
On adaptive Markov chain Monte Carlo

algorithms

Y V E S F. AT C H A D É 1 and JEFFREY S. ROSENTHAL2

1Department of Mathematics and Statistics, University of Ottawa, 585 King Edward St., Ottawa,

ON, Canada K1N 6N5. E-mail: yatchade@uottawa.ca
2Department of Statistics, University of Toronto, 100 St. George Street, Room 6018, Toronto,

ON, Canada M5S 3G3. E-mail: jeff@math.toronto.edu

We look at adaptive Markov chain Monte Carlo algorithms that generate stochastic processes based on

sequences of transition kernels, where each transition kernel is allowed to depend on the history of the

process. We show under certain conditions that the stochastic process generated is ergodic, with

appropriate stationary distribution. We use this result to analyse an adaptive version of the random

walk Metropolis algorithm where the scale parameter � is sequentially adapted using a Robbins–

Monro type algorithm in order to find the optimal scale parameter �opt. We close with a simulation

example.

Keywords: adaptive Markov chain Monte Carlo; Metropolis algorithm; mixingales; parameter tuning;

Robbins–Monro algorithm

1. Introduction

Markov chain Monte Carlo (MCMC) methods have become an important numerical tool in

statistics (see Gilks et al. 1996; Liu 2001). They usually require various parameters (e.g.

proposal scalings) to be appropriately tuned for the algorithm to converge reasonably well.

In this paper, we develop and analyse adaptive MCMC algorithms where these parameter

tunings can be handled automatically.

We consider Monte Carlo algorithms based on random processes (which we shall call

adaptive Markov chains) where the entire past of the process is used to make the next move

in the algorithm. The set-up is a generalization of Haario et al. (2001). We prove two

ergodicity results for such algorithms (Theorems 3.1 and 3.2). The rate of convergence

obtained in Theorem 3.1 tends to indicate that these algorithms converge at a much slower

rate. Nevertheless, their adaptability is an important attractive feature.

We apply these results to prove the convergence of a new adaptive random walk

Metropolis (adaptive RWM) algorithm (Algorithm 4.1) with proposal kernel q� (x, y), the

density of the d-dimensional multivariate normal distribution N (x, � 2 I d). It is well known

that an effective implementation of this algorithm requires a good choice of the parameter

� 2; this choice depends on the density �. Some theoretical and empirical results (Roberts et

al. 1997; Roberts and Rosenthal 2001) have shown that in high-dimensional spaces, under

various regularity conditions, it is optimal to choose � 2 such that the asymptotic acceptance

Bernoulli 11(5), 2005, 815–828

1350–7265 # 2005 ISI/BS

rate of the algorithm is approximately � ¼ 0:234. However, much trial and error may be

required to find such a value for � 2. In Section 4, we propose an adaptive version of the

RWM algorithm which sequentially adapts � 2 so as to reach the optimal acceptance rate �.

Our adaptive algorithm is based on a stochastic approximation algorithm.

A number of interesting ideas about adaptive MCMC methodology have recently been

introduced. Gilks et al. (1998) have shown that the transition kernel used in an MCMC

algorithm can be updated (without damaging the ergodicity of the algorithm) at regeneration

times. The problem with this approach is that regeneration times for Markov chains are

difficult to identify, particularly in high-dimensional spaces. Haario et al. (2001) have

proposed an adaptive version of the RWM where the covariance matrix of the proposal

kernel is sequentially updated. A recent paper highly comparable to this work is Andrieu

and Moulines (2003). These authors have simultaneously and independently developed

convergence results for adaptive MCMC algorithms. Although there is not much overlap

between the two papers, both have similar assumptions.

Throughout this paper, � represents the probability measure of interest defined on some

measurable space (X , F). In Section 2 we provide an example of an adaptive algorithm

(Algorithm 2.1) that fails to converge. A general analysis for adaptive MCMC is developed

in Section 3. The main results are Theorems 3.1 and 3.2. In Section 4 (Algorithm 4.1) we

introduce a new adaptive RWM algorithm that can iteratively find the optimal scale

parameter (Theorem 4.1). Simulation results are presented in Section 5.

2. Cautionary examples

We begin with a simple example due to G.O. Roberts (personal communication), where an

intuitively reasonable adaptive rule fails to give the expected asymptotic distribution.

Take X ¼ f1, 3, 4g, and let � be the uniform distribution on X . For i ¼ 1, 2, and x 2 X,

let Qi(x, :) be the uniform distribution on fx � i, x þ ig (when x =2 X , Q(x, x) ¼ 1) and

Ri(x, :) ¼ (1 � �)Qi(x, :) þ ��(:), for some fixed � 2 [0, 1]. Consider the following adaptive

Metropolis algorithm.

Algorithm 2.1.

(i) Start the algorithm at X0 ¼ x0 2 X .

(ii) Suppose that at some time n, X n ¼ x. If n ¼ 0, sample Ynþ1 � R2(x, :). Otherwise:

(a) if the last move was a rejection, sample Ynþ1 � R1(x, :);
(b) if the last move was an acceptance, sample Ynþ1 � R2(x, :);
(c) if Ynþ1 2 X , ‘accept’ Ynþ1 and set X nþ1 ¼ Ynþ1; otherwise ‘reject’ Ynþ1 and set

X nþ1 ¼ x.

The strategy used in this algorithm is quite intuitive. Large step moves (from R2) are

proposed to help increase the mixing rate of the chain. But these moves are more likely to be

rejected, and when this happens, the algorithm tries a smaller step move (from R1). Each

proposal Ri gives an ergodic Metropolis algorithm, but in fact Algorithm 2.1 fails to give the

right asymptotic distribution.

816 Y.F. Atchadé and J.S. Rosenthal

To see why, let (X n) be the stochastic process resulting from Algorithm 2.1 and define

Z n :¼ (X n, X n�1) 2 X 3 X . It is easy to see that (Z n) is a Markov chain. We can write the

transition matrix of (Z n). For m, n 2 X, note �(m, n) ¼ 1 if m ¼ n and �(m, n) ¼ 2

otherwise. Also define ł(m, n) ¼ 1 � � if m ¼ n ¼ 1 or (m 6¼ n and n ¼ 4) and

ł(m, n) ¼ (1 � �)=2 otherwise. Then P((m, n), (n, j)), the probability that Z n ¼ (n, j)

given that Z n�1 ¼ (m, n), can be written:

P((m, n), (n, j)) ¼ (1 � �)Q�(m,n)(n, j) þ ��(j), if j 6¼ n,

��(n) þ ł(m, n), if j ¼ n:

�

It can be checked that P is irreducible and aperiodic. Since X 3 X is finite, P is ergodic. Let

�(i, j) be the invariant distribution for P. Then fX n ¼ 1g ¼ fX n ¼ 1, X n�1 ¼ 1g [
fX n ¼ 1, X n�1 ¼ 3g [fX n ¼ 1, X n�1 ¼ 4g, which implies that

lim
n!1

1

n

Xn�1

i¼0

1fX i¼1g ¼ lim
n!1

Pr(X n ¼ 1) ¼ �(1, 1) þ �(1, 3) þ �(1, 4):

The computation of the matrix � requires solution of the 9 3 9 linear equation �P ¼ �.

We do this numerically for different values of �. Table 1 summarizes the results. Clearly,

for all � 2 [0, 1), limn!1(1=n)
Pn�1

i¼0 1fX i¼1g ¼ limn!1 Pr(X n ¼ 1) . 1
3
. As we shall see,

this adaptive MCMC algorithm fails because the successive transition kernels in use fail to

stabilize as the simulation goes along, a key requirement for an adaptive MCMC algorithm.

For an interactive version of a related example, see Rosenthal (2004).

3. General ergodicity results

Assume that we have a starting transition kernel P0 and an initial point x0 2 X . Consider

the following generic adaptive MCMC algorithm:

Algorithm 3.1.

(i) Suppose that at some time n > 0, we have X n ¼ x and a transition kernel Pn, ~XX n

which is allowed to depend on the path (X0, . . . , X n) ¼ ~XX n 2 X nþ1 of the

algorithm.

(ii) Sample X nþ1 � Pn, ~XX n
(x, :).

(iii) Use ~XX nþ1 ¼ (X 0, . . . , X nþ1) to build a new transition kernel Pnþ1, ~XX nþ1
to be used at

time n þ 1.

We take P0,~xx0
¼ P0 as the starting transition kernel.

Table 1. limn!1 Pr(X n ¼ 1) as a function of � in Algorithm 2.1.

lim Pr(X n ¼ 1) 0.9898 0.9088 0.5589 0.3517 0.3337 0.3334

� 0.001 0.01 0.1 0.5 0.9 0.99

Adaptive Markov chain Monte Carlo algorithms 817

To run Algorithm 3.1, we assume that we have at our disposal a family

fPn,~xxn
(x, A) : n > 0, ~xxn 2 X nþ1, x 2 X , A 2 Fg which is such that for n > 0, ~xxn 2 X nþ1,

and x 2 X fixed, Pn,~xxn
(x, :) is a probability measure on (X , F), and, for A 2 F , Pn,~xxn

(x, A)

is a measurable function from (X nþ1 3 X , F nþ1 3 F to [0, 1].

Let (X n) be the random process generated by Algorithm 3.1 and P� its distribution on

(X1, F1) when X 0 � �. We shall write E� to denote the expectation with respect to P�. As

usual, if � ¼ �x, the Dirac measure on x, we write Ex and Px instead of E� and P�, respectively.

For a probability measure � and a transition kernel P, the product �P defines a

probability measure �P(:) :¼
Ð
�(dx)P(x, :). And if f is a real-valued function on X , the

product Pf defines a function Pf (x) :¼
Ð

P(x, dy) f (y). If P and Q are two transition

kernels, the product PQ is also a transition kernel defined by PQ(x, A) :¼Ð
P(x, dy)Q(y, A). This allows us to define Qn, the product of Q by itself n times, with

the convention that Q0(x, A) ¼ 1A(x). Finally, for a probability measure � and a positive

function V , we define the V -norm of � by k�kV :¼ supj f j<V j�(f)j, where

�(f) :¼
Ð

f (x)�(dx).

We study the ergodicity of the stochastic process generated by Algorithm 3.1. We assume

that for n > 0 and ~xxn 2 X nþ1, there exists a probability measure �n,~xxn
on X such that

�n,~xxn
Pn,~xxn

¼ �n,~xxn
, (3:1)

and that the function ~xxn ! �n,~xxn
(A) is measurable for every n > 0 and A 2 F . In words,

�n,~xxn
is an invariant distribution for Pn,~xxn

.

We require the following assumptions:

Assumption 3.1. There exist a measurable function V : X ! [1, 1) finite constants K1, K2,

K3 and sequences of real numbers (�n), (an), (Rn), with �n, Rn ! 0 as n ! 1, such that:

(i) for j > 1, n > 0, x 2 X and ~xxn 2 X nþ1,

kP
j
n,~xxn

(x, :) � �n,~xxn
(:)kV < RjV (x); (3:2)

(ii) for x 2 X, ~xxn 2 X nþ1, ~yyk 2 X kþ1, ~xxnþk ¼ (~xxn, ~yyk),

kPnþk,~xxnþ k
(x, :) � Pn,~xxn

(x, :)kV < K1�nak V (x), (3:3)

and

k�nþk,~xxnþ k
� �n,~xxn

kV < K2�nak ; (3:4)

(iii) for n > 0 and k > 1,ð
Pn,~xxn

(xn, dxnþ1) � � �
ð

Pnþk�1,~xxnþ k�1
(xnþk�1, dxnþk)V (xnþk) < K3V (xn); (3:5)

(iv)

sup
n,~xxn

�n,~xxn
Vð Þ , 1; (3:6)

(v) for finite constants c1, c2, defining B(c1, c2, n) :¼ min1<k<n c1�k�n�k þ c2 Rkð Þ,
where �n ¼

Pn
k¼1ak, we have B(c1, c2, n) ¼ O(1=n) for some 	 . 0.

818 Y.F. Atchadé and J.S. Rosenthal

We would like to investigate the ergodicity of (X n) under these assumptions. Henceforth, we

write ~XX n ¼ (X0, . . . , X n).

Theorem 3.1. Assume that X0 ¼ x0 2 X . Under parts (i)–(iv) of Assumption 3.1, there are

constants k1, k2 , 1 such that for any measurable function f : X ! R with j f j < V,

jEx0
f (X n) � �n, ~XX n

(f)
� �

j < B(k1, k2, n)V (x0), (3:7)

where V and B(k1, k2, n) are also as in Assumption 3.1.

Theorem 3.2. Under parts (i)–(v) of Assumption 3.1 and for any measurable function

f : X ! R with j f j < V, where V is also as in Assumption 3.1, we have

1

n

Xn�1

i¼0

f (X i) � �i, ~XX i
(f)

� �
! 0, as n ! 1, Px0

-a:s: (3:8)

for any starting point x0 2 X .

Remark 3.1. (i) For most MCMC algorithms, one would have �n,~xxn
¼ �, the invariant

distribution of interest, and in this case Theorem 3.1 gives a bound on the rate of

convergence of the distribution of X n to � and Theorem 3.2 states a law of large numbers.

(ii) Assumption 3.1(i) requires a uniform-in-time (geometric or subgeometric)

convergence rate of Pn,~xxn
to �n,~xxn

. This may be hard to check in practice. For example,

to obtain a geometric convergence rate (Rn ¼ Rrn for some 0 , r , 1) in Assumption

3.1(i), one possible way is to use quantitative bounds for Markov chains (e.g. Meyn and

Tweedie 1994), which typically requires a drift condition of the form

Pn,~xxn
V (x) < ºV (x) þ b1C(x), (3:9)

for some º , 1, b , 1 and some small set C (for Pn,~xxn
) that do not depend on n, and a

minorization condition

Pn,~xxn
(x, :) > 	�(:), x 2 C, (3:10)

where 	 does not depend on n. It is now well known that many Markov chains satisfy a drift

and a minorization condition. But the fact that the constants involved in these conditions do

not depend on n makes them more difficult to establish in general. Nevertheless, there are

some useful MCMC algorithms (such as the RWM algorithms) where Assumption 3.1 can be

shown to hold. We return to this point in Section 4.

(iii) Assumption 3.1(ii) requires that as n ! 1 the adaptation procedure results in more

and more stable transition kernels. It can be shown that the example in Algorithm 2.1

satisfies all the assumptions above but Assumption 3.1(ii).

(iv) Theorem 3.1 tells us that the adaptive MCMC rate of convergence will be the worst

of the rate of convergence of the (non-adaptive) transition kernels Rn and the rate of

convergence of the adaptation process �n as in Assumption 3.1(ii). For example, taking

an ¼ O(nº2) for some º2 . 0, it is easily seen that if �n is geometric and Rn is geometric

then B(k1, k2, n) :¼ min1<k<n c1�k� j�k þ c2 Rk

� �
is also geometric. But for most adaptive

Adaptive Markov chain Monte Carlo algorithms 819

MCMC algorithms we typically have �n ¼ O(n�º1) for some º1 . 0, and assuming that

Rn ¼ Rrn for some 0 , r , 1, and taking k ¼ Æ log n, Æ ¼ �º1=log r, we obtain the

polynomial rate B(k1, k2, n) ¼ O(n�º1 (log n)º2þ1).

We conclude this section by proving these theorems. Our proofs are based on a version

of the strong law of large numbers for mixingales and closely follow Haario et al. (2001).

For an introduction to mixingales, see Hall and Heyde (1980).

Let F n ¼ f�, Sg be the trivial � -algebra when n , 0, and F n ¼ � (X0, . . . , Xn) be the

� -algebra generated by (X0, . . . , X n) when n > 0.

Lemma 3.1. Suppose that parts (i)–(iv) of Assumption 3.1 hold. Then there are constants

0 , k1, k2 , 1 such that for any n > 0, j > 1, and any measurable function f with

j f j < V,

jEx0
(g nþ j, ~XX nþ j

(X nþ j)]F n)j < B(k1, k2, j)V (X n) (3:11)

Px0
-a.s., where gk, ~XX k

¼ f � �k, ~XX k
(f).

Proof. We have �k, ~XX k
(g k, ~XX k

) ¼ 0, Px0
-a.s. Given (X0, X1, . . . , X n�1) ¼ ~xxn�1 and X n ¼ x, we

have

Ex0
(g n, ~XX n

(X nþ j)j ~XX n�1 ¼ ~xxn�1, X n ¼ x) ¼
Xj�1

k¼1

k(~xxn�1, x) þ P
j
n,~xxn

gn,~xxn
(x), (3:12)

where

k(~xxn�1, x) ¼
ð

Pn,~xxn
(x, dxnþ1) � � �

ð
Pnþk�1,~xxnþ k�1

(xnþk�1, dxnþk)

ð
P

j�k�1
n,~xxn

g n,~xxn
(xnþkþ1)(Pnþk,~xxnþ k

(xnþk , dxnþkþ1)

� Pn,~xxn
(xnþk , dxnþkþ1)):

Using Assumption 3.1(i), we can bound the second term of the left-hand side of (3.12) as

follows:

jP j
n,~xxn

g n,~xxn
(x)j < RjV (x): (3:13)

From Assumption 3.1(ii) and using the fact that supn,~xxn
� Vð Þ , 1, we have the following

bounds for some finite constant r0:

j
k(~xxn�1, x)j < r0�nak

ð
Pn,~xxn

(x, dxnþ1) � � �
ð

Pnþk�1,~xxnþ k�1
(xnþk�1, dxnþk)V (xnþk),

¼ r0�nakEx0
V (X nþk)j ~XX n ¼ (~xxn�1, x)
� �

: (3:14)

Putting (3.13) and (3.14) together in (3.12), we obtain

820 Y.F. Atchadé and J.S. Rosenthal

jEx0
gn, ~XX n

(X nþ j)jF n

� �
j < RjV (X n) þ r0�n

Xj�1

k¼1

akEx0
V (X nþk)jF nð Þ: (3:15)

Taking (3.4) into account leads to

jEx0
g nþ j, ~XX nþ j

(X nþ j)jF n

� �
j < RjV (X n) þ r0�n

Xj�1

k¼1

akEx0
V (X nþk)jF nð Þ þ K2�na j (3:16)

< RjV (X n) þ max(r0, K2)�n

Xj

k¼1

ak V (X n)

< V (X n) r3 Rj þ r2�n� j

� �
, (3:17)

where in the last inequality we use Assumption 3.1(iii) and � j ¼
P j

k¼1ak,

r2 ¼ max(r0, K2)K3, r3 ¼ K3 and K3 is as defined in Assumption 3.1(iv).

Since the family (F n)1n¼�1 is increasing, F n � F nþ j�k for k ¼ 1, . . . , j. Therefore,

Ex0
g nþ j, ~XX nþ j

(X nþ j)jF n

� �
¼ Ex0

Ex0
gnþ j, ~XX nþ j

(X nþ j)jF nþ j�k

� �
]F n

h i
:

It follows that

jEx0
g nþ j, ~XX nþ j

(X nþ j)jF n

� �
j < Ex0

jEx0
g nþ j, ~XX nþ j

(X nþ j)jF nþ j�k

� �
j jF n

h i
: (3:18)

Applying (3.17) to the right-hand side of (3.18) gives

jEx0
gnþ j, ~XX nþ j

(X nþ j)jF n

� �
j < min

1<k< j
r2�nþ j�k�k þ r3 Rk

� �
Ex0

(V (X nþ j�k)jF n)

< V (X n)B(k1, k2, j)

for some constants k1, k2. h

Proof of Theorem 3.2. Taking n ¼ 0 in (3.11) of Lemma 3.1 gives, for n > 1,

jEx0
gn, ~XX n

(X n)
� �

j < B(k1, k2, n)V (x0): (3:19)

Together with Assumption 3.1(v), this shows that

Ex0
f (X n) � �n, ~XX n

(f)
� �

! 0, as n ! 1: (3:20)

Write Yn ¼ f (X n) � �n, ~XX n
(f) � Ex0

(f (X n) � �n, ~XX n
(f)). Given Lemma 3.1, it can easily

be shown that (Yn, F n) is an L2-mixingale with mixingale sequences cn � c constant and

łn ¼ B(k1, k2, n). It follows from Corollary 2.1 of Davidson and de Jong (1997) that

1

n

Xn�1

k¼0

gk, ~XX k
(X k) � Ex0

gk, ~XX k
(X k)

� �
! 0, Px0

-a:s: as n ! 1: (3:21)

Combining (3.20) and (3.21), we obtain that

Adaptive Markov chain Monte Carlo algorithms 821

1

n

Xn�1

k¼0

f (X k) � �k, ~XX k
(f)

� �
! 0, Px0

-a:s: as n ! 1, (3:22)

as desired. h

Proof of Theorem 3.1. Taking n ¼ 0 in (3.11) of Lemma 3.1, we obtain

jEx0
f (X n) � �n, ~XX n

(f)
� �

j < B(k1, k2, n)V (x0), (3:23)

for all j f j < V , which is Theorem 3.1. h

4. Application to the random walk Metropolis algorithm

In this section, X is an open subset of Rd , the d-dimensional Euclidean space equipped

with its Borel subsets Bd. We let � be a positive continuous density with respect to

Lebesgue measure on X . We denote by j:j the Euclidean norm on X . We consider the

RWM algorithm with proposal density q� (x, y) ¼ N (x, � 2 I d). This algorithm generates a

Markov chain (X n) with invariant distribution � as follows. Given X n, a new proposal

Ynþ1 � N (X n, � 2 I d) is made. We then either ‘accept’ the proposed value and set

X nþ1 ¼ Ynþ1 with probability Æ(X n, Ynþ1), or we ‘reject’ it and set X nþ1 ¼ X n with

probability 1 � Æ(X n, Ynþ1), where Æ(x, y) ¼ min 1, �(y)=�(x)ð Þ. This algorithm always has

stationary distribution �. However, the choice of the scaling parameter � 2 has a large effect

on the algorithm’s mixing time. Intuitively, if � 2 is too small, the resulting algorithm will

make very small moves, resulting in a poor mixing time. On the other hand, if � 2 is too

large, then large moves will usually be proposed, and these are likely to be rejected so the

algorithm will again mix poorly. Here we propose an adaptive version of the RWM

algorithm that can automatically find � such that the asymptotic acceptance rate of the

algorithm is approximately � ¼ 0:234.

4.1. The adaptive RWM algorithm

Let P� be the transition kernel of the RWM algorithm with proposal q� (x, y). Let

A(� , x) :¼
ð
Æ(x, y)q� (x, y)dy and �(�) :¼

ð
A(� , x)�(x)dx (4:1)

be the acceptance rate at x and in stationarity, respectively. Our adaptive algorithm relies on

stochastic approximation algorithms initiated by Robbins and Monro (1951). These are well-

known recursive algorithms of the form Łnþ1 ¼ Łn þ ªn(h(Łn) þ 	nþ1), typically used to

solve equations of the form h(Ł) ¼ 0 when the function h is unknown (understood to mean

‘hard to compute’) but can be estimated with a noise (see Kushner and Yin 2003 and the

references therein).

Fix 0 , 	1 , A1. Define ˜ ¼ f� : 	1 < � < A1g. We shall assume that there is a unique

�opt 2 ˜ such that �(�opt) ¼ �. Next, we need a way to contain the algorithm inside ˜. We

822 Y.F. Atchadé and J.S. Rosenthal

define the function p(�) such that p(�) ¼ � if � 2 ˜, p(�) ¼ 	1 if � , 	1 and p(�) ¼ A1

if � . A1.

Let (ªn) be a positive sequence of real numbers. Our adaptive algorithm is thus as

follows:

Algorithm 4.1.

(i) Start the algorithm at some point x0 2 X and �0 2 ˜.

(ii) Suppose that at time n > 0, we have X n 2 X and � n 2 ˜.

(a) Generate Ynþ1 � Q� n
(x, :) and U � U(0, 1).

(b) If U < Æ(X n, Ynþ1), then set X nþ1 ¼ Ynþ1. Otherwise, set X nþ1 ¼ X n.

(c) Compute

� nþ1 ¼ p � n þ ªn Æ(X n, Ynþ1) � �ð Þð Þ: (4:2)

Remark 4.1. (i) The acceptance rate is monitored by means of (4.2). The algorithm lowers the

scale parameter � n when the acceptance rate is too small and increases � n when the

acceptance rate is too high. Instead of updating � n at each iteration, a more robust algorithm

could be obtained by updating � n every w iterations. We tried various value of w in our

simulations and did not find much improvement with w . 1. But this may not be the case

with more complex examples.

(ii) The projection function p is used to keep � n inside ˜ and avoid the degeneracy of

the algorithm. But the drawback (as with every stochastic approximation algorithm with re-

projection on a fixed compact set) is that the optimal value cannot be found if the compact

set ˜ is misspecified. In most MCMC contexts though, if necessary, one may run a pilot

simulation at � ¼ 	1 and � ¼ A1 to validate these values. Another approach dating back to

Chen and Zhu (1986) has been advocated and developed by Andrieu et al. (2002) that

avoids this problem by using re-projections on a family of nested compact sets. But in

MCMC settings this approach is not necessarily better.

(iii) A better way to scale the RWM algorithm is to use the proposal distribution

N (x, ��) with � ¼ �opt and � ¼ ��, the covariance matrix of the distribution �. Since

(�opt, ��) is not known, an adaptive algorithm can also be applied. We do not pursue this

here. See Atchadé (2005), Andrieu and Moulines (2003) and Haario et al. (2001).

4.2. Ergodicity of the algorithm

We assume that � is superexponential with asymptotically regular contours (Jarner and

Hansen 2000) and that the function �(�) is decreasing on ˜. More precisely:

Assumption 4.1.

(i) We assume that � is positive with continuous first derivative such that

lim
jxj!1

n(x) � = log�(x) ¼ �1,

Adaptive Markov chain Monte Carlo algorithms 823

and

lim sup
jxj!1

n(x) � m(x) , 0,

where = is the gradient operator, n(x) ¼ x=jxj and m(x) ¼ =�(x)=j=�(x)j.
(ii) We assume that there exists �opt 2 ˜ such that �(�opt) ¼ 0 and

(� � �opt)(�(�) � �) , 0 whenever � 6¼ �opt.

(iii) (ªn) is a positive sequence of real numbers such that ªn ¼ O(n�º1) for some

constant 1=2 , º1 < 1.

Under Assumption 4.1(i) it follows from Proposition 9 of Andrieu and Moulines (2003)

that the family (P�)�2˜ satisfies a uniform (in �) minorization and drift condition: there

exist 	 . 0, 0 , º , 1, b , 1, a compact non-empty set C � X and a non-trivial

probability measure � such that

inf
�2˜

P� (x, A) > 	�(A)1C(x), A 2 B, x 2 X , (4:3)

and

sup
�2˜

P� W (x) < ºW (x) þ b1C(x), x 2 X , (4:4)

where W (x) ¼ c�(x)1=2, with c such that W (x) > 1. Moreover, there exists a constant

K1 , 1 such that

sup
j f j<W 1=2

jP� 2
f (x) � P� 1

f (x)j < K1W 1=2(x)j�2 � �1j: (4:5)

Theorem 4.1. Let (X n) be the stochastic process generated by Algorithm 4.1. Suppose

Assumption 4.1 holds and take V ¼ W 1=2. Then:

(i) there is a finite constant k such that for n > 2,

kLx0
(X n) � �kV < kn�º1 (log n)2, (4:6)

where Lx0
(X n) is the distribution of X n given that X 0 ¼ x0;

(ii) for any measurable function f : X ! R with j f j < V,

1

n

Xn�1

i¼0

f (X i) ! �(f) Px0
-a:s:, (4:7)

(iii) � n ! �opt as n ! 1, Px0
-a.s.

Proof. (i) and (ii) The minorization condition (4.3) and the drift condition (4.4) imply

Assumptions 3.1(iii) (with V ¼ W 1=2), 3.1(iv) and 3.1(i). Assumption 3.1(i) actually follows

from the computational bound for Markov chains in V -norm as in Meyn and Tweedie (1994).

The sequence (� n) almost surely satisfies j� nþk � � nj < Ak=n for some finite constant A

824 Y.F. Atchadé and J.S. Rosenthal

which, together with (4.5), implies Assumption 3.1(ii). Therefore (i) is Theorem 3.1 and (ii)

is Theorem 3.2.

(iii) We have the recursion � kþ1 ¼ p � k � ªk(Æ(X n, Ynþ1) � �)ð Þ. We let F n be the

� -algebra generated by (�0, X 0, . . . , � n, X n), Un ¼ (� n � �opt)
2 and Vn ¼

�(� n � �opt)(�(� n) � �). We recall the definition of A(� , x) ¼
Ð
Æ(x, y)q� (x, y)dy and

�(�) ¼
Ð

A(� , x)�(dx). It can easily be shown that

Ex0
Unþ1jF nð Þ < Un � 2ªnVn þ ª2

n þ 2ªn	n (4:8)

where 	n ¼ (� n � �opt) A(� n, X n) � �(� n)ð Þ. We claim that
P

ªn	n converges almost surely

to a finite random variable.

We are then able to apply the Robbins–Siegmund theorem (see Duflo 1997, Theorem

1.3.12) to obtain that U n ¼ (� n � �opt)
2 converges (almost surely) to some finite random

variable and
P

ªnVn , 1 (almost surely). That is, � n converges almost surely to some

finite random variable �1 2 ˜. Now it is clear that the function � is continuous so that

�(� n) ! �(�1) (almost surely). Suppose that �1 6¼ �opt. Then Vn ! �(�1 � �opt)

(�(�1) � �) . 0, which contradicts
P

ªnVn , 1 since
P

ªn ¼ 1. Hence �1 ¼ �opt.

The proof of the above claim is similar to the proof of Lemma 3.1. But first observe that

we can find k1, k2 , 1 such that jA(�2, x) � A(�1, x)j < k1j�2 � �1jV (x), and

j�(�2) � �(�1)j < k2j�2 � �1j, for every �1, �2 2 .̃ The proof follows from Proposition

9 of Andrieu and Moulines (2003). It can also be shown directly using the mean value

theorem applied to A(� , x), x fixed.

For n > 0 and k > 1, we have

	nþk ¼ (� nþk � � n) A(� nþk , X nþk) � �(� nþk)ð Þ þ (� n � �opt) A(� nþk , X nþk) � A(� n, X nþk)ð Þ

þ (� n � �opt) A(� n, X nþk) � �(� n)ð Þ þ (� n � �opt) �(� n) � �(� nþk)ð Þ:

Given the recursion on (� n) and the fact that the functions A and � are Lipschitz (for x fixed),

non-negative and bounded from above by 1, we can find C1 , 1 such that

jEx0
	nþk jF nð Þj < 3C1 kªnV (X n) þ j� n � �optj jEx0

A(� n, X nþk) � �(� n)jF nð Þj: (4:9)

Now we can apply (3.17) to jEx0
A(� n, X nþk) � �(� n)jF nð Þj to obtain, for some constants C2,

C3 , 1 and r , 1,

jEx0
	nþk jF nð Þj < V (X n) C3rk þ C2 k2ªn

� �
: (4:10)

At this point the same � -algebra trick as used in the proof of Lemma 3.1 can be applied to

obtain

jEx0
	nþk jF nð Þj < C4log (k)2ªk V (X n): (4:11)

It follows that (ªn(n � Ex0
(n)), F n) is a mixingale with mixingale sequence cn / ªn and

łn / log(n)2ªn. Theorem 2.7 of Hall and Heyde (1980) then asserts that for such a

mixingale,
P

ªn(n � Ex0
(n)) converges almost surely to a finite random variable. The claim

is thus proved since
P

ªnEx0
(n) is a convergent series which follows from (4.11). h

Adaptive Markov chain Monte Carlo algorithms 825

5. Simulation example

In this section, we conduct a simulation study to illustrate the results obtained in Section 4.

We take � to be the d-dimensional standard normal distribution for d ¼ 10 and 50. We use

Q� (x, :) � N (x, � 2 I d), and as a function of interest we take f (x) ¼ x1, the first coordinate

of x. For each simulation, we start with �0 ¼ 10, a ¼ 0:0001, A ¼ 1000, and each chain is

run for 250 000 iterations. (In fact, the initial value �0 is not important; in any case the

values of � n become very low before converging upwards to �opt.) With all the adaptive

algorithms, we use ªn ¼ �0=n.

Figure 1 shows the autocorrelation functions of the adaptive RWM (ARWM) algorithm

(with � ¼ 0:234) and the (non-adaptive) RWM with optimal scaling �opt. The performance

of the adaptive and the optimal non-adaptive algorithms is very similar in term of mixing

time as measured by the autocorrelation functions. This shows that our adaptive algorithm

achieves essentially the same mixing time as the optimally scaled algorithm, but without

���

�
�
�

� �� 	�
� ��

��
�

��
�

��

���������

���

�
�
�

� �� ��� ���

��
�

��
�

��

����������

���
�
�
�

� ��� 	��
�� ��� ���

��
�

��
�

��

����������

���

�
�
�

� �� 	�
� ��

��
�

��
�

��

���������������

���

�
�
�

� �� ��� ���

��
�

��
�

��

����������������

���

�
�
�

� ��� 	��
�� ��� ���

��
�

��
�

��

����������������

���

�
�
�

� �� 	�
� ��

��
�

��
�

��

����������������

���

�
�
�

� �� ��� ���

��
�

��
�

��

�����������������

���

�
�
�

� ��� 	��
�� ��� ���

��
�

��
�

��

�����������������

���

�
�
�

� �� 	�
� ��

��
�

��
�

��

�����������������

���

�
�
�

� �� ��� ���

��
�

��
�

��

������������������

���

�
�
�

� ��� 	��
�� ��� ���

��
�

��
�

��

������������������

Figure 1. Autocorrelations of ergodic averages of the function f (x) ¼ x1. Target density N (0, I d),

proposal density N (x, � 2 I d).

826 Y.F. Atchadé and J.S. Rosenthal

requiring all the preliminary effort to manually tune the scaling parameter. For each value

of d, we run the simulations with w ¼ 1, 10 and 100, where w is the number of

observations gathered before updating � n. The three values are quiet comparable.

Figure 2 shows the scale parameter process and the empirical acceptance rate obtained

during the ARWM simulation for w ¼ 10, and for a targeted acceptance rate of � ¼ 0:234.

The empirical acceptance probability converges to 0.234, showing that we are indeed

finding the optimal scaling parameter �opt. For large values of d, the value of �opt is

consistent with the formula 2:38=
ffiffiffi
d

p
(0:34 if d ¼ 50, 0:75 if d ¼ 10) given by Roberts

et al. (1997).

Acknowledgement

This research was supported in part by NSERC of Canada.

���������������������������	
������

 !
��

�

� ����� ������ ������ 	����� 	�����

��
�

"�
�

#�
�

$��!�!��������������������

��
��

��
��
!%
&�
��
%'

�

� ����� ������ ������ 	����� 	�����

��
�"

��
	�

��
	�

���������������������������	
�������

 !
��

�

� ����� ������ ������ 	����� 	�����

��
"

��

��
�

$��!�!���������������������

��
��

��
��
!%
&�
��
%'

�

� ����� ������ ������ 	����� 	�����

��
�"

��
	�

��
	�

���������������������������	
��������

 !
��

�

� ����� ������ ������ 	����� 	�����

��
	�

��

�

��
��

$��!�!���������������������

��
��

��
��
!%
&�
��
%'

�

� ����� ������ ������ 	����� 	�����

��
�"

��
	�

��
	�

Figure 2. Scale parameter process and empirical acceptance probability for the ARWM with w ¼ 10.

Adaptive Markov chain Monte Carlo algorithms 827

References

Andrieu, C. and Moulines, E. (2003) Ergodicity of some adaptive Markov Chain Monte Carlo

algorithms. Technical report.

Andrieu, C., Moulines, E. and Priouret, P. (2002) Stability of stochastic approximation under verifiable

conditions, SIAM J. Control Optim. To appear.

Atchadé, Y.F. (2005) An adaptive version for the Metropolis adjusted Langevin algorithm with a

truncated drift. MCMC Preprint.

Chen, H. and Zhu, Y.-M. (1986) Stochastic approximation procedures with randomly varying

truncations. Sci. Sinica Ser. A, 1, 914–926.

Davidson, J. and de Jong, R. (1997) Strong laws of large numbers for dependent heteregeneous

processes: a synthesis of recent and new results. Econometric Rev., 16, 251–279.

Duflo, M. (1997) Random Iterative Models. Berlin: Springer-Verlag.

Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (eds) (1996) Markov Chain Monte Carlo in

Practice. London: Chapman & Hall.

Gilks, W.R., Roberts, G.O. and Sahu, S.K. (1998) Adaptive Markov chain Monte Carlo through

regeneration. J. Amer. Statist. Assoc., 93, 1045–1054.

Haario, H., Saksman, E. and Tamminen, J. (2001) An adaptive Metropolis algorithm. Bernoulli, 7,

223–242.

Hall, P. and Heyde, C.C. (1980) Martingale Limit Theory and Its Application. New York: Academic

Press.

Jarner, S.F. and Hansen, E. (2000) Geometric ergodicity of Metropolis algorithms. Stochastic Process.

Appl., 85, 341–361.

Kushner, K. and Yin, Y. (2003) Stochastic Approximation and Recursive Algorithms and Applications.

New York: Springer-Verlag.

Liu, J.S. (2001) Monte Carlo Strategies in Scientific Computing. New York: Springer-Verlag.

Meyn, S.P. and Tweedie, R.L. (1994) Computable bounds for convergence rates of Markov chains.

Ann. Appl. Probab., 4, 981–1011.

Robbins, H. and Monro, S. (1951) A stochastic approximation method. Ann. Math. Statist., 22,

400–407.

Roberts, G.O. and Rosenthal, J.S. (2001) Optimal scaling of various Metropolis–Hastings algorithms.

Statist. Sci., 16, 351–367.

Roberts, G.O. and Gelman, A. and Gilks, W. (1997) Weak convergence and optimal scaling of random

walk Metropolis algorithm. Ann. Applied Probab., 7, 110–120.

Rosenthal, J.S. (2004) Adaptive MCMC Java applet. http://probability.ca/jeff/java/adapt.html.

Received April 2004 and revised March 2005

828 Y.F. Atchadé and J.S. Rosenthal

	1.&X;Introduction
	2.&X;Cautionary examples
	3.&X;General ergodicity results
	Table 1
	Equation 1
	Equation 2
	Equation 3
	Equation 4
	Equation 5
	Equation 6
	Equation 7
	Equation 8
	Equation 9
	Equation 10
	Equation 11
	Equation 12
	Equation 13
	Equation 15
	Equation 18
	Equation 19
	Equation 20
	Equation 21
	Equation 22
	Equation 23
	4.&X;Application to the random walk Metropolis algorithm
	4.1.&Y;The adaptive RWM algorithm

	Equation 24
	Equation 25
	4.2.&Y;Ergodicity of the algorithm

	Equation 26
	Equation 27
	Equation 28
	Equation 29
	Equation 30
	Equation 31
	Equation 32
	Equation 33
	Equation 34
	5.&X;Simulation example
	Figure 1
	Acknowledgement
	Figure 2
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr18

