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We develop an optimal quantization approach for numerically solving nonlinear filtering problems

associated with discrete-time or continuous-time state processes and discrete-time observations. Two

quantization methods are discussed: a marginal quantization and a Markovian quantization of the

signal process. The approximate filters are explicitly solved by a finite-dimensional forward procedure.

A posteriori error bounds are stated, and we show that the approximate error terms are minimal at

some specific grids that may be computed off-line by a stochastic gradient method based on Monte

Carlo simulations. Some numerical experiments are carried out: the convergence of the approximate

filter as the accuracy of the quantization increases and its stability when the latent process is mixing

are emphasized.
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1. Introduction

We address the following nonlinear discrete-time filtering problem. In this paper, all the

random variables are defined on a probability space (�, F , P). The signal process is an

Rd-valued Markov chain fX k , k 2 Ng with known transition probability Pk(x, dx9), k > 1

(i.e. the transition from time k � 1 to time k). The initial law of X 0 is known and denoted

by �. We have noisy observations fYk , k 2 N�g valued in Rq, and our aim is to compute at

some time n > 1 the conditional law —Y ,n of X n given the observations Y ¼ (Y1, . . . , Yn).

In other words, we wish to calculate the conditional expectations

—Y ,n f ¼ E[ f (X n)jY1, . . . , Yn], (1:1)

for all reasonable functions f on Rd .

Throughout the paper, we fix the observations Y ¼ (Y1, . . . , Yn) at y ¼ (y1, . . . , yn) and

we write — y,n for —Y ,n. The initial value Y0 is assumed for simplicity to be non-random,

equal to zero for convenience.

We consider an observation process (or design) where the pair (X k , Yk)k2N is a Markov

chain and such that, for all k > 1:

(H) The law of Yk conditional on (X k�1, Yk�1, X k) admits a density
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y9 7! g k(X k�1, Yk�1, X k , y9):

Notice that the transition probability of the Markov chain (X k , Yk)k2N is then given by

Pk(x, dx9)g k(x, y, x9, y9)dy9.

An example of the observation scheme considered above is the model

X k ¼ Fk(X k�1, �k), k ¼ 1, . . . , n,

Yk ¼ Gk(X k�1, Yk�1, X k , �k), k ¼ 1, . . . , n,

(1:2)
(1:3)

where (�k)k and (�k)k are independent sequences of independent and identically distributed

(i.i.d.) random variables, and Fk, Gk are measurable functions. The pair (X k , Yk)k is then

Markovian with respect to the filtration generated by (�k , �k)k. The basic assumption

concerning Gk and (�k)k is that for each k, x, x9 2 Rd , y 2 Rq, the variable Gk(x, y, x9, �k)

admits a density y9 7! gk(x, y, x9, y9).

An explicit solution to problem (1.1) can be found only in very special cases: essentially

when the signal-observation model forms a linear Gaussian system, leading to the well-

known Kalman–Bucy filter. In the general case, the nonlinear filtering problem (1.1) leads

to a dynamical system in the infinite-dimensional space of measures, and we have to search

for approximate solutions.

Actually, approximations to (1.1) have been studied by various authors. We refer for

example to Kushner (1977), Di Masi and Runggaldier (1982) and Di Masi et al. (1985) for

approaches related to the one followed here. In these papers, for an observation scheme in

the particular form

Yk ¼ G(X k)þ �k , k ¼ 1, . . . , n,

the method consists basically of approximating the signal Markov chain (X k)k (or, in the

continuous-time problem, the signal diffusion (X t) t) by a finite state space Markov chain.

This reduces the nonlinear filtering problem to an approximate resolution by an iterative

finite-dimensional system. In these methods, the space grid is fixed prior to any computation

and regardless of the structure of the Markov chain. So, from a computational viewpoint, they

are effective only for low dimensions of the signal state space. On the other hand, although

some bounds are obtained in Di Masi and Runggaldier (1982) and Di Masi et al. (1985), they

are not sharp. Moreover, they essentially yield the convergence of the approximate filter to

the true filter but do not provide an estimate of the rate of convergence.

We propose in this paper an approximation of the filter based on an optimal quantization

approach. Basically this means relying on a spatial discretization of the dynamics of the

signal (X k)1<k<n optimally ‘fitted’ to its probabilistic features. Let us be more specific by

considering the case of a single random vector X. If we wish to approximate X by a

random vector taking its values in a finite grid ˆ :¼ fx1, . . . , x Ng, we consider its

projection Projˆ(X ) on the grid according to the nearest-neighbour rule. Then the resulting

mean L p error (p > 1) is kX � Projˆ(X )k p ¼ kmin1<i<N jX � xijk p. This only depends on

the distribution P
X
of X and the grid ˆ. For historical reasons, Projˆ(X ) is often called the

quantization of the random variable X by the grid ˆ and the induced error, the L p mean

quantization error (see Graf and Luschgy 2000). This quantity has been extensively

investigated in signal processing and information theory since the early 1950s. Thus, the L p

mean quantization error is continuous as a function of the grid ˆ and reaches a minimum
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over all the grids ˆ with size at most N . Furthermore, following Zador’s theorem (see Graf

and Luschgy 2000),

min
ˆ,jˆj<N

kX � Projˆ(X )k p ¼ c(PX , p)3 c2(d)N
�1=d þ o(N�1=d)

as N goes to infinity. If PX has an absolutely continuous component, c(PX , p) . 0; its value

is known, whereas that of the universal constant c2(d) remains unknown; see Graf and

Luschgy (2000) for bounds and asymptotics.

On the other hand, except in some very specific cases such as the uniform distribution

over the unit interval, no closed form is available for the optimal grids that achieve the

minimal quantization error of a probability distribution. In fact, no rigorous result is

available to describe precisely the geometric structure or ‘shape’ of such an optimal grid.

However, using the integral representation of kX � Projˆ(X )k p

p
one derives a stochastic

gradient descent that converges towards some (at least locally) optimal grids. The

distribution of Projˆ(X ) and the resulting quantization error can be obtained as by-products,

especially when in the quadratic case p ¼ 2 (see Pagès 1997). Simulations like those

carried out in Pagès and Printems (2003) for the two-dimensional Gaussian distribution

confirm what might be expected a priori: the more heavily an area is weighted by the

quantized distribution, the more points it contains.

A first application to numerical probability is proposed in Pagès (1997) for numerical

integration: if ˆ� ¼ fx*,1, . . . , x*,Ng is an optimal grid for the quadratic quantization of X

and if f : Rd ! R is C1 with Lipschitz continuous differential Df , then

E f (Projˆ�(X )) ¼
X

1<i<N

f (x�,i) pi, with pi ¼ P(Projˆ�(X ) ¼ xi),

jE f (Projˆ�(X ))� E f (X )j < [Df ]LipkX � Projˆ� (X )k22 ¼ O
1

N 2=d

� �
:

This shows that weak approximation by quantization can be superior to strong approximation,

so that the quantization method may outperform Monte Carlo simulation at least up to four

dimensions. Numerical experiments carried out in Pagès and Printems (2003) even suggest

that this naive approach is in fact pessimistic, in particular for not too large values of N .

These ideas can be transferred to Markovian dynamics (X k)k in order to approximate

efficiently the transition distributions L(X k j X k�1) and the joint distributions (X k , X k�1).

Two different methods can be implemented: one approach gives preference to the

approximation of the marginal distributions of the signal X k at every time k ¼ 0, . . . , n;

the other enhances the preservation of the dynamics, namely the Markov property. In the

first case, one approximates the signal X k at each time k by its marginal optimal

quantization,

X̂X k :¼ Projˆk
(X k), k ¼ 0, . . . , n,

where the grids ˆk minimize the L p quantization error kX k � Projˆk
(X k)k p

among the grids

with size N k for every k ¼ 0, . . . , n. The sequence (X̂X k)0<k<n no longer has the Markov

property. Then one defines the approximate quantized filter by simply replacing in the
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forward explicit formula for the nonlinear filter the conditional law of X kþ1 given X k by the

conditional law of X̂X kþ1 given X̂X k . This approach was originally introduced in Bally and

Pagès (2003) and Bally et al. (2001) to discretize reflected backward stochastic differential

equations.

In the Markovian approach, and for a signal-observation model of the form (1.2)–(1.3),

one sets

X̂X k ¼ Projˆk
(Fk(X̂X k�1, �k)), X̂X 0 ¼ Proj

0̂
(X0):

Thus, the sequence (X̂X k)0<k<n remains a Markov chain with respect to the same filtration as

(X k) but is no longer the best L p marginal approximation of (X k)0<k<n. Then one considers

as an approximate quantized filter the nonlinear filter of X̂X n conditional on the process

~YYk ¼ Gk(X̂X k�1, ~YYk�1, X̂X k , �k), k ¼ 1, . . . , n:

This Markovian quantization approach was introduced in Pagès et al. (2004) to approximate

numerically some stochastic control problems for multidimensional Markov chains.

As far as filtering is concerned, both quantization approaches make possible the analysis

of the error under some appropriate Lipschitz continuity assumptions on the underlying

Markov dynamics. The a priori error bounds are expressed using the quantization errors

kZ k � Projˆk
(Z k)kP

, where Z k ¼ X k in the marginal approach and Z k ¼ F(X̂X k�1, �k) in

the Markovian approach. Although the methods of proof are significantly different, the a

priori error bounds look quite similar for both methods, suggesting a balance between the

positive and negative features of the two approximation methods. An extensive discussion

and comparison of both quantization methods, marginal and Markovian, is carried out in

Pagès et al. (2004b). For a detailed description of the algorithms we refer to Bally and

Pagès (2003) and Pagès et al. (2004a) in which the methods were originally introduced.

In Section 6, we analyse the practical aspects of the algorithm in terms of complexity.

The most interesting feature of the quantization approach is that, once an optimal

quantization of the signal (X k)0<k<n has been processed and kept off-line, it

instantaneously produces for any set of observations some reproducible deterministic

results. This underlines the fact that the set of observations is reasonably likely since the

approximate filter distribution is structurally supported by the quantization of X . This can

be implemented with multidimensional signal processes, at least up to four dimensions and

possibly higher. This restriction on the dimension comes from the fact that, for a given size

N of the quantization, the error does depend on the dimension d of the signal as for

numerical integration.

In the special case of a stationary signal, the marginal quantization of the whole Markov

chain reduces to that of its stationary distribution, so that the the quantization optimization

phase – which is clearly the most demanding one – is divided by a factor n in terms of

duration and storage.

In recent years, a technique for approximating the nonlinear filtering problem has

received much attention: it is a Monte Carlo method based on interacting particle systems

(see Del Moral 1998; Del Moral et al. 2001; Florchinger and LeGland 1992; Crisan and

Lyons 1997); this is a typical ‘on-line’ method (the whole process involves the observation

set y and the function f ), while quantization is typically an off-line method (the demanding
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part of the computations can be stored, those depending on y and f being instantaneous).

So it is rather difficult to define a comparison protocol since their fields of applications are

quite different.

It may also be interesting to keep the same filter for close observation samples in order

to avoid heavy computations. This can be processed by replacing the observations by some

discrete values. This point of view is investigated for real-valued observations in Newton

(2000a; 2000b): some functional weak convergence results toward the original filter are

given. In a framework where both X and the observation process are quantized, some a

priori error bounds are derived in Sellami (2004).

This paper is organized as follows. Some preliminaries on nonlinear filtering are provided

in Section 2. In particular, we recall the well-known forward inductive formula for the filter,

and also the (less well-known) backward formula. In Sections 3 and 4 we study the

approximate filter by marginal and Markovian quantization respectively, including an

explicit error analysis. In Section 5 the convergence of both quantized approximating filters

is established. In Section 6 we show how to obtain optimal grids for both quantization

methods, and we discuss their respective qualities and drawbacks from a practical

viewpoint, especially concerning the optimization phase. We point out that the marginal

quantization approach can be significantly simplified from a computational viewpoint in the

important case of stationary signal processes. We discuss in Section 7 how our results may

be applied to the case of discretely observed diffusions. Finally, in Section 8 we describe

several numerical experiments. First, we compare our approximate filter with the explicit

Kalman–Bucy filter: on the one hand its convergence – with some rate – as the size of the

quantization increases is confirmed, and on the other hand its stability as n increases. Then

we evaluate the approximate filter by quantization in a state model with multiplicative

Gaussian noise arising in stochastic volatility models: a convergent behaviour is obtained as

the quantization accuracy increases, although no reference value is available.

We close this introductory section with a couple of observations concerning notation.

First, for every Borel function f : Rd ! R, set

k f k1 ¼ sup
x2Rd

j f (x)j and [ f ]Lip ¼ sup
x 6¼x9

j f (x)� f (x9)j
jx � x9j :

Second, we use the traditional notation for transition kernels: if P is a bounded transition

kernel and f is a bounded measurable function, we write Pf for the bounded measurable

function Pf (x) :¼
Ð

f (x9)P(x, dx9).

2. Nonlinear filtering: preliminaries and remarks

In this section, we recall some useful facts about nonlinear filtering. Using the Markov property

of the pair (X , Y ) and the Bayes formula, one can derive the Kallianpur–Striebel (1968)

formula for the the filter:

— y,n f :¼ � y,n f

� y,n1
, (2:1)
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where � y,n is the so-called unnormalized filter defined by

� y,n f ¼
ð

f (xn)�(dx0)
Yn

k¼1

g k(xk�1, yk�1, xk , yk)Pk(xk�1, dxk), (2:2)

¼ E[ f (X n)Ly,n], (2:3)

with

Ly,n :¼
Yn

k¼1

g k(X k�1, yk�1, X k , yk) (2:4)

(and by convention, y0 ¼ 0). Notice that

� y,n1 ¼ E[Ly,n] ¼ �n(y), (2:5)

where �n(y) is the value of the density function �n of (Y1, . . . , Yn) with respect to the

Lebesgue measure at the observed values y ¼ (y1, . . . , yn) 2 (Rq)n.

Henceforth, we shall write, for notational convenience,

g y,k(x, x9) ¼ gk(x, yk�1, x9, yk), k > 1:

The unnormalized filter can be written using a family of bounded transition kernels H y,k ,

k ¼ 1, . . . , n, defined on bounded measurable functions f : Rd ! R by

H y,k f (x) :¼ E[ f (X k)g y,k(x, X k)jX k�1 ¼ x] ¼
ð

f (x9)g y,k(x, x9)Pk(x, dx9), x 2 Rd :

For convenience we also define

H y,0 f (x) :¼ � y,0 f ¼ E[ f (X0)] ¼
ð

f (x0)�(dx0), x 2 Rd :

Then, one can show that the unnormalized filter at time k, � y,k :¼ E[ f (X k)Ly,k], satisfies the

inductive formula

� y,k f ¼ � y,k�1 H y,k f , k ¼ 1, . . . , n (2:6)

so that

� y,n ¼ H y,0sH y,1s � � � sH y,n: (2:7)

Equation (2.6) is called the forward expression for the filter. One can also derive from the

‘symmetric’ expression (2.7) a backward expression for the filter which will turn out to be

useful for our proofs, namely

� y,n f ¼ u y,�1( f ),

where u y,�1( f ) is defined as the final value of the backward induction

u y,n( f )(x) ¼ f (x),

u y,k�1( f ) ¼ H y,k u y,k( f ), k ¼ 0, . . . , n: (2:8)
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Note that in fact u y,k f ¼ H y,k�1s � � � sH y,n f .

We shall replace the true filter by a computable approximate filter. This will follow from

a spatial discretization of the signal process (X k)k based on optimal quantization. We will

propose two types of quantization – marginal and Markovian – leading to different

approximations ĤH y,k of the transition kernel H y,k both based on (2.6). Then we will

compute in both cases an approximate distribution �̂� y,n, of the unnormalized filter � y,n

using a quantized form of the forward expression (2.6), �̂� y,k f ¼ �̂� y,k�1 ĤH y,k f .

3. Approximate filter by marginal quantization

3.1. Method

In this section, we consider a marginal quantization of the Markov chain (X k)k , in temporal

sequence, that is,

X̂X k ¼ Projˆk
(X k), 0 < k < n, (3:1)

where ˆk , k ¼ 0, . . . , n, are grids consisting of Nk points xi
k in Rd , i ¼ 1, . . . , Nk , to be

optimized later, and Projˆk
denotes the nearest-neighbour projection on ˆk . Notice that the

process (X̂X k)k is not a Markov chain. We construct an approximate filter based on an

approximation of the transition probability Pk(xk , dxkþ1) of X kþ1 given X k by the transition

probability matrix P̂Pk :¼ [P̂P
ij
k] of X̂X kþ1 given X̂X k :

P̂P
ij
k ¼ P[X̂X k ¼ x

j
k j X̂X k�1 ¼ xi

k�1], i ¼ 1, . . . , Nk�1, j ¼ 1, . . . , Nk : (3:2)

In other words, we approximate the transition kernel H y,k by the quantized transition kernel

ĤH y,k given by

ĤH y,k :¼
XNk

j¼1

ĤH
ij
y,k�xi

k�1
, k ¼ 1, . . . , n, (3:3)

with

ĤH
ij
y,k ¼ g y,k(x

i
k�1, x

j
k)P̂P

ij
k , i ¼ 1, . . . , Nk�1, j ¼ 1, . . . , Nk , (3:4)

for k ¼ 1, . . . , n, so that, for every function f : ˆk ! R,

ĤH y,k f (X̂X k�1) :¼ E[g y,k(X̂X k�1, X̂X k) f (X̂X k) j X̂X k�1], k ¼ 1, . . . , n:

Finally, we set

ĤH y,0 ¼
XN0

i¼1

P̂Pi
0�xi

0
with P̂Pi

0 :¼ P[X̂X0 ¼ xi
0], i ¼ 1, . . . , N0:

We then define the approximate unnormalized filter �̂� y,n ¼
PNn

i¼1�̂�
i
y,n�xi

n
by

�̂� y,n ¼ ĤH y,0s � � � s ĤH y,n:
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This is easily computed by the following forward induction:

�̂� y,0 ¼ ĤH y,0,

�̂� y,k ¼ � y,k�1 ĤH y,k :¼
XNk�1

i¼1

ĤH
ij
y,k�̂�

i
y,k�1

" #
j¼1,...,Nk

, k ¼ 1, . . . , n: (3:5)

The approximate filter —̂— y,n is then given by

—̂— y,n ¼
XNn

i¼1

—̂—i
y,n�xi

n

with

—̂—i
Y ,n ¼

�̂�i
y,nXNn

i¼1

�̂�i
y,n

, i ¼ 1, . . . , N n:

3.2 Error analysis

In this subsection, we will estimate the accuracy of the approximate filter —̂— y,n in terms of

the marginal quantization errors on the signal k˜kk1
, k ¼ 0, . . . , n, defined by

˜k ¼ X k � Projˆk
(X k): (3:6)

Note that the process (X̂X k) is not a Markov chain. We shall impose some Lipschitz

conditions on the Markov transition of X k and on the conditional law Yk given

X k�1, Yk�1, X k . We first recall some definitions. We say that a transition probability P on

Rd is C-Lipschitz for some positive real constant C if, for every Lipschitz function j on

Rd with ratio [j]Lip, Pj is Lipschitz and [Pj]Lip < C[j]Lip. Then we may define the

Lipschitz ratio

[P]Lip ¼ sup
[Pj]Lip
[j]Lip

, j a non-zero Lipschitz continuous function

� �
, þ1:

(A1) The Markov transition operators Pk(x, dx9), k ¼ 1, . . . , n, are Lipschitz, so that

[P]Lip :¼ max
k¼0,...,n

[Pk]Lip , þ1:

(A2) (i) For every k ¼ 1, . . . , n, the functions gk are bounded on Rd 3 Rq 3 Rd 3 Rq

and we set K g :¼ maxk¼1,...,nkgkk1.

(ii) For every k ¼ 1, . . . , n, there exist two Borel functions [g1
k]Lip,

[g2
k]Lip : Rq 3 Rq ! Rþ such that, for all x, x9, x̂x, x̂x9 2 Rd and y, y9 2 Rq,

jg k(x, y, x9, y9)� gk(x̂x, y, x̂x9, y9)j < [g1
k]Lip(y, y9)jx � x̂xj þ [g2

k]Lip(y, y9)jx9� x̂x9j:

An essential device for the proof of Theorem 3.1 below is to introduce the sequence of

functions (ûu y,k( f ))�1<k<n which is the quantized counterpart of the sequence
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(uk( f ))�1<k<n defined in (2.8) as the backward expression of the filter: mimicking this

backward dynamic formula, we recursively define the ûu y,k( f ) on ˆk , k ¼ 0, . . . , n, by

ûu y,n( f ) ¼ f , on the grid ˆn,

ûu y,k( f ) ¼ ĤH y,kþ1 ûu y,kþ1( f ), on the grid ˆk�1, k ¼ �1, . . . , n � 1:

The approximate unnormalized filter �̂� y,n is then given by

�̂� y,n f ¼ ûu y,�1( f ),

so that j� y,n f � �̂� y,n f j ¼ ju y,�1( f )� ûu y,�1( f )j.

Theorem 3.1. Assume that (A1) and (A2) hold. Then, for every bounded Lipschitz continuous

function f on Rd and each n-tuple of observations y ¼ (y1, . . . , yn), we have, for every

p > 1,

j— y,n f � —̂— y,n f j <
K n

g

�n(y) _ �̂�n(y)

Xn

k¼0

Bn
k( f , y, p)k˜kk p

: (3:7)

with

�̂�n(y) :¼ �̂� y,n1, (3:8)

Bn
k( f , y, p) :¼ (2� �2, p)[P]

n�k

Lip
[ f ]Lip þ 2

k f k1

K g

[g1
kþ1]Lip(yk , ykþ1)þ [g2

k]Lip(yk�1, yk)
� ��

þ (2� �2, p)
k f k1

K g

Xn

j¼kþ1

[P] j�(kþ1)
Lip

[g1
j]Lip(yj�1, yj)þ [P]Lip[g2

j]Lip(yj�1, yj)
� �!

:

(3:9)

(By convention, g0 ¼ gnþ1 � 0, and �r, p is the usual Kronecker delta.)

Remark 3.1. Note that

�̂�n(y) ¼ �̂�y, n1 ¼
XNn

i¼1

�̂�i
y,n

is the normalizing factor of the approximate filter distribution so that (3.7) produces a

completely computable error bound.

Remark 3.2. The interesting case for the general L p bounds is the case p ¼ 2 where the

coefficients Bk
n( f , y, p) are smaller than in the L1 case (other bounds are trivial since the L p

norm is non-decreasing as a function of p).
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Remark 3.3. If we introduce

[g]Lip :¼ max
k¼1,...,n

sup
y, y92Rq

([g1
k]Lip(y, y9) _ [g2

k]Lip(y, y9)),

then Bn
k( f , y, p) is upper-bounded by the simpler coefficient

~BBn
k( f , p) :¼ (2� �2, p)[P]

n�k
Lip [ f ]Lip þ 2

k f k1
K g

[g]Lip 2þ (2� �2, p

[P]Lip þ 1

[P]Lip � 1
(pP]n�k

Lip � 1)

� �
:

with the usual convention

1

u � 1
3 (u m � 1) ¼ m, when u ¼ 1 and m 2 N:

Remark 3.4. Suppose the Lipschitz condition (A2)(ii) is weakened into a local Lipschitz one:

(A2) (ii9) For every k ¼ 1, . . . , n, there exist two Borel functions [g1
k]Liploc,

[g2
k]Liploc : R

q 3 Rq 7! Rþ such that, for all x, x9, x̂x, x̂x9 2 Rq,

jgk(x, y, x9, y9)� gk(x̂x, y, x̂x9, y9)j < [g1
k]Liploc(y, y9)(1þ jxj þ jx9j þ jx̂xj þ x̂x9j)jx � x̂xj

þ [g2
k]Liploc(y, y9)(1þ jxj þ x9j þ jx̂xj þ jx̂x9j)jx9� x̂x9j:

Then we may state an estimate for the approximate filter similar to that in Theorem 3.1: for

every p > 1 and every p9, q9 2 (1, 1), 1=p9þ 1=q9 ¼ 1,

j— y,n f � —̂— y,n f j <
K n

g

�n(y)

Xn

k¼0

B
n

k( p, pq9, f )k˜kk pp9,

with

B
n

k( p, r, f ) ¼ (2� �2, p)[P]
n�k
Lip [ f ]Lip

þ 2
k f k1

K g

[g]Lip 2þ (2� �2, p)
[P]Lip þ 1

[P]Lip � 1
([P]n�k

Lip � 1)

� �
M n(r),

M n(r) ¼ 1þ 2kXkr þ 2kX̂Xkr, r > 1:

Here we have set

[g]Liploc :¼ max
k¼1,...,n

sup
y, y92Rq

([g1
k]Liploc(y, y9) _ [g2

k]Liploc(y, y9)),

kXkq ¼ max
k¼0,...,n

kX kkq, kX̂Xkq ¼ max
k¼0,...,n

kX̂X kkq:

Furthermore, when X̂X is an optimal quadratic quantization it can be shown (see Graf and

Luschgy 2000, or (B.7) in Appendix B) that X̂X k ¼ E(X k jX̂X k) so that kX̂X kkr < kX kkr for

every r > 1. Hence, one may take

M n(r) ¼ 1þ 4kXkr, r > 1:
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We will see in Section 7 (and Appendix A) that assumption (A2) is satisfied by the

conditional density of certain discretely observed diffusion models.

To obtain the announced error bound, three steps are required. The first one, in Lemma

3.1, makes an abstract connection between errors in the unnormalized world and the

normalized world (it is used in next section too). The second one, in Lemma 3.2, yields

a bound for the Lipschitz coefficient of the functions u y,k( f ) defined in (2.8). In the

third step – which is the proof of the theorem itself – we will bound

ku y,k( f )(X k)� ûu y,k( f )(X̂X k)k p by a backward induction, bearing in mind that

j� y,n f � �̂� y,n f j ¼ ju y,�1( f )(X k)� ûu y,�1( f )(X̂X k)j.

Lemma 3.1. Let (� y) and (� y) two families of finite positive measures on a measurable space

(E, E). Assume that there exist two symmetric functions R and S defined on the set of positive

finite measures such that, for every bounded Lipschitz function f ,				
ð

f d� y �
ð

f d� y

				 < k f k1 R(� y, � y)þ [ f ]
Lip

S(� y, � y): (3:10)

Then 				
Ð

d� y

� y(E)
�
Ð

fd� y

� y(E)

				 < 1

� y(E) _ � y(E)
2k f k1R(� y, � y)þ [ f ]LipS(� y, � y)
� �

:

Proof. We have				
Ð
d� y

� y(E)
�
Ð

f d� y

� y(E)

				 < j
Ð
d� y �

Ð
f d� yj

� y(E)
þ
ð
j f jd� y

				 1

� y(E)
� 1

� y(E)

				
<

k f k1 R(� y, � y)þ [ f ]
Lip

S(� y, � y)

� y(E)
þ k f k1

				 � y(E)

� y(E)
� 1

				
<

k f k1 R(� y, � y)þ [ f ]
Lip

S(� y, � y)þ k f k1j� y(E)� � y(E)j
� y(E)

:

Now j� y(E)� � y(E)j < 13 R(� y, � y), so that				
Ð

f d� y

� y(E)
�
Ð

f d� y

� y(E)

				 < 1

� y(E)
2k f k1 R(� y, � y)þ [ f ]

Lip
S(� y, � y)

� �
:

A symmetry argument completes the proof. h

Lemma 3.2. Assume that (A1) and (A2) hold. Let (yk)k¼1,... , n be a generic observation.

Then, for every bounded Lipschitz continuous function f , the functions u y,k( f ) defined by

(2.8) are bounded Lipschitz continuous as well, with Lipschitz coefficient [u y,k( f )]Lip
satisfying
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[u y,k( f )]Lip < [Pkþ1]Lip K g[u y,kþ1( f )]Lip þ ku y,kþ1( f )k1 [g2
y,kþ1]Lip

� �
þ ku y,kþ1( f )k1[g1

y,kþ1]Lip, k ¼ 0, . . . , n � 1,

and

ku y,k( f )k1 < K n�k
g k f k1, k ¼ 0, . . . , n:

In particular, for every k 2 f0, . . . , ng,

[u y,k( f )]Lip < ([P]LipK g)
n�k[ f ]Lip þ k f k1 K n�(kþ1)

g

Xn�k

‘¼1

[P]‘�1
Lip

([g1
kþ‘]Lip þ [P]Lip[g2

kþ‘]Lip):

For notational convenience, we will temporarily drop the dependency in the function f

and in the observation sequence y in the proofs below.

Proof. One can derive the first two formulae from the recursive definition (2.8) of the uk :

uk(x) ¼ E[gkþ1(x, X kþ1)ukþ1(X kþ1)jX k ¼ x] ¼
ð

gkþ1(x, x9)ukþ1(x9)Pkþ1(x, dx9)

and from the Lipschitz property of the transitions Pk(x, dx9):

[uk]Lip < [Pkþ1]Lip sup
x2Rd

[x9 7! gkþ1(x, x9)ukþ1(x9)]Lip þ kukþ1k1[g1
kþ1]Lip:

Now kunk1 ¼ k f k1 and kukk1 < K gkukþ1k1 so that kukk1 < K n�k
g k f k1. Hence,

[uk]Lip < A[ukþ1]Lip þ B K�(kþ1)
g [g2

kþ1]Lip þ CK�(kþ1)
g [g1

kþ1]Lip

with A ¼ [P]LipK g, B :¼ [P]Lipk f k1K n
g and C :¼ k f k1K n

g. Standard computations

complete the proof. h

Proof of Theorem 3.1. To obtain an upper bound for kuk(X k)� ûuk(X̂X k)k p, we proceed by

induction. Temporarily set, for every k < n � 1 and every xk, xkþ1, x9kþ1 2 Rd ,

j(xk , xkþ1, x9kþ1) :¼ g kþ1(xk , xkþ1)ukþ1(x9kþ1):

Then,

kuk(X k)� ûuk(X̂X k)k p ¼ kE(j(X k , X kþ1, X kþ1) j X k)� E(gkþ1(X̂X k , X̂X kþ1)ûukþ1(X̂X kþ1) j X̂X k)k p:

Using the fact that E( : j X̂X k) is an L p contraction, we obtain, for every k 2 f0, . . . , n � 1g,

kuk(X k)� ûuk(X̂X k)k p < kE(j(X k , X kþ1, X kþ1) j X k)� E(j(X̂X k , X̂X kþ1, X kþ1) j X̂X k)k p

þ kj(X̂X k , X̂X kþ1, X kþ1)� gkþ1(X̂X k , X̂X kþ1)ûukþ1(X̂X kþ1)k p

< kE(j(X k , X kþ1, X kþ1) j F k)� E(j(X̂X k , X̂X kþ1, X kþ1) j X̂X k)k p

þ K gkukþ1(X kþ1)� ûukþ1(X̂X kþ1)k p: (3:11)
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Now

kE(j(X k , X kþ1, X kþ1) j X k)� E(j(X̂X k , X̂X kþ1, X kþ1) j X̂X k)k p

< kuk(X k)� E(uk(X k) j X̂X k)k p þ kE(uk(X k) j X̂X k)� E(j(X̂X k , X̂X kþ1, X kþ1) j X̂X k)k p: (3:12)

Then

kuk(X k)� E(uk(X k) j X̂X k)k p < kuk(X k)� uk(X̂X k)k p þ kE(uk(X̂X k)� uk(X k) j X̂X k)k p

< 2kuk(X k)� uk(X̂X k)k p

since conditional expectation is an L p contraction. When p ¼ 2,

kuk(X k)� E(uk(X k) j X̂X k)k2 ¼ min kuk(X k)� ł(X̂X k)k2, ł(X̂X k) 2 L2

 �

< kuk(X k)� uk(X̂X k)k2:

Now X̂X k being � (X k)-measurable, E(uk(X k) j X̂X k) ¼ E(j(X k , X kþ1, X kþ1) j X̂X k), so that

kE(uk(X k) j X̂X k)�E(j(X̂X k , X̂X kþ1, X kþ1) j X̂X k)k p < kj(X k , X kþ1, X kþ1)�j(X̂X k , X̂X kþ1, X kþ1)k p

< kukþ1k1kgkþ1(X k , X kþ1)� gkþ1(X̂X k , X̂X kþ1)k p:

Consequently, substitution into (3.12) yields

kE(j(X k , X kþ1, X kþ1) j X k)� E(j(X̂X k , X̂X kþ1, X kþ1) j X̂X k)k p

< (2� � p,2)[uk]LipkX k � X̂X kk p

þ kukþ1k1 [g1
kþ1]LipkX k � X̂X kk p þ [g2

kþ1]LipkX kþ1 � X̂X kþ1k p

� �
:

Since we are dealing with marginal quantization ˜k ¼ X k � X̂X k , substitution into (3.11)

yields the following induction: for every k 2 f0, . . . , n � 1g,

kuk(X k)� ûuk(X̂X k)k p < K gkukþ1(X kþ1)� ûukþ1(X̂X kþ1)k p þ Ækk˜kk p þ 	kþ1k˜kþ1k p,

with

Æk :¼ (2� � p,2)[uk]Lip þ kukþ1k1[g1
kþ1]Lip, 0 < k < n � 1,

	k :¼ [g2
k]Lipkukk1, 1 < k < n:

For notational convenience, we set Æn :¼ (2� � p,2)[ f ]Lip (in fact Æn ¼ [ f ]Lip would always

be suitable) and 	0 :¼ 0. Then, standard computations using Lemma 3.2 yield

j� y,n f � �̂� y,n f j ¼ ku0( f )(X 0)� ûu0( f )(X̂X0)k1

< ku0( f )(X0)� ûu0( f )(X̂X0)k p <
Xn

k¼0

C n
k( f , y, p)k˜kk p

where, for every 0 < k < n,
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C n
k( f , y, p)

:¼ K k�1
g (Æk K g þ 	k)

¼ (2� �2, p)K
k
g[uk]Lip þ K n�1

g k f k1([g1
kþ1]Lip þ [g2

k]Lip)

< K n
g (2� �2, p)[P]

n�k

Lip
[ f ]Lip

h

þk f k1
K g

[g1
kþ1]Lip þ [g2

k]Lip þ (2� �2, p)
Xn�k

m¼1

[P]m�1
Lip

[g1
kþm]Lip þ [P]Lip[g2

kþm]Lip
� � !#

:

An application of Lemma 3.1 concludes the proof. h

4. Approximate filter by Markovian quantization

4.1. Method

This method is based on the Markovian quantization developed in Pagès et al. (2004a). We

assume that the signal-observation model is given by (1.2)–(1.3). At each time

k ¼ 0, . . . , n, we are given a grid ˆk consisting of Nk points xi
k in Rd , i ¼ 1, . . . , N k ,

to be optimized later on. We then consider the Markovian process (X̂X k , ~YYk)k defined by

X̂X k ¼ Projˆk
Fk(X̂X k�1, �k)
� �

, k ¼ 1, . . . , n,
~YYk ¼ Gk(X̂X k�1, ~YYk�1, X̂X k , �k), k ¼ 1, . . . , n,

(4:1)
(4:2)

with X̂X 0 ¼ Proj
0̂
(X 0) and ~YY0 ¼ Y0 ¼ 0. Here Projˆk

still denotes the nearest-neighbour

projection on ˆk . The idea is now to approximate the filter — y,n by the discrete conditional

law —̂— y,n of X̂X n given that the observations ~YY ¼ ( ~YY1, . . . , ~YYn) are fixed at y ¼ (y1, . . . , yn).

Since X̂X n is valued in the finite grid ˆn consisting of Nn points xi
n, i ¼ 1, . . . , Nn, the

discrete probability measure —̂— y,n is characterized by its weights —̂—i
y,n ¼ P[X̂X n ¼ xi

nj ~YY ¼ y],

i ¼ 1, . . . , N n: for any bounded measurable function f on Rd , we have

—̂— y,n f ¼
XNn

i¼1

f (xi
n)—̂—

i
y,n:

In other words, —̂— y,n ¼
PNn

i¼1—̂—
i
y,n�xi

n
, where �x is the Dirac mass at x. By same arguments as

in Section 2, using the Bayes rule and Markov property of (X̂X k , ~YYk)k , we have

—̂—i
y,n ¼

�̂�i
y,nXNn

i¼1

�̂�i
y,n

, i ¼ 1, . . . , N n, (4:3)

where

—̂—i
y,n ¼ E 1 X̂X n¼xi

n
L̂Ly,n

h i
, i ¼ 1, . . . , Nn, (4:4)
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in which

L̂Ly,n ¼
Yn

k¼1

gk(X̂X k�1, yk�1, X̂X k , yk): (4:5)

From an algorithmic viewpoint, the unnormalized approximate filter �̂� y,n may be

computed either in a forward or backward induction in view of (2.1) or (2.2). We describe

here the forward procedure which is less costly in terms of complexity. We denote by

P̂P0 ¼ (P̂Pi
0)i¼1,...,N0

the probability law of X̂X 0, that is, P̂Pi
0 ¼ P[X̂X0 ¼ xi

0], i ¼ 1, . . . , N0, and

by (P̂Pk)k, k ¼ 1, . . . , n, the transition probability matrix of the finite state space Markovian

process (X̂X k)k , that is,

P̂P
ij
k ¼ P[X̂X k ¼ x

j
k jX̂X k�1 ¼ xi

k�1], i ¼ 1, . . . , Nk�1, j ¼ 1, . . . , Nk : (4:6)

We introduce the transition matrix ĤH y,k given by

ĤH
ij
y,k ¼ g y,k(x

i
k�1, x

j
k)P̂P

ij
k , i ¼ 1, . . . , Nk�1, j ¼ 1, . . . , Nk , (4:7)

for k ¼ 1, . . . , n. We then compute explicitly �̂� y,n ¼
PNn

i¼1�̂�
i
y,n�xi

n
by the following forward

algorithm:

�̂� y,0 ¼ P̂P0,

�̂� j
y,k ¼

XNk�1

i¼1

ĤH
ij
y,k �̂�

i
y,k�1, j ¼ 1, . . . , N k , k ¼ 1, . . . , n: (4:8)

4.2. Error analysis

In this subsection, we estimate the quality of the approximate filter —̂— y,n in terms of the

Markovian quantization errors on the signal k˜kk1
, k ¼ 0, . . . , n, defined by

˜k ¼ Fk(X̂X k�1, �k)� Projˆk
Fk(X̂X k�1, �k)
� �

, k > 1 (4:9)

˜0 ¼ X0 � Proj
0̂
(X0) (4:10)

We make the following Lipschitz assumptions on the model (1.2)–(1.3):

(A19) For each k ¼ 1, . . . , n, there exists a positive constant [Fk]Lip such that

8 x, x̂x 2 Rd , kFk(x, �k)� Fk(x̂x, �k)k1 < [Fk]Lipjx � x̂xj:

We then set [F]Lip ¼ maxk¼1,...,n[Fk]Lip. Note that [Pk]Lip < [Fk]Lip. In fact it may happen

for some models that

[Pk]Lip , 1 ¼ [Fk]Lip

which means that the field of application of the marginal quantization is wider than that of

Markovian quantization, at least in theory. For example, set

X kþ1 ¼ sign(X k � �kþ1)G(X k , �kþ1),
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where (�k)k is an i.i.d. sequence, P�1 (du) ¼ g(u) ºq(du) (ºq being Lebesgue measure on Rq)

and (x, u) 7! G(x, u) is Lipschitz continuous in x uniformly in u with ratio [G]Lip. Then, it

can easily be shown that

[P]Lip < [G]Lip , þ1

whereas x 7! F(x, �1) ¼ sign(x � �1)G(x, �1) is not even continuous so that (A19) is not

satisfied in general (e.g. when �1 has atoms).

We also rely on assumption (A2) introduced in Section 3 for the marginal quantization.

Remark 4.1. Beyond natural discrete-time dynamics, we notice that assumption (A19) is

satisfied by a Gaussian diffusion discretization scheme such as the Euler scheme. On the

other hand, assumption (A2) often needs to be slightly strengthened to encompass diffusion

discretization schemes. This is the aim of Remarks 4.3 and 3.4 which provide a setting often

fulfilled by the Euler scheme of non-degenerate diffusions.

Theorem 4.1. Assume that (A19) and (A2) hold. Then, for every bounded Lipschitz

continuous function f : Rd ! R and any sequence of observed values

y ¼ (y1, . . . , yn) 2 (Rq)n, we have the a posteriori estimator				— y,n f � —̂— y,n f

				 < K n
g

�n(y) _ �̂�n(y)

Xn

k¼0

An
k( f , y)k˜kk1: (4:11)

with

�̂�n(y) :¼ �̂� y;n1, (4:12)

An
k( f , y) ¼ [F]n�k

Lip
[ f ]Lip þ 2

k f k1
K g

[g2
k]Lip(yk�1, yk) (4:13)

þ 2
k f k1

K g

Xn

j¼kþ1

[F] j�k�1
Lip

[g1
j]Lip(yj�1, yj)þ [F]Lip[g2

j]Lip(yj�1, yj)
� �

,

(with the convention that the sum in (4.13) is zero for k ¼ n).

Remark 4.2. By introducing

[g]Lip :¼ max
k¼1,...,n

sup
y, y92Rq

([g1
k]Lip(y, y9) _ [g2

k]Lip(y, y9)),

we obtain that An
k( f , y) is bounded by the simpler quantity

~AAn
k( f ) ¼ [F]n�k

Lip
[ f ]Lip þ

2k f k1
K g

[g]Lip
[F]Lip þ 1

[F]Lip � 1
([F]n�k

Lip
� 1)þ 1

� �

with the usual convention that

1

u � 1
(u m � 1) ¼ m if u ¼ 1 and m 2 N:
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Remark 4.3. Suppose that the Lipschitz condition (A2)(ii) is weakened into (A2)(ii9) as in

Section 3 and that (A1) is strengthened into the following slightly more stringent condition

than (A19):

(A19p) For each k ¼ 1, . . . , n, there exists a positive constant [Fk]Lip such that

kFk(x, �k)� Fk(x̂x, �k)k p < [Fk]Lipjx � x̂xj,

for all p 2 (1, 1) and x, x̂x 2 Rd .

Then we may state a similar estimate for the approximate filter as in Theorem 4.1: for each

p 2 (1, 1) (and 1=p þ 1=q ¼ 1),				— y,n f � —̂— y,n f

				 < K n
g

�n(y) _ �̂�n(y)

Xn

k¼0

A
n

k(q, f )k˜kk p,

with

A
n

k(q, f ) ¼ [F]n�k
Lip [ f ]Lip þ

2k f k1
K g

[g]Lip
[F]Lip þ 1

[F]Lip � 1
([F]n�k

Lip
� 1)þ 1

� �
N n(q),

N n(q) ¼ 1þ 4kXkq þ (1þ [F]Lip)([F]Lip _ 1)n�1
Xn

l¼0

k˜ lkq:

Here we have set

[g]Lip :¼ max
k¼0,...,n

sup
y, y92Rq

([g1
k]Liploc(y, y9) _ [g2

k]Liploc(y, y9))

and kXkq ¼ maxk¼0,...,nkX kkq.

In order to prove Theorem 4.1, we need the following two lemmas.

Lemma 4.1. Assume that (A2) holds. Then, for all y1, . . . , yn 2 Rq, we have

jLy,n � L̂Ly,nj < K n�1
g

Xn

k¼1

[g1
k]Lip(yk�1, yk)jX k�1 � X̂X k�1j þ [g2

k]Lip(yk�1, yk)jX k � X̂X k j:

Proof. For notational convenience, we omit the dependence of Ln and L̂Ln on y1, . . . , yn.

From (2.4) and (4.5), we have, for all k ¼ 1, . . . , n,

Lk � L̂Lk ¼ g k(X k�1, yk�1, X k , yk)� gk(X̂X k�1, yk�1, X̂X k , yk)
� �

Lk�1

þ g k(X̂X k�1, yk�1, X̂X k , yk)(Lk�1 � L̂Lk�1):

From the boundedness condition (A2)(i) on g k , we have Lk�1 < K k�1
g . Hence, by

Assumption (A2)(ii), we obtain

jLk � L̂Lk j < K k�1
g [g1

k]Lip(yk�1, yk)jX k�1 � X̂X k�1j þ [g2
k]Lip(yk�1, yk)jX k � X̂X k j

� �
þK gjLk�1 � L̂Lk�1j:
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Noting that L0 ¼ L̂L0 ¼ 1, we obtain the required result by induction. h

Lemma 4.2. Assume that (A19) holds. Then, for each k ¼ 0, . . . , n, we have

kX k � X̂X kk1 <
Xk

j¼0

[F]k� j

Lip
j˜ jj1:

Proof. From the definitions (1.2) and (4.1) of X k and X̂X k, and (4.9) of ˜k , we obviously

obtain, for each k > 1,

kX k � X̂X kk1 < kFk(X k�1, �k)� Fk(X̂X k�1, �k)k1 þ k˜kk1:
By assumption (A19) and since �k is independent of X k�1 and X̂X k�1, we then obtain

kX k � X̂X kk1 < [Fk]LipkX k�1 � X̂X k�1k1 þ k˜kk1:

Recalling that kX 0 � X̂X 0k1 ¼ k˜0k1, we conclude by backward induction. h

Proof of Theorem 4.1. From expressions (2.3) and (4.4), we derive that

j� y,n f � �̂� y,n f j ¼ jE[ f (X n)Ly,n]� E[ f (X̂X n)L̂Ly,n]j

< k f k1EjLy,n � L̂Ly,nj þ [ f ]
lip
E[jX n � X̂X njL̂Ly,n]

< k f k1EjLy,n � L̂Ly,nj þ [ f ]
lip

K n
gkX n � X̂X nk1:

Lemmas 3.1, 4.1 and 4.2 complete the proof. h

5. Convergence of the quantized filters

In both the marginal and Markovian approaches the error analysis leads to a priori error

bounds (4.11) and (3.7) with the same structure, from which one derives a slightly looser

upper bound given by

j— y,n f � —̂— y,n f j < k f k1 _ [ f ]Lip
K n

g

�n(y)

Xn

k¼0

Dn
k(y, p)k˜kk p,

for all p 2 [1, 1), where ˜k ¼ Z k � Projˆk
(Z k) is the difference between a simulated

random variable Z k and its projection by the nearest-neighbour rule onto the grid ˆk with

size jˆk j ¼ N k (in the marginal quantization method Z k ¼ X k, in the Markovian quantization

approach Z k ¼ F(X̂X k�1, �k)). Here

Dn
k(y, p) ¼

Bn
k( f0, y, p), for the marginal quantization,

An
k( f0, y), for the Markovian quantization ( p ¼ 1),

(

where f 0(x) ¼ jxj=(1þ jxj) (so that k f 0k1 ¼ [ f 0]Lip ¼ 1). If one assumes that, at every time

k ¼ 0, 1, . . . , n, the grid ˆk is L p optimal, that is, minimizes the mean L p quantization error
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among all grids with size Nk , then the asymptotic behaviour of the optimal quantization

stated in Zador’s theorem (see Theorem B.1 in Appendix B) implies that, for every

k ¼ 0, . . . , n, there is a positive real constant Łk :¼ Ł( p, PZ k
, d) such that

k˜kk p < Łk N
�1=d

k ,

so that

j— y,n f � —̂— y,n f j < k f k1 _ [ f ]Lip
K n

g

�̂�n(y)

Xn

k¼0

Łk Dn
k(y, p)N

�1=d

k : (5:1)

Theorem 5.1. Let n > 1. In both marginal and Markovian settings, the optimally quantized

approximate filters converge toward the true filter as min1<k<n Nk goes to infinity.

5.1. Application to optimal dispatching

If some numerical bounds d
n

k and Łk are available for Dn
k(y, p) (locally) uniformly in the

observations y ¼ (y1, . . . , yn) and for Łk (which requires some information on the density

of Z k), then one may easily solve numerically the optimal allocation problem

min
N0þ...þNn¼N

Xn

k¼0

Łk d
n

k(y, p)N
�1=d

k (5:2)

to optimally dispatch the N points among the n þ 1 time steps. For more details we refer to

Bally and Pagès (2003) and Pagès et al. (2004a) in which this phase has been carried out in

different settings.

In some situations, such as the marginal quantization of a stationary signal, it may

happen that alternative approaches turn out to be more efficient: optimizing only one huge

grid and its transition parameters and then replicating it at every time k produces better

results.

5.2. Application to discretized diffusions

We now discuss the convergence of the quantized filter when n also goes to infinity. This

asymptotic behaviour is relevant especially when the signal (X k)0<k<n is a time

discretization with step h ¼ T=n of a continuous-time signal (X t)0< t<T . For example, if

X t follows a diffusion process

dX t ¼ b(X t)dt þ � (X t)dW t,

with W a standard Brownian motion, one may discretize it by an Euler scheme

X kþ1 ¼ F(X k , �kþ1) :¼ X k þ b(X k)
T

n
þ � (X k)

ffiffiffiffi
T

n

r
�kþ1,
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where (�k)k is a Gaussian white noise process. Standard computations show that when b and

� are Lipschitz, condition (A19) is satisfied with

[F]Lip ¼ 1þ c

n
,

for some positive constant independent of n. We can then easily see that Dn
k(y, p),

k ¼ 0, . . . , n, is bounded by a constant independent of k, n. Therefore if one simply assigns

Nk ¼ N :¼ N=(n þ 1) points at each grid ˆk, k ¼ 0, . . . , n, (5.1) provides a rate of

convergence for the approximate filters of order

K n
g

�n(y)

n þ 1

N1=d
:

This has to be compared with the rate of convergence obtained by particle Monte Carlo

methods using N interacting particles (see Del Moral et al. 2001):

K n
g

�n(y)

� �n
1

N1=2
:

6. On practical implementation

6.1. General features and complexity

At this stage, it is important to mention when and how a quantization method can be

implemented. First, one must bear in mind that it is an off-line method: a significant part of

the computations can be carried out and kept off-line. In fact, things need to be done that

way to make the method fully competitive.

A natural framework for implementing the quantization approach is to assume that the

probabilistic features of the state process (X k) do not change too fast or too often. This is

not a real restriction in typical applications such as sea surge prediction, satellite tracking,

and financial modelling based on stochastic volatility.

Moreover, the more functions f one needs to estimate for a given set of observations, the

more efficient the method becomes. This can be easily understood when one describes in

more detail the three phases of the filter approximation.

1. Off-line optimization. This phase is devoted to the construction of the weighted

optimal quantization tree of the Markov process (X k), given that it contains a total of N

points. This means

• specifying the sizes N k of the grids ˆk , 1 < k < n (a priori dispatching);

• optimizing every grid ˆk :¼ fxi
k , 1 < i < Nkg, 1 < k < n, that is, solving the

optimization problem

min
jˆK j<Nk

kX k � Projˆk
(X k)k2;
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• computing the transition weights P̂P
ij
k ¼ P(X̂X k ¼ x j j X̂X k�1 ¼ xi

k�1), 1 < i < Nk ,

1 < j < Nkþ1, k ¼ 0, 1, . . . n.

The dispatching is done a priori, based either on the minimization of the theoretical error

bounds (see Bally and Pagès 2003; or Pagès et al. 2004b) by solving (5.2) or on more

specific features of the state process (see the stationary case below). The optimization of the

grids results from a stochastic gradient descent called competitive learning vector

quantization based on Monte Carlo simulations of the (X k). The computation of the

transition weights and of the quantization error is carried out either simultaneously or by a

new Monte Carlo simulation (see Bally and Pagès 2003). This has been extensively

investigated in earlier papers, to which we refer for a precise description of the procedure

(see Bally and Pagès 2003; Pagès et al. 2004b). This optimization phase is computationally

the most demanding, requiring nearly 10 minutes of CPU time to compute the whole

quantization tree (‘height’ n ¼ 20, size N ¼ 20 000) of an (asymptotically) non-stationary

four-dimensional process using a 1 GHz microprocessor.

However, in many cases this phase can be significantly shortened: when (X k) is a

stationary process only one grid is necessary (see Section 6.2), which drastically reduces the

procedure by a factor n. Furthermore, if X is a Gaussian process, a library of optimal grids

with various sizes is now available for the d-dimensional normal distributions N (0; I d) (see

Pagès and Printems 2003; the files are available at www.proba.jussieu.fr/pageperso/

pages.html or www.univ-paris12.fr/www/labos/cmup/homepages/printems). The crucial fact

is that the optimization phase does not depend on the observations, which explains why its

results can be kept off-line.

2. Computation of the quantized filter distribution. One computes the weight vector

(�̂� j
y,n)1< j<Nn

by plugging the observation vector y ¼ (y1, . . . , yn) and the transition weights

P̂P
ij
k into the forward representations of the approximate filter, that is, (3.5) or (4.8).

The theoretical complexity of the quantization tree descent is
Pn�1

k¼0Nk Nkþ1, which is at

least nN2=(n þ 1)2 � N2=n (when Nk ¼ N=(n þ 1), k ¼ 0, . . . , n). In practice, many

transitions are 0 (when xi
k�1 and x

j
k are remote) and every node xi

k of the tree has

approximately the same number � of ‘active connections’ with nodes at time k þ 1. The

resulting complexity, after an appropriate pruning of the quantization tree, is thus

approximately �3 n 3 N, where N ¼ N=(n þ 1) is the average number of points per time

step. In all our numerical experiments, this phase is almost instantaneous (less than

0.1 second with N ¼ 20 000 points in dimension d ¼ 4 with the same 1 GHz

microprocessor). This distribution approximation phase does not depend on the function f.

3. Computation of —̂— y,n f . One computes for every (required) function fð
f (x)—̂— y,n(dx) ¼

XNn

i¼1

f (xi
n)—̂—

i
n:

The complexity of this phase is proportional to Nn and is negligible (although dependent on f ).

In particle methods, at every time step, one needs to simulate N new particles following

a (weighted) empirical measure (with a support of size N ). This requires one first to
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compute the weights of the empirical measure, secondly to generate N random numbers and

then to simulate by an inverse distribution function method N appropriately distributed

numbers. The average complexity of the last phase cannot be lower than O(N log(N ))

comparisons (see Devroye 1986) – indeed, a naive approach yields the almost surely worst

possible complexity, which is O(N 2) – which makes an average total of (n þ 1)N log(N )

comparisons and O(N ) multiplications.

It may happen for some observation vectors that the optimal filter and the prior

distribution of the process X assign some masses to significantly different areas of the

space, making the algorithm less efficient. One way to prevent this problem is to quantize

the observation process to evaluate the likelihood of an observation vector (see Sellami

2004).

6.2. A special case: marginal quantization of a stationary signal

In the case where the signal (X k)0<k<n is a stationary Markov chain with distribution �, the
optimal L p quantization of the whole chain clearly amounts to that of its stationary

distribution �. Let ^̂̂ :¼ fx̂x1, . . . , x̂x Ng be an N :¼ N=(n þ 1)-optimal grid, that is, such that

kX � Proj ^̂̂(X )k
p
¼ min

ˆ�Rd , jˆj<N

kX � Projˆ(X )k p:

Then the ^̂̂
k :¼ ^̂̂, 0 < k < n, make up the optimal quantization of the chain. The companion

parameters are the quantization of the distribution � induced by ^̂̂, that is, P̂P0 ¼ Proj ^̂̂(X 0),

and a single transition matrix

P̂P
ij
k ¼ P̂P

ij
1 :¼ P(X̂X 1 ¼ x̂x j j X̂X 0 ¼ x̂xi), 0 < i, j < N :

The size of the parameters to be stored is obviously divided by a factor n (or the possible

quantization size for the distribution � and the transition matrix is multiplied by n). This

ability to take into account the stationarity of the signal process is an interesting feature of

the optimal quantization approach which seems not to be shared by other numerical methods.

7. Discretely observed diffusions

In this section, we discuss how our previous results can be applied when the signal-

observation process evolves according to a stochastic differential equation of the form

dX t ¼ b(X t)dt þ � (X t)dW t, X 0?�, (7:1)

dYt ¼ 	(X t, Yt)dt þ ª(X t, Yt)dBt, Y0 ¼ 0, (7:2)

where W is a d-dimensional Brownian motion independent of the q-dimensional Brownian

motion B, � is a known distribution, and b, 	, � , ª are known functions. We setP
(x) ¼ � (x)� (x)T and ¸(x, y) ¼ ª(x, y)ª(x, y)T. We assume that x 7!

P
(x) and

(x, y) 7! ¸(x, y) are uniformly non-degenerate functions and we denote by x 7!
P

1=2(x)
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and (x, y) 7! ¸1=2(x, y) their square roots functions1 which are clearly uniformly non-

degenerate. The process (X , Y ) is Markov with a transition semigroup denoted by (Rt) t.

We suppose here that the sample path (Yt) is observed at n discrete times with regular

sampling interval, say 1. Our aim is then to compute the filter — y,n of X n conditional on

the observations (Y1, . . . , Yn) set at y ¼ (y1, . . . , yn).

The sequences (X k , Yk)k2N and (X k)k2N are (homogeneous) Markov chains with

transitions R1(x, y, dx9, dy9) and P(x, dx9) ¼ R1(x, y, dx9, Rq). Under suitable conditions on

the coefficients of the diffusion (7.1)–(7.2), for example if the functions b, � , 	, ª are

twice differentiable with bounded derivatives of all orders up to 2, the transition

R1(x, y, dx9, dy9) admits a density (x9, y9) 7! r(x, y, x9, y9). Hence, we are in the situation

of (H): the law of Yk conditional on (X k�1, Yk�1, X k) ¼ (x, y, x9) admits a density

y9 7! g(x, y, x9, y9) given by

g(x, y, x9, y9) ¼ r(x, y, x9, y9)

p(x, x9)

where p(x, x9) ¼
Ð

r(x, y, x9, y9)dy9 is the density of the transition P(x, dx9).

But we do not know explicitly the density r (and so g) and we have to approximate it by

an Euler scheme. We follow closely here the arguments of Del Moral et al. (2001). For a

step size 1=m, and given a starting point (x, y) 2 Rd 3 Rq, we define by induction the

variables

X (x)
(m)
0 ¼ x,

X (x)
(m)
iþ1 ¼ X (x)

(m)
i þ b(X (x)

(m)
i )

1

m
þ � (X (x)

(m)
i )

�iþ1ffiffiffiffi
m

p ,

Y (x, y)
(m)
0 ¼ y,

Y (x, y)
(m)
iþ1 ¼ Y (x, y)

(m)
i þ 	(X (x)

(m)
i , Y (x, y)

(m)
i )

1

m
þ ª(X (x)

(m)
i , Y (x, y)

(m)
i )

�iþ1ffiffiffiffi
m

p ,

for i ¼ 0, . . . , m � 1, where the (�i)i and (�i)i are independent sequences of i.i.d centred

Gaussian vectors with unit covariance matrices. We denote by R
(m)
1 (x, y, dx9, dy9) the law of

(X (x)(m)
m , Y (x, y)(m)

m ). Then R
(m)
1 (x, y, dx9, dy9) has a density (x9, y9) ! r(m)(x, y, x9, y9)

explicitly given by

r(m)(x, y, x9, y9) ¼
ð Ym�1

i¼0

�(xi, xiþ1)ł(xi, yi, yiþ1)dx1 . . . dxm�1dy1 . . . dym�1,

with (x0, y0) ¼ (x, y), (xm, ym) ¼ (x9, y9) and

1 Every non-negative symmetric S matrix admits a unique square root S1=2 which is non-negative, symmetric,
satisfies S1=2S1=2 ¼ S and commutes with S.
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�(x, x9) ¼ md=2

(2�)d=2det(
P

1=2(x))
exp � m

2

				(P1=2(x))�1 x9� x � b(x)

m

� �				
2

" #
,

ł(x, y, y9) ¼ mq=2

(2�)q=2det(¸1=2(x, y))
exp � m

2

				(¸1=2(x))�1 y9� y
	(x, y)

m

� �				
2

" #
:

The density r(m)(x, y, x9, y9) is an approximation of the density r(x, y, x9, y9). More

precisely, we have from (Bally and Talay 1996) the existence of constants C and C9

depending only on the coefficients b, 	, � , ª such that

r(x, y, x9, y9)þ r(m)(x, y, x9, y9) < C exp �C9(jx � x9j2 þ jy � y9j2)
� �

, (7:3)

jx � x9j þ jy � y9j . 2

m
) jr(x, y, x9, y9)� r(m)(x, y, x9, y9)j

<
C

m
exp(�C(jx � x9j2 þ jy � y9j2)): (7:4)

The law P(m)(x, dx9) of X (x)(m)
m has a density x9 ! p(m)(x, x9) ¼

Ð
r(m)(x, y, x9, y9)dy9. We

then have an approximation of g(x, y, x9, y9) given by

g(m)(x, y, x9, y9) ¼ r(m)(x, y, x9, y9)

p(m)(x, x9)
: (7:5)

We then approximate — y,n by —̂—(m)
y,n defined by the marginal quantization algorithm in

Section 3, where we replace the unknown function g by g(m). The estimation error is

measured via

j— y,n f � —̂—(m)
y,n f j < j— y,n f �—

(m)

y,n f j þ j—(m)

y,n f � —̂—(m)
y,n f j, (7:6)

where —
(m)

y,n is the filter given by formulae (2.1)–(2.2), with the transition probability

distribution P(x, dx9) ¼ p(x, x9)dx9 replaced by P(m)(x, dx9) ¼ p(m)(x, x9)dx9 and the

conditional density g replaced by g(m). Actually, from the preliminaries in Section 2, we

recall that the true filter — y,n is given in an inductive form by

— y,0 ¼ �,

— y,k ¼ — y,k�1 H y,k f

— y,k�1 H y,k1
, k ¼ 1, . . . , n,

with

H y,k f (x) ¼
ð

f (x9)g(x, yk�1, x9, yk)P(x, dx9) ¼
ð

f (x9)r(x, yk�1, x9, yk)dx9,

while the approximate probability measure —(m)
y,n is given by
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—
(m)

y,0 ¼ �,

—
(m)

y,k ¼
—

(m)

y,k�1 H
(m)
y,k f

—
(m)

y,k�1 H
(m)
y,k1

, k ¼ 1, . . . , n,

with

H
(m)
y,k f (x) ¼

ð
f (x9)g(m)(x, yk�1, x9, yk)P

(m)(x, dx9) ¼
ð

f (x9)r(m)(x, yk�1, x9, yk)dx9:

By using (7.3)–(7.4), it can easily be checked that for any bounded function f ,

kH y,k f � H
(m)
y,k f k1 <

C

m
k f k1,

for some positive constant C independent of m and y. Therefore, by Proposition 2.1 in Del

Moral et al. (2001), the first term in (7.6) is estimated by				— y,n f �—
(m)

y,n f

				 < C

m
k f k1

rn(y)nþ1 � rn(y)

K g(rn(y)� 1)
,

with rn(y) ¼ 2K n
g=�n(y). The second term in (7.6) is given by Theorem 3.1 provided one

can check some Lipschitz condition for g(m). Actually, it is proved in Appendix A that when

the functions b, � and ª are constant, there exists a positive constant C (independent of m)

such that, for all x, x9, x̂x, x̂x9 2 Rd and y, y9 2 Rq,

jg(m)(x, y, x9, y9)� g(m)(x̂x, y, x̂x9, y9)j < Cm(qþ1)=2 1þ jxj þ jx9j þ jx̂xj þ jx̂x9jð Þjx � x̂xj (7:7)

þ Cm(qþ3)=2 1þ jxj þ jx9j þ jx̂xj þ jx̂x9jð Þjx9� x̂x9j:

8. Numerical illustrations

Two numerical illustrations are presented: one with the Kalman–Bucy model derived from

the noisy observation of the discretization of an Ornstein–Uhlenbeck model, the other with

a stochastic volatility model arising in financial time series.

8.1. The Kalman–Bucy model

The Kalman–Bucy model is given by

X k ¼ AX k�1 þ 
�k 2 Rd , (8:8)

Yk ¼ BX k þ Ł�k 2 Rq, (8:9)

for k 2 N, with X 0 normally distributed with mean m0 ¼ 0 and covariance matrix
P2

0. Here

A, B, 
 and Ł are matrices of appropriate dimensions, and (�k)k>1, (�k)k>1 are independent
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centred Gaussian processes, �k?N (0, I d), �k?N (0, I q). In this case, we have, assuming

that Ł is invertible,

gk(x, y) ¼ g(x, y) ¼ 1

(2�)d=2
p
det(ŁŁT)

exp � 1

2

				Ł�1(y � Bx)

				
2

 !
:

If jjjAjjj , 1, then (X k)k>0 is stationary if and only if
P2

0 ¼
P

n>0(A
n
)(An
)T (unique

solution of
P2

0 ¼ A
P2

0AT þ 

T). Of course, the filter — y,n is explicitly known (see Elliot et

al. 1995): it is a Gaussian distribution of mean mn and covariance matrix Cn given by the

inductive equations

Ckþ1 ¼ (I d � K kþ1B)(

T þ A Ck AT), C0 :¼ 0,

mkþ1 ¼ A mk þ K kþ1(ykþ1 � BA mk), m0 :¼ 0,

where

K kþ1 ¼ (

T þ A Ck AT)BT(B(

T þ A Ck AT)B9þ ŁŁT)�1:

Note that mn depends on the observation vector y, whereas Cn does not.

The above system can be seen as the Euler scheme with step ˜t of the (linear) Gaussian

diffusion system

dX (t) ¼ �ÆX (t)dt þ � X dW X (t),

dY (t) ¼ B dX (t)þ �
Y
dW Y (t),

with hW x, W Y i � 0, if one sets A ¼ I d � ˜t Æ, 
 ¼
ffiffiffiffiffiffi
˜t

p
� X , Ł ¼

ffiffiffiffiffiffi
˜t

p
� Y .

A numerical experiment has been carried out as follows: the (stationary) process X is

quantized by marginal quantization. However, we decided to use grids which are not

optimal for the stationary distribution N (0,
P2

0). Instead, we selected some grids of the

form

0̂ ¼
P

0 ˆ
� :¼ f

P
0 �, � 2 ˆ�g

where ˆ� is L2-optimal for N (0, I d). This induces slightly less accurate results but illustrates

the robustness of the method and the desirability of keeping some tabulations off-line.

Two kinds of tests were carried out with the Kalman–Bucy filter in order to track the

behaviour of the quantized filter as a function of N (or N ) and n. The choice of a

stationary setting is motivated by the possibility of detecting more simply the dependency in

these parameters. However, some simulations carried out using the same model, but starting

at some deterministic value X 0 ¼ 0, yield quite similar results for the appropriate

architecture of the ‘quantization tree’ (see Sellami 2004). This tree was made up of (non-

optimal) grids suitably scaled from optimal grids for the normal distribution.

Test 1: Convergence of the filter at a fixed instant n as a function of the size

N ¼ N=(n þ 1) of the grid 0̂. We set ˜t ¼ 1=250, n ¼ 15, and considered three functions

f 1(x) ¼ xd , f 2(x) ¼ jxj2, f 3(x) ¼ e�jxd j,
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implemented in dimensions d ¼ 1 and d ¼ 3 (closed forms exist for —̂—n f i, i ¼ 1, 2, 3). In

both dimensions the results are summarized in a diagram showing for every function

f i, i ¼ 1, 2, 3, the graphs N 7! —̂—n( f i) (or N 7! j—n( f i)� —̂—n( f i)j) and logN 7!
logj—n( f i)� —̂—n( f i)j (i.e. a log scale) with its least-squares regression line denoted by

‘y ¼ �ax þ b’ (a and b appearing as numerical values). This means that

j—n( f i)� —̂—n( f i)j �
eb

N a
:

For d ¼ 1, Æ ¼ B ¼ 1, � X ¼ 0:5 and � Y ¼ 1, we have A ¼ 0:996, 
 ¼ 0:0316 (so thatP
0 ¼ 
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
� 0:354) and Ł ¼ 0:0663. The grid size N ranges over the interval [50, 400].

Figure 1 shows the results. Furthermore, in Figure 2, for every function f i, i ¼ 1, 2, 3, we have

added a graph N 7! j—n( f i)� —̂—n( f i)j for three different observation vectors.

Turning to d ¼ 3, let

Æ :¼
1:4445 0:5556 0:7778
0:5556 0:9445 0:2222
0:7778 0:2222 1:6110

2
4

3
5

so that

A ¼
0:9942 �0:00222 �0:0031

�0:0022 0:9962 �0:0009
�0:00311 �0:0009 0:9936

2
4

3
5:

Set


 ¼
0:1079 0:0317 0:0444
0:0317 0:0793 0:0127
0:0444 0:0127 0:1173

2
4

3
5

so that

P
0 ¼

1:0118 0:0900 0:1349
0:0900 0:9219 0:0449
0:1349 0:0449 1:0343

2
4

3
5:

Then set B ¼ I3, Ł ¼ 0:5 I3. The grid size N ranges over the interval [50, 600]. Figure 3

shows the results.

Test 2: Stability of the filter for a fixed grid size N ¼ Nmax as n grows. We now consider

a model in d ¼ 2 dimensions with

Æ ¼ 1:1625 �0:8488
�0:8488 1:5875

 �
,

so that

A :¼ 0:99535 0:00340
0:003340 0:99365

 �
, 
 :¼ 0:08830 �0:02419

�0:02419 0:10041

 �
,

B ¼ I2, Ł :¼ 0:5I2, and
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Figure 1. d ¼ 1, n ¼ 15. Convergence and convergence rate (on a log scale) as N grows.
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P
0 ¼

1:01976 0:10041
0:10041 0:969493

 �
:

We set N ¼ 600 with n running from 1 to 100. On the left in Figure 4 are depicted

n 7! —n(x
i), n 7! —̂—n(x

i), i ¼ 1, 2 and n 7! —̂—n(jxj)�—n(jxj)
—n(jxj)

, n 2 [1, 100],

and the linear regression line of these relative errors. These results are much more satisfactory

than those induced by the a posteriori error bounds obtained in Theorem 3.1 or Theorem 4.1,

although the process (X k) is not ‘rapidly mixing’ since jjjAjjj is close to 1 (this explains why

the regression line is not completely flat). When jjjAjjj is less than 0:8 as on the right in Figure

4, the true value and the quantized one become indistinguishable. This means that, as for

interacting particle methods, the mixing property of the state variable X induces the stability of

the filter as n increases. However, we do not yet have theoretical results to support this fact.

8.2. A stochastic volatility model

We consider a state model with multiplicative Gaussian noise process:

Yk ¼ � (X k)�k 2 R, with X k ¼ r X k�1 þ �k 2 R, (8:10)

where r is a real constant, � (:) is a positive Borel function on R and (�k)k>1, (�k)k>1 are

independent Gaussian processes. In terms of financial modelling, (Yk)k>0 represents a

(martingale) asset price model with stochastic volatility � (X k). We still consider (8.10) as an

Euler scheme, with step size ˜t, of a continuous-time Ornstein–Uhlenbeck stochastic

volatility model

dX (t) ¼ �ÆX (t)dt þ 
 dW (t), 0 < t < 1,

with positive parameters º and 
. We then suppose that

r ¼ 1� Æ˜t, �k?N (0, 
2˜t), �k?N (0, ˜t):

The filtering problem consists of estimating the volatility � (X n) at step n given the

observations of the prices (Y0, . . . , Yn). Here,

gk(x, y) ¼ g(x, y) ¼ 1ffiffiffiffiffiffi
2�

p
˜t � (x)

exp � y2

2 � 2(x)˜t

� �
:

The values of the parameters in our simulation are for (Æ, 
, ˜t) ¼ (1, 0:5, 1=250). The

Gaussian distribution of X 0 is such that the sequence (X k)k>1 is stationary, that is,

X 0 � N (0,
P2

0) with
P

0 ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
˜t=(1� r2)

p
¼ 
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æ(2 � Æ˜t)

p
� 0:354.

The selected model here is

(ABS) � � (X k) ¼ ªþ jX k j, with ª ¼ 0:05:

Figure 5 shows the graph N 7! j—n( f i)� —̂—n( f i)j which strongly suggests convergence for

the three functions (although no reference value is available).
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Appendix A: Lipschitz condition on the conditional density of
the Euler scheme

We consider the particular case where the coefficients b, � and ª of the diffusion (X , Y ) in

(7.1)–(7.2) are real constants. We then assume without loss of generality that � ¼ I d and

ª ¼ I q. We also assume that the function 	 is bounded and differentiable with bounded

derivatives. We show that then the conditional density g(m) of the Euler scheme is bounded

and satisfies the locally Lipschitz continuous condition (7.7). First, we recall that

g(m)(x0, y0, xm, ym) ¼
r(m)(x0, y0, xm, ym)

p(m)(x0, xm)
(A:1)

with

r(m)(x0, y0, xm, ym) ¼
ð Ym�1

i¼0

�(xi, xiþ1)ł(xi, yi, yiþ1) dx1 . . . dxm�1dy1 . . . dym�1,

p(m)(x0, xm) ¼
ð Ym�1

i¼0

�(xi, xiþ1)dx1 . . . dxm�1,

where

�(x, x9)¼ md=2

(2�)d=2
exp � m

2

				x9� x
b

m

				
2

" #
, ł(x, y, y9)¼ mq=2

(2�)q=2
exp � m

2

				y9� y�	(x, y)

m

				
2

" #
:

First, by noting that ł(xm�1, ym�1, ym) is bounded by (m=2�)q=2 and using the fact that,

for every x0, . . . , xm�1 2 R, y0 2 R, (y1, . . . , ym�1) 7!
Qm�1

i¼0 ł(xi, yi, yiþ1) is a (Gaussian)

density function, we see by Fubini’s theorem that

g(m) <
m

2�

� �q=2

: (A:2)

Both functions p(m)(x0, xm) and r(m)(x0, y0, xm, ym) are clearly differentiable with respect

to x0 and xm with derivatives given by

@ r(m)

@x0
¼
ð

mI d x1 � x0 �
b

m

� �
þ @	

@x0
y1 � y0 �

	(x0, y0)

m

� � �

3
Ym�1

i¼0

�(xi, xiþ1)ł(xi, yi, yiþ1)dx1 . . . dxm�1dy1 . . . dym�1,

@ r(m)

@xm

¼
ð

�mI d xm � xm�1 �
b

m

� � �

3
Ym�1

i¼0

�(xi, xiþ1)ł(xi, yi, yiþ1)dx1 . . . dxm�1dy1 . . . dym�1,
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@ p(m)

@x0
¼
ð

mI d x1 � x0 �
b

m

� � �Ym�1

i¼0

�(xi, xiþ1)dx1 . . . dxm�1,

@ p(m)

@xm

¼
ð

�mI d xm � xm�1 �
b

m

� � �Ym�1

i¼0

�(xi, xiþ1)dx1 . . . dxm�1:

Now using the same arguments as for (A.2), one obtains				 @ r(m)

@x0

				 < Cmq=2

ð
m

				x1 � x0 �
b

m

				þ 1

� �Ym�1

i¼0

�(xi, xiþ1)dx1 . . . dxm�1,

for some positive constant C. Hence,				 @ r(m)=@x0

p(m)

				 < Cmq=2(1þ mB(x0, xm)), (A:3)

where

B(x0, xm) ¼

ð
jx1 � x0 � (b=m)j—m�1

i¼0 �(xi, xiþ1)dx1 . . . dxm�1ð
—m�1

i¼0 �(xi, xiþ1)dx1 . . . dxm�1

:

By making the change of variables xi ! xi � xi�1 � b=m, i ¼ 1, . . . , m � 1, we have

B(x0, xm) ¼ B(xm � x0 � b) with

B(x) ¼

ð
jx1j exp �(m=2)

Pm�1
i¼1 jxij2 þ

				Pm�1
i¼1 xi � x

				
2

 !" #
dx1 . . . dxm�1

ð
exp �(m=2)

Pm�1
i¼1 jxij2 þ

				Pm�1
i¼1 xi � x

				
2

 !" #
dx1 . . . dxm�1

: (A:4)

By writing the sum in parentheses in the previous relation as a canonical square sum in xm�1,

that is,

Xm�1

i¼1

jxij2 þ
				Xm�1

i¼1

xi � x

				
2

¼ 2

				xm�1 þ
Pm�2

i¼1 xi � x

2

				
2

þ
Xm�2

i¼1

jxij2 þ 1
2

				Xm�2

i¼1

xi � x

				
2

,

we obtain by integrating in (A.4) first with respect to xm�1 (by Fubini’s theorem):

B(x) ¼

ð
jx1j exp �(m=2)

Pm�2
i¼1 jxij2 þ 1

2

				Pm�2
i¼1 xi � x

				
2

 !" #
dx1 . . . dxm�2

ð
exp �(m=2)

Pm�2
i¼1 jxij2 þ 1

2

				Pm�2
i¼1 xi � x

				
2

 !" #
dx1 . . . dxm�2

:
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By induction, this yields

B(x) ¼

ð
jx1j exp[�(m=2)(jx1j2 þ 1

m�1
jx1 � xj2)]dx1ð

exp [�(m=2)(jx1j2 þ 1
m�1

jx1 � xj2)]dx1

:

Using again the canonical square sum in x1, we then obtain

B(x) ¼

ð
jx1j exp(�(m2=2)(m � 1)jx1 � x=mj2)dx1ð

exp(�m2=2(m � 1)jx1 � x=mj2)dx1

:

With the change of variable x1 7! m(x1 � x=m)=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m � 1

p
, it is then clear that

B(x) <
C

m
(
ffiffiffiffi
m

p
þ jxj), 8x 2 Rd ,

for some positive constant C. From (A.3), we deduce that				 @ r(m)=@x0

p(m)

				 < Cmq=2(
ffiffiffiffi
m

p
þ jx0j þ jxmj):

By the same arguments as above, we have				 @ p(m)=@x0

p(m)

				 < C(
ffiffiffiffi
m

p
þ jx0j þ jxmj):

Therefore, 				 @ g(m)

@x0

				 < Cm g=2(
ffiffiffiffi
m

p
þ jx0j þ jxmj): (A:5)

By the same arguments as above, we also show that				 @ g(m)

@xm

				 < Cmq=2þ1(
ffiffiffiffi
m

p
þ jx0j þ jxmjÞ: (A:6)

The local Lipschitz assumption (7.7) straightforwardly follows from (A.5)–(A.6). h

Appendix B: Optimal quantization: numerical aspects

As mentioned in the introduction, quantization consists of replacing an Rd-valued random

vector X by its projection according to a nearest-neighbour rule onto a grid ˆ � Rd,

X̂X ˆ :¼ Projˆ(X ). For a grid ˆ :¼ fx1, . . . , x Ng, such a projection is defined by a Borel

partition C1(ˆ), . . . , C
N
(ˆ) of Rd (called the Voronoi tessellation of ˆ) satisfying

Ci(ˆ) � � 2 Rd: j�� xij ¼ minx j2ˆj�� x jj

 �

, i ¼ 1, . . . , N , where j : j denotes the usual

canonical Euclidean norm. We then set
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X̂X ˆ ¼
XN

i¼1

xi1Ci(ˆ)(X ): (B:1)

If X 2 L p, the L p error induced by this projection – called the L p quantization error –

is given by kX � X̂Xk p. It is obvious that this quantization error depends on the grid ˆ. In
fact, one can easily derives from the nearest-neighbour rule that if ˆ ¼ fx1, . . . , x Ng, then

kX � X̂X ˆk p

p
¼ E min

1<i<N
jX � xij p

� �
: (B:2)

So if one identifies a grid ˆ of size N with the N -tuple (x1, . . . , x N ) or any permutation of

it, the pth power of the L p quantization error – called the L p distortion – appears as a

symmetric function

Q p

N
(x1, . . . , x N ) :¼

ð
min

i
j�� xij pPX (d�)

which can obviously be defined on the whole (Rd)N . The function
ffiffiffiffiffiffiffi
Q p

N

p
p

is Lipschitz

continuous and does reach a minimum. If jX (�)j is infinite, then any N -tuple that achieves

the minimum has pairwise distinct components and this minimum decreases toward 0 as N

goes to infinity. Its rate of convergence is governed by Zador’s theorem (see Graf and

Luschgy 2000):

Theorem B.1. Assume that EjX j pþ� , þ1 for some � . 0. Then

lim
N

N1=d min
jˆj<N

kX � X̂X ˆk p

� �
¼ ~JJ p,d

ð
Rd

j(�)d=(dþ p)d�

� �1= pþ1=d

(B:3)

where PX (d�) ¼ j(�)ºd(d�)þ �(d�), � ? ºd (ºd being Lebesgue measure on Rd). The

constant ~JJ p,d corresponds to the case of the uniform distribution on [0, 1]d .

Except in one dimension ( ~JJ p,1 ¼ 1=2(p þ 1)1= p, ~JJ2,2 ¼
p
(5=18

p
3), . . .) the true value of

~JJ p,d is unknown. However, ~JJ p,d � (d=2�e)1=2 as d goes to infinity (see Graf and Luschgy

2000). This theorem says that minjˆj<NkX � X̂X ˆk p � ŁX , p,d N�1=d . This is in accordance

with the rates O(N�1=d) obtained in numerical integration with uniform grid methods (when

N ¼ Md) although optimal quantizers are never uniform grids (except for the uniform

distribution in one dimension): optimal quantization provides the ‘best-fitting’ grid of size N

for a given distribution � ¼ PX . Such grids correspond to the real constant ŁX , p,d .

B.1. Stochastic gradient descent

When the dimension d is greater than 1 and independent copies of X can easily be

simulated on a computer, an efficient approach consists of differentiating the integral

representation of the quantization error function to implement a stochastic gradient

algorithm. That is, set for every x ¼ (x1, . . . , x N ) 2 (Rd)N and every � 2 Rd,
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q p

N
(x, �) :¼ min

1<i<N
jxi � �j p:

For notational convenience, we will temporarily denote by Ci(x) the Voronoi cell of xi in the

grid ˆ :¼ fx1, . . . , x Ng (instead of Ci(ˆ)). One can show (see Pagès 1997) that, if p . 1,

Q p
N

is continuously differentiable at every N -tuple x 2 (Rd)N having pairwise distinct

components and a PX -negligible Voronoi boundary [N
i¼1@Ci(x). Its gradient =Q p

N
is obtained

by formal differentiation:

=Q p
N
(x) ¼ E =x q p

N
(x, X )

h i
, (B:4)

where

=x q p

N
(x, �) ¼

@ q p
N

@xi
(x, �)

� �
1<i<N

:¼ p
xi � �

jxi � �j jx
i � �j p�11Ci(x)(�)

� �
1<i<N

with the convention that 0=j0j ¼ 0. Note that then, =xq p
N
(x, �) has exactly one non-zero

component i(x, �) defined by � 2 Ci(x,�)(x). The above differentiability result still holds for

p ¼ 1 if PX is continuous (i.e. weights no point in Rd).

Then, one may process a stochastic gradient descent algorithm (starting from an initial

grid ˆ0 with N pairwise distinct components) defined by

ˆsþ1 ¼ ˆs � �sþ1

p
=x q p

N
(ˆs, � sþ1), (B:5)

where (� s)s>1 is an i.i.d. sequence of X -distributed random vectors and (�s)s>1 a (0, 1)-

valued sequence of step parameters satisfying the usual conditions,X
s

�s ¼ þ1 and
X

s

�2s , þ1: (B:6)

Note that (B.5) almost surely implies by induction that ˆs has pairwise distinct components

for every s. Under some appropriate assumptions, such a stochastic descent procedure almost

surely converges toward a local minimum of its potential function; here it would be Q p
N
.

Although these assumptions are not fulfilled by the function Q p
N
, some theoretical problems

may be overcome (see Pagès 1997). However, it provides satisfactory results a posteriori (this

is a common situation when implementing gradient descents). The companion parameters

(PX -weights of the cells and L p quantization errors) can be obtained as by-products of the

procedure. For more details, we refer to Pagès (1997), Bally and Pagès (2003) and Pagès et

al. (2004a), where these questions are extensively investigated and discussed.

The quadratic case p ¼ 2 is the most commonly implemented for applications and is

known as the competitive learning vector quantization algorithm.

B.2. Stationary quantizers

The differentiability of Q2
N

also has a noticeable theoretical consequence. Since Q2
N

is

differentiable at any N -tuple x lying in argminQ2
N
– even in argminlocQ2

N
if P

X
weights no
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hyperplane – any such N -tuple is a stationary quantizer, that is, =Q2
N
(x) ¼ 0. Standard

computations then show that this equation reads

X̂X ¼ E[X j X̂X ]: (B:7)

In particular this implies that, for every p 2 [1, þ1], kX̂Xk p < kXk p.
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Sellami, A. (2004) Non linear filtering with quantization of the observations. Preprint, LPMA.

Received April 2003 and revised November 2004

932 G. Pagès and H. Pham


	1.&X;Introduction
	Equation 1
	Equation 2
	2.&X;Nonlinear filtering: preliminaries and remarks
	Equation 3
	Equation 6
	Equation 7
	Equation 8
	Equation 9
	3.&X;Approximate filter by marginal quantization
	3.1.&Y;Method

	Equation 11
	Equation 12
	Equation 13
	Equation 14
	3.2&Y;Error analy—sis

	Equation 16
	Equation 17
	Equation 20
	4.&X;Approximate filter by Markovian quantization
	4.1.&Y;Method

	Equation 23
	Equation 24
	Equation 25
	Equation 26
	Equation 27
	Equation 28
	4.2.&Y;Error analy—sis

	Equation 32
	5.&X;Convergence of the quantized filters
	Equation 35
	5.1.&Y;Application to optimal dispatching

	Equation 36
	5.2.&Y;Application to discretized diffusions

	6.&X;On practical implementation
	6.1.&Y;General features and complexity
	6.2.&Y;A special case: marginal quantization of a stationary signal

	7.&X;Discretely ob—served diffusions
	Equation 39
	Equation 41
	Equation 42
	8.&X;Numerical illustrations
	8.1.&Y;The Kalman

	Figure 1
	Figure 2
	Figure 3
	8.2.&Y;A stochastic volatility model

	Equation 46
	Figure 4
	Figure 5
	Appendix A: Lipschitz condition on the conditional density of the Euler scheme
	Equation 47
	Equation 48
	Equation 49
	Equation 50
	Equation 51
	Equation 52
	Appendix B: Optimal quantization: numerical aspects
	Equation 47
	Equation 48
	Equation 49
	B.1.&Y;Stochastic gradient descent

	Equation 50
	Equation 51
	Equation 53
	B.2.&Y;Stationary quantizers

	Equation 54
	Acknowledgement
	References
	mkr1
	mkr2
	mkr3
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr18
	mkr19
	mkr20
	mkr21

