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It is shown that the sum of a Poisson and an independent approximately normally distributed integer-

valued random variable can be well approximated in total variation by a translated Poisson

distribution, and further that a mixed translated Poisson distribution is close to a mixed translated

Poisson distribution with the same random shift but fixed variance. Using these two results, a general

approach is then presented for the approximation of sums of integer-valued random variables, having

some conditional independence structure, by a translated Poisson distribution. We illustrate the method

by means of two examples. The proofs are mainly based on Stein’s method for distributional

approximation.
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1. Introduction

The Berry–Esseen theorem provides a uniform bound for the accuracy of the central limit

theorem when approximating the probabilities of sets A of the form (�1, a), a 2 R. If

more complicated sets A are to be considered, some additional ‘smoothness’ condition is

typically required. McDonald (1979) and Burgess and McDonald (1995) assumed a so-

called ‘Bernoulli part’ to deduce a local limit theorem from a central limit theorem.

Čekanavičius and Vaı̌tkus (2001) used the smoothing property of a sum of independent

Bernoulli random variables to approximate this sum with a translated Poisson distribution in

total variation. Barbour and Čekanavičius (2002) incorporate a measure of the smoothness

of the distribution of the individual independent integer-valued summands as a component

of their estimate of the distance between the distribution of their sum and a translated

Poisson distribution; see the discusion in the next section.

This paper combines ideas from the above papers to show that the distribution of many

sums of dependent integer-valued random variables can be approximated in total variation

by the translated Poisson distribution with the same order of accuracy as that of the Berry–

Esseen theorem. Previous attempts are limited to simple examples (Barbour and Xia, 1999;

Čekanavičius and Vaı̌tkus, 2001). Analogous results hold also for local limit approxima-

tions.

Much in the spirit of McDonald (1979), we begin by considering the sum of an integer-
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valued random variable �, which is close in distribution to the normal, and an independent

Poisson random variable, which acts as the smoothing component. We show that this sum

can be well approximated in total variation by a translated Poisson distribution with the

same first two moments (Theorem 1) and that a similar approximation follows for a local

limit metric. The translated Poisson distribution, being concentrated on the integers, is a

more natural approximation than the normal in the context of integer-valued variables, and

the stronger results are a reflection of this.

We then show that Theorem 1 can be used as the basis of a rather general method which

yields good results in a number of dependent settings; see Theorem 3. We illustrate the

method with two examples. For the proofs, we use Stein’s method for distributional

approximation, introduced by Stein (1972), adapted to the Poisson setting; see Barbour et

al. (1992).

1.1. Notation

We say that an integer-valued random variable Y has a translated Poisson distribution with

parameters � and � 2 and write

L(Y ) ¼ TP( �, � 2)

if L(Y � �þ � 2 þ ª) ¼ Po(� 2 þ ª), where ª ¼ h�� � 2i and hxi ¼ x � bxc denotes the

fractional part of x. Note that EY ¼ � and that � 2 < var Y ¼ � 2 þ ª < � 2 þ 1. Note also

that Po(� 2) ¼ TP(� 2, � 2).

We say that an integer-valued random variable Y has an F-mixed translated Poisson

distribution and write

L(Y ) ¼ TP[F]

if F is a probability measure on R3 Rþ and, for all j 2 Z,

P[Y ¼ j] ¼
ð
R3Rþ

TP(x, y)f jgF(dx, dy):

Thus a mixed Poisson distribution Po[G] with mixing distribution G is TP[F], where F is

concentrated on the diagonal and has marginals G.

In this paper, the measure F will often be generated by two random variables � and ¸
on a common probability space, that is, F :¼ L(�, ¸). We treat � as the ‘random shift’

and ¸ as the ‘random variance’ of Y . Note that, due to our definition of TP(�, � 2), � need

not be integer-valued.

Throughout the paper, we shall be concerned with two metrics for probability

distributions on the integers, the total variation metric dTV and the local limit metric

dloc, where for two probability distributions P and Q,

dTV(P, Q) :¼ sup
A�Z

jP(A) � Q(A)j, dloc(P, Q) :¼ sup
k2Z

jP(fkg) � Q(fkg)j:

Let further �x denote the unit mass at x 2 R and � the convolution of measures.

1116 A. Röllin



2. Main results

2.1. Poisson smoothing

In this paper, we assume the random translation � to be approximately Gaussian. In terms

of Stein’s method of distributional approximation, this is expressed as follows. Denote by

k:k the essential supremum norm and define the function space

F ¼ f f 2 C1(R)j f 9 absolutely continuous, k f k þ k f 9k þ k f 0k , 1g:

Then, we shall assume that, for some � > 0,

jEf f 9(�c) ��c f (�c)gj < �k f 0k, for all f 2 F , (2:1)

where �c :¼ (�� �)=�, and � and �2 are the mean and variance of �.

Theorem 1. Let � be a random variable with mean � and variance �2 such that estimate

(2.1) holds for some � > 0. Then, for any º . 0,

dTV(TP[L(�) 3 �º], TP(�, �2 þ º)) <
c0(2��3 þ 2�2 þ �) þ 3

ffiffiffi
º

p

(�2 þ º)
ffiffiffi
º

p , (2:2)

dloc(TPjL(�) 3 �ºj, TP( �, �2 þ º)) <
4c0(2��3 þ 2�2 þ �) þ 12

ffiffiffi
º

p

(�2 þ º)º
, (2:3)

where c0 ¼ 1 þ
ffiffiffi
2

p
.

So, suppose that (�(n))n>1 is a sequence obeying a central limit theorem, in the sense

that �(n)
c converges to the standard normal and that the corresponding sequence (�n)n>1

from (2.1) tends to zero. Suppose also that �2
n :¼ var�(n) and ºn tend to infinity at the

same rate as n ! 1. Then the estimate (2.2) is of order O(�n þ º�1=2
n ) and (2.3) is of order

O(º�1=2
n �n þ º�1

n ). In typical situations, say �2
n � n in a central limit theorem for sums of

locally dependent variables, we recover the expected order O(n�1=2) for (2.2) and O(n�1)

for (2.3) if ºn � n; compare these with the second example in the next section.

2.2. Translated Poisson approximation

Let W be an integer-valued random variable with mean � and variance � 2 and X a random

element of a Polish space on the same probability space. Assume that we want to

approximate L(W ) by a translated Poisson distribution with parameters � and � 2. Put

�X ¼ E(W jX ), � 2
X ¼ var(W jX ) and º ¼ E(� 2

X ) and consider the following, simple

application of the triangle inequality for a metric d:
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d(L(W ), TP( �, � 2)) < d(L(W ), TP[L(�X , � 2
X )])

þ d(TP[L(�X , � 2
X )], TP[L(�X ) 3 �º]) (2:4)

þ d(TP[L(�X ) 3 �º], TP( �, � 2)),

where in this paper we shall take either dTV or dloc.

The second term on the right in (2.4) can be bounded using Stein’s method, as in the

next theorem.

Theorem 2. Let � be a real-valued random variable and let ¸ be a non-negative random

variable with expectation º . 0 and variance �2. Then

dTV(TP[L(�, ¸)], TP[L(�) 3 �º]) <
2 þ �

º
þ 1

º2
, (2:5)

dloc(TP[L(�, ¸)], TP[L(�) 3 �º]) <
2
ffiffiffi
2

p
(1 þ �) þ

ffiffiffi
º

p

º3=2
þ 1 þ 4�2

º2
: (2:6)

The bounds (2.2)–(2.3) and (2.5)–(2.6) will be used for large º, and typically with �2

and �2 large as well. It is, however, interesting to note that they do not tend to 0 if �2 and

�2 tend to 0, as might have been expected. The reason is that the distributions TP(�, � 2),

although indexed by two continuous parameters, all belong to the set �m � Po(º) for

(m, º) 2 Z3 Rþ. This is reflected by the fact that the distributions TP(�, � 2) do not

change continuously with respect to either � or � 2 when �� � 2 2 Z. For example,

TP(2 � �, 1) ¼ Po(2 � �), but TP(2, 1) ¼ �1 � Po(1). Because of this fundamental disconti-

nuity, �2 ! 0 and �2 ! 0 cannot imply that the bounds (2.2)–(2.3) and (2.5)–(2.6) tend to

zero.

Barbour et al. (1992, Theorem 1.C) gave a bound for the distance dTV(Po[L(¸)], Po(º))

of order O(�2=º). However, L(¸) influences both the mean and variance of the distribution

Po[L(¸)], whereas in Theorem 2 it only mixes the variance of TP[L(�, ¸)], leading to

qualitatively different bounds.

To bound the third term on the right in (2.4) we can apply Theorem 1, provided that �X

satisfies inequality (2.1) for some small �. Combining all the above facts, we have the

following theorem.

Theorem 3. Let W be an integer-valued random variable with expectation � and variance � 2

and let X be a random element of a Polish space on the same probability space. Define �X ,

� 2
X and º as at the beginning of this section and let �2 ¼ var( �X ), �2 ¼ var(� 2

X ). Assume

that there exists � > 0 such that (�X � �)=� satisfies (2.1). Then
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dTV(L(W ), TP(�, � 2)) < EDTV(X ) þ 2 þ �

º
þ 1

º2
þ c0(2��3 þ 2�2 þ �) þ 3

ffiffiffi
º

p

� 2
ffiffiffi
º

p ,

dloc(L(W ), TP(�, � 2)) < EDloc(X ) þ 2
ffiffiffi
2

p
(1 þ �) þ

ffiffiffi
º

p

º3=2
þ 1 þ 4�2

º2

þ 4c0(2��3 þ 2�2 þ �) þ 12
ffiffiffi
º

p

� 2º
,

where DTV(X ) :¼ dTV(L(W jX ), TP(�X , � 2
X )), Dloc(X ) :¼ dloc(L(W jX ), TP(�X , � 2

X )) and

c0 ¼ 1 þ
ffiffiffi
2

p
.

Now we are already able to bound EDTV(X ) and EDloc(X ) if the conditional distribution

L(W jX ) can be represented as a sum of independent integer random variables, since, as in

Barbour and Čekanavičius (2002) or Čekanavičius and Vaı̌tkus (2001), we can then

approximate L(W jX ) by the corresponding translated Poisson distribution.

To see this in more detail, recall Theorem 3.1 of Barbour and Čekanavičius (2002). Let
~WW ¼

Pn
i¼1 Zi be a sum of independent integer-valued random variables, such that EZi ¼ �i,

var Zi ¼ � 2
i and EjZ3

i j , 1. Put

~WWi :¼ ~WW � Zi, d :¼ max
1<i<n

dTV(L( ~WWi), L( ~WWi þ 1)), (2:7)

łi :¼ � 2
i EfZi(Zi � 1)g þ j�i � � 2

i jEf(Zi � 1)(Zi � 2)g þ EjZi(Zi � 1)(Zi � 2)j: (2:8)

Then, with ~�� ¼
P

�i, ~�� 2 ¼
P

� 2
i , and ł ¼

P
łi,

dTV(L( ~WW ), TP(~��, ~�� 2)) <
2 þ dł

~�� 2
: (2:9)

The factor d may be expressed in terms of the smoothness of the individual Zi. With

vi :¼ minf1
2
, 1 � dTV(L(Zi), L(Zi þ 1))g (2:10)

we have the simpler bound

d <
Xn

i¼1

vi � max
1<i<n

vi

 !�1=2

: (2:11)

For analogous bounds in the dloc case, we need some further notation. Proceeding as Barbour

and Čekanavičius (2002, Section 4), define

d9 :¼ 1
2

max
1<i<n

kL(Wi) � (�1 � �0)�2k: (2:12)

Using (4.4) and (4.8), just slight adaptations to the proof of Theorem 3.1 in (Barbour and

Čekanavičius 2002) are needed to show that

dloc(L( ~WW ), TP(~��, ~�� 2)) <
2 þ d9ł

~�� 2
(2:13)

From equation (4.9) in Barbour and Čekanavičius (2002) we obtain the bound
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d9 < 4
Xn

i¼1

vi � 4 max
1<i<n

vi

 !�1

: (2:14)

3. Applications

3.1. Random sum of independent and identically distributed random

variables

Theorem 4. Let N be a non-negative, integer-valued random variable with expectation a . 8

and variance b2 such that (2.1) holds for Nc :¼ (N � a)=b and some � > 0, and let

Z1, Z2, . . . be independent and identically distributed integer-valued random variables with

expectation r and variance s2, independent also of N; put W ¼
PN

i¼1 Zi. Let ł1 and v1 be as

in (2.8) and (2.10) for Z1, and assume that v1 . 0. Then, with � ¼ EW ¼ ar and

� 2 ¼ varW ¼ as2 þ b2 r2,

dTV(L(W ), TP( �, � 2)) <
1:5ł1

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1(a � 2)

p þ 5�b3 r3 þ 5b2 r2 þ 2:5br

(as2 þ b2 r2)sa1=2
þ 1 þ 9as2 þ abs4 þ 4b2s4

a2s4

dloc(L(W ), TP(�, � 2)) <
8ł1

s2v1(a � 8)
þ 15 þ 3bs2

a3=2s3
þ 1 þ 5as2 þ 8b2s4

a2s4

þ 10(2�b3 r2 þ 2b2 r2 þ br)

(as2 þ b2 r2)as2
:

A random variable W of the form considered in this example arises in the study of the

Reed–Frost epidemic process treated by Barbour and Utev (2004). In their Theorem 3.1, a

local limit theorem is proved using Fourier arguments under the assumption that the

Laplace transform of N is close to that of the normal distribution. Our result is formulated

in very much simpler terms, and in addition gives an explicit approximation error. If we

assume that a � n and b2 � n and that � ¼ O(n�1=2), the total variation bound above is of

order O(n�1=2).

Barbour and Utev (2004, Theorem 3.2) also prove a stronger local limit approximation,

but at the cost of very much more restrictive conditions than ours.

Proof. We apply Theorem 3. In accordance with the notation of the previous section, let

�N :¼ E(W jN ) ¼ Nr, �2 :¼ var(�N ) ¼ b2 r2;

� 2
N :¼ var(W jN ) ¼ Ns2, º :¼ E(� 2

N ) ¼ as2, �2 :¼ var(� 2
N ) ¼ b2s4:

Then, given N ¼ k, we can apply Theorem 3.1 from Barbour and Čekanavičius (2002) to

W in order to bound DTV(k) and Dloc(k). To this end, define d(k) as in (2.7) and d9(k) as

in (2.12) with n ¼ k. From (2.11), we obtain the estimate d(k) < (kv1 � v1)�1=2, and from

(2.14) d9(k) < 4(kv1 � 4v1)�1 and hence, applying (2.9) and (2.13),
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DTV(k) <

4

as2
þ ł1

ffiffiffi
2

p

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1(a � 2)

p , if k > a=2,

1, if k , a=2,

8><
>:

Dloc(k) <

4

as2
þ 8ł1

s2v1(a � 8)
, if k > a=2,

1, if k , a=2:

8><
>:

Using Chebyshev’s inequality to bound P[N , a=2], we therefore obtain

EDTV(N ) <
4b2

a2
þ 4

as2
þ ł1

ffiffiffi
2

p

s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1(a � 2)

p , EDloc(N ) <
4b2

a2
þ 4

as2
þ 8ł1

s2v1(a � 8)
:

The remaining elements in Theorem 3 are immediate; we use
ffiffiffi
2

p
< 1:5 and hence

c0 < 2:5. h

3.2. k-runs

Theorem 5. Let �0, . . . , �n�1 be independent and identically distributed random variables

with P[�0 ¼ 1] ¼ 1 � P[�0 ¼ 0] ¼ p for some p 2 (0, 1), where n ¼ m(2k � 1) for some

integers k, m > 2. To avoid edge effects, put �nþi :¼ �i for i ¼ 0, . . . , 2k � 2. Define

U j :¼
Q jþk�1

i¼ j �i and put W ¼
Pn�1

j¼0 U j. Then, with � ¼ EW ¼ npk and � 2 ¼ var W ¼
npkf1 þ p � pk(2 þ (2k � 1)(1 � p))g=(1 � p),

dTV(L(W ), TP(�, � 2)) <
K1ffiffiffi

n
p , dloc(L(W ), TP(�, � 2)) <

K2

n

for some constants Ki ¼ Ki(k, p), i ¼ 1, 2, which are independent of n.

The formulas for Ki(k, p) that we establish here are rather crude and complicated but

explicit. For k ¼ 2, a bound of the same order was given by Barbour and Xia (1999), but

their method of proof was extremely involved. Here, we can apply Theorem 3 and (2.9)

directly, to obtain a result for arbitrary k. Some numerical comparisons with the bound of

Barbour and Xia (1999) for k ¼ 2 are given in Table 1, deduced by a more careful

examination of the error terms.

Proof. Once again we apply Theorem 3. Split the indices Nn :¼ f0, . . . , n � 1g into m

blocks Jb ¼ J 1
b [ J 2

b, b 2 N m, of size s :¼ 2k � 1 with J 1
b ¼ fbs, . . . , bs þ k � 2g and

J2
b ¼ fbs þ k � 1, . . . , (b þ 1)s � 1)g, and set

X ¼ �i : i 2
[

b2Nm

J1
b

( )
:

Let Lb (Rb) be the number of consecutive 1s of the �i at the beginning (end) of block J 1
b.
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With W ¼
P

b2Nm
Wb, where Wb ¼

P
j2Jb

U j, the Wb are conditionally independent given X .

Note that L(WbjX ) ¼ L(W1jR1, L2). We have

EfW1jR1 ¼ r, L2 ¼ lg ¼ pk�r þ pk� l � 2 pk

1 � p
þ pk

and so

�X ¼ mpk þ
X

b2Nm

pk�Rb þ pk�Lbþ1 � 2 pk

1 � p
¼ mpk þ

X
b2Nm

Vb,

where the Vb :¼ ( pk�Rb þ pk�Lb � 2 pk)=(1 � p) are independent and identically distributed

with EV1 ¼ 2(k � 1) pk . Some simple calculations give

Efp�2L1g ¼ 1 þ p � pk

pk�1
, Efp�L1g ¼ k � (k � 1) p,

Efp�L1�R1g ¼ p�kþ1 þ (k � 1)(1 � p) þ 1
2
(k � 1)(k � 2)(1 � p)2,

hence

�2
1(k, p) :¼ var V1 ¼ pkþ1

(1 � p)2
(4 þ 2 p � (3k2 þ k) pk�1 þ (6k2 � 4k � 4) pk � (3k2 � 5k þ 2) pkþ1)

and

Table 1. Numerical comparison for the 2-runs example: total variation distance estimate

using the method in (a) this paper and (b) Barbour and Xia (1999). Missing values are due

to parameter restrictions

(a)

p

n 0.1 0.25 0.5 0.75 0.9

106 0.4463 0.2334 0.1747 0.5528 .1

108 0.0445 0.0233 0.0175 0.0553 0.2554

1010 0.0045 0.0023 0.0017 0.0055 0.0255

(b)

p

n 0.1 0.25 0.5 0.75 0.9

106 0.0304 – 0.1251 0.6014 –

108 0.0030 – 0.0125 0.0601 –

1010 0.0003 – 0.0013 0.0060 –
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�2 :¼ var �X ¼ m�2
1 <

mpkþ1(4 þ 2 p)

(1 � p)2
: (3:1)

As jVb � EVbj < 2 p=(1 � p) almost surely, we have EjVb � EVbj3 < 2 p�2
1=(1 � p). Now,

an inequality of the form (2.1) is easily derived (see, for example, Reinert 1998, Theorem

2.1). For a sum of independent random variables
P

Zi with zero expectation and variances

� 2
i such that

P
� 2

i ¼ 1, inequality (2.1) holds with � ¼
P

(� 3
i þ 1

2
EjZ3

i j), and we may

therefore take

� ¼ 1ffiffiffiffi
m

p 1 þ 2 p

(1 � p)�1

� �
¼:

1ffiffiffiffi
m

p �1(k, p): (3:2)

For (2.9), we have the following rather crude bounds. First, note that

P[Wb ¼ 0jRb, Lbþ1] > (1 � p)2, P[Wb ¼ 1jRb, Lbþ1] > pk(1 � p)2 (3:3)

almost surely. Hence, from (3.3),

dTV(L(WbjRb, Lbþ1), L(Wb þ 1jRb, Lbþ1)) < 1 � pk(1 � p)2

and, with (2.11) and (2.14),

d < p�k=2(1 � p)�1(m � 1)�1=2, d9 < 4 p�k(1 � p)�2(m � 4)�1 (3:4)

Furthermore, it follows from (3.3) that

var(WbjRb, Lbþ1) > pk(1 � p)2, (3:5)

and, noting that 0 < Wb < sI[Wb > 1],

var(WbjRb, Lbþ1) < E(W2
bjRb, Lbþ1) < s2 Pb,

where Pb :¼ P[Wb > 1jRb, Lbþ1]. Thus łb(Rb, Lbþ1) < s3 P2
b(1 þ 2s) þ s3 Pb and, since

EP2
b < EPb ¼ P[Wb > 1] < EWb ¼ spk , (3:6)

it follows that

Ełb(Rb, Lbþ1) < 2 pk s4(1 þ s): (3:7)

Thus, from (2.9), (3.4), (3.5) and (3.7),

EDTV(X ) <
2

mpk(1 � p)2
þ 4k(2k � 1)4

(1 � p)3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m � 1) pk

p , (3:8)

EDloc(X ) <
2

mpk(1 � p)2
þ 16k(2k � 1)4

pk(1 � p)4(m � 4)
: (3:9)

To complete the bound in Theorem 3, we still need a lower bound for º and an upper

bound for �2, both of which are properties of the distribution of

� 2
X ¼ var

Xm�1

b¼0

Wb

����X
 !

¼
Xm�1

b¼0

var(WbjRb, Lbþ1) ¼:
Xm�1

b¼0

Yb:
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It is immediate from (3.3) that

º ¼ E(� 2
X ) ¼ mEY1 > mpk(1 � p)2, (3:10)

and, since the Yb are 1-dependent,

�2 ¼ var(� 2
X ) ¼

Xm�1

j¼0

var Yb þ 2
Xm�1

j¼0

cov(Yb, Ybþ1) < 3m var Y1:

Now var Y1 < EY 2
1 and

Y1 ¼ var(W1jR1, L2) < E(W 2
1jR1, L2) < s2 P1

almost surely, so that, with (3.6), var Y1 < s4E(P2
1) < pk s5; hence

�2 < 3mpk(2k � 1)5: (3:11)

Combining (3.1), (3.2), (3.8), (3.9), (3.10) and (3.11) with the bounds in Theorem 3, it

follows that dTV is of order O(m�1=2) and dloc of order O(m�1), and recalling that

m ¼ n=(2k � 1) completes the proof. h

4. Proofs

4.1. Stein approach for the translated Poisson distribution

To use Stein’s method for approximation in the dTV and dloc metrics we start with the

Poisson case; for details, see Barbour et al. (1992).

Let W be an integer-valued random variable with expectation � and variance � 2 . 0, and

let s ¼ b�� � 2c and ª ¼ h�� � 2i, where hxi ¼ x � bxc denotes the fractional part of x.

Note that, if Y � TP(�, � 2), Y � s � Po(� 2 þ ª). Let Ag( j) ¼ (� 2 þ ª)g( j þ 1) � jg( j) be

the usual Stein operator for the Poisson distribution with mean � 2 þ ª, and for

A � Zþ :¼ f0, 1, 2, . . .g let gA : Z ! R be the (bounded) solution of

(i) g( j) ¼ 0 for all j < 0,

(ii) Ag( j) ¼ I[ j 2 A] � Po(� 2 þ ª)fAg for all j . 0.

We can thus bound the total variation distance with

dTV(L(W ), TP(�, � 2)) ¼ dTV(L(W � s), Po(� 2 þ ª))

¼ sup
B�Z

jEI[W � s 2 B] � Po(� 2 þ ª)fBgj

< sup
A�Zþ

jEAgA(W � s)j þ P[W � s , 0], (4:1)

and analogously

dloc(L(W ), TP( �, � 2)) < sup
k2Zþ

jEAgfkg(W � s)j þ P[W � s , 0]: (4:2)
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The last terms in (4.1) and (4.2) are usually bounded using Chebyshev’s inequality.

From Barbour et al. (1992) we obtain the well-known bounds on the supremum norm of

gA,

kgAk < (� 2 þ ª)�1=2 < � �1, k˜gAk < (� 2 þ ª)�1 < � �2, (4:3)

where ˜g A( j) :¼ gA( j þ 1) � g A( j). If A ¼ fkg for some k 2 Z, we have the better estimate

kgfkgk < (� 2 þ ª)�1 < � �2: (4:4)

With ~gg A( j) :¼ gA( j � s) we can rewrite the Stein operator, obtaining

Ag A(W � s) ¼ (� 2 þ ª)gA(W � s þ 1) � (W � s)g A(W � s)

¼ � 2˜~gg A(W ) � (W � �)~ggA(W ) þ ª˜~gg A(W ): (4:5)

The bounds on ~ggA are of course the same as on gA in (4.3) and (4.4). Thus, the last term is

easily bounded by

jEfª˜~ggA(W )gj < ª� �2 < � �2: (4:6)

To obtain better estimates than in Poisson approximation, we proceed as Barbour and

Čekanavičius (2002). To this end, let U and V be independent integer-valued random

variables. Then it is easy to see that, for any bounded function F,

jE˜F(U )j < 2kFkdTV(L(U ), L(U þ 1)), (4:7)

jE˜2 F(U þ V )j < 4kFkdTV(L(U ), L(U þ 1))dTV(L(V ), L(V þ 1)): (4:8)

4.2. Proofs of the theorems

Lemma 1. Let � be a random variable with E� ¼ � and var� ¼ �2, such that

�c ¼ (�� �)=� satisfies (2.1) for some � > 0. Then, for any random variable Z obeying

E(Zj�) ¼ 0 and E(Z2j�) < 1,

jEf�2 f 9(�þ Z) � (�� �) f (�þ Z)gj < (��3 þ �2 þ 1
2
�)k f 0k, for all f 2 F : (4:9)

Proof. We write (2.1) in the form

jEf�2 f 9(�) � (�� �) f (�)gj < ��3k f 0k, for all f 2 F : (4:10)

By Taylor expansion of f around � we obtain

Ef�2 f 9(�þ Z) � (�� �) f (�þ Z)g

¼ E �2 f 9(�) þ Z

ð1

0

f 0(�þ sZ)ds

� �
� (�� �) f (�) þ Zf 9(�) þ Z2

ð1

0

(1 � s) f 0(�þ sZ)ds

� �� �
:

With Ef(�� �)Zf 9(�)g ¼ 0 the estimate is easily obtained. h

Proof of Theorem 1. First, we prove inequality (2.2). Let Z9 be a random variable with
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L(Z9j�) ¼ Po(ª9�), where ª9� ¼ h�� ºi, and let Y � Po(º) be independent of (�, Z9).

Set Z ¼ Z9� ª9� and W ¼ �þ Z þ (Y � º). Then, W � TP[L(�) 3 �º], and, with

s ¼ b�� �2 � ºc and ª ¼ h�� �2 � ºi, taking � 2 ¼ �2 þ º in (4.5), we have

EAgA(W � s) ¼ Ef(�2 þ º)˜~ggA(W ) � (W � �)~ggA(W ) þ ª˜~gg A(W )g

¼ Ef�2˜~ggA(W ) � (�� �)~gg A(W )g þ Ef(ª� ª9�)˜~ggA(W )g

¼ Ef�2˜hA(�þ Z � º) � (�� �)hA(�þ Z � º)g (4:11)

þ Ef(ª� ª9�)˜~ggA(W )g

where for the second equality we use the fact that

EfYg(Y )g ¼ Efºg(Y þ 1)g (4:12)

(see Barbour et al. 1992, p. 5) and for the third equality we put

hA( j) :¼ Ef~gg A(W )j�þ Z � º ¼ jg ¼ Ef~ggA( j þ Y )g

and use the independence of Y .

The second term in (4.11) is simply estimated with (4.3). To estimate the main term we

use (4.9) for an appropriate interpolation function hA.

Hence, we construct a function f A 2 F , satisfying the conditions f A( j) ¼ hA( j) and

f 9A( j) ¼ ˜hA( j) for all j 2 Z. For j 2 Z and x 2 [0, 1), define the function

f A( j þ x) :¼ hA( j) þ ˜hA( j)x þ ˜2 hA( j) � �c0x2=2 if x < c�1
0 2�1=2,

c0(1 � x)(3 � 2
ffiffiffi
2

p
� x)=2 if x . c�1

0 2�1=2,

�

where c0 ¼ 1 þ
ffiffiffi
2

p
. Clearly, f satisfies the desired conditions, and we can then use calculus

to show that

k f 0Ak < c0k˜2 hAk:

The interpolation of h with the function f is optimal in the sense that the factor c0 cannot be

improved in the above inequality.

Using (4.7) for F :¼ ˜~gg A and invoking the bounds (4.3), we have

j˜2 hA( j)j ¼ jEf˜2 ~ggA( j þ Y )gj < 2k˜~ggAkdTV(L(Y ), L(Y þ 1)) <
2

(�2 þ º)
ffiffiffi
º

p , (4:13)

where we have used the fact that dTV(L(Y ), L(Y þ 1)) < 1=
ffiffiffi
º

p
, which can easily be proved

with Stein’s method for the Poisson case using (4.12).

Applying Lemma 1 to (4.11) with f (x) ¼ f A(x � º), we obtain the final bound

jEAg A(W � s)j < (��3 þ �2 þ 1
2
�)k f 0Ak þ k˜~ggAk

<
c0(2��3 þ 2�2 þ �)

(�2 þ º)
ffiffiffi
º

p þ 1

�2 þ º
:

As var W < �2 þ ºþ 1, it follows from Chebyshev’s inequality that
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P[W � s , 0] <
var W

(�2 þ º)2
^ 1

� �
<

1

�2 þ º
þ 1

(�2 þ º)2

� �
^ 1

� �
<

2

�2 þ º
,

and hence, from (4.1), inequality (2.2) is proved.

For inequality (2.3), write Y ¼ Y1 þ Y2, where Y1, Y2 are independent, Po(º=2)

distributed random variables. Using (4.8) for F :¼ ~ggfkg and invoking (4.4), we replace

the estimate (4.13) by

j˜2 hfkg( j)j < 4k~ggfkgkdTV(L(Y1), L(Y1 þ 1))2 <
8

(�2 þ º)º
: h

Proof of Theorem 2. We first prove (2.5). Write X ¼ (�, ¸). Given X fixed, let Y � Po(¸)

and Z9 � Po(ª9) be independent, where ª9 ¼ h��¸i, and set W ¼ � þ
(Z9� ª9) þ (Y �¸). Then L(W jX ) ¼ TP(�, ¸); we now use (4.1) with the conditional

distribution PX of W given X with � ¼ � and � 2 ¼ º ¼ E¸ to obtain our estimate. From

(4.5), with s ¼ b�� ºc and ª ¼ h�� ºi, it follows that

EXAg A(W � s) ¼ EXfº˜~gg A(W ) � (W ��)~ggA(W )g þ ªEX˜~gg A(W )

¼ EXf(º�¸)˜~ggA(W )g þ EXf(ª� ª9)˜~ggA(W )g,

where we have used (4.12) for Y þ Z9 � Po(¸þ ª9), and hence, using (4.3),

jEXAgA(W � s)j < º�1(jº�¸j þ 1):

Moreover, by Chebyshev’s inequality,

PX [W � s , 0] <
ºþ ª

º2
: (4:14)

Hence, we can bound (4.1) to give

dTV(L(W jX ), TP(�, ¸)) <
jº�¸j

º
þ 1

º
þ ºþ ª

º2
:

Taking expectation over X , the claim follows.

To prove inequality (2.6), use (4.7) for F :¼ ~ggfkg and the bound (4.4) to obtain

jEXfAgfkg(W � s)gj < 2(jº�¸j þ 1)k~ggfkgkdTV(L(Y ), L(Y þ 1)) <
2(jº�¸j þ 1)

º
ffiffiffiffi̧p :

By Chebyshev’s inequality, we obtain

E 1 ^ 2(jº�¸j þ 1)

º
ffiffiffiffi̧p

� �
< E I[¸ < º=2] þ I[¸ . º=2]

2
ffiffiffi
2

p
(jº�¸j þ 1)

º3=2

� �

<
4�2

º2
þ 2

ffiffiffi
2

p
(�þ 1)

º3=2

and hence, with (4.14) and (4.1), the claim. h
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