
Spectral decomposition of score functions

in linkage analysis
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We consider stochastic processes occurring in nonparametric linkage analysis for mapping disease

susceptibility genes in the human genome. Under the null hypothesis that no disease gene is located in

the chromosomal region of interest, we prove that the linkage process converges weakly to a mixture

of Ornstein–Uhlenbeck processes as the number of families N tends to infinity. Under a sequence of

contiguous alternatives, we prove weak convergence towards the same Gaussian process with a

deterministic non-zero mean function added to it. The results are applied to power calculations for

chromosome- and genome-wide scans, and are valid for arbitrary family structures. Our main tool is

the inheritance vector process v, which is a stationary and continuous-time Markov process with state

space the set of binary vectors w of given length. Certain score functions are expanded as a linear

combination of an orthonormal system of basis functions which are eigenvectors of the intensity

matrix of v.
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1. Introduction

Linkage analysis is a technique for localizing gene(s) that influence a certain trait, typically

an inheritable disease. Measurements related to the disease (phenotypes) are collected for

individuals in a number of families together with their DNA. Small segments of DNA, so-

called genetic markers, are measured at a number of known positions (loci) along the

genome. Markers close to the (unknown) disease locus cosegregate with the disease gene,

meaning that the pattern of grandpaternal/grandmaternal DNA transmission in each family

is correlated around the disease locus. Since phenotypes are indirect measurements of

disease genes, there will also be correlation between inheritance of phenotypes and markers

close to the disease locus. This correlation decays with distance between the disease locus

and the marker. The reason for this is the occurrence of so-called crossovers, which are

points of switching between grandpaternal and grandmaternal allele transmission. The usual

procedure is to define a linkage score function Z(t) as a function of the (genetic) map

position t. A large value of Z(t) indicates high correlation between inheritance of

phenotypes and DNA at locus t. Hence, regions where the stochastic process Z is large are

candidates for harbouring the disease gene. Formally, linkage analysis can be formulated as
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a hypothesis-testing problem, with a null hypothesis of no disease gene located along the

genomic region of interest. See Sham (1998) and Ott (1999) for more details.

When DNA is collected from all (or sufficiently many) pedigree members at a dense set

of genetic markers, the marker data are perfect. This means that Z is piecewise constant,

with discontinuities at the points of crossover. The most common model, due to Haldane

(1919), assumes that crossovers occur randomly according to a Poisson process. This

assumption implies that Z is a stationary process under the null hypothesis H0 of no

linkage. In this paper we consider nonparametric linkage score functions Z of the type

considered in human genetics (Kruglyak et al. 1996). We prove that asymptotically, as the

number of families N tends to infinity, Z converges weakly to a stationary Gaussian process

which is a mixture of Ornstein–Uhlenbeck processes. Under a sequence of contiguous

alternatives H1, we establish weak convergence towards the same Gaussian process plus a

deterministic drift function �, which is a mixture of double exponential functions centred at

the disease locus �. Our results are valid for arbitrary scoring functions and family

structures, and generalize previous work by Feingold et al. (1993) and Feingold and

Siegmund (1997), where covariance and drift functions for sib pairs, half sibs, aunt–niece,

first cousins and some other families are obtained. Analogous results in animal genetics for

quantitative trait locus mapping were obtained by Lander and Bolstein (1989) and Dupuis

and Siegmund (1999). In these cases Z is asymptotically a �2 process under H0.

Our tool in this paper is the inheritance vector process v for each family (Donnelly

1983). This is a stationary continuous-time Markov process on the space Zm
2 of binary

vectors of length m. The eigenvectors of its intensity matrix have eigenvalues that are

integer multiples of �2 (Dudoit and Speed 1999). It turns out that these eigenvectors form

an orthonormal basis on the space of functions Zm
2 ! R. Moreover, the coefficients when

certain functions Zm
2 ! R are expanded in this orthonormal-basis determine the covariance

and drift functions of Z.

This paper is organized as follows. In Sections 2 and 3 we introduce the mathematical

framework and establish spectral decomposition of the intensity matrix. In Section 4 we

derive, for one pedigree, the covariance function of Z under H0 and the mean function of

Z under H1. The invariance principle is proved in Section 5, and its consequences for

significance levels and power are discussed. Examples of binary phenotypes and allele-

sharing score functions are treated in Section 6. All proofs are given in a separate appendix.

2. Inheritance vectors and score functions

A pedigree P of n individuals can be represented as a graph as shown in Figure 1. Persons

without parents in the pedigree are called founders and the remaining individuals non-

founders. We assume that the pedigree is balanced in the sense that each non-founder has

both of its parents in the pedigree. Consider a certain position (locus) t on one of the

chromosomes. The DNA of a (short) segment surrounding this locus can have different

forms, so-called alleles. According to Mendelian laws of segregation, each individual has

two alleles at the locus of interest, one inherited from the father and one from the mother
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Figure 1. Pedigrees used in the simulations. Pedigree k (k ¼ 1, 2, 3, 4), consists of two parents and

k þ 1 offspring, with the parents and offspring numbered 1, 2 and 3, . . . , k þ 3, respectively.

Pedigrees 5 (top), 6 (middle) and 7 (bottom) are shown with individual numbers. For each pedigree an

example of phenotype vector Y is given. Males and females correspond to squares and circles.

Affected individuals have black and unaffected ones have white symbols. Individuals with unknown

phenotypes have question marks.
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during formation of sperm and ovum cells. This pair of alleles forms a genotype at locus t,

and represents the individual’s DNA at this locus.

During the process of forming germ cells, called meiosis, each parent transmits one of its

two alleles at locus t to the child. For each non-founder there are two meioses of interest

during which alleles are transmitted from the father and mother, respectively. If f is the

number of founders in the pedigree, the total number of meioses is m ¼ 2(n � f ).

Segregation of alleles in the pedigree at locus t can be represented by means of a binary

inheritance vector v ¼ v(t) of length m; cf. Donnelly (1983). If meioses are numbered

1, . . . , m, we write v ¼ (v1, . . . , vm), where v j ¼ 0 or 1 depending on whether a

grandpaternal or grandmaternal allele was transmitted during the jth meiosis. We regard v

as an element of Zm
2 , the group of binary vectors of length m under component-wise

modulo 2 addition.

A score function is a mapping S : Zm
2 ! R which assigns to each inheritance vector v a

score S(v). In nonparametric linkage (cf. Kruglyak et al. 1996), S(v) ¼ S(v; P, Y ) is a

function of v, the pedigree P and the vector Y ¼ (Y1, . . . , Yn) of phenotypes in the

pedigree. The latter are disease-related quantities (affection status, body mass index, insulin

concentration, . . .) observed for some or all individuals. For an inheritable disease, Yk

carries information about the kth individual’s DNA at one or several disease genes. This

implies that DNA cosegregates with Y at disease genes. A large value of S(v; P, Y )

indicates high compatibility between Y and the inheritance vector v ¼ v(t). This in turn

suggests that a disease gene is located in vicinity of t. We regard P and Y as fixed and

hence often drop them in notation.

Let A ¼ Am ¼ fSg be the space of all mappings Zm
2 ! R. We endow A with the scalar

product (�, �) : A3A ! R, defined as

(S, R) ¼ 2�m
X

w2Zm
2

S(w)R(w):

Since Zm
2 consists of 2m elements, A is isomorphic to the Euclidean space R2 m

. For each

fixed w 2 Zm
2 we introduce Sw 2 A as

Sw(u) ¼ (�1)w�u, (1)

where w � u is the vector dot product of w and u. Then the following property is easily

established:

Proposition 1. The collection fSwgw2Zm
2

forms a complete orthonormal system of basis

functions in A, that is,

(Sw, Sw9) ¼
1, if w ¼ w9,

0, if w 6¼ w9,

�

and each S 2 A can be written as a unique linear combination of elements Sw.

The coefficients of S in terms of the orthonormal-basis fSwg are written as

RS(w) ¼ (S, Sw), 8w 2 Zm
2 :
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Notice that RS 2 Zm
2 . In fact, 2m RS equals the Fourier transform of S; cf. Diaconis (1988)

and Kruglyak and Lander (1998). The latter authors apply the Fourier transform to multipoint

linkage analysis for a different purpose than ours – to speed up computation of certain matrix

products.

3. Crossovers and spectral decomposition

During each meiosis, there is switching between grandpaternal and grandmaternal DNA

allele transmission along each chromosome. The switching points, which are called

crossovers, occur randomly. If the average number of crossovers between two loci on the

same chromosome is h, they are at genetic distance h Morgans from each other. The most

widely used model for crossovers was introduced by Haldane (1919), assuming that

crossovers occur randomly according to a Poisson process with intensity 1 when genetic

distance is measured in Morgans.

Consider a chromosome of genetic length L Morgans. With Haldane’s map function, the

result of each single meioses j is described as a ‘time’-homogeneous Markov process

fv j(t); 0 < t < Lg with state space Z2 ¼ f0, 1g and intensity matrix

�1 1

1 �1

� �
:

We make v j(�) stationary by requiring that for some (and hence all) loci t P(v j(t) ¼ 0)

¼ P(v j(t) ¼ 1) ¼ 0:5. This is a consequence of Mendel’s law of segregation that

grandpaternal and grandmaternal allele transmissions occur with the same probability.

For a pedigree with m meioses we describe fv(t); 0 < t < Lg as a time-homogeneous

Markov process on Zm
2 with intensity matrix A ¼ fA(w, w9); w, w9 2 Zm

2 g, where

A(w, w9) ¼
�m, w ¼ w9,

1, jw � w9j ¼ 1,

0, jw � w9j > 2,

8<
: (2)

and jw � w9j ¼
Pm

j¼1jw j � w9jj is the Hamming distance between w and w9; cf. Dudoit and

Speed (1999) and Hössjer (2003a). The marginal distribution for m meioses is

�0(w) :¼ P(v(t) ¼ w) ¼ 2�m, 8w 2 Zm
2 , (3)

at all loci t. We tacitly assumed in (2) and (3) that allele transmissions for different meioses

are independent. Standard theory for continuous-time Markov processes implies that

Qh ¼ exp(hA) is a transition matrix between two loci at distance h Morgans. Viewing

A ¼ fA(w, u); w, u 2 Z m
2 g and Qh ¼ fQh(w, u); w, u 2 Z m

2 g as self-adjoint operators on A,

the following result can be established:

Theorem 1 (Spectral theorem for A and Qh). The score functions Sw in (1) are

eigenvectors of A and Qh for all w 2 Zm
2 with eigenvalues �2jwj and exp(�2jwjh),

respectively.
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Theorem 1 can be deduced from Propositions 1–3 of Dudoit and Speed (1999). Their

proof is based on first establishing eigenvectors and eigenvalues for A through a certain

adjacency matrix. Here, we give an alternative proof based on first establishing eigenvectors

and eigenvalues for Qh by induction with respect to m and then, by letting h ! 0,

obtaining eigenvalues and eigenvectors for A. Yet another method of proof is used by

Kruglyak and Lander (1998). They utilize the fact that Qh is a convolution operator

(SQh ¼ S � Th)) and then compute the Fourier transform of Th 2 A by direct combinatorial

arguments.

4. Linkage process: One pedigree

The purpose of linkage analysis is to test the presence of a disease locus � on the

chromosome. This can be formulated as a hypothesis-testing problem

H0 : � ¼ 1, H1 : � 2 [0, L]:

Here � ¼ 1 means that a disease locus does not exist or is located on another chromosome.

By extracting DNA at so-called genetic markers from pedigree members, we obtain

information about the different individuals’ DNA alleles on [0, L]. This in turn implies

information about the inheritance vector process v(�). Assuming that DNA marker data is

perfect, we can observe the stochastic process

Z(t) ¼ S(v(t)), 0 < t < L, (4)

where S 2 A is a score function, introduced in Section 2. A large value of Z(t) indicates that

� is close to t, and hence that H0 should be rejected. In practice, we need many pedigrees in

order for a formal test between H0 and H1 to have high power; see Section 5.

Under H0, the distribution of the Markov process v(�) can be summarized by (2) and (3).

Since v is stationary under H0, so is Z. Let 1 ¼ S0 2 A be a score function of ones. It is

customary in nonparametric linkage analysis to standardize S in (4) so that (1, S) ¼ 0 and

kSk2 ¼ (S, S) ¼ 1; see, for example, Kruglyak et al. (1996). This implies

E H0
(Z(t)) ¼ 0, var H0

(Z(t)) ¼ 1: (5)

The following result gives an explicit expression for the covariance function

rZ(h) ¼ cov H0
(Z(t), Z(t þ h)).

Theorem 2. The covariance function of Z in (4) under H0 is given by

rZ(h) ¼
Xm

l¼1

k l exp(�2ljhj), (6)

where k l ¼
P

w;jwj¼ l R
2
S(w) and

Pm
l¼1k l ¼ 1.

Under H1 the distribution of v on [0, L] is different. The phenotype vector Y carries

information about v(�). Define
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�(w) :¼ P(v(�) ¼ wjY ), 8w 2 Zm
2 , (7)

as the posterior distribution of v(�). The stronger the genetic influence of the disease gene is,

the more the posterior � differs from the prior �0. We will write

�(w) ¼ 2�m(1 þ �~SS(w)), (8)

where ~SS 2 A is normalized so that (~SS, 1) ¼ 0 and k~SSk ¼ 1. In other words, ~SS is the direction,

in A, of a linear path leading from �0 to �. The scalar � ¼ 2mk�� �0k measures how

informative the pedigree P, the phenotype vector Y and the genetic model are for detecting

linkage. In fact, log2(�2 þ 1) can be interpreted as an effective number of meioses, with

log2(�2 þ 1) ¼ m in the ideal case where Y gives complete information about v(�) (Hössjer

2004).

Of particular interest is the noncentrality parameter (Feingold et al. 1993)

� ¼ �Z(�) ¼ �(~SS, S):

As will be seen in the next section, � is closely related to the power to detect �. The factor

(~SS, S) is a number between 0 and 1 measuring how efficient the chosen score function S is.

In Hössjer (2003a), (~SS, S)2 is interpreted as the efficiency of S compared to the optimal score

function ~SS.

We assume that Y and fv(t); t 6¼ �g are conditionally independent given v(�). This

implies that under H1, v(t) has marginal distribution � at t ¼ �. Then, because of the

Markov property, fv(t); 0 < t < lg propagates as two independent Markov processes with

intensity matrices A in either direction from �. Using this, the following theorem can be

established for �Z(t) ¼ E H1
(Z(t)):

Theorem 3. The mean function of the linkage score (4) is given by

�Z(t) ¼ �
Xm

l¼1

� l exp(�2ljt � �j), 8t 2 [0, L],

under H1, where

� l ¼
X

w;jwj¼ l

R~SS(w)RS(w)=(~SS, S)

and hence
Pm

l¼1� l ¼ 1.

5. An invariance principle

Consider a collection of N pedigrees. We assume that these can be of K different types.

The type � of a pedigree includes both the pedigree structure and phenotype vector. Let

P�, m� and Y� ¼ (Y�1, . . . , Y�n� ) denote a pedigree, number of meioses and phenotype

vector of type �, and �i 2 f1, . . . , Kg the type of pedigree i. The score function

w ! S(w; P�, Y�) 2 Am� we write more compactly as S�(w). To ensure that (5) holds for
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each family score, we assume (S�, 1) ¼ 0 and kS�k2 ¼ 1. The total linkage process is

defined as

Z(t) ¼
PN

i¼1ª�i
S�i

(vi(t))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ª

2
�i

q , 0 < t < L, (9)

a weighted sum of familywise scores (4) which is normalized to ensure (5). Here

vi(t) ¼ (vi1(t), . . . , vim� i
(t)) is the inheritance vector at locus t for the ith pedigree and ª�

the weight assigned to a pedigree of type �. By giving larger weights ª� to more informative

pedigree types, it is possible to increase power; see, for example, Sham et al. (1997) and

Hössjer (2003a).

As our test statistic for testing H0 versus H1 we use

Zmax ¼ sup
0< t<L

Z(t) > T ) Reject H0, (10)

where T is a predefined threshold. The significance level and power are

Æ(T ) ¼ PH0
(Zmax > T ),

	(T ) ¼ PH1
(Zmax > T ):

(11)

We will consider the asymptotic behaviour of Æ(T ) and 	(T ) as N ! 1 and K is kept fixed.

In order to avoid a trivial power limit 1, we define a sequence of contiguous alternatives (7)

for each pedigree type. This means, if �� is the posterior (7) for a pedigree of type �, that

��(w) ¼ 2�m�(1 þ ��~SS�(w)=
ffiffiffiffiffi
N

p
) þ o(1=

ffiffiffiffiffi
N

p
), 8w 2 Z

m�

2 , (12)

where �� measures the strength of the pedigree type � and ~SS� 2 Am� has been standardized

so that (~SS�, 1) ¼ 0 and k~SS�k ¼ 1. Notice that �� ¼ 0 corresponds to H0 and then

�� ¼ �0 � 2�m� .

We view Z in (9) as a random element of D[0, L], the space of right-continuous

functions on [0, L] with left-hand limits. In order to define weak convergence (!L ) we

endow D[0, L] with the Skorohod topology (Billingsley, 1968). Then the following result

holds:

Theorem 4. Let N� be the number of pedigrees of type �. Assume that N�=N ! 
� as

N ! 1, � ¼ 1, . . . , K. Then, assuming H1 and a sequence (12) of contiguous alternatives,

Z !L �þ W as N ! 1: (13)

Here � is the mean function, defined as

�(t) ¼
Xm

l¼1

exp(�2ljt � �j)
XK

�¼1

��
ffiffiffiffiffiffiffiffiffiffi

�
�

p
�� l,

where �� ¼ ��(~SS�, S�), �� l ¼
P

w;jwj¼ l R~SS�
(w)RS�(w)=(~SS�, S�), m ¼ max1<�<K m� and


� ¼ ª2
�
�=

PK
�9¼1ª

2
�9
�9. Further, W is a stationary and zero-mean Gaussian process on

[0, L] which is a finite mixture of Ornstein–Uhlenbeck processes with covariance function
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rW (h) ¼
Xm

l¼1

exp(�2lh)
XK

�¼1

v�k� l,

and k� l ¼
P

w;jwj¼ l R
2
S�

(w). Under H0, (13) holds with � ¼ 0 instead.

Equipped with the invariance principle (13), the continuous mapping theorem

immediately implies the following:

Corollary 1. Under the same assumptions as in Theorem 4, the significance level and power

(11) satisfy

Æ(T ) ! Æ1(T ) :¼ P(sup0< t<LW (t) > T ),

	(T ) ! 	1(T ) :¼ P(sup0< t<L(�(t) þ W (t)) > T ),

as N ! 1.

Exact formulae for Æ1(T ) and 	1(T ) are complicated, although approximations can be

obtained using extreme value theory for non-differentiable Gaussian processes. Define

� ¼ �(�), r ¼ �r9W (0)=2 and d ¼ ��9(�)=(2�(�)r), where the last two derivatives are taken

from the right. The approximations

Æ1(T ) � 1 � exp(�(1 ��(T ))(1 þ 2rLT 2)) (14)

and

	1(T ) � 1 ��(T � �) þ j(T � �)
2

�d
� 1

�(2d � 1) þ T

� �
(15)

are defined in Lander and Kruglyak (1995) and Feingold et al. (1993), respectively. Here �
and j are the cumulative distribution and density of a standard normal random variable.

Formula (15) requires (1 � d)� , T . The significance level Æ1(T ) depends on the crossover

rate r. It measures the amount of fluctuations of W and hence the amount of multiple testing

in (10). The non-centrality parameter �, and to some extent the normalized slope-to-noise

ratio d, determine the power 	1(T ).

6. Examples

Consider a genetic model based on binary phenotypes. Then Yk , the phenotype of the kth

pedigree member, equals 0, 1 or ? depending on whether k is unaffected, affected or has

unknown affections status. Let G ¼ (G1, . . . , Gn) be the set of genotypes at the disease

locus, where Gk ¼ (a2k�1a2k) is the genotype of the kth individual. It consists of two

alleles, one inherited from the father (a2k�1) and one from the mother (a2k). In a biallelic

model, we assume there are two alleles, a normal one (0) and one causing disease (1).

Notice that G ¼ G(a, w), where w is the inheritance vector and a ¼ (a1, . . . , a2 f ) the set of
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founder alleles (assuming founders are labelled 1, . . . , 2 f ). By Bayes’ rule and the law of

total probability the posterior distribution (7) of v(�) can be calculated from

�(w) ¼ 2�m P(Y jv(�) ¼ w)=P(Y ) / P(Y jv(�) ¼ w),

P(Y jv(�) ¼ w) ¼
X

a

P(Y ja, w)P(a) ¼
X

a

P(Y jG)P(a),

where in the second equation we sum over all 22 f possible founder allele combinations.

Computational reductions are possible, especially for pedigrees without loops; cf. Kruglyak et

al. (1996) and references therein. For a monogenic model without environmental effects one

has P(Y jG) ¼
Qn

k¼1 P(Yk jGk), where P(?jGk) ¼ 1, P(0jGk) ¼ 1 � P(1jGk), P(1j(00)) ¼ ł0,

P(1j(01)) ¼ ł1 and P(1j(11)) ¼ ł2. The three penetrance parameters (ł0, ł1, ł2) are

affection probabilities for an individual with 0, 1 or 2 disease-causing alleles. Let p be the

probability of the disease-causing allele. Assuming random mating, the founder alleles are

independent and hence P(a) ¼
Q2 f

j¼1 P(a j), where P(0) ¼ 1 � p and P(1) ¼ p. Hence the

four genetic model parameters ( p, ł0, ł1, ł2) determine the posterior distribution �.

We further need to define a score function S ¼ S(w; P, Y ). In nonparametric linkage

analysis S measures the extent to which the affected individuals share the same founder

alleles. Therefore, S is a function of Y only through the set of na affected individuals.

Three commonly used score functions (Whittemore and Halpern 1994; McPeek 1999) are

Spairs(w) ¼
X
k, l

IBDkl,

Sall(w) ¼
X

u

nrperm(a(u)), (16)

Srobdom(w) ¼
X2 f

j¼1

7n j :

The first sum ranges over all pairs k, l of affected individuals and IBDkl ¼ IBDkl(w) is the

number of alleles that k and l share identical by descent, that is, from the same founder

allele. In the middle equation u picks one allele from each affected individual, and the sum

ranges over all 2na ways to do this. Further, a(u) is a vector of length na containing the

founder alleles picked by u, and nrperm(a(u)) is the number of permutations of a(u) that

leaves it unchanged. In the definition of Srobdom, n j ¼ n j(w) is the number of affected

pedigree members that share at least one copy of the jth founder allele. It is assumed that all

score functions in (16) are standardized so that (1, S) ¼ 0 and kSk ¼ 1.

When all N pedigrees are of the same type it follows that the limit process in Theorem 4

has
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� ¼ �(�) ¼ �(~SS, S),

r ¼
Xm

l¼1

lkl,

d ¼
Pm

l¼1 l� lPm
l¼1 lkl

,

if family type index � is omitted. Hence r is the ‘average frequency size’ of S and d depends

on the frequencies of ~SS in relation to those of S.

When computing r and d, we utilize founder phase symmetry reduction of inheritance

vectors and fast Fourier transforms of functions S 2 Am (Kruglyak and Lander 1998). Then

R~SS and RS are computed in O(2m� f log 2m� f ) steps for a single pedigree. In Tables 1–3,

Table 1. Values of kl and r for various score functions, pedigrees and phenotypes when either N ¼ 1

or N . 1 but all pedigrees are of the same type. For pedigree numbers and labelling of individuals,

see Figure 1. The possible phenotypes are 1 (affected) and � (either unaffected, 0, or unknown, ?). Sall

and Srobdom are not included for those combinations of (P, Y ) where they give the same results as

Spairs

S P Y k1 k2 k3 k4 k5 k6 r

Spairs 1 (�, �, 1, 1) 0 1 0 0 0 0 2

Spairs 2 (�, �, 1, 1, 1) 0 1 0 0 0 0 2

Spairs 3 (�, �, 1, 1, 1, 1) 0 1 0 0 0 0 2

Sall 0 0.9855 0 0.0423 0 0 2.0291

Srobdom 0 0.9499 0 0.0501 0 0 2.1002

Spairs 4 (�, �, 1, 1, 1, 1, 1) 0 1 0 0 0 0 2

Sall 0 0.9577 0 0.0423 0 0 2.0847

Srobdom 0 0.8634 0 0.1366 0 0 2.2732

Spairs 4 (�, �, �, 1, 1, 1, 1) 0 1 0 0 0 0 2

Sall 0 0.9855 0 0.0145 0 0 2.0291

Srobdom 0 0.9499 0 0.0501 0 0 2.1002

Spairs 4 (�, �, �, �, 1, 1, 1) 0 1 0 0 0 0 2

Spairs 4 (�, �, �, �, �, 1, 1) 0 1 0 0 0 0 2

Spairs 5 (�, �, �, �, �, �, 1, 1) 0 0.5 0.3333 0.1667 0 0 2.6667

Spairs 5 (�, �, �, 1, 1, �, 1, 1) 0 0.8137 0.1765 0.0098 0 0 2.1961

Sall 0 0.6556 0.2981 0.0462 0 0 2.3906

Srobdom 0 0.5236 0.3658 0.1106 0 0 2.5870

Spairs 5 (�, 1, �, 1, 1, �, 1, 1) 0.1356 0.7034 0.1525 0.0085 0 0 2.0339

Sall 0.2166 0.4887 0.2513 0.0435 0 0 2.1216

Srobdom 0.2482 0.3626 0.2988 0.0904 0 0 2.2314

Spairs 6 (�, . . . , �, 1, 1) 0.1333 0.1667 0.2667 0.2667 0.1333 0.0333 3.2

Spairs 7 see Figure 1 0.1356 0.7034 0.1525 0.0085 0 0 2.0339

Sall 0.2166 0.4887 0.2513 0.0435 0 0 2.1216

Srobdom 0.2482 0.3623 0.2988 0.0904 0 0 2.2314
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we have evaluated �, d, r, kl, � l, � and (~SS, S)2 when N ¼ 1 for the three score functions

(16), two genetic models, the pedigrees in Figure 1 and various phenotype vectors. It is

seen that r and d in most cases are quite close to 2 and 1, whereas � varies a lot. From

Table 1 we find that the average frequency size, r, is highest for Srobdom, followed by Sall

Table 2. Values of � l, d, �, efficiency ((S, ~SS)2) and � when N ¼ 1, for score function Sall, various

pedigrees and phenotype vectors. The genetic model is dominant ( ł0 ¼ 0, ł1 ¼ ł2 ¼ 1) with disease

allele frequency 0.1. � l ¼ 0 when l > 5 except for pedigree 6, which has �5 ¼ 0:1333 and

�6 ¼ 0:0333

P Y �1 �2 �3 �4 d � (S, ~SS)2 �

1 (?, ?, 1, 1) 0 1 0 0 1 0.4904 0.9986 0.4901

2 (?, ?, 1, 1, 1) 0 1 0 0 1 0.6916 0.9964 0.6907

3 (?, ?, 1, 1, 1, 1) 0 0.9586 0 0.0414 1.0265 0.7853 0.9370 0.7602

(?, ?, 0, 1, 1, 1) 0 1 0 0 1 1.6972 0.4007 1.0743

(?, ?, 0, 0, 1, 1) 0 1 0 0 1 1.8451 0.1337 0.6748

4 (?, ?, 1, 1, 1, 1, 1) 0 0.8896 0 0.1104 1.0653 0.7778 0.8694 0.7252

(?, ?, 0, 1, 1, 1, 1) 0 0.9567 0 0.0433 1.0284 2.3266 0.4104 1.4904

(?, ?, 0, 0, 1, 1, 1) 0 1 0 0 1 2.6302 0.1889 1.1431

5 (?, ?, ?, ?, ?, ?, 1, 1) 0 0.5 0.3333 0.1667 1 0.5811 1 0.5811

(?, ?, ?, 1, 1, ?, 1, 1) 0 0.5698 0.3493 0.0809 1.0504 0.9532 0.8841 0.8962

(?, ?, 0, 1, 1, 0, 1, 1) 0 0.5446 0.3564 0.0990 1.0685 1.1991 0.7822 1.0605

(0, 1, 0, 1, 1, 0, 1, 1) 0.3141 0.3518 0.2570 0.0771 0.9884 2.3828 0.7733 2.0954

6 (?, . . . , ?, 1, 1) 0.1333 0.1667 0.2667 0.2667 1 0.4340 1 0.4340

7 see Figure 1 0.2793 0.3575 0.2793 0.0838 1.0217 7.9373 0.0881 2.3563

Table 3. As Table 2, but for a recessive model (ł0 ¼ ł1 ¼ 0, ł1 ¼ 1) with disease allele frequency

0.1. � l ¼ 0 when l > 5 except for pedigree 6, which has �5 ¼ 0:1333 and �6 ¼ 0:0333

P Y �1 �2 �3 �4 d � (S, ~SS)2 �

1 (?,?,1,1) 0 1 0 0 1 1.3368 0.7492 1.1571

2 (?,?,1,1,1) 0 1 0 0 1 2.2233 0.5818 1.6958

(?,?,0,1,1) 0 1 0 0 1 1.8014 0.4835 1.2526

3 (?,?,1,1,1,1) 0 0.9432 0 0.0568 1.0417 2.7880 0.4793 1.9302

(?,?,0,1,1,1) 0 1 0 0 1 3.2444 0.3776 1.9938

(?,?,0,0,1,1) 0 1 0 0 1 2.2496 0.3327 1.2926

4 (?,?,1,1,1,1,1) 0 0.8557 0 0.1443 1.0978 2.7690 0.4421 1.8411

(?,?,0,1,1,1,1) 0 0.9411 0 0.0589 1.0437 4.9665 0.2875 2.6631

(?,?,0,0,1,1,1) 0 1 0 0 1 4.1454 0.2573 2.1027

5 (?,?,?,?,?,?,1,1) 0 0.5 0.3333 0.1667 1 1.1991 1 1.1991

(?,?,0,0,0,0,1,1) 0 0.5203 0.2952 0.1845 0.9991 1.4460 0.9854 1.4354

(0,0,0,0,0,0,1,1) 0 0.4821 0.3214 0.1964 1.0179 1.6248 0.9899 1.6166

6 (?, . . . , ?,1,1) 0.1333 0.1667 0.2667 0.2667 1 1.3943 1 1.3943

7 see Figure 1 0 1 0 0 0.9427 3.8730 0.0056 0.2896
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and Spairs. The efficiencies of all three score functions (16) compared to the optimal ~SS are

generally smaller for larger pedigrees, especially when these have many unaffected

individuals. Hence, there is often a considerable loss of performance with score functions

based on affected individuals only. In Tables 2 and 3, we only included Sall. In general

Srobdom is slightly more and Spairs slightly less efficient than Sall for the dominant model,

whereas the opposite is true for the recessive model. See also McPeek (1999), Feingold et

al. (2000) and Sengul et al. (2001) for further comparisons between score functions.

For non-contiguous alternatives (8), the non-centrality parameter is

� ¼ �(�) ¼
ffiffiffiffiffi
N

p
�(~SS, S) (17)

when all pedigrees are of the same type. More generally, � is essentially a weighted average

of (17), with � ¼ �� and ~SS ¼ ~SS�, for different pedigree types �. Hence, � depends a lot on

sample size N (in addition to dependence on genetic model, pedigree and score function, as

reported in Tables 2–3). Therefore, it will vary a lot between data sets. The quantities d and

r, on the other hand, are essentially weighted averages of the corresponding quantities d� and

r� included in the sample. They depend very little on N and not on �. For this reason, d and

r will usually not vary much between data sets and are quite stable around values 1 and 2–3,

respectively. In Figures 2 and 3, we have plotted the (approximate) power (15) as a function

of the (approximate) significance level (14) for chromosome- and genome-wide scans. In the

plots, we have chosen values of � large enough (corresponding to large enough samples) to

yield reasonable power. It is seen from these curves that � has a large effect on power but r
and d do not.

7. Discussion

In this paper we have shown that spectral decomposition of score functions is a valuable

tool when covariance and mean functions for linkage score functions Z are computed.

Under the assumption of perfect marker information, the results in this paper hold for

general pedigree structures. We derived an invariance principle for Z asymptotically as the

number of pedigrees tends to infinity. These results were applied to compute power 	1 and

significance levels Æ1 when the presence of a disease locus is tested. By plotting 	1 as

function of Æ1 (rather than the threshold T ), we demonstrated that the non-centrality

parameter essentially determines the strength of the test.

In principle, our results are valid for score functions S based on more or less arbitrary

(that is, not necessarily binary) phenotypes and genetic models. See Commenges (1994),

Tang and Siegmund (2001) and Hössjer (2003c; 2005) for examples of score functions for

quantitative and other phenotypes. Technically, they are more realistic with a continuum of

possible pedigree types � ¼ (P, Y ) for quantitative phenotypes. In fact, at the expense of

more technical arguments, it is possible to generalize Theorem 4 to K ¼ 1, using a similar

approach to that in Hössjer (2003a).

The perfect marker assumption used in this paper requires a dense set of genetic markers.

In view of the current availability of several million single nucleotide polymorphism (SNP)
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markers in the human genome, this is not unrealistic. For large multigenerational pedigrees,

the assumption that all (or sufficiently many) pedigree members are genotyped for DNA is

not realistic though.

As a final remark, we notice that quite a different kind of asymptotics occurs when the

focus is on estimating the position of � rather than on testing for its presence. Then,

assuming H1, we know that � 2 [0, L] and rescale Z locally around �. For a fixed sequence

of alternatives (8) (rather than contiguous alternatives (12)), the rescaled process

~ZZ(s) ¼
ffiffiffiffiffi
N

p
(Z(�þ N�1s) � Z(�)) (18)
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Figure 2. Plot of 	1 as function of Æ1 for one chromosome when T varies, using approximations

(14)–(15). Chromosome length is 1.5 Morgans and parameter values (a) � ¼ 2, 3, 4, 5, 6, r ¼ 2,

d ¼ 1, (b) r ¼ 1:5, 2, 2:5, 3, � ¼ 3, d ¼ 1, (c) r ¼ 1:5, 2, 2:5, 3, � ¼ 5, d ¼ 1 and (d) d ¼ 0:9, 1,

1.1, � ¼ 4, r ¼ 2. To distinguish curves, note that 	1 is an increasing function of � and a decreasing

function of r and d when Æ1 is kept fixed.
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is defined over local neighbourhoods of � of size O(N�1). The N�1 rescaling implies that the

length of confidence regions of � tends to zero at a fast rate N�1. As N ! 1, ~ZZ converges

weakly to a compound Poisson process. The reason for a non-Gaussian limit is that the

number of crossovers in a window of size O(N�1) does not grow with N . For this reason,

individual crossovers are visible in the limit process as jump points of the Poisson process.

See Kong and Wright (1994), Kruglyak and Lander (1995), Dupuis and Siegmund (1999) and

Hössjer (2003a; 2003b) for more details.
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Figure 3. Plot of 	1 as function of Æ1 for 22 autosomes when T varies, using

Æ1(T ) ¼ 1 �
Q22

s¼1(1 � Æ1,s(T )) and 	1(T ) ¼ 1 � (1 � 	1, t(T))
Q

s 6¼ t(1 � Æ1,s(T )). Here t is the

chromosome where � is located and 	1,s(T) and Æ1,s(T) approximations for chromosome s using

(14)–(15). The 22 chromosome lengths are taken from Table 1.2 of Ott (1999) and t ¼ 1 is assumed.

The values of �, r and d are as in Figure 2.
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Appendix: Proofs

Proof of Theorem 1. We start by proving the spectral decomposition for Qh and proceed by

induction with respect to m. For m ¼ 1 we have

Qh ¼ 1 � Ł Ł
Ł 1 � Ł

� �
,

where Ł ¼ Ł(h) ¼ (1 � exp(�2h))=2 is the recombination fraction between two loci at

distance h Morgans. That is, Ł is the probability of an odd number of crossovers between the

two loci. Now S0(0) ¼ S0(1) ¼ 1 and S1(0) ¼ 1, S1(1) ¼ �1. We write S0 ¼ (1, 1) and

S1 ¼ (1, �1) as row vectors. Inspection shows that S0 has eigenvalue 1 and S1 eigenvalue

1 � 2Ł ¼ exp(�2h), and this completes the proof for m ¼ 1.

For the induction step, let superscripts denote the number of meioses and notice that

Qm1þm2

h ¼ Qm1

h � Qm2

h ,

Sw ¼ Sw1
� Sw2

,

where w1 2 Zm1

2 , w2 2 Zm2

2 , w ¼ (w1, w2) 2 Zm1þm2

2 and � is the tensor product. Hence, if

Sw1
and Sw2

are eigenvectors of Qm1

h and Qm2

h with eigenvalues ºw1
and ºw2

, then Sw is an

eigenvector of Qm1þm2

h with eigenvalue ºw1
ºw2

. By induction, we assume that

ºw1
¼ exp(�2jw1jh) and ºw2

¼ exp(�2jw2jh). Then ºw1
ºw2

¼ exp(�2(jw1j þ jw2j)h) ¼
exp(�2jwjh). This completes the proof for Qh. Notice then that

A ¼ lim
h!0

(Qh � I)=h, (A:1)

where the limit is taken from above and I is the identity operator on A ¼ Am. For each fixed

h . 0, Sw is an eigenvector of the right-hand side of (A.1) with eigenvalue

(exp(�2hjwj) � 1)=h. By continuity, we can take the limit h ! 0 and conclude that Sw is

an eigenvector of A with eigenvalue �2jwj. h

Proof of Theorem 2. Let ºw ¼ exp(�2hjwj) be the eigenvalue of Sw for the operator

Qh ¼ fQh(w, w9); w, w9 2 Zm
2 g. Viewing S ¼ fS(w); w 2 Zm

2 g as a row vector in Zm
2 and

letting ST be the transpose of S, we obtain
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rZ(h) ¼ E H0
(Z(t)Z(t þ h))

¼
P

w,w9PH0
(v(t) ¼ w)P(v(t þ h) ¼ w9jv(t) ¼ w)S(w)S(w9)

¼
P

w,w9�0(w)Qh(w, w9)S(w)S(w9)

¼ 2�mSQhST

¼ 2�m
P

w RS(w)Swð ÞQh

P
w9RS(w9)Sw9ð ÞT

¼ 2�m
P

w,w9RS(w)RS(w9)SwQhST
w9

¼
P

w R2
S(w)ºw,

where SwQhST
w9 ¼ 2mºw(Sw, Sw9) was used in the last step. By collecting all w into groups

with identical jwj, (6) follows from the last line. Finally, by Parseval’s formula,

Xm

l¼1

kl ¼
X
w 6¼0

R2
S(w) ¼

X
w

R2
S(w) ¼ kSk2 ¼ 1,

since RS(0) ¼ (S, 1) ¼ 0. h

Proof of Theorem 3. Viewing � in (7) as a row vector in Zm
2 , the marginal distribution of

v(t) under H1 is �Qj t��j. Hence, using a similar expansion to that in the proof of Theorem 2,

we obtain

�Z(t) ¼
P

w PH1
(v(t) ¼ w)S(w)

¼ �Qj t��jS
T

¼
P

w R�(w)Swð ÞQj t��j
P

w9RS(w9)Sw9ð ÞT

¼ 2m
P

w R�(w)RS(w)ºw

¼ �
P

w R~SS(w)RS(w)ºw,

where ºw ¼ exp(�2jwj jt � �j) is the eigenvalue of Sw for the operator Qj t��j. The proof is

finished by grouping all terms with the same jwj. h

Proof of Theorem 4. We start proving convergence of the first two moments of Z ¼ Z N in

(9) towards those of the limit process �þ W . Let �� t ¼ ��Qj t��j be the distribution of vi(t)

under H1 for a pedigree of type � (that is, �i ¼ �). Then, since Qh is a self-adjoint operator

on Am� and (1, QhS�) ¼ (1Qh, S�) ¼ (1, S�) ¼ 0, we obtain
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��(t) :¼
ffiffiffiffiffi
N

p
E(S�(vi(t)) ¼

ffiffiffiffiffi
N

p
(2m��� t, S�)

¼
ffiffiffiffiffi
N

p
(2m���, Qj t��jS�)

¼
ffiffiffiffiffi
N

p
(2m��� � 1, Qj t��jS�)

! ��(~SS�, Qj t��jS�)

¼ ��
P

w R~SS�
(w)RS�(w)exp(�2jwj jt � �j)

as N ! 1. Let 
�N ¼ N�=N and 
�N ¼ ª2
�
�N=

PK
�9¼1ª

2
�9
�9N

� �
. Then write the first

moment of Z N as

E(Z N (t)) ¼
XK

�¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�N
�N

p
��(t):

By combining the last two displayed equations, collecting terms with the same jwj and

noticing 
�N ! 
� and 
�N ! 
�, it follows that E(Z N (t)) ! �(t) as N ! 1.

Let ��st ¼ PH1
((vi(s), vi(t)) ¼ (�, �)) be the bivariate marginal distribution of vi(�) for a

pedigree of type � (that is, �i ¼ �). Then, viewing ��st as an element of A2m� , we have

r�(t, t þ h) :¼ cov(S�(vi(t)), S�(vi(t þ h)))

¼ (22m��� t, tþh, S� � S�) � (2m��� t, S�)(2m���, tþh, S�):

Since 2m��� ! 1 as N ! 1, it follows that 2m��� t ! 1 and 2m��� t, tþh ! Qh. In the last

limit we interpreted Qh as an element of A2m� . Hence,

r�(t, t þ h) ! (2m� Qh, S� � S�) � (1, S�)2

¼ (2m� Qh, S� � S�)

¼ 2�m� SQhST

¼
P

w R2
S�

(w)exp(�2jwjh):

The covariance function of Z N can be written as

cov(Z N (t), Z N (t þ h)) ¼
XK

�¼1


�N r�(t, t þ h),

and the last two displayed equations imply convergence of covariances of Z N towards those

of W .

Convergence of finite-dimensional distributions of Z N is proved in the standard way

using the Cramér-Wold device and the Lindeberg–Feller central limit theorem for triangular

arrays. We omit the details, but notice that linear combinations (with fixed weights and time

indices t) of S�i
(vi(t)) are uniformly bounded random variables in i, and this enforces the

central limit theorem.

1110 O. Hössjer



It remains to prove tightness. According to Theorem 15.6 in Billingsley (1968), it suffices

to find a constant C . 0 such that

I :¼ E((Z N (t) � Z N (t1))2(Z N (t2) � Z N (t))2) < C(t2 � t1)2 (A:2)

uniformly for all large enough N and 0 < t1 , t , t2 < L. Write ªi ¼ ª�i
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ª
2
�i

q
,

Ui ¼ S�i
(vi(t)) � S�i

(vi(t1)) and Vi ¼ S�i
(vi(t2)) � S�i

(vi(t)). Then

I ¼ E
XN

i¼1

ªiUi

 !2 XN

i¼1

ªiVi

 !2
0
@

1
A

¼
XN

i¼1

ª4
i E(U 2

i V 2
i )

þ
X
i 6¼ j

ª2
i ª

2
jE(U 2

i V 2
j)

þ 2
X
i6¼ j

ª2
i ª

2
jE(UiU jViV j)

¼: i þ ii þ iii:

Using 2jUiU jj < (U 2
i þ U 2

j) and 2jViV jj < (V 2
i þ V 2

j), it follows that jiiij < i þ ii. Hence

I < 2(i þ ii). Because of the Markov property of all vi(�) (also under H1) and the uniform

boundedness of the functions S�, it is possible to find constants C1, C2 . 0 such that

E(S�i
(vi(t2)) � S�i

(vi(t1)))2 < C1jt2 � t1j,

E((S�i
(vi(t)) � S�i

(vi(t1)))2(S�i
(vi(t2)) � S�i

(vi(t)))2) < C2(t2 � t1)2,

uniformly for all i and 0 < t1 , t , t2 < L. Since
PN

i¼1ª
2
i ¼ 1, if follows that

ii < C2
1(t2 � t1)2. Further, since max1<i<Nªi < 1 and hence

PN
i¼1ª

4
i < 1, it follows that

i < C2(t2 � t1)2. But then (A.2) holds with C ¼ 2(C2
1 þ C2), and weak convergence under

H1 is proved.

Weak convergence under H0 is proved in the same way. We simply put �� ¼ 0 for all �
in the proof above. h
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