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For a real random variable X with distribution function F, de®ne

Ë :� fë 2 R : K(ë) :� EeëX ,1g:
The distribution F generates a natural exponential family of distribution functions fFë, ë 2 Ëg, where

dFë(x) :� eëxdF(x)=K(ë), ë 2 Ë:

We study the asymptotic behaviour of the distribution functions Fë as ë increases to ë1 :� supË. If

ë1 � 1 then Fë # 0 pointwise on fF , 1g. It may still be possible to obtain a non-degenerate weak

limit law G(y) � lim Fë(aë y� bë) by choosing suitable scaling and centring constants aë . 0 and bë,

and in this case either G is a Gaussian distribution or G has a ®nite lower end-point y0 � inffG . 0g
and G(yÿ y0) is a gamma distribution. Similarly, if ë1 is ®nite and does not belong to Ë then G is a

Gaussian distribution or G has a ®nite upper end-point y1 and 1ÿ G(y1 ÿ y) is a gamma distribution.

The situation for sequences ën " ë1 is entirely different: any distribution function may occur as the

weak limit of a sequence Fën
(anx� bn).
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1. Introduction

Suppose X is a real random variable with distribution function (df) F. Let

Ë � fë 2 RjK(ë) :� EeëX ,1g (1:1)

be the set where the moment generating function (mgf) K(ë) of X is ®nite. The set Ë is a

connected subset of R which contains the origin and on which the mgf ë 7! K(ë) is

continuous and strictly positive. Associated with F is the natural exponential family

fFë, ë 2 Ëg where

dFë(x) :� eëxdF(x)=K(ë), ë 2 Ë: (1:2)

For convenience, we let Xë be a random variable with distribution Fë. We study the
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asymptotic behaviour of the dfs Fë for ë! ë1 :� supË. Note that ë1 > 0. We assume

ë1. 0.

If ë1 2 Ë then Fë # Fë1 pointwise; see Corollary 2.2. If ë1 =2 Ë, then Fë # 1[x1,1),

where x1 � supfF , 1g is the upper end-point of the df F; see Proposition 2.3. In the

latter case, the types in the exponential family fFë, ë 2 Ëg, may have a limit law for

ë! ë1. This means that it may sometimes be possible to normalize the variables X ë of the

exponential family by translation and positive scaling so that for some non-constant random

variable Y ,

AëXë :� Xë ÿ bë

aë
!d Y , ë! ë1: (1:3)

Here !d denotes convergence in distribution.

This paper determines the possible non-degenerate limit laws in (1.3). Our main result,

Theorem 3.5, states that if there is a non-constant limit variable Y in (1.3), then one can

choose the centring constants bë and scaling constants aë so that Y is a standard normal

variable, or so that Y or ÿY has a gamma distribution. In a subsequent publication, we

shall describe the domains of attraction of the limit laws.

This paper is partially motivated by Balkema et al. (1993), where it was found that

asymptotic normality of Fë has useful implications for the study of sums of independent

random variables (rvs). A class of thin-tailed densities was identi®ed which is closed under

convolution. This closure property is dependent on the fact that each density of the family

has an associated exponential family which is asymptotically normal. Rootzen (1987) and

Davis and Resnick (1991) use related ideas for applications to extremes of moving averages.

Feigin and Yashchin (1983) and Balkema et al. (1995) give Tauberian results based on the

asymptotic normality of exponential families. If asymptotic normality of exponential

families was useful for such things as convolution closure problems and Tauberian theory,

we wondered what other weak limits could arise when converging to the boundary of Ë and

what applications were possible when convergence was to a non-normal weak limit. The

present paper is a ®rst step in the exploration of applications of non-normal limits.

The importance of exponential families in statistics and for asymptotics in probability

theory can hardly be overestimated. In analysis exponential families occur as Esscher

transforms and are used in Laplace's principle and for saddlepoint approximations. Surveys

of their use in statistics are given by Barndorff-Nielsen (1978), Barndorff-Nielsen and Cox

(1994) and Brown (1986). For connections with saddlepoint approximations, see Barndorff-

Nielsen and KluÈppelberg (1999) and Jensen (1995). The limit behaviour of Fë is of

mathematical interest and, moreover, the exponential family offers an effective way to

investigate the asymptotic behaviour of the mgf K and the cumulant generating function

(cgf) k � log K.

Convergence in (1.3) depends on the behaviour of the cgf k at ë1. The behaviour of the

analytic function k at a ®xed point ë0 , ë1 is well known:

nk ë0 � t���
n
p

� �
ÿ nk(ë0)ÿ ìt

���
n
p ! ó 2 t2

2
, n!1: (1:4)

Here ì � ìë0
� k9(ë0) is the expectation of Xë0

and ó 2 � ó 2
ë0
� k 0(ë0) the variance.
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Relation (1.4) is the formula for the second derivative of k at ë0. It is also the central limit

theorem for sums of independent observations from the df Fë0
since n(k(ë0 � î)ÿ k(ë0)) is

the cgf of the df F�n
ë0

. Teicher (1984) has investigated relation (1.4) for a sequence ën !1,

extending work of Feller (1969) on large deviations. More recently Broniatowski and Mason

(1994) have looked at very large deviations. There the behaviour of the mgf for ë! ë1
plays a decisive role.

To understand the behaviour of the cgf k for ë! ë1, assume existence of the following

limit:

k�ë (t) :� k(ë� t=ó )ÿ k(ë)ÿ ìt=ó ! ç(t), ë! ë1: (1:5)

The function k�ë in (1.5) is the cgf of the standardized variable X�ë � (Xë ÿ ìë)=óë, where

ìë � k9(ë) is the expectation and ó 2
ë the variance of Xë; see Feigin and Yashchin (1983). It

also describes the convex function k around the point ë normalized so as to have a horizontal

tangent at t � 0 and curvature 1. It is not surprising that the parabola ç(t) � t2=2 occurs as a

limit ± corresponding to the normal law for the limit variable Y in (1.3). The second limit

function, the logarithm, corresponds to two families of gamma distributions. In Theorem 3.6

we prove that weak convergence (1.3) entails convergence of the cgfs. Hence we may use the

®rst two moments of X ë to normalize, thus obtaining the limit relation (1.5).

Statistical applications have motivated interest in exponential families closed under

certain transformation groups. Lehmann (1983) mentions exponential location families.

Casalis (1991) classi®es natural exponential families on Rd which are invariant under

certain groups of af®ne transformations, and Bar-Lev and Casalis (1994; 1998) describe

exponential families Gã, ã 2 Ã, on R which are invariant under certain groups of af®ne

transformations At, t 2 R. For each t 2 R there exists ã 2 Ã so that Gã(x) � G(Aÿ t(x)).

The paper is organized as follows. In Section 2 we ®rst prove certain continuity results.

From these we derive a stability property for the limit variable Y which allows us to obtain

in Section 3 the possible limit distributions, the normal and gamma distributions. Section 4

comments brie¯y on limit relation (1.3) when convergence is only along sequences

ën " ë1, which makes the situation complex since then the cgfs need not converge.

Example 4.6 shows that the Cauchy distribution may occur as weak limit and Theorem 4.8

shows that the behaviour of the convex function k may be quite bizarre.

In a later paper we shall describe domains of attraction and give an application to

saddlepoint approximations.

This paper treats the asymptotic behaviour of the exponential family in the

neighbourhood of the upper end-point of Ë. The transformation X 9 � ÿX allows us to

translate these results into statements about the asymptotic behaviour in the neighbourhood

of the lower end-point, inf Ë. If Y is a limit variable for the exponential family generated

by X in the upper end-point then ÿY is a limit variable for the exponential family

generated by ÿX in the lower end-point.

Obviously the multivariate case is the really interesting situation. The setting there is

simple: the cgf of a random vector is a convex function de®ned (®nite) on a convex subset

Ë � Rd . For simplicity assume Ë is open. The cgf is analytic. What is its behaviour as one

approaches the boundary? Normalize the cgf for ë0 2 Ë so that the tangent hyperplane in

ë0 is horizontal and the second derivative is the standard inner product. The associated
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random vector X�ë has zero expectation vector and the identity matrix as covariance. What

happens to the distribution of X�ë as ë approaches a point on the boundary of Ë or tends to

in®nity? Do there exist non-degenerate limit laws? Do the mgfs of X�ë converge? Is it

possible that X�ë does not converge in distribution but that X ë does converge for some other

normalization?

This paper will answer some of these questions in the univariate case.

2. Stability of the limit laws

Random variables arising from a limit procedure frequently satisfy a stability condition. For

the df G of the limit Y of the exponential family in (1.3), the stability relation takes on the

form

Gã(x) � G(ax� b), a . 0, b 2 R: (2:1)

Indeed, G satis®es a large number of such relations. The random variables Yã in the

exponential family of the limit variable Y all are of the same type! The essential step in

establishing this stability for the limit variable is Proposition 2.12.

We start by studying the behaviour of fFëg as ë " ë1 � supË without using any

normalization. We then consider the following question. Suppose a sequence of dfs Fn

converges weakly to a non-degenerate df F. Let Gn � (Fn)ë n
be a df in the exponential

family of Fn and suppose Gn ! G weakly. What is the relation between the limit

distributions F and G? We answer this question in Theorem 2.7. In the second part of this

section we consider weak limit behaviour under positive af®ne transformations and consider

Fë(aëx� bë) for ë! ë1. The norming constants aë . 0 and bë may be chosen to vary

continuously with ë. The limit distribution will depend on the normalization. By

Khinchine's convergence of types theorem different non-degenerate limit distributions will

belong to the same type.

Proposition 2.1. For any ®xed x for which 0 , F(x) , 1 the function ë 7! Fë(x) is strictly

decreasing on Ë and continuous. It is also true that ë 7! Fë(xÿ) is strictly decreasing and

continuous on Ë.

Proof. For monotonicity see Brown (1986, Corollary 2.22). For continuity, if ë! ë0,

convergence of �
1(ÿ1,x]e

ëudF(u) � K(ë)Fë(x)! K(ë0)Fë0
(x)

follows by dominated convergence with dominating function eáu _ eâu, with á, â 2 Ë. The

continuity of the mgf K on Ë gives Fë(x)! Fë0
(x). h

Corollary 2.2. If ë1 � supË 2 Ë, then Fë # Fë1 for ë " ë1.

The interesting case is when the upper end-point ë1 does not lie in Ë.
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Proposition 2.3. Suppose ë1 =2 Ë. Let x1 � supfF , 1g <1 denote the upper end-point of

the df F. Then Fë # 1[x1,1).

Proof. If ë1 is ®nite, then x1 � 1 and K(ë)!1 for ë! ë1. (Otherwise K(ë1 ÿ 0) ,1
and ë1 2 Ë by Fatou's lemma.) Hence for any x1 . 0,

Fë(x1) �
�x1

ÿ1
eëxdF(x)=K(ë) < eë1x1=K(ë)! 0, ë! ë1:

Now assume ë1 � 1. If F is degenerate the statement is obvious. Otherwise choose

x1 , x2 , x1 so that F(x1) . 0. Then 1ÿ F(x2) � p . 0, and

1ÿ Fë(x2)

Fë(x1)
�

�
(x2,1)

eëxdF(x)�
(ÿ1,x1]

eëxdF(x)

>
eëx2 p

eëx1
!1, ë!1:

Since 1ÿ Fë(x2) < 1, we have Fë(x1)! 0. h

For convenience, we associate to each ë 2 Ë an rv Xë with df Fë. We shall write

X ë �: EëX where Eë denotes the Esscher operator. The Esscher operators Eë satisfy the

additive law

EìEë � Eë�ì, ë, ë� ì 2 Ë:

Now suppose X n are rvs and Yn � Eãn
X n for some sequence ãn. Let X n converge to X 0

in distribution and Yn to Y0. Does it follow that ãn ! ã0 and Y �d EãX0?

Proposition 2.4. Suppose X n!d X 0 and ãn ! ã0. Let X n have mgf K n for n > 0. Assume

that K n(ãn) is ®nite for n > 1 and write Yn � Eãn
X n.

(a) If K n(ãn)! K0(ã0) ,1, then Yn!d Y0.

(b) If Yn!d Y for some rv Y, then Y � Eã0
X 0 and K n(ãn)! K0(ã0) ,1.

Proof. Let an � K n(ãn) and let ðn be the distribution of X n for n > 0 and rn that of Yn.

Then dìn(x) � eãn x dðn(x) � an drn(x). Convergence of
�
j dìn !

�
j dì0 holds for con-

tinuous functions j with compact support. This means that ìn ! ì0 vaguely. To prove (a),

note that if an ! a0 ,1, then ìn ! ì0 weakly and hence rn ! ì0=a0 weakly.

For (b), suppose ak n
! a 2 [0, 1]. Then eã0 x dð0(x) � a dr(x). It follows that a is ®nite

and positive, and that an ! a � � eã0 x dð(x). h

Example 2.5. The sequence K n(ãn) in Proposition 2.4 may converge to a ®nite limit a 6�
K0(ã0).

Take ãn � 1 for all n and let rn have mass 1
2

in the two points 0 and xn � n. Then

X n!d X0 � 0 and an � 1=(1
2
� eÿn=2)! a � 2 . 1 � a0.

Limit laws for exponential families 955



Example 2.6. It may happen that X n!d X , Yn � Eãn
X n!d Y and ãn !1.

Let ì be a ®nite measure which charges both (ÿ1, 0) and (0, 1). Let ðn be the

probability measure cn(1 ^ eÿnx) dì(x) for n > 0. Take ãn � n. The rv Yn � Eãn
X n has

distribution drn(x) � bn(enx ^ 1) dì(x). It is clear that X n converges in distribution to an rv

X with probability distribution dð � c1(ÿ1,0] dì and Yn to an rv Y with distribution dr �
b1[0,1) dì.

We can now prove a kind of convergence of types theorem where `type' has to be

interpreted as belonging to the same exponential family.

Theorem 2.7. Let Yn � Eãn
X n for n > 1 and an � Eeãn X n . Suppose X n!d X with X non-

constant, and Yn!d Y .

If (ãn) is bounded, then ãn ! ã, an ! a � EeãX ,1 and Y � EãX .

If sup ãn � 1 then ãn !1 and there exists a point c 2 R such that X < c < Y a:s:
If inf ãn � ÿ1 then ãn ! ÿ1 and there exists a point c such that Y < c < X a:s:

Proof. First consider the case ãn !1. Suppose the distributions overlap: there exist a , b

so that PfX . bg. 0 and PfY , ag. 0. Let ä denote the minimum of these two positive

numbers. Then PfX n . bg and PfYn , ag eventually exceed ä=2. Thus eventually

ä=2

1ÿ ä=2
<

PfYn , ag
PfYn . bg <

eãn a PfX n , ag
eãn b PfX n . bg < eÿãn(bÿa) 1ÿ ä=2

ä=2
:

This contradicts the assumption that ãn !1.

The case ãn ! ÿ1 is treated in the same way.

There are three mutually exclusive alternatives: either (i) X < c < Y , or (ii) Y < c < X ,

or (iii) neither (i) nor (ii) holds. Hence the sequence ãn is bounded, or it diverges to �1 or

it diverges to ÿ1. If (ãn) is bounded, then by Proposition 2.4, ãn converges to some value

ã since the Esscher transforms EáX and EâX are different for á 6� â if X is not constant.

h

Now return to the exponential family fX ë, ë 2 Ëg and assume that ë1 =2 Ë. To obtain a

non-degenerate limit distribution for the variables Xë in the case ë1 =2 Ë, we have to

normalize these variables, so assume (1.3) holds, (Xë ÿ bë)=aë!d Y for some non-constant

random variable Y . By Proposition 2.1 the family fFëg of X ë is weakly continuous in ë.

This makes it possible to choose the coef®cients aë . 0 and bë 2 R to be continuous on Ë.

Lemma 2.8. The constants aë and bë in (1.3) can be chosen to be continuous functions of ë
on the set Ë.

Proof. Write Y � ø(U ) with ø increasing and U uniform (0, 1). One may take for ø the

left-continuous inverse of the df of Y . Choose p 2 (0, 1
2
) so small that ø( p) ,ø(1ÿ p). Set

b :�
�1ÿ p=2

p=2

ø(u) du, a :�
�1ÿ p=2

1ÿ p

ø(u) duÿ
� p

p=2

ø(u) du:
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Let Y 9 denote the normalized variable (Y ÿ b)=a. Similarly, write X ë � jë(U ) and de®ne the

smoothed median bë and smoothed range aë as above with jë replacing ø. Then aë . 0

eventually and convergence AëXë!d Y for some family of normalizations Aë implies

convergence (X ë ÿ bë)=aë!d Y 9. (The norming constants a and b depend continuously on the

increasing function ø and hence on the df.) Weak continuity of ë 7! jë is equivalent to weak

continuity of the exponential family Fë and implies continuity of the norming constants aë

and bë. h

We will need the fact that Esscher operators react in a simple way with scaling and

translation:

Eë=a(aX � b)�d aEëX � b (2:2)

for ë 2 Ë, a . 0 and b 2 R. This follows since both sides of (2.2) have the same mgf

z 7! ebz K(az� ë)=K(ë).

We now discuss the stability property of the limit variable Y in (1.3). Let M(ã) � EeãY

be the mgf of Y , and fYã, ã 2 Ãg the associated exponential family with Ã � fM ,1g.
We shall see below that there exist many pairs (ã, C) with ã 2 Ã and C in the group G of

positive af®ne transformations x 7! C(x) � (xÿ b)=a with a . 0 and b 2 R which satisfy

the stability relation

EãY �d CY : (2:3)

Example 2.9. The extended gamma family.

The following variables satisfy (2.3) for all ã for which the mgf of Y is ®nite:

(a) If Y is distributed as N (ì, ó 2) then Yã�d Y � ó 2ã for ã 2 Ã � R.

(b) The standard exponential rv satis®es the relation Yã�d Y=(1ÿ ã) for ã, 1. Similarly,

Z � ÿY satis®es the relation Zã�d Z=(1� ã) for ã.ÿ1.

(c) More generally, if Y (or ÿZ) has a gamma density xsÿ1eÿx=Ã(s) on (0, 1) then

Yã�d Y=(1ÿ ã) for ã, 1 (and Zã�d Z=(1� ã) for ã.ÿ1).

These rvs generate exponential families whose dfs are all of the same type.

Since the gamma distribution with shape parameter s is asymptotically normal for

c � 1=s! 0 we have a continuous three-parameter family of dfs Hc(ax� b), a . 0, b and

c real. Here H0 is the standard normal df, Hÿc(x) � 1ÿ Hc(ÿx) for c . 0, and Hc is the

df of the normalized gamma variable Vc � (Y ÿ s)=
���
s
p

, with c � 1=s, where Y has density

xsÿ1eÿx=Ã(s) on (0, 1).

Our main result states that this three-parameter extended gamma family is the set of limit

laws for exponential families, both for ë! supË and for ë! inf Ë.

Note the resemblance to extreme value limit theory where there also is a continuous

three-parameter family of limit distributions; see de Haan (1970, p. 104). This resemblance

is not due to some innate relation between extremes and exponential families, but results

from the structure of the group G of positive af®ne transformations on R. The group G
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has two kinds of elements: translations, and multiplications with a given centre. The normal

distributions are stable for translations; the gamma distributions with a given endpoint are

stable for multiplications having the end-point as centre. The extended gamma family

re¯ects this structure.

We now want to show that the limit variable Y in (1.3) has to satisfy a number of

stability relations of the form (2.3).

With the positive af®ne transformation A in G , given by Ax � xÿ b� �=a, we associate

the point (log a, b) in the plane. It is then natural to set

kAk :� k(log a, b)k2 �
�������������������������
(log a)2 � b2

p
: (2:4)

The function k:k is not a norm on the group G , in particular kAÿ1k 6� kAk, but it does

describe the topology of G adequately for our purpose.

Proposition 2.10. Let Uã, ã 2 Ã, be the exponential family generated by the non-constant rv

U . Suppose Cn 2 G , ãn 2 Ã, CnUãn
!d Z with Z non-constant, ãn ! ã. 0. Then

kCnk ! 1 if and only if ã =2 Ã:

Proof. Suppose ã 2 Ã. Then Eãn
U!d EãU by Proposition 2.1. The convergence of types

theorem implies that Z � CUã and Cn ! C with kCk,1. For the converse, assume that

(Cn) contains a convergent subsequence, say Cn ! C as n!1. Then Eãn
U!d Cÿ1 Z.

Proposition 2.4 implies ã 2 Ã. h

In order to characterize the possible limit distributions in (1.3), we need equation (2.3) to

hold for a large collection of ã-values.

Lemma 2.11. Suppose (1.3) holds. For any r . 0 and ì 2 [0, ë1) there exists ë 2 (ì, ë1)

such that

kAìAÿ1
ë k _ (ëÿ ì)aì � r: (2:5)

Proof. Write Y ë � AëXë. (The upper index notation is used here to avoid confusion with the

exponential family generated by the variable Y .) Fix ì 2 Ë. Use (2.2) and write

AìAÿ1
ë Y ë�d E(ëÿì)aì Y ì, ë 2 Ë: (2:6)

By assumption Y ë!d Y for ë! ë1. Apply Proposition 2.10 with E(ëÿì)aì
Y ì in the role of

Uãn
and (AìAÿ1

ë )ÿ1 in the role of Cn to conclude that k(AìAÿ1
ë )ÿ1k ! 1 as ë! ë1. Check

that kCnk ! 1 if kCÿ1
n k ! 1. By Lemma 2.8 the quantity kAìAÿ1

ë k varies continuously

from 0 to 1 as ë increases from ì to ë1. So the leftmost term in (2.5) will equal r before ë
reaches the value ë1. h

Fix r . 0. Let ìn ! ë1 and choose ën . ìn as in Lemma 2.11. Choose a subsequence

k1 , k2 , � � � so that
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Ck n
:� Aì k n

Aÿ1
ë k n
! C 2 G , ãk n

:� (ëk n
ÿ ìk n

)aì k n
! ã:

This is possible since kCnk and ãn are bounded by r. Then Ck n
Y ë k n �d Eã k n

Y ì k n by (2.6).

Theorem 2.7 gives CY �d Yã with kCk _ ã � r by continuity. This establishes the next result.

Proposition 2.12. If (1.3) holds and Y is non-degenerate then for each r . 0 there exists a

constant ã. 0 and a positive af®ne transformation C with kCk _ ã � r such that (2.3) holds:

EãY �d CY .

The question whether all distributions in the exponential family of the limit distribution

are of the same type will be settled by algebraic arguments in the next section.

3. Solutions of the stability equation

The stability equation (2.3), EãY �d CY , allows us to determine the possible limit laws for the

exponential family Xë for ë! ë1.

For statistical applications it is of importance to characterize exponential families which

are invariant under a given group H of transformations. Lehmann (1983, p. 35) observes

that the normal distributions with ®xed variance form the only natural exponential family

which also is a location family. For natural exponential families Casalis (1991), in a very

readable paper, has solved the characterization problem when H is a group of translations

on Rd and for some other classical groups of af®ne transformations on Rd . Bar-Lev and

Casalis (1994; 1998) solve the problem for the case when H is a subgroup of the group of

af®ne transformations on R. We are grateful to a referee of a previous version of this paper

for pointing out these two references. The second paper contains full proofs and hence we

restrict ourselves here to a short exposition of the results of this paper which are relevant to

us.

If a natural exponential family Yî, î 2 Ã, is invariant under a group H of positive af®ne

transformations, and the dfs are non-degenerate, then H is a closed commutative subgroup

of G . If H is the group of translations then Y has a Gaussian distribution. If H is the

group of all multiplications with centre c then there exists a constant d 6� 0 such that

(Y ÿ c)=d has a gamma distribution on (0, 1).

In the present paper we are concerned with the more elementary question of describing

all dfs G which satisfy one or more stability relations of the form (2.1).

Example 3.1. There exist rvs V which satisfy the relation Vã�d V � â only if ã and â are

integers.

To see this, let V be the random integer with distribution

PfV � kg � pk � eÿk2=2=c, k 2 Z, (3:1)

with c a norming constant. The rv Vî has distribution PfVî � kg � eÿ(kÿî)2=2=C(î). If ã
is an integer then Vã�d V � ã, but if ã is not an integer then V and Vã are not of the same

type.
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Let F (ã, C) denote the set of all dfs G which satisfy the relation G(ax� b) � Gã(x) for

Cx � (xÿ a)=b. Let Yî, î 2 Ã, be the natural exponential family generated by the rv Y

with df G. Given the df G, what one can say about the set G (G) of all C 2 G for which

there exists ã 2 Ã so that G 2 F (ã, C)?

Proposition 3.2. Suppose Y has df G. Any positive af®ne map A 2 G (G) determines a

bijection î! î� � A�(î) � îa� á on Ã by AYî�d Yî�.

Proof. Let î 2 Ã. Then (2.2) determines an element î� � A�î in Ã by

AEîY �d EaîAY � EaîEáY � Eaî�áY � Yî� , î 2 Ã: (3:2)

In the same way the inverse relation Aÿ1Yá�d Y de®nes a map Aÿ1� on Ã. Apply Aÿ1 to (3.2)

to see that (Aÿ1)� � (A�)ÿ1. Hence A� is a bijection on Ã. h

Corollary 3.3. The set G (G) is a group and the map C 7! C� is a homomorphism of G (G)

into the group of positive af®ne bijections on Ã.

Proof. Apply B to (3.2) to see that (BA)� � B�A�. h

The exponential family generated by G is invariant under the group H � G (G). Bar-Lev

and Casalis show that the group H is a discrete group Ak , k 2 Z, or the continuous group

At of all translations or all multiplications with a common centre c.

Proposition 3.4. Let G (G) be a continuous one-parameter group At, t 2 R. For any î 2 Ã
de®ne î(t) 2 Ã by AtYî�d Yî( t). The map t 7! î(t) is a homomorphism from R to Ã.

Proof. Observe that î(t) � (A�) tî for all t 2 R by a continuity argument. So the map

t! î(t) is continuous and strictly monotone. It is onto since î(n)! ã 2 Ã would give the

sequence (AnYî)n a non-degenerate limit Yã. So î(t) tends to an end-point of Ã for t!1
and to the other endpoint for t! ÿ1 by monotonicity. h

For the normal distribution G (G) is the group of translations, and for the gamma

distribution on (0, 1) or on (ÿ1, 0) it is the group of all multiplications with centre

c � 0. Hence G (G) is a continuous one-parameter group for all distributions in the

extended gamma family. The formulae below give explicit expressions for C t�î when

Yâ�d CYá with Cx � (xÿ b)=a. Suppose á, â. A straightforward calculation gives, for

ã0 2 Ã and any integer t,

C tYã0
�d Yã( t), ã(t) � C t�ã0 �

ã0 � (âÿ á)t, if a � 1,

atã0 � at ÿ 1

aÿ 1
(âÿ aá), if a 6� 1:

8<: (3:3)

If G (G) is a continuous group then (3.3) holds for all t 2 R. In that case ã(t) is an

increasing bijection from R to Ã by Proposition 3.4. It satis®es the differential equation

960 A.A. Balkema, C. KluÈppelberg and S.I. Resnick



�ã � (log a) _ã, ã(0) � ã0, ã(1) � a(ã0 ÿ á)� â:

We now return to the basic limit relation (1.3). Let the limit Y have df G. By Proposition

2.12 the set G (G) is not discrete. Hence G (G) is a continuous one-parameter subgroup of

G . Then from Bar-Lev and Casalis (1994; 1998) we have the following:

Theorem 3.5. Let Fë, ë 2 Ë, be the exponential family (1.2). If ë1 � supË does not belong

to Ë and if there exist constants aë . 0 and bë 2 R such that Fë(aëx� bë)! G(x) weakly

for some non-degenerate df G, then G belongs to the extended gamma family introduced in

Example 2.9.

The exponential families of gamma distributions are generated by Radon measures with

densities xs1(0,1) on R, with s .ÿ1. They converge to the Gaussian exponential family if

s!1 provided we apply a proper normalization. What happens if s! ÿ1? For s < ÿ1

the measure xs1(0,1)(x) dx is no longer a Radon measure on R. However, one can truncate

this measure and ask for the limit behaviour of the exponential family of probability

measures with densities fã(x) � c(s, ã)eãxxs1[1,1)(x), as ã " ã1 � 0. For s ,ÿ1 the answer

is simple: ã1 lies in Ã and Corollary 2.2 applies. If s � ÿ1 the situation is more delicate.

There exists a non-degenerate limit distribution, but only under nonlinear normalization. See

Example 4.10.

Weak convergence in (1.3) implies convergence of the mgfs. The signi®cance of this

result will become apparant in the next section.

Theorem 3.6. Let (1.3) hold. Suppose Y is non-constant and ë1 =2 Ë. Then the mgfs of the

normalized variables AëXë converge to the mgf of the limit variable Y on the interval

Ã � fã : EeãY ,1g.

Proof. Let ã 2 Ã. There exists a unique positive af®ne transformation C � C(ã) such that

CY �d Yã by Proposition 3.4.

Let ìn " ë1 and set Yn � Aìn
X ìn

. We write Aëx � (xÿ bë)=aë and assume that aë . 0

and bë depend continuously on ë. We claim that there is a sequence ën ! ë1 such that

ãn � (ënÿ ìn)aìn
! ã and Cn � Aìn

Aë
ÿ1
n ! C.

First assume ã, 0. Set r :� sup fkC(î)k jã < î < 0g. Then kAìn
k ! 1 by Proposition

2.10 and hence kAìn
Aÿ1

0 k. r � 1 and ìn . 0 for n > n0. Let n > n0. Let ë decrease from

ìn to 0. By continuity there is a maximal value ën for which ãn :� (ën ÿ ìn)aìn
� ã or

kCnk :� kAìn
Aÿ1
ë n
k � r � 1. (In the latter case ãn 2 [ã, 0].) Note that ën ! ë1 since

ëk n
! ë 2 [(0, ë1) implies that kCnk ! 1 by Proposition 2.10. Now assume ãn ! â and

Cn ! B. (Take subsequences if need be.) Then Eãn
Yn�d CnY ën!d BY by (2.6). Hence

BY �d EâY and Eeãn Yn ! EeâY by Proposition 2.4. So B � C(â), and â 2 [ã, 0] implies

kBk < r. Hence eventually kCnk, r � 1 which implies ãn � ã. Thus we see that ãn ! ã.

The proof for ã > 0 is similar. h

Corollary 3.7. If (1.3) holds, convergence to a non-degenerate limit still takes place if Fë is

centred and scaled by expectation and standard deviation.
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4. Sequential limits

In this section we only assume that the limit relation (1.3) holds for a sequence ën " ë1. As

above, ë1 � supË =2 Ë. We adapt the notation slightly. V is a non-degenerate rv such that

Vn :� An X ën
� (X ën

ÿ bn)=an!d V : (4:1)

We treat two questions. First, what information does the sequence (An) give about the

distribution of the limit variable V? Second, what limit distributions are possible in (4.1)?

Proposition 4.1. Suppose (4.1) holds. If An�1 Aÿ1
n ! id then (1.3) holds: There exist

functions a(ë) . 0 and b(ë) so that (Xë ÿ b(ë))=a(ë)!d V .

Proof. Khinchine's convergence of types theorem implies An X ë n�1
!d V . Set A(ë) � An for

ën < ë, ën�1. Monotonicity of ë 7! Fë(x) (see Proposition 2.1) ensures that A(ë)Xë!d V

for ë! ë1. h

Now assume An�1 Aÿ1
n ! C 6� id. In the asymptotic theory of sums or maxima this

implies that the limit, if it exists, is semi-stable (see Hazod and Schef¯er 1993). For

exponential families semi-stability means that the limit distribution belongs to F (ã, C) for

some ã 6� 0. However, the situation for exponential families is more complex than for sums

or maxima. We shall investigate the behaviour for translations.

Example 4.2. An integer-valued limit variable.

Let the random integer X have a log-concave distribution with PfX � kg
� pk � eÿá k . 0 for all k. So pkÿ1 pk�1 < p2

k . Assume pk�1 pkÿ1=p2
k ! eÿã 2 (0, 1) for

k !1. Let rk � (ákÿ1 � ák�1)=2. Then Xrn
ÿ n!d V with PfV � kg � eÿãk2=2=c(ã); see

(3.1). Now suppose (ën ÿ rn)=ã! â 2 R. Then X ën
ÿ n!d V 9, where V 9 has distribution

PfV 9 � kg � eÿã(kÿâ)2=2=c(â). All limit variables V 9 belong to F (ã, C) where C is the

translation Cx � x� 1.

The exponential family Fë of the rv X in the example above gives rise to a one-

parameter exponential family of limit distributions Gë, ë 2 R. We are only interested in

limit types. Since Gë�ã(x) � Gë(xÿ 1) the limit types in this example form a compact

family. Topologically this family is a circle. Let [F] denote the type of the df F. As in the

case of semi-stable limit distributions for sums and maxima one may describe the behaviour

of the family of types [Fë], ë 2 Ë, for ë! ë1 as a curve which spirals to a limiting circle

in the space of distribution types.

For exponential families there is an additional limit family. This limit family has no

counterpart in the asymptotic theory of sums or maxima.

Choose the weights pk above so that äk � pk�1 pkÿ1=p2
k ! 0. The possible non-constant

limit distributions of the sequence Xë n
ÿ n are then members of the exponential family of

Bernoulli variables, PfVî � 1g � 1=(1� eÿî) � 1ÿ PfVî � 0g, together with the constant

variable V � 0. Any two-valued random variable can occur in the limit. There are no other

962 A.A. Balkema, C. KluÈppelberg and S.I. Resnick



limits. In the sequence pk(ë) � pkeëk=K(ë) the maximum occurs in k(ë)!1, and since

äk ! 0 there is at most one other point which makes a non-negligible contribution.

We shall now adapt this example so as to obtain a compact `circle' of non-degenerate

limit types.

Example 4.3. Here we shall exhibit an rv X such that the set of limit types of the exponential

family is a `circle' consisting of the types of the following rvs: Uã, ã 2 R, E, Wã,

ÿ1 , ã, 1, ÿE. Here E is exponentially distributed, Uã is the exponential family generated

by the uniform (0, 1) rv U and Wã is the exponential family generated by the rv W with

Laplace density eÿjxj=2.

Let X have density f � eÿj, where j : R! R is a convex function which is piecewise

linear on each interval [k, k � 1] with slope ák such that ák�1 ÿ ák !1 for k !1. Let

ën ! ë1 and set øn(x) � j(x)ÿ ënx. There are two cases of interest:

(a) ø9n(k n � 1
2
)! â 2 R for some integer sequence k n !1. Then Yën

ÿ k n!d EâU ,

where U is uniformly distributed on (0, 1).

(b) øn is minimal in k n !1 and ø9n(k n � 1
2
) � �ô�n , where ó n � ô�n ^ ôÿn !1 and

ó n=(ô�n _ ôÿn )! â 2 [0, 1]. Then ó n(Yën
ÿ k n) converges to an rv Y with density

(ex=âÿ1(ÿ1,0) � eÿx=â�1(0,1))=c with â� _ âÿ � 1, â� ^ âÿ � â and c � â� � âÿ. If

â � 0 then Y or ÿY is exponential, otherwise Y belongs to the exponential family

generated by a Laplace density.

The rv X with density f � eÿj in the example above has the following property. There is

a continuous family of non-degenerate limit distributions Gè, 0 < è < 2ð, all of different

type, except that G0 � G2ð; a continuous curve A : Ë! G ; and a continuous strictly

increasing function ÷ : Ë! R tending to in®nity for ë! ë1 so that for each è 2 [0, 2ð]

A(ën)Xë n
!d V è � Gè

whenever ën " ë1 and ei÷(ë n) ! eiè.

In particular, the set of dfs Fë, ë 2 Ë \ [0, 1), is stochastically compact: any sequence

Fën
contains a subsequence which may be normed to converge weakly to a non-degenerate

limit distribution; see de Haan and Resnick (1984). The family of all possible limit

variables aV è � b is closed under the Esscher transform. It contains certain rvs from the

extended gamma family but also bounded rvs and unbounded rvs which are not semi-stable.

These two examples give an indication of the behaviour of the sequence X ën
under the

condition that An Aÿ1
n�1 ! C 6� id. However, in order that the limit distribution in (4.1)

belongs to the class F (ã, C) it is not necessary that the sequence An Aÿ1
n�1 converge. Large

gaps may occur. From Section 2 we know that the limit V belongs to F (ã, C) if there exist

integer sequences qn !1 and k n . qn so that Aqn
Aÿ1

k n
! C and (ëk n

ÿ ëqn
)aq n
! ã. We

therefore introduce the set H 0 of all C 2 G , C 6� id, which are the limit of a sequence

Cn � Aq n
Aÿ1

k n
with k n . qn !1.

Relation (2.6) gives

CnVk n
�d Eãn

Vq n
, (4:2)
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where we write Cn � Aq n
Aÿ1

k n
as above and ãn � (ëk n

ÿ ëq n
)aq n

. Since we assume that

Cn ! C, Theorem 2.7 applies: ãn ! ã 2 [0, 1]. If ã � 1 there exists a constant c such

that V < c < CV and the rv V is bounded. If ã is ®nite then CV �d Vã and V belongs to the

set F (ã, C).

This yields the following dichotomy:

Theorem 4.4. If H 0 is non-empty then either V is bounded and ã � 1 for each C 2H 0,

or V is unbounded and ã is ®nite for each C 2H 0.

Our next result extends Proposition 4.1 and is a partial converse to Theorem 3.5.

Theorem 4.5. Suppose (4.1) holds and the sequence (kAn Aÿ1
n�1k) is bounded. If the limit

variable belongs to the extended gamma family then (1.3) holds.

Proof. The limit variable V satis®es the stability relations C tV �d Eã( t)V , t 2 R; see

Proposition 3.4. Write (ën�1 ÿ ën)an � ãn � ã(tn). The sequence (tn) is bounded. Equivalent

are t k n
! t0 and ãk n

! ã0 � ã(t0). Indeed,

Ak n
Aÿ1

k n�1Vk n�1 � Ak n
Eë k n�1ÿë k n

Xë n
� Eã( t k n )Vk n

!d Eã0
V � C t0 V :

Hence Ak n
Aÿ1

k n�1 ! C t0 and by Proposition 2.4 Eeã k n Vk n! Eeã0 V .

Now de®ne

A(ë) :� Cÿs An, ë � ën � ã(s)=an, 0 < s , tn:

We have to prove that A(ìn)X ìn
!d V for any sequence ìn " ë1. It suf®ces to consider

sequences ìn � ë j n
� án=a jn

with án � ã(sn)! á0 � ã(s0) for 0 < sn , t j n
. Then

A(ìn)X ìn
�d Cÿsn A j n

Eá n=a j n
X ë j n

� Cÿsn Eá n
V j n

:

Now observe sn ! s0, án ! á0. The bound 0 < án < ãn implies Eeá n V j n ! Eeá0 V and

hence Eá n
V j n
�d Eá0

V and A(ìn)X ìn
!d Cÿs0 Eã(s0)V �d V . h

The condition that the limit variable belongs to the extended gamma family is less

restrictive than it seems. Since the sequence An Aÿ1
n�1 is bounded, the set H 0 is non-empty.

Hence the condition will be satis®ed if (a) H 0 contains a sequence Cn ! id, or (b) V is

unbounded and H 0 is not contained in a discrete subgroup C k , k 2 Z, of G .

Without conditions on the sequence An every limit law is possible in (4.1).

Example 4.6. A Cauchy-distributed limit variable V is possible in (4.1).

To exhibit this, we shall construct an rv X with density f so that X ën
ÿ ën converges to

an rv V with density 1=(ð(1� x2)) for ën � n2.

Let I n be the interval [ÿ ���
n
p

,
���
n
p

] and de®ne

hn(u) � eu2=2

ð(1� u2)
1 I n

(u), n > 1:
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Now introduce h as maximum of translates of the functions hn: set h(n2 � u) � hn(u) for

n > 1 and u 2 I n and set h(x) � 0 elsewhere. Similarly, de®ne h�(n2 � u) � en for n > 1

and u 2 I n and h�(x) � 0 elsewhere. Then h < h�. De®ne g(x) :� h(x)eÿx2=2 and

gë(x) :� g(x)eëx=eë
2=2. A simple computation gives

g�n (u) :� gën
(n2 � u) � h(n2 � u)eÿu2=2:

This means that g�n (u) � 1=(ð(1� u2)) on I n and g�n (u) � 0 for
���
n
p

, juj < n. The tails of

g�n are negligible: Lemma 4.7 below implies that

g�n (u) < h�(n2 � u)eÿu2=2 < eÿu2=6, n > 4, juj > n:

Hence kg�nk1 ! 1. Now let the rv X have density f � g=c, with c � kgk1. Then X ën
ÿ n2

has density g�n=cn for n > 1 where cn � kg�nk1 ! 1.

Lemma 4.7. The function h� in Example 4.6 satis®es the inequality

h�(n2 � u) < eu2=3, juj > n, n > 4:

Proof. Introduce the concave piecewise linear function ø: [0, 1)! [0, 1) with the value n

in n2 ÿ n for n > 1. Then h� < eø and ø(m2 � u) < u2=3 for juj > m and m > 4. (The

inequality holds in u � �m and ø9(m2 � u) � 1=2(m� 1) < 2u=3 in u � m� 0.) h

Doeblin introduced the concept of universal distributions in his study of the asymptotic

behaviour of sums of independently and identically distributed rvs. Let Sn be the sum of

the ®rst n terms of a sequence of independent samples from the df F. The distribution F is

universal if for each rv V there exists a subsequence k1 , k2 , � � � and a sequence of

positive af®ne normalizations An such that AnSk n
!d V . Doeblin (1946) established the

existence of universal distributions. See Feller (1966, Section XVII.9) for details. One can

introduce a similar concept for exponential families. An exponential family Xë, ë 2 Ë, is

universal if for each rv V there exists a sequence ën " ë1 � supË and a sequence of

positive af®ne transformations An such that An Xë n
!d V . h

Theorem 4.8. Universal exponential families exist.

Proof. First note that there exists a sequence of dfs Qn on R which is dense in the space of

all probability distributions with the topology of weak convergence; see Parthasarathy (1967,

Theorem II.6.2). We can choose the dfs Qn to have a continuous density qn which is bounded

by en=2 and which vanishes outside the interval I n � [ÿ ���
n
p

,
���
n
p

]. The construction of

Example 4.6 yields an rv X with density f such that X ën
ÿ ën has density g�n=cn, where g�n

agrees with qn on [ÿn, n] and cn ! 1 since the function g�n is bounded by eÿx2=6 outside the

interval [ÿn, n] for n > 4. As in the example, we take ën � n2.

Let V be an rv with df Q. There is a sequence k n " 1 such that Qk n
! Q weakly. Then

X ìn
ÿ ìn!d V if we choose ìn � k2

n. h

Universal exponential families have the property that any df Q(x) is limit of some
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sequence Fë n
(anx� bn) with ën " ë1. With more effort one can show that this is also

possible under the additional restriction that the sequences ën are asymptotically dense:

ën�1 ÿ ën ! 0. This result will be published elsewhere.

A further question of interest is whether there exist non-degenerate dfs F such that only

degenerate limit distributions are possible in (4.1).

If the df F of X has a jump in its upper end-point x1 then PfX ë � x1g ! 1 and only a

degenerate limit is possible in (4.1). Less trivial examples are the following:

Example 4.9. Let F have density f (x) � c eÿx=x on x > 1. Then (4.1) will hold only for

constant limit variables V.

To show this we proceed as follows. Zå � åX 1ÿå has density f å(x) � c(å) eÿx=x on

[å, 1). If å # 0 then f å(x)=c(å)! eÿx=x on (0, 1) and c(å) � 1= log (1=å). Hence

Få(åu)! 1ÿ u for u 2 (0, 1) for å # 0. Take 0 , u� 1. The half-line [åu, 1) carries

weight u . 0, but a large part, 1ÿ 2u, of the probability lives on the relatively short

interval [0, å2u]. Since å2u � o(åu) there is an atom of weight > 1ÿ 2u in the limit.

Because u . 0 is arbitrary the limit can only be degenerate.

Note that Få(åu)! 1ÿ u implies that log(X 1ÿå)=log(1=å)!d U , where U is uniformly

distributed on (0, 1). This means that the exponential family X ë has a non-degenerate limit

under power norming. To see this, take c(ë) � ÿ log (1ÿ ë); then

X
1=c(ë)

ë !d eU , ë! 1:

For recent work on power norming for extremes, see Pancheva (1984) and Ravi (1991). With

the arguments of Example 4.9 one may show:

Example 4.10. Let F have density f (x) � c eÿx(log x)á=x on (e, 1). For á > ÿ1 the limit

relation (4.1) has only constant limits. Let U be uniformly distributed on [0, 1]. If á.ÿ1

then

log X ë

log(1=(1ÿ ë))
!d U 1=(1�á), ë! ë1 � 1:

If á � ÿ1 then even power norming yields only constant limit variables but

(log log X ë)=log log(1=(1ÿ ë))!d U , ë! 1:

Let [F] denote the type of the non-degenerate df F. In this paper we have studied the

behaviour of the curve [Fë] in the space of non-degenerate probability types. Introduce

Î(F) as the set of limits of sequences [Fë n
] with ën " ë1. If [Fë] converges to a point [G]

then Î(F) is a singleton and [G] belongs to the one-parameter extended gamma-type family

of Example 2.9. We have seen examples where the limit set Î(F) is a circle, a line, the

whole space of types (for universal exponential families) and the empty set (Examples 4.9

and 4.10).

The asymptotic behaviour of the tail of the df F is re¯ected in the asymptotic behaviour
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of the tail of the mgf. The exponential family Fë for ë " ë1 describes the tail behaviour of

F. In terms of the cgf k the exponential family consists of translates of the graph of this

convex function k. It is not clear how the wide range of behaviour of the curve [Fë] hinted

at in this section is re¯ected in the asymptotic behaviour of the convex analytic function k.

More insight into this question should lead to a better understanding of the relation between

the tail behaviour of a df and its mgf.
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