
Probabilistic approximation and inviscid

limits for one-dimensional fractional

conservation laws

B E N JA M I N J O U R DA I N 1, S Y LV I E M É L É A R D 2 and WOJBOR A.
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We are interested in the one-dimensional scalar conservation law @ t u(t, x) ¼ �DÆu(t, x) � @x A(u(t, x))

with fractional viscosity operator DÆv(x) ¼ F�1(j�jÆF (v)(�))(x) when the initial condition u(0, x) is

the cumulative distribution function of a signed measure on R. We associate a nonlinear martingale

problem with the Fokker–Planck equation obtained by spatial differentiation of the conservation law.

After checking uniqueness for both the conservation law and the martingale problem, we prove

existence thanks to a propagation-of-chaos result for systems of interacting particles with fixed

intensity of jumps related to �. The empirical cumulative distribution functions of the particles

converge to the solution of the conservation law. As a consequence, it is possible to approximate this

solution numerically by simulating the stochastic differential equation which gives the evolution of

particles. Finally, when the intensity of jumps vanishes (� ! 0) as the number of particles tends to

+1, we obtain that the empirical cumulative distribution functions converge to the unique entropy

solution of the inviscid (� ¼ 0) conservation law.

Keywords: inviscid scalar conservation laws; nonlinear martingale problems; propagation-of-chaos;

scalar conservation laws with fractional Laplacian; stable processes

1. Introduction

Let Æ 2 (1, 2) and DÆ denote the symmetric fractional derivative (fractional Laplacian) of

order Æ on R, that is, an operator defined either via the Fourier transform F ,

DÆv(x) ¼ F�1 j�jÆF (v)(�)ð Þ(x), (1:1)

or, equivalently, by its singular integral representation,
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DÆv(x) ¼ K

ð
R

v(x þ y) � v(x) � 1fj yj<1gv9(x)y
� � dy

jyj1þÆ
(1:2)

¼ K

ð
j yj.1

v(x þ y) � v(x)ð Þ dy

jyj1þÆ
þ K

ð
j yj<1

ð1

0

v 0(x þ zy)(1 � z)dz
dy

jyjÆ�1
, (1:3)

for a suitable positive constant K.

We are interested in the initial-value problem for the following one-dimensional scalar

conservation law with fractional viscosity:

@ t u(t, x) ¼ �DÆu(t, x) � @x A(u(t, x)), (1:4)

u(0, x) ¼ u0(x), (1:5)

where (t, x) 2 Rþ 3 R, � . 0, and A : R ! R is a C1-function.

The present work is motivated by the various physical applications of equations involving

pseudo-differential terms like DÆu which model anomalous diffusion; see, for example,

Klafter et al. (1995), Saichev and Zaslavsky (1997) and Piryatinska et al. (2005). Among

those equations, the scalar conservation laws with fractional viscosity were introduced by

Mann and Woyczynski (2001) in the context of growing interfaces in the presence of self-

similar hopping surface diffusion. More precisely, the authors were interested in modelling

at the mesoscopic level the chemical vapour deposition of thin semiconducting diamond

films and were struck by the role that trapping may play in the growth mechanism. Kellog

(1994) reported that the presence of impurity can act as a strong trap for an adatom

migrating on a growing interface at room temperature. The conjecture in Mann and

Woyczynski (2001) was that long jumps corresponding to Lévy flights are possible between

trap sites – this in contrast to the nearest-neighbour hopping which leads to the Brownian

motion in the continuum approximation for defect-free surfaces. Their paper developed

mesoscopic equations for the growth of the interface based on the conservation of mass and

introduced what was called the fractal KPZ-Burgers model, a special case of equation (1.4)

(although in the two-dimensional situation). Biler et al. (2001) studied self-similar

asymptotics and critical nonlinearities of conservation laws with fractional viscosity

generalizing the fractal KPZ-Burgers model.

We will call (1.4)–(1.5) a fractional conservation law. The initial condition u0 is assumed

to be a non-constant function with bounded variation on R. In other words, dx-almost

everywhere on R,

u0(x) ¼ c þ
ðx

�1
m(dy) ¼ c þ H � m(x)

with c 2 R, m being a non-zero, bounded signed measure on R, and H(y) denoting the unit

step function 1f y>0g.
More precisely, we consider bounded weak solutions u of equation (1.4) such that, for

any t > 0 and for any C1-function ł with compact support on [0, t] 3 R,
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ð
R

ł(t, x)u(t, x)dx ¼
ð
R

ł(0, x)u0(x)dx þ
ð t

0

ð
R

u(@ słþ �DÆł) þ A(u)@xłð Þ(s, x)dx ds:

(1:6)

Let kmk denote the total mass of the measure m. Observe that u(t, x) is a bounded weak

solution of the conservation law (1.4) if and only if the function (u(t, x) � c)=kmk is a

bounded weak solution of the same conservation law with A(�) replaced by A(c þ
kmk�)=kmk and initial condition v0(x) ¼ H � m(x)=kmk. Therefore, without loss of

generality, from now on will assume that

c ¼ 0 and kmk ¼ 1:

With this standing assumption, the total variation measure jmj of m is a probability measure

on R. Denote by h : R ! f�1, 1g a density of m with respect to jmj.
To give a probabilistic interpretation to the fractional conservation law (1.4), we will use

an approach introduced by Bossy and Talay (1996; 1997) for the viscous Burgers equation

(Æ ¼ 2, A(u) ¼ u2=2) and generalized by Jourdain (2000) to any C1-function A (but still for

Æ ¼ 2). We deduce from (1.4) that the gradient v(t, x) ¼ @xu(t, x) satisfies the evolution

equation

@ tv ¼ �DÆv� @ x A9(H � v)vð Þ, v(0, :) ¼ m: (1:7)

If m is a probability measure on R, this equation is a nonlinear Fokker–Planck equation. The

case of a general signed measure can be dealt with using the approach developed by Jourdain

(2000) which consists of associating a single nonlinear martingale problem with (1.7).

Let P and (X t) t>0 denote, respectively, the space of probability measures and the

canonical process on the space D(Rþ, R) of cadlag functions from Rþ to R endowed with

the Skorokhod topology. We associate with each probability measure P 2 P a signed

measure ~PP with density h(X0) with respect to P and denote, respectively, by (Pt) t>0 and

( ~PPt) t>0, the flows of time marginals of measures P and ~PP. Thus, for any B 2 B(R),

~PPt(B) ¼ EP h(X0)1B(X t)ð Þ:

Definition 1.1. We say that P 2 P solves the nonlinear martingale problem (MP) if the

following conditions are satisfied:

(i) P0 ¼ jmj.
(ii) For any j(t, x) in the space C

1,2
b (Rþ 3 R) of functions which are continuously

differentiable with respect to t and twice continuously differentiable with respect to x,

and bounded together with their derivatives,

M
j
t � j(t, X t) � j(0, X 0) �

ð t

0

@ sjþ �DÆjþ A9(H � ~PPs(X s))@xj
� �

(s, X s)ds

is a P-martingale.

When P solves this problem, h(X0)M
j
t is a P-martingale. The constancy of the

expectation of this martingale implies that t ! ~PPt is a weak solution of (1.7).
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The paper is organized as follows. In Section 2, we establish existence and uniqueness

for martingale problems with linear generators belonging to a class which includes the

generators of the particle systems that we study later in the paper.

In Section 3, we first check that the cumulative distribution functions of the signed

marginals ~PPt associated with any solution P of problem (MP) provide a bounded weak

solution of the fractional conservation law (1.4). Since t ! ~PPt is a weak solution of

equation (1.7) obtained by spatial differentiation of (1.4), this result is not surprising. Then

we prove uniqueness of bounded weak solutions of (1.4) and derive uniqueness for problem

(MP).

Section 4 is devoted to the convergence of systems of particles with jumps as the number

of particles tends to +1. We first suppose that the intensity of jumps is constant and obtain

existence for problem (MP) and therefore for (1.4) by proving a propagation-of-chaos result.

As a consequence, the weighted empirical cumulative distribution functions of the particles

converge to the solution of the fractional conservation law (1.4). By discretizing the

dynamics of the particles with respect to time, it is therefore possible to construct some

Monte Carlo approximations of the solution of (1.4).

In Section 5 we assume that the intensity of jumps vanishes (� ! 0) as the number of

particles tends to +1. We then prove that the empirical cumulative distribution functions

converge to the unique entropy solution of the inviscid (� ¼ 0) conservation law (1.4). This

result can be related to the convergence of the solution of the fractional conservation law to

the unique entropy solution of the inviscid conservation law as � ! 0 in arbitrary space

dimension d, obtained by Droniou (2003): when the initial condition has bounded variation

like the functions u0 considered in the present paper, for any T . 0, the rate of convergence

in C([0, T ], L1
loc(Rd)) is proved to be O(�1=Æ).

Jourdain et al. (2005) construct probabilistic approximations for evolution equations

studied via analytic tools by Biler and Woyczynski (1998). These equations involve the

fractional Laplacian and a singular nonlinear operator of order 1 similar to the term

�@x((H � v)v) appearing in (1.7) in the case A(u) ¼ u2=2. The setting is d-dimensional; the

Heaviside kernel H is replaced by a kernel b : Rd ! Rd such that, for some C . 0 and

0 , � , þ1, and each x 2 Rd , jb(x)j < Cjxj��d , and the initial measure m is assumed to

be absolutely continuous with respect to the Lebesgue measure with a density belonging to

L p(Rd), where p . 1 is related to d, � and Æ. The study of the evolution equation of

interest is based on the introduction of Lipschitz continuous and bounded cutoff versions of

kernel b. In addition, the particles interact through these cutoff kernels. Here the approach

is different: since the Heaviside kernel H is discontinuous but not singular at the origin, the

cutoff procedure is not needed and we are able to deal directly with general signed

measures m. In the proof of the vanishing viscosity limit result, it is important to consider

particles interacting through the original kernel H .

We conclude this introduction by recalling some useful properties of the semigroup

generated by the fractional Laplacian. Denote by pÆ
t the convolution kernel of the Lévy

semigroup exp(tDÆ) on R. The kernel is self-similar, that is, for any positive t,

pÆ
t (x) ¼ t�1=Æ pÆ

1 (xt�1=Æ):
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Moreover, there exists a constant CÆ . 0 (see, for example, Sato 1999, pp. 89 and 202) such

that

0 < pÆ
1 (x) < CÆ(1 þ jxj1þÆ)�1, j@x pÆ

1 (x)j < CÆ(1 þ jxj2þÆ)�1:

If, for n > 1 and t > 0, we introduce product kernels

GÆ,n
t : Rn 3 y ¼ (y1, . . . , yn) 7!

Yn

i¼1

pÆ
t (yi),

then GÆ,1
t (y) ¼ pÆ

t (y), and the above properties of pÆ
t immediately yield the following

estimates for GÆ,n
t :

Lemma 1.1. For any q, 1 < q < þ1, there is a constant C . 0 (depending on n, �, Æ, and

q) such that, for each t . 0, and i ¼ 1, . . . , n,

kGÆ,n
� t kq < Ct�n(q�1)=(Æq) and k@ iG

Æ,n
� t kq < Ct�(n(q�1)þq)=(Æq):

Here @ i denotes the derivative with respect to the ith spatial coordinate and k � kq stands for

the norm in the usual Lebesgue space Lq.

2. Existence and uniqueness for a class of n-dimensional
martingale problems

To construct particle systems whose empirical distributions approximate solutions of the

fractional conservation law (1.4), we will initially prove the existence and uniqueness results

for a class of martingale problems.

Let Pn and (Yt ¼ (Y 1
t , . . . , Y n

t )) t>0 denote, respectively, the set of probability measures

and the canonical process on D(Rþ, Rn).

Definition 2.1. Let b : Rþ 3 Rn 7! Rn be a bounded measurable function and � 2 P(Rn). We

say that Q 2 Pn solves the martingale problem with generator �
Pn

i¼1 DÆ
i þ b � = starting

from � if the initial marginal Q0 of Q is equal to � and, for any j 2 C
1,2
b (Rþ 3 Rn),

M
j
t ¼ j(t, Yt) � j(0, Y0) �

ð t

0

@ sjþ �
Xn

i¼1

DÆ
i jþ b � =j

 !
(s, Ys)ds

is a Q martingale. Here, = and DÆ
i denote, respectively, the gradient with respect to the n

spatial coordinates, and the symmetric fractional derivative of order Æ acting on the ith

spatial coordinate.

Proposition 2.1. For any bounded measurable function b ¼ (b1, . . . , bn) : Rþ 3 Rn 7! Rn

and any probability measure � on Rn, the martingale problem with generator

�
Pn

i¼1 DÆ
i þ b � = starting from � admits a unique solution Q 2 Pn. Additionally, for any
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t . 0, the marginal Qt has a density r t with respect to the Lebesgue measure on Rn

satisfying,

dy-a:e: in Rn, r t(y) ¼ GÆ,n
� t � �(y) �

Xn

i¼1

ð t

0

@ iG
Æ,n
�( t�s) � (bi(s, :)rs)(y)ds: (2:1)

Remark. Since we do not assume any regularity of the drift coefficient b in the spatial

variable, existence and uniqueness for the martingale problem cannot be proved by checking

existence and trajectorial uniqueness for the corresponding stochastic differential equation.

Moreover, the Lévy measure

K
Xn

i¼1

dyi

jyij1þÆ
�(0,0,...,0)(dy1, . . . , dyi�1, dyiþ1, . . . dyn)

corresponding to the operator
Pn

i¼1 DÆ
i is concentrated on the coordinate axes. Because of

this singular feature, the general existence results obtained by Komatsu (1984) do not apply

to the generator �
Pn

i¼1 DÆ
i jþ b � =.

Proof of Proposition 2.1. To prove existence we regularize the drift by setting, for each

E 2 (0, 1],

bE(t, y) ¼
ð
R n

b(t, y � Ez)
e�jzj2=2

(2�)n=2
dz:

The function bE is bounded by a constant independent of E, and Lipschitz continuous with

respect to the spatial variables with constant CE. Now let Z0 ¼ (Z1
0, . . . , Z n

0 ) be a random

variable with law � and (St ¼ (S1
t , . . . , S n

t )) t>0 an independent process whose coordinates are

independent one-dimensional symmetric stable processes with index Æ, both defined on a

probability space (�, F , P). The properties of bE imply existence and trajectorial uniqueness

for the stochastic differential equation

ZE
t ¼ Z0 þ �1=ÆSt þ

ð t

0

bE(s, ZE
s)ds: (2:2)

Let QE 2 Pn denote the law of the process Z E. Since bE is bounded, uniformly in E, the family

fQE, E 2 (0, 1]g is tight. Let (Ek)k2N� be a sequence converging to 0 such that QE k converges

weakly to some Q 2 Pn. Since, for any k, the initial marginal of QE k is equal to �, so is the

initial marginal of Q. We will verify that, for j 2 C1,2
b (Rþ 3 Rn), M

j
t is a Q martingale. To

accomplish this, we need estimates of the densities of the marginals QE
t uniform in E.

For t . 0, and � a C1-function with compact support on Rn, the function j(s, y)

¼ G
Æ,n
�( t�s) � �(y) solves the equation @ sjþ �

Pn
i¼1 DÆ

i j ¼ 0 on [0, t] 3 Rn. Consequently,

computing j(s, ZE
s) by Itô’s formula, one verifies that

j(s, Ys) � j(0, Y0) �
ð s

0

bE � =j(r, Yr)dr

� �
s< t
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is a QE martingale vanishing at s ¼ 0. Since the QE expectation of this martingale at time

s ¼ t is zero, we obtainð
R n

�(y)QE
t(dy) ¼

ð
Rn

GÆ,n
� t � �(y)�(dy) þ

ð t

0

ð
Rn

bE(s, y) � =G
Æ,n
�( t�s) � �(y)QE

s(dy)ds:

Since b is bounded, the estimates given in Lemma 1.1 with q ¼ 1 justify the use of Fubini’s

theorem which yieldsð
R n

�(y)QE
t(dy) ¼

ð
R n

�(y)GÆ,n
� t � �(y)dy �

ð
R n

�(y)
Xn

i¼1

ð t

0

@ iG
Æ,n
�( t�s) � (bE

i(s, :)QE
s)(y)ds dy:

The minus sign appears because, for s . 0 and 1 < i < n, the mapping y 7! @ iG
Æ,n
s (y) is an

odd function. Since the equality holds for any test function � we conclude that, for t . 0, QE
t

has a density rEt with respect to the Lebesgue measure on Rn satisfying

rEt ¼ GÆ,n
� t � ��

Xn

i¼1

ð t

0

@ iG
Æ,n
�( t�s) � (bE

i(s, :)rEs)ds:

By Lemma 1.1, and the fact that bE is bounded uniformly in E, one obtains that, for

1 < q , n=(n þ 1 � Æ), and any t . 0,

krEtkq < kGÆ,n
� t kq þ

Xn

i¼1

ð t

0

k@ iG
Æ,n
�( t�s)kq � kbE

ik1 � krEsk1 ds

< C t�n(q�1)=Æq þ
ð t

0

(t � s)�(n(q�1)þq)=Æq ds

� �

< C t�n(q�1)=Æq þ t(n�(nþ1�Æ)q)=Æq
� �

(2:3)

with a constant C independent of E. Using the weak convergence of QE k to Q which implies

the weak convergence of QE k

t to Qt, for t outside of the at most countable set DQ

¼ fr > 0, Q(jYr � Yr� j . 0) . 0g, and the right-continuity of the mapping t 7! Qt, one

obtains that, for any positive t, Qt has a density r t which satisfies the estimates given above

for rEt.
Let j 2 C1,2

b (Rþ 3 Rn). To prove that M
j
t is a Q-martingale it is sufficient to check that,

for l 2 N�, g 2 Cb(R ln), and 0 < s1 < s2 < . . . < sl < s < t =2 DQ, we have EQ(F(Y ))

¼ 0, where

F(Y ) ¼ j(t, Yt) � j(s, Ys) �
ð t

s

@ rjþ �
Xn

i¼1

DÆ
i jþ b � =j

 !
(r, Yr)dr

 !
g(Ys1

, . . . , Ysl
):

For E 2 (0, 1], let F E be defined like F but with bE replacing b. Since F E is bounded and Q

gives full weight to the continuity points of this mapping, one has

lim
k!þ1

EQE k
(F E(Y )) ¼ EQ(F E(Y )):

In addition, EQE k (F E k (Y )) ¼ 0. Hence
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jEQ(F(Y ))j < lim sup
E&0

EQ(jF � F Ej(Y )) þ lim sup
E&0

lim sup
k!þ1

EQE k
(jF E k � F Ej(Y )): (2:4)

For M . 0, let B(0, M) denote the open ball in Rn centred at the origin with radius M .

Let 1 , q , n=(n þ 1 � Æ), which implies that n(q � 1)=(Æq) , 1 � 1=Æ. Then

EQE k
(jF E k � F Ej(Y ))

< CEQE k

ð t

s

jbE k (r, Yr) � bE(r, Yr)j dr

� �

< C QE k sup
r2[s, t]

jYrj > M

 !
þ
ð t

s

kbE k (r, :) � bE(r, :)kLq=(q�1)(B(0,M)) � krE k

r kq dr

 !
:

Since, for any r > 0, by an easy adaptation of Brezis (1983, Theorem IV.22, p. 71), bE(r, :)
converges to b(r, :) in Lq=(q�1)(B(0, M)) as E tends to 0, using (2.3) we obtain that

lim sup
k!þ1

ð t

s

kbE k (r, :) � bE(r, :)kLq=(q�1)(B(0,M)) � krE k

r kq dr

< C

ð t

s

kb(r, :) � bE(r, :)kLq=(q�1)(B(0,M)) r�n(q�1)=Æq þ r(n�(nþ1�Æ)q)=Æq
� �

dr:

Hence, for a fixed M,

lim sup
E!0

lim sup
k!þ1

ð t

s

kbE k (r, :) � bE(r, :)kLq=(q�1)(B(0,M)) � krE k

r kq dr ¼ 0:

In addition, for any E, bE is bounded by kbk1, so that

QE sup
r2[s, t]

jYrj > M

 !
< P sup

r2[s, t]

jZ0 þ �1=ÆSrj > M � kbk1 t

 !
,

which implies that QE k (supr2[s, t]jYrj > M) is arbitrarily small, uniformly in k, for M

sufficiently large. Hence the second term on the right-hand side of (2.4) vanishes. Similar

arguments give that the first term is zero as well.

We now turn to uniqueness. For r > 0 and � 2 P(Rn), let Qr and Qr be two solutions of

the martingale problem with generator �
Pn

i¼1 DÆ
i þ b(r þ :, :) � = starting from �. We will

prove that Qr and Qr have the same time marginals. Then uniqueness for the martingale

problem with generator �
Pn

i¼1 DÆ
i þ b � = starting from � follows from an easy adaptation

of Ethier and Kurtz (1986, Theorem 4.2, p. 184) to the case of time-dependent generators.

By choosing test functions j(s, x) ¼ G
Æ,n
�( t�s) � �(x) as above, one obtains that, for t . 0,

measure Qr
t has a density rr

t satisfying

rr
t ¼ GÆ,n

� t � ��
Xn

i¼1

ð t

0

@ iG
Æ,n
�( t�s) � (bi(r þ s, :)rr

s )ds:

For the choice r ¼ 0 and � ¼ �, we recognize (2.1). Similarly, Q
r

t has a density r r
t satisfying
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the same equation. For t . 0, let g(t) ¼ krr
t � r r

tk1. By the above evolution equation and

Lemma 1.1,

g(t) ¼
�����
Xn

i¼1

ð t

0

@ iG
Æ,n
�( t�s) � (bi(r þ s, :)(rr

s � r r
s ))ds

�����1

<
Xn

i¼1

ð t

0

k@ iG
Æ,n
�( t�s)k1 � kbi(r þ s, :)k1 g(s)ds

< C

ð t

0

g(s)(t � s)�1=Æ ds:

Since Æ . 1, we conclude that, for each t . 0, g(t) ¼ 0 thanks to a version of Gronwall’s

lemma which is provided next. h

Lemma 2.2. Let g : [0, T ] 7! Rþ be an integrable function on [0, T ] such that, for positive

constants A0, C0, and Ł, and each t 2 [0, T ],

g(t) < A0 þ C0

ð t

0

g(s)(t � s)Ł�1 ds:

Then there exists a positive constant C independent of A0 such that, for each t 2 [0, T ],

g(t) < CA0:

Proof. Iterating the inequality satisfied by g and using Fubini’s theorem, one obtains that, for

each t 2 [0, T ],

g(t) < A0 1 þ C0T Ł

Ł

� �
þ C2

0

ð1

0

uŁ�1(1 � u)Ł�1 du

� �ð t

0

g(s)(t � s)2Ł�1 ds:

Iterating inductively the successively obtained inequalities, one obtains after n steps that, for

each t 2 [0, T ], g(t) < An þ Cn

Ð t

0
g(s)(t � s)2 nŁ�1 ds. For sufficiently large n, 2nŁ > 1, and

the standard version of Gronwall’s lemma can be applied. h

We complete this section by proving an estimate for two-point densities which will be

useful later on.

Proposition 2.3. Let n > 2 and Q be a solution of the martingale problem given by

Proposition 2.1. For 1 < i , j < n, and t . 0, denote by ri, j
t the density of Q s (Y i

t, Y
j
t)
�1.

Then, for all q, such that 1 < q , 2=(3 � Æ),

kri, j
t kq < C t�2(q�1)=Æq þ t(2�(3�Æ)q)=Æq

� �
,

where constant C depends only on �, Æ, q, and kbik1 þ kb jk1.
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Proof. For simplicity’s sake we assume that i ¼ 1 and j ¼ 2. Integrating (2.1) over Rn�2 with

respect to the n � 2 last coordinates of y and setting �1,2 ¼ Q s (Y 1
0, Y 2

0)�1, we obtain

r1,2
t ¼ GÆ,2

� t � �1,2 �
X2

i¼1

ð t

0

@ iG
Æ,2
�( t�s) � bi(s, :)ds,

where, for 1 < i < 2 and s . 0,

bi(s, z1, z2) ¼
ð
Rn�2

bi(s, z1, . . . , zn) � rs(z1, . . . , zn)dz3 . . . dzn:

Since kbi(s, :)k1 < kbik1, for each t . 0,

kr1,2
t kq < kGÆ,2

� t kq þ
X2

i¼1

ð t

0

k@ iG
Æ,2
� t kq � kbik1 ds:

The proof can now be concluded by an application of estimates given in Lemma 1.1. h

3. Uniqueness for fractional conservation laws and the
martingale problem (MP)

We begin this section by clarifying the connection between the martingale problem (MP)

and the fractional conservation law (1.4). Since the martingale problem has been introduced

by considering the equation obtained by spatial differentiation of (1.4) as a Fokker–Planck

equation, the following result is not surprising:

Lemma 3.1. If P solves the martingale problem (MP) then u(t, x) ¼ H � ~PPt(x) is a bounded

weak solution of the fractional conservation law (1.4).

Proof. First, observe that H � ~PPt(x) is bounded because

jH � ~PPt(x)j ¼ jEP(h(X 0)1fX t<xg)j < EPjh(X 0)j ¼ 1:

Since b(t, x) ¼ A9(H � ~PPt(x)) is a bounded function, by Proposition 2.1, for any t . 0, the

measures Pt, and therefore ~PPt, are absolutely continuous with respect to the Lebesgue

measure. Hence, for t . 0, the cumulative distribution function of the measure

A9(H � ~PPt(y)) ~PPt(dy) is x ! A(H � ~PPt(x)) � A(0). Let ł(t, x) be a C1-function with

compact support on Rþ 3 R and j(t, x) ¼
Ð x

�1 ł(t, y)dy. The process (h(X0)M
j
t ) t>0 is a

P-martingale so thatð
R

j(t, x) ~PPt(dx) ¼
ð
R

j(0, x)m(dx)

þ
ð t

0

ð
R

@ sjþ �DÆjþ A9(H � ~PPs)@xj
� �

(s, x) ~PPs(dx)ds: (3:1)

By spatial integration by parts,

698 B. Jourdain, S. Méléard and W.A. Woyczynski



ð
R

DÆj(s, x) ~PPs(dx) ¼ K

ð
j yj.1

ð
R

ðxþ y

x

ł(s, z)dz ~PPs(dx)
dy

jyjÆþ1

þ K

ð
j yj<1

ð1

0

ð
R

@xł(s, x þ zy) ~PPs(dx)(1 � z)dz
dy

jyjÆ�1

¼ �K

ð
j yj.1

ð
R

(ł(s, x þ y) � ł(s, x))H � ~PPs(x)dx
dy

jyjÆþ1

� K

ð
j yj<1

ð1

0

ð
R

@xxł(s, x þ zy)H � ~PPs(x)dx(1 � z)dz
dy

jyjÆ�1

¼ �
ð
R

DÆł(s, x)H � ~PPs(x)dx:

Treating the other terms in (3.1) in the same way, and using the fact that H �
~PPt(þ1) ¼ ~PPt(R) ¼ EP(h(X 0)) does not depend on t, we see that the weak equation (1.6)

holds true for u(t, x) ¼ H � ~PPt(x). h

Proposition 3.2. The fractional conservation law (1.4) has at most one bounded weak

solution and the martingale problem (MP) has at most one solution.

Proof. Let u be a weak solution of (1.4) bounded by M u, and � be a C1-function with

compact support on R. The function ł(s, x) ¼ pÆ
�( t�s) � �(x) solves the equation

@ słþ �DÆł ¼ 0 for (s, x) 2 [0, t] 3 R. By spatial truncation of the function ł, it is

possible to exhibit a sequence (łn)n of C1-functions with compact support in [0, t] 3 R

such that as n tends to infinity, łn, @ słn, @xłn and @xxłn respectively converge in

L1([0, t] 3 R) to ł, @ sł, @xł and @xxł, and łn(0, :) (łn(t, :)) converges in L1(R) to ł(0, :)
(ł(t, :)). Since

jDÆł(s, x) � DÆłn(s, x)j

< K

ð
j yj.1

jł(s, x þ y) � łn(s, x þ y)j þ jł(s, x) � łn(s, x)j dy

jyj1þÆ

þ K

ð
j yj<1

ð1

0

j@xxł(s, x þ zy) � @xxł
n(s, x þ zy)j(1 � z)dz

dy

jyjÆ�1
,

DÆłn also converges to DÆł in L1([0, t] 3 R). Writing the weak equation (1.6) with the test

function łn and taking the limit n ! þ1, in view of the boundedness of u one obtains that

(1.6) holds true for the test function ł. Using the partial differential equation satisfied by ł,

and then Fubini’s theorem, one deduces thatð
R

�(x)u(t, x)dx ¼
ð
R

�(x) pÆ
� t � u0(x)dx �

ð
R

�(x)

ð t

0

@x pÆ
�( t�s) � A(u(s, :))(x)ds dx:
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Since � is arbitrary, we deduce that the function u solves the mild equation

u(t, :) ¼ pÆ
� t � u0 �

ð t

0

@ x pÆ
�( t�s) � A(u(s, :))ds, (3:2)

for all t > 0.

Let u9 be another weak solution of (1.4) bounded by M u9. One can estimate

g(t) ¼ ku(t, :) � u9(t, :)k1 by substracting from (3.2) the same equation written for u9 to

obtain

g(t) < max
jxj<M u_M u9

jA9(x)j
ð t

0

k@x pÆ
�( t�s)k1 g(s)ds:

Therefore, by Lemma 1.1, there is a constant C such that, for all t > 0,

g(t) < C

ð t

0

g(s)(t � s)�1=Æ ds:

Since Æ . 1, we have 1=Æ , 1 and, in view of Lemma 2.2, conclude that, for all

t > 0, g(t) ¼ 0. Hence u ¼ u9.

If P and Q both solve the nonlinear martingale problem, combining Lemma 3.1 and the

uniqueness result for the fractional conservation law (1.4), one obtains that, for all t > 0,

dx-a.e., H � ~PPt(x) ¼ H � ~QQt(x). This equality holds for (t, x) 2 Rþ 3 R since, for fixed t,

both sides are right-continuous with respect to x. Hence both P and Q solve the martingale

problem for the generator �DÆ þ b(t, x)@x with b(t, x) ¼ A9(H � ~PPt(x)), starting from jmj.
Since b is a bounded measurable function, by Proposition 2.1, we conclude that P ¼ Q.

h

4. Interacting particle systems

In this section we develop a Monte Carlo method for simulating the fractional conservation

law. More precisely, we find a sequence of interacting particle systems whose weighted

cumulative empirical distribution functions converge, as the size of the system grows to

infinity, to the solution of the conservation law. Results of this sort are also known as

propagation-of-chaos results for the corresponding nonlinear, and in our case non-local,

evolution equations.

4.1. Propagation of chaos for fixed fractional viscosity

Definition 4.1. For n 2 N�, we say that Q 2 Pn solves the martingale problem (Pn) if:

(i) Q0 ¼ jmj�n;

(ii) for any j 2 C1,2
b (Rþ 3 Rn),
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j(t, Yt) � j(0, Y0) �
ð t

0

@ sjþ �
Xn

i¼1

DÆ
i j

 !
(s, Ys)

þ
Xn

i¼1

A9
1

n

Xn

j¼1

h(Y
j
0)1fY

j
s<Y i

sg

 !
@ ij(s, Ys)ds

is a Q-martingale.

In the drift coefficient of the nonlinear martingale problem (MP) the argument of the

function A9 is the cumulative distribution function of the weighted marginal ~PPt of the

solution. By comparison, in the martingale problem (Pn) the argument of the function A9

(which gives the drift coefficient of each particle) is the weighted cumulative empirical

distribution function of the particle system.

Remark 4.1. If m is a probability measure, h(y) ¼ 1 for every y 2 R. Therefore, the

existence and uniqueness for (Pn) are ensured by Proposition 2.1 for the time-homogeneous

generator �
Pn

i¼1 DÆ
i þ bn � =, where

bn : (y1, . . . , yn) 2 Rn 7! A9
1

n

Xn

j¼1

1f y j< y1g

 !
, . . . , A9

1

n

Xn

j¼1

1f y j< yng

 ! !
2 Rn: (4:1)

However, in general, the drift coefficient at time t . 0 depends on the initial position Y0

through the signed weights h(Y
j
0), 1 < j < n. Because of this dependence, the martingale

problem (Pn) is non-standard. If DÆ is replaced by the usual Laplacian on R, the existence

and uniqueness for the analogous non-standard martingale problem are an easy consequence

of the Girsanov theorem, as in the standard case. But to obtain the existence result in our

case we have to proceed more cautiously.

To deal with signed weights, we remark that the function (y0
1, . . . , y0

n) 2 Rn 7! (h(y0
1),

. . . , h(y0
n)) takes its values in the finite set f�1, 1gn. For ª ¼ (ª1, . . . , ªn) 2 f�1, 1gn, let

us introduce the mappings

bn,ª : (y1, . . . , yn) 2 Rn 7! A9
1

n

Xn

j¼1

ª j1f y j< y1g

 !
, . . . , A9

1

n

Xn

j¼1

ª j1f y j< yng

 ! !
:

For y0 ¼ (y0
1, . . . , y0

n) 2 Rn let Q y0,ª be the solution of the martingale problem with

generator �
Pn

i¼1 DÆ
i þ bn,ª � = starting from � y0 and given by Proposition 2.1. By adapting

the proof of Ethier and Kurtz (1985, Theorem 4.6, p. 188), we obtain measurability of

y0 ! Q y0,ª for a fixed ª 2 f�1, 1gn.

Then

Qn ¼
X

ª2f�1,1gn

ð
Rn

1f(h( y0
1
),...,h( y0

n))¼ªgQ y0,ªjmj�n(dy0),

solves the martingale problem (Pn). Moreover, if � denotes a permutation of f1, . . . , ng, the
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uniqueness part of Proposition 2.1 ensures that, for y0 2 Rn and ª 2 f�1, 1gn, under the

probability measure Q y0,ª, (Y � (1), . . . , Y � (n)) is distributed according to Q y0
� ,ª� where

y0
� ¼ (y0

� (1), . . . , y0
� (n)) and ª� ¼ (ª� (1), . . . , ª� (n)). With the above definition of Qn, we

deduce that the particles Y 1, . . . , Y n are exchangeable under this probability measure.

Finally, since, for n > 1 and 1 < i < n, the function b
n,ª
i is bounded by the quantity

maxx2[�1,1]jA9(x)j, we deduce from Proposition 2.3 that, for n > 2, 1 < i , j < n and

t . 0, the measure Qn
s (Y i

t, Y
j
t)
�1 has a density rn,i, j

t with respect to the Lebesgue

measure on R2 such that, for each 1 < q , 2=(3 � Æ),

krn,i, j
t kq < C t�2(q�1)=Æq þ t(2�(3�Æ)q)=Æq

� �
, (4:2)

where the constant C is independent of n and t.

Let 	n ¼ Qn
s (
n)�1, where for Y ¼ (Y 1, . . . , Y n) 2 D(Rþ, Rn), 
n(Y ) ¼ 1

n

Pn
i¼1�Y i

2 P denotes the empirical measure. The following propagation-of-chaos result implies

existence for the nonlinear martingale problem (MP):

Theorem 4.1. The sequence (	n)n converges weakly to �P, where P denotes the unique

solution of the martingale problem (MP).

Proof. The proof is similar to that given by Jourdain (2000, Theorem 2.1) where instead of

the fractional Laplacian DÆ there appears the classical Laplacian @xx. Hence we only show its

main steps.

Since the particles (Y 1, . . . , Y n) are exchangeable under Qn, the tightness of the

sequence (	n)n is equivalent to the tightness of the sequence Qn
s (Y 1)�1 of the

distributions of the first particle. The latter follows from the fact that for each n 2 N�, and

y0, y 2 Rn, ����A9 1

n

Xn

i¼1

h(y0
j)1f y j< y1g

 !���� < max
x2[�1,1]

jA9(x)j:

Now let 	1 denote the limit of a weakly convergent subsequence, for simplicity’s sake

also labelled (	n)n, and D	1 denote the at most countable set

t > 0, 	1 Q 2 P; Q(jYt � Yt� j . 0) . 0f gð Þ . 0f g:

Since, for any n 2 N�, Qn
0 ¼ jmj�n, we have that 	1-almost surely Q0 ¼ jmj. Hence, to

prove that 	1 gives full weight to solutions of the nonlinear martingale problem (MP) it

is enough to check that, for any j 2 C
1,2
b (Rþ 3 Rn), l 2 N�, g 2 Cb(R l), and

0 < s1 < s2 < . . . < sl < s < t =2 D	1 , we have E	1jF(Q)j ¼ 0, where F associates with

any Q 2 P

Q, j(t, X t) � j(s, X s) �
ð t

s

(@ rjþ �DÆjþ A9(H � ~QQr(X r))@xj)(r, X r)dr

� �	

3 g(X s1
, . . . , X sl

)



:
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According to Jourdain (2000, Lemma 2.2), for any k 2 N�, there exists a Lipschitz

continuous function hk such that jmj(fx : hk(x) 6¼ h(x)g) < 1=k. Let us also approximate

the Heaviside function H by Lipschitz continuous functions H k(x) ¼ (1 þ
kx)1[�1=k,0](x) þ 1fx.0g, and define Fk like F but with A9(H � ~QQr(:)) replaced by

A9(hQ, H k(:� X r)hk(X 0)i).
If (P j) j>1 converges weakly to Q in P, as j ! þ1, for r > 0 outside the at most

countable set DQ ¼ fr > 0 : Q(jX r � X r� j . 0) . 0g, the measures P j
s (X 0, X r)

�1

converge weakly to Q s (X0, X r)
�1. Therefore, by the continuity of A9, the mapping

x 7! A9(hP j, H k(x � X r)hk(X 0)i) converges uniformly to the mapping x 7!
A9(hQ, H k(x � X r)hk(X 0)i). We thus deduce that Fk is continuous at any Q such that

s1, . . . , sl, s, t =2 DQ. Hence, 	1 gives full weight to the continuity points of Fk . Now the

boundedness of this mapping implies that

E	1jFk(Q)j ¼ lim
n!þ1

E	 n jFk(Q)j ¼ lim
n!þ1

EQ n jFk(
n)j:

Hence

E	1jF(Q)j < lim sup
k!þ1

E	1jF � Fk j(Q) þ lim sup
n!þ1

EQn jF(
n)j

þ lim sup
k!þ1

lim sup
n!þ1

EQ n jF � Fk j(
n):

The same arguments as those given by Jourdain (2000, proof of Theorem 2.1) imply that the

sum of the two first terms of the right-hand side is zero and that the third term vanishes as

long as

lim sup
k!þ1

lim sup
n!þ1

EQ n

ð t

s

1fjY 1
r�Y 2

r j<1=kgdr

� �
¼ 0: (4:3)

To prove this equality we use the key estimate (4.2) of the two-particle density which

replaces the one obtained via Girsanov’s theorem by Jourdain (2000). Let 1 , q , 2=(3 � Æ),

which implies that 2(q � 1)=Æq , 1 � 1=Æ. By Hölder’s inequality and (4.2),

EQ n

ð t

s

1fjY 1
r�Y 2

r j<1=kgdr

� �

< Qn sup
r2[s, t]

jY 1
rj >

ffiffiffi
k

p
 !

þ
ð t

s

Qn jY 1
rj <

ffiffiffi
k

p
, jY 1

r � Y 2
rj <

1

k

� �
dr

< Qn sup
r2[s, t]

jY 1
rj >

ffiffiffi
k

p
 !

þ C

ð
R2

1fj y1j<
ffiffiffi
k

p
,j y1� y2j<1=kg dy1 dy2

� �(q�1)=qð t

s

r�2(q�1)=Æq þ r(2�(3�Æ)q)=Æq dr:

The second term on the right-hand side does not depend on n and converges to 0, as

k ! þ1, because
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ð
R2

1fj y1j<
ffiffiffi
k

p
,j y1� y2j<1=kg dy1 dy2 ¼ 4ffiffiffi

k
p :

Also, by the tightness of sequence Qn
s (Y1)�1, we have

lim sup
k!þ1

lim sup
n!þ1

Qn sup
r2[s, t]

jY 1
rj >

ffiffiffi
k

p
 !

¼ 0:

Hence (4.3) holds true. h

Remark 4.2. Let (Si)i>1 be a sequence of independent one-dimensional symmetric Æ-stable

processes and (Zi
0)i>1 be an independent sequence of initial variables which are

independently and identically distributed (i.i.d.) with common distribution jmj. If the

function A9 is locally Lipschitz continuous then it is possible to define the n-particle system

as the unique solution of the equations

Zi,n
t ¼ Zi

0 þ �1=ÆSi
t þ
ð t

0

A9
1

n

Xn

j¼1

h(Z
j
0)HEn

(Zi,n
s � Z j,n

s )

 !
ds, 1 < i < n,

where En . 0 and, for E . 0, HE(x) ¼ (1 þ x=E)1[�E,0](x) þ 1fx.0g is a Lipschitz continuous

regularization of the Heaviside function. If 	n denotes the law of the empirical measure

n�1
Pn

i¼1�Z i, n , then the propagation-of-chaos result stated in Theorem 4.1 holds as long as

limn!þ1En ¼ 0.

The propagation-of-chaos result implies convergence of the weighted empirical

cumulative distribution function of the system with n particles to the unique bounded

weak solution of (1.4) as n ! þ1.

Corollary 4.2. Under Qn, the approximate solution n�1
Pn

j¼1 h(Y
j
0)H(x � Y

j
t) converges to

the unique bounded weak solution u(t, x) ¼ H � ~PPt(x) of (1.4) in the following sense: for

each T . 0,

lim
n!þ1

sup
t<T

ð
R

EQn

���� 1

n

Xn

j¼1

h(Y
j
0)H(x � Y

j
t) � u(t, x)

���� dx

1 þ x2
¼ 0:

Remark 4.3. For n 2 N� and ˜t . 0, it is possible to simulate the time-discretized system

with n particles defined inductively by

Y
i,n
0 ¼ Y i

0 and Y
i,n
(kþ1)˜ t ¼ Y

i,n
k˜ t þ (�˜t)1=Æsi

kþ1 þ ˜tA9
1

n

Xn

j¼1

h(Y
j
0)1fY

j, n

k˜ t
<Y

i, n

k˜ t

 !
, i < n,

where the initial variables (Y i
0)i>1 are independent and distributed according to jmj and

independent of the sequence (si
k)i>1,k>1 of independent variables with common Fourier

transform � ! e�j�jÆ . The previous result suggests that when n is large and ˜t small, the step

function x ! n�1
Pn

i¼1 h(Y i
0)1fY

i, n

k˜ t
<xg provides a Monte Carlo approximation of the function

x ! u(k˜t, x) where u denotes the unique solution of the fractional conservation law (1.4),

704 B. Jourdain, S. Méléard and W.A. Woyczynski



generalizing Bossy and Talay’s approach (1996; 1997) to the Burgers equation (Æ ¼ 2,

A(u) ¼ u2=2).

Proof. Let

N Y (ds, dy) ¼
X

t

1f˜Yt 6¼0g�( t,˜Yt)(ds, dy)

and

N i(ds, dx) ¼
X

t

1f˜Y i
t 6¼0g�( t,��1=Æ˜Y i

t)
(ds, dx)

respectively denote the jump measure on Rþ 3 Rn (Rþ 3 R) associated with the canonical

process Y ¼ (Y 1, . . . , Y n) on D(Rþ, Rn) (associated with ��1=ÆY i). According to Jacod and

Shiryaev (1987, Theorem 2.42, p. 86), under Qn, the predictable compensator of N Y is

K�
Xn

i¼1

dyi

jyij1þÆ
�(0,0,...,0)(dy1, . . . , dyi�1, dyiþ1, . . . dyn)ds:

As a consequence, the measures N i are independent Poisson point measures on Rþ 3 R with

common intensity K ds dx=jxj1þÆ. Therefore, the processes

Si
t ¼

ð
(0, t]3R

x1fjxj<1g N i(ds dx) � K ds dx

jxj1þÆ

� �
þ
ð

(0, t]3R

x1fjxj.1gN i(ds dx),

1 < i < n, are independent symmetric Æ-stable processes independent of the initial variables

Y i
0, 1 < i < n, which are i.i.d. with common distribution jmj. Additionally, following Jacod

and Shiryaev (1987, Theorem 2.42, p. 86, and Theorem 2.34, p. 84), we obtain that, for

1 < i < n, and t > 0,

Y i
t ¼ Y i

0 þ �1=ÆSi
t þ
ð t

0

A9
1

n

Xn

j¼1

h(Y
j
0)1fY

j
s<Y i

sg

 !
ds:

Similarly, under the solution P of the nonlinear martingale problem (MP),

X t ¼ X0 þ �1=ÆSt þ
ð t

0

A9(H � ~PPs(X s))ds,

where St is a symmetric Æ-stable process independent of the initial variable X 0 which is

distributed according to jmj.
The scaling property of the Æ-stable process and the boundedness of the drift coefficients

imply that, for 0 < s < t and 1 < i < n,

EQ n jY i
t � Y i

sj
� �

< C �1=Æ(t � s)1=Æ þ (t � s)
� �

, (4:4)

EP jX t � X sjð Þ < C �1=Æ(t � s)1=Æ þ (t � s)
� �

: (4:5)
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We set k 2 N�. Let hk and H k be the Lipschitz continuous approximations of the functions

h and H introduced in the proof of Theorem 4.1, and b�c denote the integer part. We have

sup
t<T

ð
R

EQ n

���� 1

n

Xn

j¼1

h(Y
j
0)H(x � Y

j
t) � H � ~PPt(x)

���� dx

1 þ x2

< sup
t<T

ð
R

EQn

����h(Y 1
0)H(x � Y 1

t ) � hk(Y 1
0)H k(x � Y 1

Tbk2 t=Tc=k2 )

���� dx

1 þ x2
(4:6)

þ max
0< j<k2�1

E	 n sup
jT=k2< t<( jþ1)T=k2

ð
R

����hQ, hk(X0)H k(x � X jT=k2 )i � H � ~PPt(x)

���� dx

1 þ x2

 !
:

Since jh(Y 1
0)H(x � Y 1

t ) � hk(Y 1
0)H k(x � Y 1

Tbk2 t=Tc=k2 )j is smaller than

jh � hk j(Y 1
0) þ 1fx�1=k<Y 1

t<xg þ kjY 1
t � Y 1

Tbk2 t=Tc=k2 j,

using (4.4) and the bound

8y 2 R,

ð
R

1fx�1=k< y<xg
dx

1 þ x2
< 1=k

one obtains that the first term on the right-hand-side of (4.6) is smaller than

2�jmj(fx : hk(x) 6¼ h(x)g) þ 1=k þ Ck1�2=Æ and vanishes as k ! þ1.

Letting s ! t� in (4.5), one obtains that for any t > 0, P(jX t � X t� j . 0) ¼ 0. As a

consequence, for 1 < j < k2, �P gives full weight to continuity points of the bounded

mapping

Q 2 P ! sup
jT=k2< t<( jþ1)T=k2

ð
R

����hQ, hk(X 0)H k(x � X jT=k2 )i � H � ~PPt(x)

���� dx

1 þ x2
:

Hence for fixed k, Theorem 4.1 implies that when n tends to +1, the second term on the

right-hand side of (4.6) converges to

sup
t<T

ð
R

����hP, hk(X0)H k(x � X Tbk2 t=Tc=k2 ) � h(X0)H(x � X t)i
���� dx

1 þ x2
:

Reasoning as for the first term of the right-hand side of (4.6), with (4.5) replacing (4.4), one

obtains that the previous limit converges to 0 as k tends to +1. h

4.2. The vanishing viscosity limit

In this subsection, we assume that m is a probability measure and introduce a sequence �n

of positive numbers such that limn!þ1�n ¼ 0. We will let the fractional viscosity vanish as

the number n of particles tends to +1. We recall that uniqueness of bounded weak

solutions fails to hold for the inviscid (� ¼ 0) scalar conservation law (1.4):

@ tu(t, x) þ @x A(u(t, x)) ¼ 0, u(0, x) ¼ u0(x): (4:7)

706 B. Jourdain, S. Méléard and W.A. Woyczynski



However, in view of Kruzhkov’s theorem (Kruzhkov 1970; Serre 1996), this equation admits

a unique bounded entropy solution u 2 C(Rþ, L1
loc(R)) characterized by the following entropy

inequalities: for any c 2 R, and any non-negative C1-function ł with compact support on

Rþ 3 R, ð
R

ju0(x) � cjł(0, x)dx (4:8)

þ
ð1

0

ð
R

ju � cj@ tłþ sgn(u � c)(A(u) � A(c))@xłð Þ(t, x)dx dt > 0:

For n > 1, let Qn 2 Pn be the solution of the martingale problem with generator

�n

Pn
i¼1 DÆ

i þ bn � = where bn is defined in (4.1) starting from m�n and given by Proposition

2.1, and 	n ¼ Qn
s (
n)�1 where, for Y ¼ (Y 1, . . . , Y n) 2 D(Rþ, Rn),


n(Y ) ¼ n�1
Pn

i¼1�Y i 2 P. Since maxx2[0,1]jA9(x)j , þ1, the sequence (	n)n is tight.

Theorem 4.3. Any weak limit of the sequence (	n)n gives full weight to the set

fQ 2 P, t ! H � Qt(:) is equal to t ! u(t, :)g:

In addition, for each T . 0,

lim
n!þ1

sup
t<T

ð
R

EQn

���� 1

n

Xn

j¼1

H(x � Y
j
t) � u(t, x)

���� dx

1 þ x2
¼ 0:

Remark 4.4. If DÆ is replaced by the Laplacian on R as the generator of the particle system,

a similar result was proved by Jourdain (2002). In that case, the situation where the initial

measure m is a signed measure can be handled by modifying the dynamics of the particle

system by killing pairs of particles with opposite weights whenever they collide. Such a

modification seems difficult to generalize for processes with jumps.

Proof. Let us first observe that the first assertion in the theorem implies the second. Indeed,

from any subsequence of (Qn)n one can extract a further subsequence (Qn9)n9 such that 	n9

converges weakly to 	1 giving full weight to fQ 2 P, t ! H � Qt(:) is equal to t ! u(t, :)g.

Since (4.4) holds with � replaced by �n, first taking s and t outside fr >

0 : 	1(fQ : Q(jYr � Yr� j) . 0g) . 0g and then using the right-continuity of sample paths,

one obtains that, for 0 < s < t,

E	1 hQ, jX t � X sjið Þ < C(t � s):

With this bound replacing (4.5), the arguments given in the proof of Corollary 4.2 imply that

sup
t<T

ð
R

EQ n9

���� 1

n9

Xn9

j¼1

H(x � Y
j
t) � u(t, x)

���� dx

1 þ x2
converges to 0:

Now let 	1 be the limit of a converging subsequence of (	n)n, which we still index by n for

the sake of notational simplicity, ł be a non-negative C1-function with compact support on
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Rþ 3 R and c 2 R. It is sufficient to prove that 	1-a.s. the entropy inequality (4.8) holds

true for u(t, x) ¼ H � Qt(x), where Q denotes the canonical variable on P. Indeed, we can

then conclude by taking c and ł in countably dense subsets.

Let us observe that since, for any Q 2 P, we have (t, x) ! H � Qt(x) 2 [0, 1], the

entropy inequality for c ¼ 1 (c ¼ 0) implies the entropy inequality for any c > 1 (c < 0).

For this reason we assume that c 2 [0, 1].

As in the proof of Corollary 4.2, we obtain that, under the probability measure Qn, for

1 < i < n and t > 0,

Y i
t ¼ Y i

0 þ �1=Æ
n Si

t þ
ð t

0

A9
1

n

Xn

j¼1

1fY
j
s<Y i

sg

 !
ds,

where Si, 1 < i < n, are independent Æ-stable processes independent of the initial variables

Y i
0, 1 < i < n, which are i.i.d. with common distribution m.

For n > 1, we set cn ¼ bncc=n, where b�c denotes the integer part. Our strategy, inspired

by the proof of Lemma 3.1, is as follows: we want to integrate by parts in the spatial

variable in order to evaluate
Ð
R
ł(t, x)jH � 
n

t (x) � cnjdx, for t . 0. The distributional

derivative of the step function with bounded variation

x 7! jH � 
n
t (x) � cnj ¼ jcnj þ

1

n

Xbcnc

i¼1

1fx,Y
� t (i)
t g þ

1

n

Xn

i¼bcncþ1

1fY
� t (i)
t <xg

is equal to n�1(
Pn

i¼bcncþ1 �
Pbcnc

i¼1 )�
Y
� t (i)
t

, where � t denotes a permutation of f1, . . . , ng
such that Y

� t(1)
t < Y

� t(2)
t < . . . < Y

� t(n)
t . This justifies our interest in computing

Xn

i¼bcncþ1

j(t, Y
� t(i)
t ) �

Xbcnc

i¼1

j(t, Y
� t(i)
t ),

where

j(t, x) ¼
ðx

�1
ł(t, z)dz, for (t, x) 2 Rþ 3 R:

Because this calculation is delicate, we are going to approximate Y by a process with finite

intensity of jumps by removing the small jumps of Si, 1 < i < n. More precisely, for E . 0,

we set Si,E
t ¼

Ð
(0, t]3R

y 1fjxj.EgN i(ds dx) and

Y i,E
t ¼ Y i

0 þ �1=Æ
n Si,E

t þ
ð t

0

A9
1

n

Xn

j¼1

1fY
j
s<Y i

sg

 !
ds:

Then introducing Y E
t ¼ (Y 1,E

t , . . . , Y n,E
t ) and definining � E

t (� E
t�) to be a permutation such that

Y
� E

t(1),E
t < . . . < Y

� E
t(n),E

t (Y
� E

t� (1),E
t� < . . . < Y

� E
t� (n),E

t� ), we have, for all t > 0,

Xn

i¼1

(Y
� E

t(i),E
t � Y

� t(i)
t )2 < jY E

t � Ytj2 and lim
E!0

EQ n

sup
s< t

jY E
s � Ysj2

� �
¼ 0: (4:9)
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Since, according to Proposition 2.1, for any s . 0, Qn
s has a density with respect to the

Lebesgue measure, Qn-a.s. and ds-a.e. the positions Y 1
s , . . . , Y n

s are distinct. Therefore Qn
s -

a.s., for all t > 0,

Y i,E
t ¼ Y i

0 þ �1=Æ
n Si,E

t þ
ð t

0

A9 ��1
s (i)=n

� �
ds:

By considering successive jump times of the process Y E, one obtains

Xbcnc

i¼1

j(t, Y
� E

t(i),E
t )

¼
Xbcnc

i¼1

j(0, Y
� 0(i)
0 ) þ

ð t

0

@ sjþ A9(��1
s (� E

s(i))=n)@xj
� �

(s, Y � E
s(i),E

s )ds

� �
(4:10)

þ
ð t

0

Xn

j¼1

1f(� E
s� )�1( j)>bcncg 1

�1=Æ
n y>Y

� E
s� (bcncþ1),E

s� �Y
j,E
s�

� 
 j(s, Y j,E
s� þ �1=Æ

n y
� �

� j(s, Y j,E
s� )

� �
:

þ 1
�1=Æ

n y.Y
� E

s� (bcncþ1),E
s� �Y

j,E
s�

� 
 j(s, Y
� E

s� ([cn]þ1),E
s� ) � j(s, Y j,E

s� )
� ��

þ 1f(� E
s� )�1( j).bcncg 1

�1=Æ
n y,Y

� E
s� (bcnc),E

s� �Y
j,E
s�

� 
 j(s, Y j,E
s� þ �1=Æ

n y) � j(s, Y
� E

s� (bcnc),E
s� )

� �� �

N j(ds dy):

Because ł is non-negative, x 7! j(s, x) ¼
Ð x

�1 ł(s, y)dy is non-decreasing and

Xbcnc

i¼1

j(t, Y
� E

t(i),E
t ) � j(0, Y

� 0(i)
0 ) �

ð t

0

(@ sjþ A9(��1
s (� E

s(i))=n)@xj)(s, Y � E
s(i),E

s )ds

� �

<

ð t

0

Xn

j¼1

ð
j yj.E

1f(� E
s� )�1( j)<bcncg j(s, Y j,E

s� þ �1=Æ
n y) � j(s, Y j,E

s�)
� �

N j(ds dy):

By a similar but easier computation,

Xn

i¼1

�j(t, Y
� E

t(i),E
t ) þ j(0, Y

� 0(i)
0 ) þ

ð t

0

(@ sjþ A9(��1
s (� E

s(i))=n)@xj)(s, Y � E
s(i),E

s )ds

� �

¼ �
ð t

0

Xn

j¼1

ð
j yj.E

(j(s, Y j,E
s� þ �1=Æ

n y) � j(s, Y j,E
s�))N j(ds dy):

Adding this equality to the preceding inequality multiplied by 2, one obtains that T
n,E
1 < T

n,E
2 ,

where
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T
n,E
1 ¼ 1

n

Xn

i¼bcncþ1

�
Xbcnc

i¼1

0
@

1
A j(0, Y

� 0(i)
0 )

�

þ
ð t

0

(@ sjþ A9(��1
s (� E

s(i))=n)@xj)(s, Y � E
s(i),E

s )ds � j(t, Y
� E

t(i),E
t )

�

and

T
n,E
2 ¼ 1

n

ð t

0

Xn

j¼1

ð
j yj.E

(1f(� E
s� )�1( j)<bcncg � 1f(� E

s� )�1( j).bcncg)

(j(s, Y j,E
s� þ �1=Æ

n y) � j(s, Y j,E
s� ))N j(ds dy):

According to Lemma 4.4 below,

lim
n!þ1

sup
E.0

EQn jT n,E
2 j ¼ 0:

Hence

lim
n!þ1

sup
E.0

EQ n

((T n,E
1 )þ) ¼ 0:

According to (4.9), one can construct a sequence (Ek)k converging to 0 and such that Qn-a.s.,

sups< t

Pn
i¼1(Y �

E k
s (i),E k

s � Y � s(i)
s )2 ! 0 as k ! þ1. Moreover, since Qn-a.s. and ds-a.e. the

positions Y 1
s , . . . , Y n

s are distinct, Qn-a.s. and ds-a.e. � E k
s is equal to � s for k big enough.

Hence Qn-a.s., T
n,E k

1 converges to

T n ¼ 1

n

Xn

i¼bcncþ1

�
Xbcnc

i¼1

0
@

1
A j(0, Y

� 0(i)
0 ) þ

ð t

0

(@ sjþ A9(i=n)@xj)(s, Y � s(i)
s )ds � j(t, Y

� t(i)
t )

� �
:

Since variables T
n,E
1 are uniformly bounded in E, we have

EQn

((T n)þ) ¼ lim
k!þ1

EQn

((T n,E k

1 )þ),

so that we can conclude that

lim
n!þ1

EQn

((T n)þ) ¼ 0: (4:11)

We now choose t such that the support of ł, and therefore of j, is contained in [0, t) 3 R

which permits us to get rid of the terms involving j(t, :) and perform spatial integration by

parts as planned at the beginning of the proof. We thus obtain
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Tn ¼ (1 � cn)

ð
R

ł(0, x)dx �
ð
R

ł(0, x)jH � 
n
0 (x) � cnj dx

þ (1 � cn)

ð t

0

ð
R

@ sł(s, x)dx ds

�
ð t

0

ð
R

jH � 
n
s (x) � cnj@ sł(s, x)

þ A(cn) � A(0) þ 1

n

XnH�
n
s (x)

i¼1

(1fi.bcncg � 1fi<bcn]cg)A9(i=n)

 !
@xł(s, x)dx ds:

As far as last term is concerned, observe that the cumulative distribution function of the

signed measure

1

n

Xn

i¼bcncþ1

�
Xbcnc

i¼1

0
@

1
AA9(i=n)�

Y
� s(i)
s

is a function

x 7! 1

n

XnH�
n
s (x)

i¼1

(1fi.bcncg � 1fi<bcncg)A9(i=n),

where nH � 
n
s (x) counts the number of particles with coordinates not greater than x at time

s, and that no boundary term appears since limx!þ1@xj(s, x) ¼ limx!þ1ł(s, x) ¼ 0.

The sum of the first and third terms on the right-hand side is zero. Moreover, for all

0 < k < n,

����sgn
k

n
� cn

� �
A

k

n

� �
� A(cn)

� �
� A(cn) þ A(0) � 1

n

Xk

i¼1

(1fi.[cn]g � 1fi<[cn]g)A9
i

n

� �����
¼
����Xk

i¼1

(1fi.bcncg � 1fi<bcncg) A
i

n

� �
� A

i � 1

n

� �
� 1

n
A9

i

n

� �� �����
< sup

x, y2[0,1],jx� yj<1
n

jA9(x) � A9(y)j,

and, for each u 2 [0, 1],

jsgn(u � c)(A(u) � A(c)) � sgn(u � cn)(A(u) � A(cn))j < sup
u2[cn,c]

jA(cn) þ A(c) � 2A(u)j:

Hence the random variables

Inviscid limits for one-dimensional fractional conservation laws 711



T n þ
ð
R

ł(0, x)jH � 
n
0 (x) � cjdx

þ
ð t

0

ð
R

jH � 
n
s (x) � cj@ sł(s, x) þ sgn(H � 
n

s (x) � c)(A(H � 
n
s (x)) � A(c))@xł(s, x)dx ds

converge uniformly to 0 as n ! þ1. With the help of (4.11) we conclude that, for the

continuous and bounded function G which associates with any Q 2 P

G(Q) ¼
ð
R

ł(0, x)jH � Q0(x) � cjdx þ
ð t

0

ð
R

jH � Qs(x) � cj@ sł(s, x)ð

þ sgn(H � Qs(x) � c)(A(H � Qs(x)) � A(c))@ xł(s, x)Þ dx ds, (4:12)

we have

E	1((G(Q))�) ¼ lim
n!þ1

E	n ((G(Q))�) ¼ 0:

We now can conclude the proof by observing that 	1-a.s, Q0 ¼ m, and therefore

H � Q0 ¼ u0. h

Lemma 4.4. In the notation introduced in the proof of Theorem 4.3, we have

lim
n!þ1

sup
E.0

EQn jT n,E
2 j ¼ 0:

Proof. For 1 < j < n, let us denote by

~NN j(ds dy) ¼ N j(ds dy) � K ds dy

jyj1þÆ

the compensated measure associated with N j. We shall write T
n,E
2 ¼ R1 þ R2, where

R1 ¼ 1

n

ð t

0

Xn

j¼1

ð
j yj.E

(1f(� E
s� )�1( j)<bcncg � 1f(� E

s� )�1( j).bcncg)(j(s, Y j,E
s� þ �1=Æ

n y)

� j(s, Y j,E
s� )) ~NN j(ds, dy)

R2 ¼ 1

n

ð t

0

Xn

j¼1

ð
j yj.E

(1f(� E
s� )�1( j)<bcncg � 1f(� E

s� )�1( j).bcncg)(j(s, Y j,E
s� þ �1=Æ

n y)

� j(s, Y j,E
s� ) � @xj(s, Y j,E

s� )�1=Æ
n y1f�1=Æ

n j yj<1g)
K ds dy

jyj1þÆ

In this notation we have
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EQn ((R1)2) ¼ 1

n2

Xn

j¼1

ð t

0

ð
jzj.�1=Æ

n E
EQn (j(s, Y j,E

s� þ z) � j(s, Y j,E
s� ))2

� � �n Kds dz

jzj1þÆ

<
C�n

n

ð
R

z2 ^ 1

jzj1þÆ
dz

and

EQn jR2j <
1

n

Xn

j¼1

ð t

0

ð
R

EQn

����j(s, Y j,E
s� þ z) � j(s, Y j,E

s� ) � @ xj(s, Y j,E
s�)z1fjzj<1g

����3 �n K ds dz

jzj1þÆ

< C�n

ð
R

z2 ^ 1

jzj1þÆ
dz:

h
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714 B. Jourdain, S. Méléard and W.A. Woyczynski


	1.&X;Introduction
	Equation 1
	Equation 6
	Equation 7
	2.&X;Existence and uniqueness for a class of
	Equation 8
	Equation 9
	Equation 11
	3.&X;Uniqueness for fractional conservation laws and the martingale problem
	Equation 13
	4.&X;Interacting particle systems
	4.1.&Y;Propagation of chaos for fixed fractional viscosity

	Equation 14
	Equation 15
	Equation 16
	4.2.&Y;The vanishing viscosity limit

	Equation 20
	Equation 22
	Equation 24
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr18
	mkr19
	mkr20

