy.

—T

Using calculus, it is possible to show that, for t— oo, I} = @(exp (—m? t/2)t(k’1)/2),
I = Ot~ %32 3 = 0~ *+2/2) and Iy = (= **+2/2). For I, the inequality

2 /2 )
I, <2k <Z -1 tJ exp(—2¢sin®y)sin®*y dy
0

and Shorgin’s (1977; see the proof of his Lemma 6) estimate of the integral are used. For /3,
we use |(e” — 1)¥ — (iy)¥| < k|y|**'e*"| and similar estimates for /,. Hence

sup [(FD2 A (| 1 4 xvT+ b(t, x) ], 1) — (=DFpr(x)| = O3, t — oo,
XEA(Y)

where A(?) = {x € R|[ ¢+ xv/t+ b(t, x)| = 0}. The proof of (28) is easily completed. To
prove (29), it suffices to estimate T = x?[({*TD2A*7(m, 1) — (—=1)*@4(x)| uniformly in
x € A(f). Using (5), (6), (26), (27), and x = (m — t — b)/+/t, we obtain

X2 Afa(m, 1) = (N2 a(m, ) + [2k — 2b + 1A \w(m, ) + [2k + 1 + 1 (k — b*1A*a(m, 1)

+ 7 k[2k — 2b — 1JA "w(m, ) + k(k — 1)t ' A2 a(m, 1),

and X2 (x) = Qr2(x) + 2k + Dor(x) + k(k — D@ra(x), where ¢_5(x) = ¢_i(x) = 0.
Hence
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T < [(* 2N 2 (m, 1) — (— 1) @ra(0)] + [2k + 2]b| + 112 | A (-, 6]
+ (k= BRI, Dl + (2K + 1[0V A a(m, 1) — (=D i)
+ k[2k + 20| + 1115 D2 A a1, 0]l

+ k(k — D52 A20(m, 1) — (1) 2pi_2(x)].

Using the estimates (12), (28), and ||72(-, #)||oc < (2t€)~'/2 for ¢ € (0, o) (see Deheuvels and
Pfeifer 1988), the proof is easily completed. U

Proposition 4. Let p € [1, o] and k € 7. Then

M

M € (0, 00) V1 € (0, 00): [14VPER A A, ol — llgall, | < = G0)

Proof. For sufficiently large ¢ the assertion is shown by using (28), (29) and
00 I/p
VPN A A, 1), = (J |Afa( e+ x V1), r)f’dx) . pE[l o)

For small ¢, Lemma 5 is used. O
5. Asymptotic results for the difference metric
For the following theorem, we consider a triangular scheme: we let » and X, ..., X, depend

on an additional parameter / € N and assume that / — oco. Then the following quantities also
depend on [:S,, pi,..., ppy Ax for k€N, n(f), and é(t) for t € (0, 00). Let 6=
O(A) = A, /A. Note that 6 < 1. Sometimes we write 0 for 6. We now present the main result
of this section.

Theorem 3. Let i € {2, —1, ...}, j€ N, p €[, o] be independent of 1. Further, let

Jj+1 .
H(1) = Z(uf 1>A“+"n(., Dl t € [0, c0).
u=2 - P
If limsup;_,, 0 <1, then
d')(PSy y(ﬁ)):’l—zyﬁ’ﬂ(z) 14 | min 43 +6 l—3+1 (31)
) ’ 2" IOV B P ’
and
dD(pSn %(&)):7j‘|‘pi+2||"0 14 (mind1, 10 (32)
p > 2A(+D/2=1/2p) - ’\/I ’

If a € [0, 00) is independent of | and A, = 7 (1), then
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dUD(PSt, () = i HU"(a)|1+ @' min< 1, g o+ A—alp )| (33)
P 277 Jo

Proof. Letting k=0, s=3, and =41 in Theorem 2, we get dg’j)(PS”, Ph) =
(/12/2)H(Pi’j)(/1) + R, where

R<2[S( 7 Yarine ||+
\3 u=3 u—2 ’ p :

and the following two estimates hold:

. yh: o
|R1| =00 (M) if lim sup 9(1) < 1,

l—o0
|Ri|=c(3)  if = (1),

Using the triangular inequality, (12) and Lemma 5, we obtain

|R| =0 (l(,'+4)/21/(2p) + A+5)/2—1/2 p) if hr/llilclp o<1, 4
Rl =0 + /12) if 1, = @(1). (35)
2

Because of (30), three constants M,, M,, M; € (0, o) exist such that M;>1 and
M, < t(i+3)/2*1/(2P)H(1§’j)(t) < Mj; for t € (M, >0). By Lemma 5, 0<infte[o,Ml]H(1§’j)(t) =:
My, Let 41 = {l S N|/‘L>M1}, Ay = {l S N‘Ml == 1}, and A; = N\(Al U 4;). For
(31), we may assume sup;en6? < 1. By (34) and (35), we obtain, for / € 4; (k € {1, 2, 3}),

|R| o A A3
— =0 0, -+ 4 .
le(p”/)(l) min /'Lz\//f—’— ,/12+ 2

Relation (31) is proved. Relations (32) and (33) are easily shown by similar arguments. [J

It is easy to show that (31) and (32) remain valid if i+ 1=1/p and the condition
lim sup;_,,0” <1 is dropped. Hence (32) is a generalization of results of Prohorov (1953,
Theorem 2), Deheuvels and Pfeifer (1986a; 1986b; 1988), and Roos (1995) concerning the
Poisson approximation of the binomial and Poisson-binomial distributions with respect to
the total variation distance, the Kolmogorov metric, the Fortet—Mourier metric, and the one-
point metric. It should be mentioned that, as has been observed by Barbour et al. (1992, p.
2), the statement of Prohorov’s Theorem 2 is inaccurate. A correct version, in our notation,
is: d(lo’l)(.%’(n, p), Anp)) = \/2/(me) p[1 + @(min{1, [np]~'/? + p})], where .Z(n, p) de-
notes the binomial distribution with parameter n and success probability p. In Prohorov’s
version, the ‘+p’ is missing, which invalidates his result, for example, for p =1, n — oo.

For easier ?-terms in (31) and (33), observe the following relations:
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. A3 A3 .
min +60,2 4+ 2,8 <2min{V0o, V1,1,
{ﬂ.z\/z 12 2} { 2}
A3

/1—+ﬂ.2+|l—a|$(1+\/M)(\/;1;—|—|1—a\) if A, < M.
2

6. Non-metric considerations

In this section, we are interested in relations for A'(fps. — fr()(m), where i € {—1,0, ...},
t € (0, 0), and m € Z,. The first result is a consequence of Theorem 2. Here, we consider
the triangular scheme as introduced before Theorem 3. Further, let m € Z, and t € (0, )
also depend on /.

Theorem 4. Let i € {—1,0, ...}, a € R, my € Z, be independent of 1.

(@) If A — o0, m=A+aVi+(1), 0 =0, (h—0VA/la— 0, and \ =t + (1), then

A+3)/2 (- i+1
7 AN'(fpsw — forp)(m) —

b) If m=my, A — acl0,00), t —a, A/t ™ — 0, and (A —1)/Ay — 0, then

Piy2(a).

1 . 1 .
ll—Al(fPSn — for)(m) — — EAH—ZJT(WO, a).
2

Proof. First pote}hat both in (a) and (b), é(t) — 0. Hence Theorem 2 yields Ai( fps, —
Sn)(m) =H + R, where

_ A2 _ )
G=o—h 2 %2 A2 (m, 1)

- . , (0132
Rl = I = Fo)m] = 42, 02, 0y = (X000

H=— A a(m, 1)+

In case (a), we have m=t+a\/t+ (1) and t— oo. Using (28), we obtain
tFHDR2 AR g(m, £) — (—1)*@i(a) for k € Z,. Now it is easy to prove that HAUT)/2/1, —
271 (=1)*1piy2(a) and RAUHD/2 /2, — 0, as required.

In case (b), the relations H /Ay — —2~'A™*2m(my, a) and R/A, — O are easily shown,
completing the proof. O

Theorem 5. Let t€(0,00), ke€Z,, sc{k, k+1,...}, ie{-s—1,-s,—s+1,...},
meZy, Vim, t)=(m/t+ 1)\/n(1)/2,
exp(1/(24(s + 1))(2m)!/4 (1A= V26 FT)
P IEN R ﬂ( )

V()
Then A'(fpsv — foukn)(m) = H'+ R', where H' =%\, a,()A"“""'7(m, t) and
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IR'| < Csv(H)m(m, t)(m/t+ 1)'V(m, )" (14 V(m, t))exp(V(m, 1)).
Proof. First note that, by (6) and (24),
\Af(m, )] < 7(m, 1) (? + 1) k, k,meZ,,te (0, ). (36)
The assertion is easily shown by using (10), (17), (18), and (36). ]
For the following result, we use the triangular scheme as considered for Theorem 4.

Theorem 6. Let i € {—1,0, ...} be independent of 1.
@) If A/m — 0, m — oo, my/AyJA — 0 and (A — t)/Ay — 0, then

) y 2+4i
N (fpse = Fra)om) ~ = Zm, ) (?) .

(b) If m/A — a€[0,0), L — 00, A =0 and (A— £)/Ay — 0, then

Al(fpsi — S7n)(m) _ _l

2
Tor(m, 7) pla=b

For the proof, the following lemma is needed.

Lemma 6. (a) Under the assumptions in Theorem 6(a), we have t/m — 0, (1 — )t/
(Aam) — 0, pi(m, t)/m* — 1 for all keZ,, A —0, A—t—0, (A— 1>/l —0,
my/2y/t — 0 and (A — tym/t — 0.

(b) Under the assumptions in Theorem 6(b), we have m/t — a, A—1t— 0, t — o0,
pi(m, )t % — (a— D for all keZ., (L—10>?/la—0, m/A/t—0 and
A—0m/t— 0.

Proof of Theorem 6. By Theorem 5, A/(fps, — frn)(m) = H' + R’, where
, A—t 1 5
H' = n(m, 1) = piv1(m, 1) +W((A — 1)” = ) pia(m, 1)|,

R = C(a(m, 0y 2(1 + yy/jexpy?),
x=n(t)/2 and y = m/t+ 1. Using Lemma 6, the assertions are easily proved. O

In what follows, let F (or G) denote the distribution function of P5» (or Z°(¢)). To obtain
the following results on large and moderate deviations, set i = —1 in Theorems 4 and 6.

Corollary 3. (a) Under the assumptions in Theorem 4(a),

1 — G(m) (1 — F(m) 1) . —ae /2
[z 1 — G(m) 2V2n

(37)
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(b) Under the assumptions in Theorem 4(b),

_ _ _Al
1 — G(myg) (1 F(m)_1 _ A 7t(my, a). (38)
/12 1 — G(m) 2
(¢) Under the assumptions in Theorem 6(a),
1 — F(m) Ay (m\?
—em '~ 2 (7) ' (39)
(d) Under the assumptions in Theorem 6(b),
1 —G(m) (1 —F(m) l—a
Jot(m, 1) (1 — G(m) 1) T (40)

Note that Chen and Choi (1992, Corollary 2.4) obtained (39) under more restrictive
assumptions in the case # = A. (They overlooked the required assumption m — oo in their
corollary. Their assertion does not hold without this condition). For ¢ = A, Barbour et al.
(1995, Corollary 4.3) proved (39) under more general assumptions as in Corollary 3(c).
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