Asymptotics and sharp bounds in the Poisson approximation to the Poisson-binomial distribution

BERO ROOS

Institut für Mathematische Stochastik, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany. E-mail: roos@math.uni-hamburg.de

The Poisson-binomial distribution is approximated by a Poisson law with respect to a new multimetric (difference metric) unifying a broad class of probability metrics between discrete distributions. The accompanying non-metric situation is also considered leading to moderate- and large-deviation results. Using the Charlier B expansion and Fourier arguments, sharp bounds and asymptotic relations are given.

Keywords: Charlier B expansion; large deviations; moderate deviations; Poisson approximation; Poisson-binomial distribution; probability metrics

1. Introduction

Let S_n be the sum of independent Bernoulli random variables X_1, \ldots, X_n with success probabilities $P(X_j = 1) = 1 - P(X_j = 0) = p_j \in [0, 1]$ for $1 \le j \le n$. We investigate the approximation of the distribution P^{S_n} of S_n by a Poisson law $\mathcal{P}(t)$ with mean $t \in (0, \infty)$ and also by finite signed measures derived from an expansion due to Charlier (1905). As a measure of accuracy, a new multi-metric (difference metric) is introduced (see formula (1)) unifying a broad class of probability metrics between discrete distributions. Further, the accompanying non-metric situation is investigated, leading to moderate- and large-deviation results. The task is to give sharp bounds and asymptotic relations. The method used is based on work by Shorgin (1977), Deheuvels and Pfeifer (1986a; 1986b; 1988), Deheuvels et al. (1989) and Roos (1995). For other publications on Poisson approximations, see, for example, Barbour (1987), Barbour et al. (1992; 1995), Chen and Choi (1992), Deheuvels (1992) and Prohorov (1953).

We proceed with the definition of the difference metric. Some notation is needed. Let $\mathbb{Z}_+ = \{0, 1, \ldots\}$ and $\mathbb{R}^{\mathbb{Z}_+} = \{f | f : \mathbb{Z}_+ \to \mathbb{R}\}$. For $f \in \mathbb{R}^{\mathbb{Z}_+}$, let $\|f\|_p$ $(p \in [1, \infty])$ be the p-norm of f and set f(m) = 0 for m < 0. In this paper, we define the difference operator $\Delta : \mathbb{R}^{\mathbb{Z}_+} \to \mathbb{R}^{\mathbb{Z}_+}$ by $\Delta f(m) = f(m-1) - f(m)$ for $f \in \mathbb{R}^{\mathbb{Z}_+}$ and $m \in \mathbb{Z}_+$; for the inverse Δ^{-1} , we have $\Delta^{-1}f(m) = -\sum_{j=0}^m f(j)$. The difference metric between two finite signed measures Q_1 and Q_2 concentrated on \mathbb{Z}_+ is defined by

$$d_p^{(i,j)}(Q_1, Q_2) = \left\| \left(\sum_{u=m-j+1}^m \Delta^i (f_{Q_1} - f_{Q_2})(u) \right)_{m \in \mathbb{Z}} \right\|_p, \tag{1}$$

where $i \in \mathbb{Z}$, $j \in \mathbb{N}$, $p \in [1, \infty]$, and f_{Q_1} , $f_{Q_2} \in \mathbb{R}^{\mathbb{Z}_+}$ are the counting densities of Q_1 , Q_2 . If we consider the restriction of $d_p^{(i,j)}$ to the set of all probability measures concentrated on \mathbb{Z}_+ , we get the total variation distance $\frac{1}{2}d_1^{(0,1)}$, the p-metric between distribution functions $d_p^{(-1,1)}$, the Kolmogorov metric $d_{\infty}^{(-1,1)}$, the Fortet-Mourier metric $d_1^{(-1,1)}$ and the j-point metric $d_{\infty}^{(0,j)}$. Here, the j-point metric indicates the largest difference between the probabilities of half-open intervals of length j.

2. The bounds for the difference metric

For $k \in \mathbb{Z}$, $m \in \mathbb{Z}_+$, and $t \in [0, \infty)$, let $\pi(\cdot, t) \in \mathbb{R}^{\mathbb{Z}_+}$ with $\pi(m, t) = \mathcal{P}(t)(\{m\}) = e^{-t}t^m/m!$ and write $\Delta^k \pi(m, t) = (\Delta^k \pi(\cdot, t))(m)$. Here and throughout the rest of the paper, we let $0^0 = 1$. Let

$$p_k(x, t) = \sum_{j=0}^k \binom{k}{j} \binom{x}{j} j! (-t)^{k-j}, \qquad t, x \in \mathbb{R}, k \in \mathbb{Z}_+$$
 (2)

be the Charlier polynomial of degree k. The following theorem is the principal tool in the argument of this paper.

Theorem 1. For $m \in \mathbb{Z}_+$ and $t \in (0, \infty)$,

$$P(S_n = m) = \sum_{k=0}^{\infty} a_k(t) \Delta^k \pi(m, t), \tag{3}$$

where $a_k(t) = (1/k!) \sum_{m=0}^{\infty} P(S_n = m) p_k(m, t), k \in \mathbb{Z}_+$.

For the proof of a more general theorem, see Schmidt (1933). The series (3) is called the Charlier (B) expansion of P^{S_n} . The coefficients $a_k(t)$ are called Charlier coefficients of P^{S_n} . For further papers on the Charlier expansion, see Boas (1949) and the references therein. We now give a review of some well-known relations for $p_k(x, t)$ and $\Delta^k \pi(m, t)$.

Lemma 1. (a) For $x, t \in \mathbb{R}$ and $k \in \mathbb{N}$,

$$k p_{k-1}(x-1, t) = p_k(x, t) - p_k(x-1, t),$$
 (4)

$$p_{k+1}(x, t) = (x - k - t)p_k(x, t) - tkp_{k-1}(x, t).$$
(5)

(b) For $t \in (0, \infty)$, $k, m \in \mathbb{Z}_+$, and $z \in \mathbb{C}$,

$$t^k \Delta^k \pi(m, t) = \pi(m, t) p_k(m, t), \tag{6}$$

$$\sum_{i=0}^{\infty} \Delta^k \pi(j, t) z^j = \exp(t(z-1))(z-1)^k, \tag{7}$$

$$\Delta^{k} \pi(m, t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp(-ixm + t(e^{ix} - 1))(e^{ix} - 1)^{k} dx.$$
 (8)

In what follows, let $\lambda_k = \sum_{j=1}^n p_j^k$ for $k \in \mathbb{N}$, $\lambda = \lambda_1 > 0$, and $\eta(t) = 2\lambda_2 + (\lambda - t)^2$ for $t \in (0, \infty)$. The following lemma is devoted to the Charlier coefficients of P^{S_n} .

Lemma 2. Let $k \in \mathbb{N}$ and $t \in (0, \infty)$. Further, let $I_0(x) = \sum_{m=0}^{\infty} (x/2)^{2m}/(m!)^2$ be the modified Bessel function of the first kind and order $0, \beta(x) = e^{-x^2/4}I_0(x), x \in \mathbb{R}$. Then

$$a_k(t) = \frac{1}{k} \left(a_{k-1}(t)(\lambda - t) + \sum_{j=0}^{k-2} (-1)^{k-j-1} a_j(t) \lambda_{k-j} \right), \tag{9}$$

$$|a_k(t)| \le \left(\frac{\eta(t)\,\mathrm{e}}{2k}\right)^{k/2} \beta\left(\frac{|\lambda - t|\sqrt{2k}}{\sqrt{\eta(t)}}\right). \tag{10}$$

Proof. Let $H(z) = \prod_{j=1}^{n} (1 + p_j(z-1))$, $z \in \mathbb{C}$, be the probability generating function of S_n . As in Schmidt (1933, p. 141), $\sum_{k=0}^{\infty} a_k(t) z^k = \mathrm{e}^{-tz} H(z+1)$ for $z \in \mathbb{C}$. Let $h(z) = \ln(H(z+1)) - tz$ and $g(z) = \exp(h(z))$ for |z| < 1. Then (9) follows from

$$a_k(t) = \frac{1}{k!} \frac{d^k}{dz^k} g(z) \Big|_{z=0} = \frac{1}{k!} \sum_{j=0}^{k-1} \left(\binom{k-1}{j} \frac{d^j}{dz^j} g(z) \frac{d^{k-j}}{dz^{k-j}} h(z) \right) \Big|_{z=0}$$

$$= \frac{1}{k} \sum_{j=0}^{k-1} \frac{a_j(t)}{(k-1-j)!} \frac{d^{k-j}}{dz^{k-j}} h(z) \Big|_{z=0}.$$

Let $\alpha \in (0, \infty)$. By Cauchy's theorem,

$$a_k(t) = \frac{1}{2\pi\alpha^k} \int_0^{2\pi} \exp(-ikx - \alpha t e^{ix}) \prod_{j=1}^n (1 + p_j \alpha e^{ix}) dx.$$

By $1+x \le e^x$ and $I_0(x) = (1/[2\pi]) \int_0^{2\pi} \exp(x \cos y) dy$ for $x \in \mathbb{R}$, this leads to

$$|a_k(t)| \le \frac{1}{2\pi\alpha^k} \int_0^{2\pi} \exp(-\alpha t \cos x) \prod_{j=1}^n (1 + 2\alpha p_j \cos x + R^2 p_j^2)^{1/2} dx$$

$$\le Y(\alpha)\beta(\alpha(\lambda - t)).$$

where $Y(\alpha) := \alpha^{-k} \exp(\alpha^2 \eta(t)/4)$ attains its minimum for $\alpha = \alpha_0 := \sqrt{2k/\eta(t)}$. Relation (10) is proved by substituting α_0 for α .

Note that Shorgin (1977) showed (9) and (10) in the case $\lambda = t$. Using (9), we derive

$$a_0(t) = 1,$$
 $a_1(t) = \lambda - t,$ $a_2(t) = \frac{(\lambda - t)^2 - \lambda_2}{2}.$ (11)

For the rest of this paper, let $\beta(x)$ as in Lemma 2. It is clear that $\beta(x_1) \leq \beta(x_2)$ for $0 \leq x_2 \leq x_1$, and that $0 < \beta(|x|) = \beta(x) \leq 1$ for $x \in \mathbb{R}$. For the bounds for the difference metric, we need the following lemma.

Lemma 3. For $k \in \mathbb{N}$, $t \in (0, \infty)$, and $p \in [1, \infty]$,

$$\|\Delta^k \pi(\cdot, t)\|_p \le \frac{\sqrt{e}}{2} \left(1 + \sqrt{\frac{\pi}{2}} \right) (2k)^{1/p} e^{-1/(2p)} \left(\frac{k}{te} \right)^{(k+1)/2 - 1/(2p)}. \tag{12}$$

Proof. Shorgin (1977; see the proof of his Lemma 6) proved (12) for $p = \infty$. For p = 1, (12) can be shown by using (23) (which can be proved independently) and the inequality $1 + x \le e^x$, $x \in \mathbb{R}$. The assertion is shown by using the convexity theorem: $||f||_p \le ||f||_{q'}^s ||f||_q^{1-s}$ if $1 \le q , <math>f \in \mathbb{R}^{\mathbb{Z}_+}$, 0 < s < 1, and 1/p = s/q' + (1-s)/q. \square

For $x \in \mathbb{R}$, let $\lfloor x \rfloor$, $\lceil x \rceil \in \mathbb{Z}$ be defined by $x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$. For $t \in (0, \infty)$, let $\tilde{\theta}(t) = \eta(t)/(2t)$. We now give the main result of this section.

Theorem 2. Let $t \in (0, \infty)$, $k \in \mathbb{Z}_+$, $s \in \{k, k+1, k+2, \ldots\}$, $i \in \{-s, -s+1, -s+2, \ldots\}$, $j \in \mathbb{N}$, $p \in [1, \infty]$, r = (i+1)/2 - 1/(2p),

$$C_1 = \frac{j(1+\sqrt{\pi/2})}{2^{1-1/p}(s+i+1)^{\lceil r+1/p\rceil-r-1/p}}, \qquad C_2 = \frac{j(2\pi)^{1/4}\exp(1/(24(s+1)))2^{(s+1)/2+i}}{(s+1)^{1/4}\sqrt{s!}},$$

and

$$\nu(t) = \beta \left(\frac{|\lambda - t| \sqrt{2(s+1)}}{\sqrt{\eta(t)}} \right).$$

Let Q(k, t) denote the finite signed measure concentrated on \mathbb{Z}_+ with the counting density $f_{Q(k,t)}(m) = \sum_{v=0}^k a_v(t) \Delta^v \pi(m, t), \ m \in \mathbb{Z}_+$. Then $d_p^{(i,j)}(P^{S_n}, Q(k, t)) = H + R$, where

$$H = \left\| \sum_{u=k+1}^{s+j-1} \left[\sum_{v=k+1}^{\min\{u,s\}} a_v(t) \binom{j}{u-v+1} \right] \Delta^{u+i} \pi(\cdot, t) \right\|_p$$
 (13)

and

$$|R| \le \frac{C_1 \nu(t)}{\tilde{\theta}(t)^{i/2} t^r} \sum_{v=s+i+1}^{\infty} \tilde{\theta}(t)^{v/2} v^{\lceil r+1/p \rceil}, \tag{14}$$

$$|R| \le C_2 \nu(t) \eta(t)^{(s+1)/2} \left(1 + \sqrt{2\eta(t)}\right) \exp(2\eta(t)).$$
 (15)

Proof. By

$$\sum_{u=m-j+1}^m f(u) = \sum_{w=0}^{j-1} {j \choose w+1} \Delta^w f(m), \qquad f \in \mathbb{R}^{\mathbb{Z}_+}, \ m \in \mathbb{Z}_+,$$

it is easy to see that, for $m \in \mathbb{Z}_+$,

$$\sum_{u=m-j+1}^{m} \Delta^{i}(f_{P^{S_{n}}} - f_{Q(k,t)})(u) = \sum_{v=k+1}^{\infty} a_{v}(t) \sum_{w=0}^{j-1} {j \choose w+1} \Delta^{w+v+i} \pi(m, t) = H_{m} + R_{m},$$

where

$$H_{m} = \sum_{v=k+1}^{s} a_{v}(t) \sum_{w=0}^{j-1} {j \choose w+1} \Delta^{w+v+i} \pi(m, t)$$

$$= \sum_{u=k+1}^{s+j-1} \left[\sum_{v=k+1}^{\min\{u, s\}} a_{v}(t) {j \choose u-v+1} \right] \Delta^{u+i} \pi(m, t),$$

$$R_{m} = \sum_{v=s+1}^{\infty} a_{v}(t) \sum_{w=0}^{j-1} {j \choose w+1} \Delta^{w+v+i} \pi(m, t) = \sum_{u=m-j+1}^{m} \Delta^{i}(f_{p}s_{n} - f_{Q}(s,t))(u).$$

Hence $d_p^{(i,j)}(P^{S_n}, Q(k, t)) = \|(H_m + R_m)_{m \in \mathbb{Z}_+}\|_p$ and $H = \|(H_m)_{m \in \mathbb{Z}_+}\|_p$. Relation (14) can be shown by using

$$|R| \le \|(R_m)_{m \in \mathbb{Z}_+}\|_p \le j \left\| \sum_{v=s+1}^{\infty} a_v(t) \Delta^{v+i} \pi(\cdot, t) \right\|_p \le j \sum_{v=s+1}^{\infty} |a_v(t)| \|\Delta^{v+i} \pi(\cdot, t)\|_p, \quad (16)$$

and the inequalities (10), (12), and $1 + x \le e^x$, $x \in \mathbb{R}$. Relation (15) can be proved by using (16), (10), the inequality $\|\Delta^v \pi(\cdot, t)\|_p \le 2^v$ $(v \in \mathbb{Z}_+)$, Stirling's formula (see Feller 1968)

$$v! = \sqrt{2\pi} v^{v+1/2} \exp(\theta_v - v), \qquad \theta_v \in \left[\frac{1}{12v+1}, \frac{1}{12v}\right], v \in \mathbb{N},$$
 (17)

and

$$\sum_{m=v}^{\infty} \frac{x^m}{\sqrt{m!}} \le \frac{x^v}{\sqrt{v!}} \sum_{m=0}^{\infty} \frac{x^m}{\sqrt{m!}} \left(\frac{m}{\lfloor m/2 \rfloor} \right)^{1/2} \le \frac{x^v}{\sqrt{v!}} (x+1) \exp(x^2)$$
 (18)

for
$$v \in \mathbb{Z}_+$$
, $x \in [0, \infty)$.

Note that $Q(0, t) = \mathcal{P}(t)$, $Q(1, \lambda) = \mathcal{P}(\lambda)$, and that Barbour (1987) used other signed measures for the total variation distance. Only the first two of his signed measures coincide with $Q(0, \lambda)$ and $Q(2, \lambda)$. Observe that always $v(t) \leq 1$.

3. Evaluation of the norm term

In what follows, the norm term H in Theorem 2 is evaluated in the cases p=1 and $p=\infty$. Using these formulae, upper and lower estimates of the corresponding distances can be derived. The following two propositions are generalizations of results by Deheuvels and Pfeifer (1986a; 1986b) and Roos (1995). The proofs are easy and therefore omitted.

Proposition 1. Let $q(x) = \sum_{m=0}^{k} c_m t^{k-m} p_{m+1}(x, t)$, where $t \in (0, \infty)$, $k \in \mathbb{Z}_+$, and $c_0, \ldots, c_k \in \mathbb{R}$, $c_k \neq 0$. Then q(x) has at least one zero in $(0, \infty)$. If q(x) has exactly $u \in \{1, \ldots, k+1\}$ different zeros in $[0, \infty)$, denoted by $x_1(t) < \ldots < x_u(t)$, then

$$\left\| \sum_{m=0}^{k} c_m \Delta^m \pi(\cdot, t) \right\|_{\infty} = \max_{1 \le v \le u} \left| \sum_{m=0}^{k} c_m \Delta^m \pi(\lfloor x_v(t) \rfloor, t) \right|. \tag{19}$$

Proposition 2. Let $q(x) = \sum_{m=0}^{k} c_m t^{k-m} p_m(x, t)$, where $t \in (0, \infty)$, $k \in \mathbb{Z}_+$, and $c_0, \ldots, c_k \in \mathbb{R}$, $c_k \neq 0$. If, under considerations of multiplicity, q(x) has exactly $u \in \{0, \ldots, k\}$ zeros in $[0, \infty)$, denoted by $x_1(t) \leq \ldots \leq x_u(t)$ (if $u \geq 1$), then

$$\left\| \sum_{m=0}^{k} c_m \Delta^m \pi(\cdot, t) \right\|_1 = \left| (-1)^u c_0 + 2 \sum_{m=0}^{k} c_m \sum_{v=1}^{u} (-1)^v \Delta^{m-1} \pi(\lfloor x_v(t) \rfloor, t) \right|. \tag{20}$$

From the theory of orthogonal polynomials it is known that the zeros of the Charlier polynomials $p_k(x, t)$, $k \in \mathbb{N}$, $t \in (0, \infty)$, are real, simple and located in the interval $(0, \infty)$. The preceding propositions lead to the following corollaries.

Corollary 1. Let $k \in \mathbb{Z}_+$, $t \in (0, \infty)$, and $0 < x_1(t) < \ldots < x_{k+1}(t)$ be the zeros of $p_{k+1}(x, t)$. Then

$$\|\Delta^k \pi(\cdot, t)\|_{\infty} = \max_{1 \le v \le k+1} |\Delta^k \pi(\lfloor x_v(t) \rfloor, t)|.$$
 (21)

Corollary 2. Let $k \in \mathbb{N}$, $t \in (0, \infty)$, and $0 < x_1(t) < \ldots < x_k(t)$ be the zeros of $p_k(x, t)$. Then

$$\|\Delta^{k}\pi(\cdot, t)\|_{1} = 2\left|\sum_{v=1}^{k} (-1)^{v} \Delta^{k-1}\pi(\lfloor x_{v}(t) \rfloor, t)\right| = 2\sum_{v=1}^{k} |\Delta^{k-1}\pi(\lfloor x_{v}(t) \rfloor, t)|.$$
 (22)

Proof. The first equality follows from Proposition 2. The second equality is proved if it is shown that $p_{k-1}(\lfloor x_v(t) \rfloor, t)$ alternates in sign as v varies from 1 through k. But this is a consequence of the following lemma.

Note that the inequalities

$$\|\Delta^{k}\pi(\cdot, t)\|_{1} \leq 2k\|\Delta^{k-1}\pi(\cdot, t)\|_{\infty} \leq k\|\Delta^{k}\pi(\cdot, t)\|_{1}, \qquad k \in \mathbb{N}, \ t \in (0, \infty),$$
 (23)

follow from (21) and (22), where equalities hold for k = 1. The first inequality of (23) is used in the proof of (12). The following lemma is needed to complete the proof of Corollary 2.

Lemma 4. Let $t \in (0, \infty)$ and $0 < x_{k,1}(t) < ... < x_{k,k}(t)$ be the zeros of $p_k(x, t)$ for $k \in \mathbb{N}$. Then $x_{k+1,p}(t) < x_{k,p}(t) < x_{k+1,p+1}(t) - 1$ for $k \in \mathbb{N}$ and $v \in \{1, ..., k\}$.

Note that the relation above without the -1 is the well-known separation theorem for the zeros of the Charlier polynomials.

Proof. By induction over k, it can be shown that $x_{k,v+1}(t) - x_{k,v}(t) > 1$ for $k \in \{2, 3, ...\}$ and $v \in \{1, ..., k-1\}$. Here the separation theorem and (4) are used. Now the assertion can easily be proved.

In the following lemma, some additional properties of the norm term are given.

Lemma 5. Let $k \in \mathbb{Z}_+$, $c_0, \ldots, c_k \in \mathbb{R}$, $c_k \neq 0$, and $p \in [1, \infty]$. Then the norm $\|\sum_{m=0}^k c_m \Delta^m \pi(\cdot, t)\|_p$ is a $(0, \infty)$ -valued, continuous function of $t \in [0, \infty)$.

Proof. The assertion can easily be shown by using

$$|p_k(m, t)| \le \sum_{w=0}^k {k \choose w} m^w t^{k-w} = (m+t)^k, \qquad k, m \in \mathbb{Z}_+, \ t \in (0, \infty),$$
 (24)

Minkowski's inequality, (6), (7) and (19).

4. Asymptotic relations for the norm term

In what follows, let

$$H_k(x) = k! \sum_{m=0}^{\lfloor k/2 \rfloor} \frac{(-1)^m (2x)^{k-2m}}{(k-2m)! \ m!}$$
 (25)

be the Hermite polynomial of degree $k \in \mathbb{Z}_+$. We need the well-known relations

$$H_{k+1}(x) = 2x H_k(x) - 2k H_{k-1}(x), \qquad k \in \mathbb{N}, x \in \mathbb{R},$$
 (26)

$$\varphi_k(x) = \frac{1}{\sqrt{2\pi}} \frac{\mathrm{d}^k}{\mathrm{d}x^k} e^{-x^2/2} = \frac{(-1)^k}{\sqrt{2\pi} 2^{k/2}} e^{-x^2/2} H_k(x/\sqrt{2}), \qquad k \in \mathbb{Z}_+, x \in \mathbb{R}.$$
 (27)

For $p \in [1, \infty]$, let $\|\varphi_k\|_p$ be the *p*-norm of φ_k .

Proposition 3. Let $k \in \mathbb{Z}_+$ and $b: (0, \infty) \times \mathbb{R} \to \mathbb{R}$ be bounded. For $t \to \infty$,

$$\sup_{x \in \mathbb{R}} |t^{(k+1)/2} \Delta^k \pi(\lfloor t + x\sqrt{t} + b(t, x) \rfloor, t) - (-1)^k \varphi_k(x)| = \mathcal{O}(t^{-1/2}), \tag{28}$$

$$\sup_{x \in \mathbb{R}} (1+x^2) |t^{(k+1)/2} \Delta^k \pi(\lfloor t + x\sqrt{t} + b(t, x) \rfloor, t) - (-1)^k \varphi_k(x)| = \mathcal{O}(t^{-1/2}).$$
 (29)

Proof. We use Fourier techniques as in Petrov (1975). Let $k \in \mathbb{Z}_+$, $x \in \mathbb{R}$, $t \in (0, \infty)$, and $m = \lfloor t + x\sqrt{t} + b(t, x) \rfloor \ge 0$. Then $m = t + x\sqrt{t} + \tilde{b}(t, x)$, where $\tilde{b}: (0, \infty) \times \mathbb{R} \to \mathbb{R}$ is bounded. We write \tilde{b} for $\tilde{b}(t, x)$. Using (8) and

$$\varphi_k(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(-ixy - y^2/2)(-iy)^k dy,$$

it is easy to see that

$$\begin{split} 2\pi |t^{(k+1)/2} \Delta^k \pi(m, t) - (-1)^k \varphi_k(x)| \\ &\leq t^{(k+1)/2} \int_{-\pi}^{\pi} e^{-ty^2/2} |\exp(t[e^{iy} - 1 - iy + y^2/2] - iy\tilde{b}) (e^{iy} - 1)^k - (iy)^k |dy + I_1| \\ &\leq t^{(k+1)/2} (I_2 + I_3 + I_4) + I_1, \end{split}$$

where

$$\begin{split} I_1 &= 2 \int_{\pi\sqrt{t}}^{\infty} \mathrm{e}^{-y^2/2} y^k \, \mathrm{d}y, \\ I_2 &= \int_{-\pi}^{\pi} \mathrm{e}^{-ty^2/2} |\exp(t[\cos y - 1 + y^2/2]) - 1| \, |\mathrm{e}^{\mathrm{i}y} - 1|^k \, \mathrm{d}y, \\ I_3 &= \int_{-\pi}^{\pi} \mathrm{e}^{-ty^2/2} |(\mathrm{e}^{\mathrm{i}y} - 1)^k - (\mathrm{i}y)^k| \, \mathrm{d}y, \\ I_4 &= \int_{-\pi}^{\pi} \mathrm{e}^{-ty^2/2} |\exp(\mathrm{i}[t(\sin y - y) - y\tilde{b}]) - 1| \, |y|^k \, \mathrm{d}y. \end{split}$$

Using calculus, it is possible to show that, for $t \to \infty$, $I_1 = \mathcal{O}(\exp(-\pi^2 t/2)t^{(k-1)/2})$, $I_2 = \mathcal{O}(t^{-(k+3)/2})$, $I_3 = \mathcal{O}(t^{-(k+2)/2})$, and $I_4 = \mathcal{O}(t^{-(k+2)/2})$. For I_2 , the inequality

$$I_2 \le 2^{k+3} \left(\frac{\pi^2}{4} - 1\right) t \int_0^{\pi/2} \exp(-2t \sin^2 y) \sin^{k+4} y \, dy$$

and Shorgin's (1977; see the proof of his Lemma 6) estimate of the integral are used. For I_3 , we use $|(e^{iy}-1)^k-(iy)^k| \le k|y|^{k+1}e^{k|y|}$ and similar estimates for I_4 . Hence

$$\sup_{x\in A(t)} |t^{(k+1)/2} \Delta^k \pi(\lfloor t + x\sqrt{t} + b(t, x) \rfloor, t) - (-1)^k \varphi_k(x)| = \mathscr{O}(t^{-1/2}), \qquad t \to \infty,$$

where $A(t) = \{x \in \mathbb{R} | \lfloor t + x\sqrt{t} + b(t, x) \rfloor \ge 0\}$. The proof of (28) is easily completed. To prove (29), it suffices to estimate $T = x^2 | t^{(k+1)/2} \Delta^k \pi(m, t) - (-1)^k \varphi_k(x) |$ uniformly in $x \in A(t)$. Using (5), (6), (26), (27), and $x = (m - t - \tilde{b})/\sqrt{t}$, we obtain

$$x^{2}\Delta^{k}\pi(m, t) = t\Delta^{k+2}\pi(m, t) + [2k - 2\tilde{b} + 1]\Delta^{k+1}\pi(m, t) + [2k + 1 + t^{-1}(k - \tilde{b})^{2}]\Delta^{k}\pi(m, t) + t^{-1}k[2k - 2\tilde{b} - 1]\Delta^{k-1}\pi(m, t) + k(k - 1)t^{-1}\Delta^{k-2}\pi(m, t),$$

and $x^2 \varphi_k(x) = \varphi_{k+2}(x) + (2k+1)\varphi_k(x) + k(k-1)\varphi_{k-2}(x)$, where $\varphi_{-2}(x) = \varphi_{-1}(x) = 0$. Hence

$$\begin{split} T &\leq |t^{(k+3)/2} \Delta^{k+2} \pi(m, t) - (-1)^{k+2} \varphi_{k+2}(x)| + [2k+2|\tilde{b}|+1] t^{(k+1)/2} \|\Delta^{k+1} \pi(\cdot, t)\|_{\infty} \\ &+ (k-\tilde{b})^2 t^{(k-1)/2} \|\Delta^k \pi(\cdot, t)\|_{\infty} + [2k+1] |t^{(k+1)/2} \Delta^k \pi(m, t) - (-1)^k \varphi_k(x)| \\ &+ k[2k+2|\tilde{b}|+1] t^{(k-1)/2} \|\Delta^{k-1} \pi(\cdot, t)\|_{\infty} \\ &+ k(k-1) |t^{(k-1)/2} \Delta^{k-2} \pi(m, t) - (-1)^{k-2} \varphi_{k-2}(x)|. \end{split}$$

Using the estimates (12), (28), and $\|\pi(\cdot, t)\|_{\infty} \le (2te)^{-1/2}$ for $t \in (0, \infty)$ (see Deheuvels and Pfeifer 1988), the proof is easily completed.

Proposition 4. Let $p \in [1, \infty]$ and $k \in \mathbb{Z}_+$. Then

$$\exists M \in (0, \infty) \ \forall t \in (0, \infty) : |t^{(k+1)/2 - 1/(2p)} \| \Delta^k \pi(\cdot, t) \|_p - \| \varphi_k \|_p | \le \frac{M}{\sqrt{t}}. \tag{30}$$

Proof. For sufficiently large t the assertion is shown by using (28), (29) and

$$t^{-1/(2p)} \|\Delta^k \pi(\cdot, t)\|_p = \left(\int_{-\infty}^{\infty} |\Delta^k \pi(\lfloor t + x\sqrt{t} \rfloor, t)|^p \, \mathrm{d}x \right)^{1/p}, \qquad p \in [1, \infty).$$

For small t, Lemma 5 is used.

5. Asymptotic results for the difference metric

For the following theorem, we consider a triangular scheme: we let n and X_1, \ldots, X_n depend on an additional parameter $l \in \mathbb{N}$ and assume that $l \to \infty$. Then the following quantities also depend on $l: S_n, p_1, \ldots, p_n, \lambda_k$ for $k \in \mathbb{N}, \eta(t)$, and $\tilde{\theta}(t)$ for $t \in (0, \infty)$. Let $\theta = \tilde{\theta}(\lambda) = \lambda_2/\lambda$. Note that $\theta \le 1$. Sometimes we write $\theta^{(l)}$ for θ . We now present the main result of this section.

Theorem 3. Let $i \in \{-2, -1, ...\}$, $j \in \mathbb{N}$, $p \in [1, \infty]$ be independent of l. Further, let

$$H_p^{(i,j)}(t) = \left\| \sum_{u=2}^{j+1} {j \choose u-1} \Delta^{u+i} \pi(\cdot, t) \right\|_p, \qquad t \in [0, \infty).$$

If $\limsup_{l\to\infty}\theta^{(l)} < 1$, then

$$d_p^{(i,j)}(P^{S_n}, \mathcal{P}(\lambda)) = \frac{\lambda_2}{2} H_p^{(i,j)}(\lambda) \left[1 + \mathcal{O}\left(\min\left\{\frac{\lambda_3}{\lambda_2\sqrt{\lambda}} + \theta, \frac{\lambda_3}{\lambda_2} + \lambda_2\right\}\right) \right], \tag{31}$$

and

$$d_{p}^{(i,j)}(P^{S_{n}}, \mathcal{P}(\lambda)) = \frac{j \|\varphi_{i+2}\|_{p} \theta}{2\lambda^{(i+1)/2-1/(2p)}} \left[1 + \mathcal{O}\left(\min\left\{1, \frac{1}{\sqrt{\lambda}} + \theta\right\}\right) \right]. \tag{32}$$

If $a \in [0, \infty)$ is independent of l and $\lambda_2 = \mathcal{O}(1)$, then

$$d_p^{(i,j)}(P^{S_n}, \mathcal{P}(\lambda)) = \frac{\lambda_2}{2} H_p^{(i,j)}(a) \left[1 + \mathcal{O}\left(\min\left\{1, \frac{\lambda_3}{\lambda_2} + \lambda_2 + |\lambda - a|\right\}\right) \right]. \tag{33}$$

Proof. Letting k = 0, s = 3, and $t = \lambda$ in Theorem 2, we get $d_p^{(i,j)}(P^{S_n}, \mathcal{P}(\lambda)) = (\lambda_2/2)H_n^{(i,j)}(\lambda) + R$, where

$$|R| \leq \frac{\lambda_3}{3} \left\| \sum_{n=3}^{j+2} {j \choose u-2} \Delta^{u+i} \pi(\cdot, \lambda) \right\|_{P} + |R_1|$$

and the following two estimates hold:

$$\begin{split} |R_1| &= \mathscr{O}\left(\frac{\lambda_2^2}{\lambda^{(i+5)/2-1/(2p)}}\right) & \text{if } \limsup_{l \to \infty} \theta^{(l)} < 1, \\ |R_1| &= \mathscr{O}(\lambda_2^2) & \text{if } \lambda_2 = \mathscr{O}(1). \end{split}$$

Using the triangular inequality, (12) and Lemma 5, we obtain

$$|R| = \mathcal{O}\left(\frac{\lambda_3}{\lambda^{(i+4)/2 - 1/(2p)}} + \frac{\lambda_2^2}{\lambda^{(i+5)/2 - 1/(2p)}}\right) \quad \text{if } \limsup_{l \to \infty} \theta^{(l)} < 1, \tag{34}$$

$$|R| = \mathcal{O}(\lambda_3 + \lambda_2^2)$$
 if $\lambda_2 = \mathcal{O}(1)$. (35)

Because of (30), three constants M_1 , M_2 , $M_3 \in (0, \infty)$ exist such that $M_1 > 1$ and $M_2 \le t^{(i+3)/2-1/(2p)} H_p^{(i,j)}(t) \le M_3$ for $t \in (M_1, \infty)$. By Lemma 5, $0 < \inf_{t \in [0,M_1]} H_p^{(i,j)}(t) =: M_4$. Let $A_1 = \{l \in \mathbb{N} | \lambda > M_1 \}$, $A_2 = \{l \in \mathbb{N} | M_1 \ge \lambda \ge 1 \}$, and $A_3 = \mathbb{N} \setminus (A_1 \cup A_2)$. For (31), we may assume $\sup_{l \in \mathbb{N}} \theta^{(l)} < 1$. By (34) and (35), we obtain, for $l \in A_k$ ($k \in \{1, 2, 3\}$),

$$\frac{|R|}{\lambda_2 H_p^{(i,j)}(\lambda)} = \mathscr{O}\left(\min\left\{\frac{\lambda_3}{\lambda_2 \sqrt{\lambda}} + \theta, \frac{\lambda_3}{\lambda_2} + \lambda_2\right\}\right).$$

Relation (31) is proved. Relations (32) and (33) are easily shown by similar arguments. \square

It is easy to show that (31) and (32) remain valid if i+1=1/p and the condition $\limsup_{l\to\infty}\theta^{(l)}<1$ is dropped. Hence (32) is a generalization of results of Prohorov (1953, Theorem 2), Deheuvels and Pfeifer (1986a; 1986b; 1988), and Roos (1995) concerning the Poisson approximation of the binomial and Poisson-binomial distributions with respect to the total variation distance, the Kolmogorov metric, the Fortet-Mourier metric, and the one-point metric. It should be mentioned that, as has been observed by Barbour *et al.* (1992, p. 2), the statement of Prohorov's Theorem 2 is inaccurate. A correct version, in our notation, is: $d_1^{(0,1)}(\mathcal{B}(n,p),\mathcal{P}(np)) = \sqrt{2/(\pi e)}p[1+\mathcal{O}(\min\{1,[np]^{-1/2}+p\})]$, where $\mathcal{B}(n,p)$ denotes the binomial distribution with parameter n and success probability p. In Prohorov's version, the '+p' is missing, which invalidates his result, for example, for p=1, $n\to\infty$.

For easier \mathcal{O} -terms in (31) and (33), observe the following relations:

$$\min \left\{ \frac{\lambda_3}{\lambda_2 \sqrt{\lambda}} + \theta, \frac{\lambda_3}{\lambda_2} + \lambda_2 \right\} \le 2 \min \left\{ \sqrt{\theta}, \sqrt{\lambda_2} \right\},$$
$$\frac{\lambda_3}{\lambda_2} + \lambda_2 + |\lambda - a| \le (1 + \sqrt{M})(\sqrt{\lambda_2} + |\lambda - a|) \quad \text{if } \lambda_2 \le M.$$

6. Non-metric considerations

In this section, we are interested in relations for $\Delta^i(f_{P^{S_n}} - f_{\mathscr{D}(t)})(m)$, where $i \in \{-1, 0, \ldots\}$, $t \in (0, \infty)$, and $m \in \mathbb{Z}_+$. The first result is a consequence of Theorem 2. Here, we consider the triangular scheme as introduced before Theorem 3. Further, let $m \in \mathbb{Z}_+$ and $t \in (0, \infty)$ also depend on l.

Theorem 4. Let $i \in \{-1, 0, \ldots\}$, $a \in \mathbb{R}$, $m_0 \in \mathbb{Z}_+$ be independent of l.

(a) If
$$\lambda \to \infty$$
, $m = \lambda + a\sqrt{\lambda} + \mathcal{O}(1)$, $\theta \to 0$, $(\lambda - t)\sqrt{\lambda}/\lambda_2 \to 0$, and $\lambda = t + \mathcal{O}(1)$, then
$$\frac{\lambda^{(i+3)/2}}{\lambda_2} \Delta^i(f_{P^{S_n}} - f_{\mathcal{P}(t)})(m) \to \frac{(-1)^{i+1}}{2} \varphi_{i+2}(a).$$

(b) If
$$m = m_0$$
, $\lambda \to a \in [0, \infty)$, $t \to a$, $\lambda_2/t^{i+4} \to 0$, and $(\lambda - t)/\lambda_2 \to 0$, then
$$\frac{1}{\lambda_2} \Delta^i (f_{P^{S_n}} - f_{\mathscr{P}(t)})(m) \to -\frac{1}{2} \Delta^{i+2} \pi(m_0, a).$$

Proof. First note that both in (a) and (b), $\dot{\theta}(t) \to 0$. Hence Theorem 2 yields $\Delta^i(f_{P^{S_n}} - 1)$ $f_{\mathcal{P}(t)}(m) = \tilde{H} + \tilde{R}$, where

$$\tilde{H} = (\lambda - t)\Delta^{i+1}\pi(m, t) + \frac{(\lambda - t)^2 - \lambda_2}{2}\Delta^{i+2}\pi(m, t),$$

$$|\tilde{R}| = |\Delta^i(f_{P^{S_n}} - f_{Q(2,t)})(m)| \le d_{\infty}^{(i,1)}(P^{S_n}, Q(2, t)) = \mathcal{O}\left(\frac{\tilde{\theta}(t)^{3/2}}{t^{(i+1)/2}}\right).$$

In case (a), we have $m = t + a\sqrt{t} + \mathcal{O}(1)$ and $t \to \infty$. Using (28), we obtain $t^{(k+1)/2}\Delta^k\pi(m, t) \to (-1)^k\varphi_k(a)$ for $k \in \mathbb{Z}_+$. Now it is easy to prove that $\tilde{H}\lambda^{(i+3)/2}/\lambda_2 \to (-1)^k\varphi_k(a)$ $2^{-1}(-1)^{i+1}\varphi_{i+2}(a)$ and $\tilde{R}\lambda^{(i+3)/2}/\lambda_2 \to 0$, as required. In case (b), the relations $\tilde{H}/\lambda_2 \to -2^{-1}\Delta^{i+2}\pi(m_0, a)$ and $\tilde{R}/\lambda_2 \to 0$ are easily shown,

completing the proof.

Theorem 5. Let $t \in (0, \infty)$, $k \in \mathbb{Z}_+$, $s \in \{k, k+1, \ldots\}$, $i \in \{-s-1, -s, -s+1, \ldots\}$, $m \in \mathbb{Z}_+, \ V(m, t) = (m/t + 1)\sqrt{\eta(t)/2},$

$$C_3 = \frac{\exp(1/(24(s+1)))(2\pi)^{1/4}}{(s+1)^{1/4}\sqrt{s!}}, \qquad \nu(t) = \beta\left(\frac{|\lambda - t|\sqrt{2(s+1)}}{\sqrt{\eta(t)}}\right).$$

Then $\Delta^{i}(f_{P^{S_n}} - f_{Q(k,t)})(m) = H' + R'$, where $H' = \sum_{u=k+1}^{s} a_u(t) \Delta^{u+i} \pi(m, t)$ and

$$|R'| \le C_3 \nu(t) \pi(m, t) (m/t+1)^i V(m, t)^{s+1} (1+V(m, t)) \exp(V(m, t)^2).$$

Proof. First note that, by (6) and (24),

$$|\Delta^k \pi(m, t)| \le \pi(m, t) \left(\frac{m}{t} + 1\right)^k, \qquad k, m \in \mathbb{Z}_+, t \in (0, \infty).$$
 (36)

The assertion is easily shown by using (10), (17), (18), and (36).

For the following result, we use the triangular scheme as considered for Theorem 4.

Theorem 6. Let $i \in \{-1, 0, \ldots\}$ be independent of l.

(a) If
$$\lambda/m \to 0$$
, $m \to \infty$, $m\sqrt{\lambda_2}/\lambda \to 0$ and $(\lambda - t)/\lambda_2 \to 0$, then

$$\Delta^{i}(f_{P^{S_n}}-f_{\mathscr{P}(t)})(m)\sim -\frac{\lambda_2}{2}\pi(m, t)\left(\frac{m}{t}\right)^{2+i}.$$

(b) If $m/\lambda \to a \in [0, \infty)$, $\lambda \to \infty$, $\lambda_2 \to 0$ and $(\lambda - t)/\lambda_2 \to 0$, then

$$\frac{\Delta^{i}(f_{p^{s_n}}-f_{\mathscr{P}(t)})(m)}{\lambda_2\pi(m,t)}\to -\frac{1}{2}(a-1)^{i+2}.$$

For the proof, the following lemma is needed.

Lemma 6. (a) Under the assumptions in Theorem 6(a), we have $t/m \to 0$, $(\lambda - t)t/(\lambda_2 m) \to 0$, $p_k(m, t)/m^k \to 1$ for all $k \in \mathbb{Z}_+$, $\lambda_2 \to 0$, $\lambda - t \to 0$, $(\lambda - t)^2/\lambda_2 \to 0$, $m\sqrt{\lambda_2}/t \to 0$ and $(\lambda - t)m/t \to 0$.

(b) Under the assumptions in Theorem 6(b), we have $m/t \to a$, $\lambda - t \to 0$, $t \to \infty$, $p_k(m, t)t^{-k} \to (a-1)^k$ for all $k \in \mathbb{Z}_+$, $(\lambda - t)^2/\lambda_2 \to 0$, $m\sqrt{\lambda_2}/t \to 0$ and $(\lambda - t)m/t \to 0$.

Proof of Theorem 6. By Theorem 5, $\Delta^{i}(f_{P^{S_n}} - f_{\mathcal{P}(t)})(m) = H' + R'$, where

$$H' = \pi(m, t) \left[\frac{\lambda - t}{t^{i+1}} p_{i+1}(m, t) + \frac{1}{2t^{i+2}} ((\lambda - t)^2 - \lambda_2) p_{i+2}(m, t) \right],$$

$$R' = \mathcal{O}(\pi(m, t) v^{i+3} x^{3/2} (1 + v \sqrt{x}) \exp(xv^2)),$$

 $x = \eta(t)/2$ and y = m/t + 1. Using Lemma 6, the assertions are easily proved.

In what follows, let F (or G) denote the distribution function of P^{S_n} (or $\mathcal{P}(t)$). To obtain the following results on large and moderate deviations, set i = -1 in Theorems 4 and 6.

Corollary 3. (a) Under the assumptions in Theorem 4(a),

$$\frac{1 - G(m)}{\theta} \left(\frac{1 - F(m)}{1 - G(m)} - 1 \right) \to \frac{-ae^{-a^2/2}}{2\sqrt{2\pi}}.$$
 (37)

(b) Under the assumptions in Theorem 4(b),

$$\frac{1 - G(m_0)}{\lambda_2} \left(\frac{1 - F(m)}{1 - G(m)} - 1 \right) \to \frac{-\Delta^1 \pi(m_0, a)}{2}.$$
 (38)

(c) Under the assumptions in Theorem 6(a),

$$\frac{1-F(m)}{1-G(m)}-1\sim -\frac{\lambda_2}{2}\left(\frac{m}{t}\right)^2. \tag{39}$$

(d) Under the assumptions in Theorem 6(b),

$$\frac{1 - G(m)}{\lambda_2 \pi(m, t)} \left(\frac{1 - F(m)}{1 - G(m)} - 1 \right) \to \frac{1 - a}{2}.$$
 (40)

Note that Chen and Choi (1992, Corollary 2.4) obtained (39) under more restrictive assumptions in the case $t = \lambda$. (They overlooked the required assumption $m \to \infty$ in their corollary. Their assertion does not hold without this condition). For $t = \lambda$, Barbour *et al.* (1995, Corollary 4.3) proved (39) under more general assumptions as in Corollary 3(c).

Acknowledgement

This paper is based on parts of my Ph.D. thesis written at the University of Oldenburg in 1996 under the supervision of Professor Dietmar Pfeifer. I thank Professor Pfeifer for his guidance and a number of helpful discussions. Further, I thank the associate editor and the referees for their remarks and one of the referees for his suggestion to shorten the paper.

References

Barbour, A.D. (1987) Asymptotic expansions in the Poisson limit theorem. *Ann. Probab.*, **15**, 748–766.

Barbour, A.D., Holst, L. and Janson, S. (1992) Poisson Approximation. Oxford: Clarendon Press.

Barbour, A.D., Chen, L.H.Y. and Choi, K.P. (1995) Poisson approximation for unbounded functions, I: Independent summands. *Statist. Sinica*, **5**, 749–766.

Boas, R.P. Jr (1949) Representation of probability distributions by Charlier series. Ann. Math. Statist., 20, 376–392.

Charlier, C.V.L. (1905) Die zweite Form des Fehlergesetzes. Ark. Mat. Astr. Fys., 2, 15, 1-8.

Chen, L.H.Y. and Choi, K.P. (1992) Some asymptotic and large deviation results in Poisson approximation. *Ann. Probab.*, **20**, 1867–1876.

Deheuvels, P. (1992) Large deviations by Poisson approximations. J. Statist. Plann. Inference, 32, 75–88

Deheuvels, P. and Pfeifer, D. (1986a) A semigroup approach to Poisson approximation. *Ann. Probab.*, **14**, 663–676.

Deheuvels, P. and Pfeifer, D. (1986b) Operator semigroups and Poisson convergence in selected metrics. Semigroup Forum, 34, 203–224. Errata: Semigroup Forum, 35, 251 (1987).

Deheuvels, P. and Pfeifer, D. (1988) On a relationship between Uspensky's theorem and Poisson

- approximations. Ann. Inst. Statist. Math., 40, 671-681.
- Deheuvels, P., Pfeifer, D. and Puri, M.L. (1989) A new semigroup technique in Poisson approximation. Semigroup Forum, 38, 189–201.
- Feller, W. (1968) An Introduction to Probability Theory and Its Applications I. New York: Wiley. Petrov, V.V. (1975) Sums of Independent Random Variables. Berlin: Springer-Verlag.
- Prohorov, Y.V. (1953) Asymptotic behaviour of the binomial distribution. *Uspekhi Mat. Nauk*, **8**, 135–142 (Russian). English translations: *Select. Transl. Math. Statist. Probab.*, **1**, 87–95 (1961).
- Roos, B. (1995) A semigroup approach to Poisson approximation with respect to the point metric. *Statist. Probab. Lett.*, **24**, 305–314.
- Schmidt, E. (1933) Über die Charlier-Jordansche Entwicklung einer willkürlichen Funktion nach der Poissonschen Funktion und ihren Ableitungen. Z. Angew. Math. Mech., 13, 139–142.
- Shorgin, S.Y. (1977) Approximation of a generalized binomial distribution. *Theory Probab. Appl.*, **22**, 846–850.

Received March 1997 and revised May 1999