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A class of absolutely continuous distributions in Rd is considered. Each distribution belongs to the

domain of normal attraction of an Æ-stable law. The limit law is characterized by a spectral measure

which is absolutely continuous with respect to the spherical Lebesgue measure. The large-deviation

problem for sums of independent and identically distributed random vectors when the underlying

distribution belongs to that class is studied. At the focus of attention are the deviations in the

directions, where the spectral density equals zero. The main conclusion is that the deviation in such a

direction is explained by two abnormally large summands.
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1. Introduction

Let �, �(1), �(2), . . . be a sequence of independent and identically distributed (i.i.d.) random

vectors taking values in Rd , d . 1. Assume that the distribution of � belongs to the domain

of attraction of a non-Gaussian Æ-stable law S. This means that there exist sequences

a(n) 2 Rd and bn 2 R1
þ such that the sequence of random vectors b�1

n (�(1) þ . . . þ
�(n) � a(n)) as n ! 1 converges in distribution to a random vector � having the distribution

S. Denote by j � j the usual Euclidean norm in Rd , that is, jxj ¼ (
Pd

i¼1x2i )
1=2 for

x ¼ (x1, . . . , xd). It is well known that the convergence mentioned takes place if and only if

the tail function P(j�j . t) is of regular variation as t ! 1 with the exponent lying in

(�2, 0) while the measure

� t(E) ¼ P(j�j�1� 2 Ej j�j . t),

defined on the � -algebra BSd�1 of the Borel subsets of the unit sphere Sd�1, weakly

converges as t ! 1 to a probability measure � (Theorem 4.2 in Rvacheva 1954, Corollary

6.20 in Araujo and Giné 1980). In other words,

P(j�j . t) ¼ t�Æ l(t), � t )
w

�, (1:1)
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where Æ 2 (0, 2) and l(t) slowly varies as t ! 1.

If in (1.1) lim t!1 l(t) ¼ l0, where l0 is a positive constant, then the distribution of �
belongs to the domain of normal attraction of S and the normalizing sequence is of the

form

bn ¼ b0n1=Æ (1:2)

(Kalinauskaite 1974). The choice of b0 given l0 determines the total variation of the so-called

spectral measure of S. Denote by ŝs(y), y 2 Rd, the characteristic function of S. It is well

known that ŝs(y) admits the representation

�ln ŝs(y) ¼

iha, yi þ
ð
Sd�1

jhy, eijÆ 1� i sign(hy, ei) tan(�Æ=2)ð Þ�(de), if Æ 2 (0, 1) [ (1, 2),

iha, yi þ
ð
Sd�1

jhy, eij 1þ i(2=�) sign(hy, ei)ln jhy, eijð Þ�(de), if Æ ¼ 1,

8>><
>>:

where a 2 Rd is a location, while � is a bounded measure defined on the BSd�1 (Theorem

2.3.1 in Samorodnitsky and Taqqu 1994). It is � that is called the spectral measure of S. It is

easy to see that

�(E) ¼ �(E)

�(Sd�1)
, E 2 BSd�1 :

Choosing b0 ¼ (l0ÆcÆ)
1=Æ with

cÆ ¼
ð1
0

1� cos u

u1þÆ
du ¼ �

2ˆ(1þ Æ) sin(�Æ=2)
,

we obtain �(Sd�1) ¼ 1 and, therefore, � � �. Throughout the paper we adhere to such a

choice of b0 in (1.2).

Assume that the distribution of � is absolutely continuous with a bounded density p(x).

Denote by pn(x) and ~ppn(x) ¼ bd
n pn(bnx) the densities of �(n) ¼ �(1) þ . . . þ �(n) � a(n) and

b�1
n �(n), n ¼ 1, 2, . . . , respectively. By the local limit theorem of Gnedenko, as n ! 1,

sup
x2Rd

j ~ppn(x)� s(x)j ¼ o(1), (1:3)

where s(x) is the density of the limit Æ-stable law S.

From (1.3) it follows that ~ppn(x) ! 0 as jxj ! 1. Theorems dealing with the asymptotic

behaviour of ~ppn(x) for such x are called large-deviation local theorems. Such theorems

assume certain asymptotic regularity of the underlying density. The following regularity

conditions were introduced in Zaigraev (1999).

Definition 1.1. A density function p(x) belongs to the class P if it is bounded and admits the

representation

p(x) ¼ h(ex)þ Ł(x)ø(jxj)
jxjdþÆ

, jxj . 1
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where Æ 2 (0, 1) [ (1, 2), h(e) is a continuous function on Sd�1, ex ¼ jxj�1x, jŁ(x)j < 1, and

ø(t) ! 0 as t ! 1.

It is easily seen that for a distribution having a density belonging to P the normalizing

sequence bn has the form (1.2) with

b0 ¼ (l0ÆcÆ)
1=Æ, l0 ¼ Æ�1

ð
Sd�1

h(e)� (de),

that is, such distribution belongs to the domain of normal attraction of S determined by Æ and

�(E) ¼

ð
E

h(e)� (de)ð
Sd�1

h(�)� (d�)
, E 2 BSd�1 ,

where � denotes the spherical Lebesque measure on BSd�1 . In other words, � is absolutely

continuous with respect to � and, furthermore,

d�

d�
(e) ¼ h(e)ð

Sd�1

h(�)� (d�)
, e 2 Sd�1:

In what follows we consider the case where S is a strictly Æ-stable distribution and

Æ 6¼ 1. This implies that the location a ¼ 0 and, therefore, we may put a(n) ¼ 0.

Let rn denote any sequence such that limn!1rn ¼ 1. The following statement was

proven in Zaigraev (1999); see his Theorem 1.

Proposition 1.1. If p(x) 2 P then, for any � . 0,

lim
n!1

sup
ex2E�,jxj>n1=Ærn

���� pn(x)

np(x)
� 1

���� ¼ 0,

where E� ¼ (e 2 Sd�1 : h(e) > �), while

lim
n!1

sup
ex2E0,jxj>n1=Ærn

n�1jxjdþÆ pn(x) ¼ 0, (1:4)

where E0 ¼ (e 2 Sd�1 : h(e) ¼ 0).

From (1.3) it also follows that for any fixed e 2 Sd�1 there exists a sequence tn(e) ! 1
such that

lim
n!1

sup
0< t< t n(e)

���� ~ppn(te)

s(te)
� 1

���� ¼ 0: (1:5)

We call the interval [0, tn(e)] the zone of local attraction in the direction e (cf. Ibragimov

and Linnik 1971, Chapter 9).

How wide could the zones of local attraction be? Proposition 1.1, together with Corollary

2 of Arkhipov (1989), enables us to answer this question at least in the case e 2 E�. Let
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p(x) 2 P. Assume, additionally, that all derivatives of h(e), up to order 2þ d=2, are

bounded. For more about the derivatives of functions defined on Sd�1 see, for example,

Groemer (1996, Section 1.2). Then, by Corollary 2 of Arkhipov (1989), there exists c . 0

such that, for jxj 6¼ 0,

s(x) ¼ h(ex)

bÆ
0 jxjdþÆ

þ cŁ(x)

jxjdþ2Æ
, (1:6)

where jŁ(x)j < 1. So, for e 2 E� as t ! 1,

s(te) ¼ h(e)

bÆ
0 tdþÆ

(1þ cŁ(te)t�Æ):

Together with Proposition 1.1, this implies that, for any � . 0,

lim
n!1

sup
x2K�

���� ~ppn(x)

s(x)
� 1

���� ¼ 0,

where

K� ¼ (x 2 Rd : ex 2 E�):

In other words, for e 2 E� we have tn(e) � 1. In particular, if E� ¼ Sd�1 then K� ¼ Rd and

we obtain the strong form of the Gnedenko local limit theorem,

lim
n!1

sup
x2Rd

���� ~ppn(x)

s(x)
� 1

���� ¼ 0:

Let us call the directions e 2 E0 singular. Up to now the asymptotic behaviour of ~ppn(te)

in the singular directions remains unknown. The problem is that the regular directions

e 2 E� are studied using methods that were worked out for one-dimensional heavy-tailed

distributions (Nagaev 1969; Tkachuk 1973). Unfortunately, those methods have proved to be

insufficient for analysing singular directions and require further development.

It is the basic goal of the paper to outline an approach to the problem of large deviations

in the singular directions. The problem seems to be extremely difficult, even in the simplest

case considered below.

The paper is organized as follows. In Section 2 we state and comment on the main

results. Auxiliary facts are given in Section 3. Sections 4 and 5 are devoted to the proof of

the main results.

2. Main results

Recall that we confine ourselves to the case Æ 2 (0, 1) [ (1, 2) and assume that there is a

finite number of singular directions. The following definition specifies the case.

Definition 2.1. A density function p(x) belongs to the class P0 if it is bounded and satisfies

the following conditions:
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(i) #(E0) , 1 (there is a finite number of singular directions).

(ii) For jxj . 1, the density p(x) admits the representation

p(x) ¼ h(ex)

jxjdþÆ
þ d(ex)þ Ł(x)ø(jxj)

jxjdþ�
, (2:1)

where Æ 2 (0, 1) [ (1, 2), � . Æ, and d(e) is a continuous function on Sd�1.

(iii) For all e� 2 E0, there exists a positive constant h0 such that

h(e) < h0je � e�j2, e 2 Sd�1: (2:2)

Obviously, P0 � P. It is worth recalling that the function h(e) coincides, up to a constant

multiplier, with the spectral density of the limit Æ-stable law.

Under the additional restriction on the smoothness of h(e), one can compare the

asymptotic behaviour of p(x) and s(x) in a direction e� 2 E0. Suppose that p(x) 2 P0 and

all derivatives of h(e), up to order 4þ d=2, are bounded. From Corollary 2 of Arkhipov

(1989) it follows that the limit Æ-stable density s(x) admits the expansion (cf. (1.6))

s(x) ¼ h(ex)

bÆ
0 jxjdþÆ

þ b(ex)

jxjdþ2Æ
þ cŁ(x)

jxjdþ3Æ
, jxj 6¼ 0, (2:3)

where b(e) is a continuous function on Sd�1. Since h(e�) ¼ 0 we conclude that, for t ! 1,

s(te�) ¼ b(e�)t�(dþ2Æ)(1þ O(t�Æ)), p(te�) ¼ d(e�)t�(dþ�)(1þ o(1)),

provided d(e�) . 0.

Below we prove that b(e�) . 0. Thus, the relation between p(te�) and s(te�) depends on

that between � and 2Æ.
Denote

	(x) ¼ h(ex)jxj�(dþÆ), jxj 6¼ 0: (2:4)

This function is not integrable, but

	2(e
�) ¼

ð
Rd

	(x)	(e� � x)dx , 1

(see Lemma 3.7 below). The following theorem contains our main result.

Theorem 2.1. Let p(x) 2 P0, e� 2 E0, and d(e�) . 0. Then as n ! 1, t ! 1,

~ppn(te
�) ¼ 	2(e

�)
2b2Æ

0

t�(dþ2Æ)(1þ ø1(n, t))þ d(e�)
n�=Æ�1b

�
0

t�(dþ�)(1þ ø2(n, t)),

where

lim
n!1

sup
t>r n

jøi(n, t)j ¼ 0, i ¼ 1, 2:

Now we are able to compare the asymptotics of ~ppn(te
�) and s(te�).
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Corollary 2.2. Suppose that the conditions of Theorem 2.1 are fulfilled and all derivatives of

h(e), up to order 4þ d=2, are bounded. If � > 2Æ, then

lim
n!1

sup
t>0

���� ~ppn(te
�)

s(te�) � 1

���� ¼ 0:

If � , 2Æ, then

lim
n!1

sup
t2[0,nk=rn]

���� ~ppn(te
�)

s(te�) � 1

���� ¼ 0,

where k ¼ (�=Æ� 1)=(2Æ� �). But if t > nkrn, then, as n ! 1,

~ppn(te
�)

s(te�) ! 1:

In particular, if � > 2Æ, that is, p(te�) ¼ O(s(te�)), then the zone of local attraction in

the direction e� is infinite.

In the proof of Theorem 2.1 an unexpected phenomenon is utilized. To the best of our

knowledge this phenomenon has been never discussed. Usually, large deviations of a sum of

i.i.d. random vectors having a heavy-tailed distribution arise when exactly one of the

summands is abnormally large (Nagaev and Zaigraev 1998; Zaigraev 1999). In particular, it

is true for the regular directions e 2 E�. The following statement was proven in Zaigraev

(1999); see his Theorem 2 therein.

Proposition 2.3. If p(x) 2 P then, for any � . 0 and any A 2 BRd,

lim
n!1

sup
jxj>rn bn

sup
ex2E�

����P b�1
n (�(n) � �9) 2 Aj�(n) ¼ x

� �
� S(A)

���� ¼ 0,

where �9 denotes the summand in the sum �(n) with largest absolute value.

It turns out that within P0 large deviations in a singular direction e� 2 E0 are explained

by two abnormally large summands if � > 2Æ or � , 2Æ but rn < t < nk=rn. It is the first

term in the representation for ~ppn(te
�) that reflects this phenomenon.

The following statement gives a more formal description of the phenomenon and should

be compared with Proposition 2.3.

Theorem 2.4. Let the conditions of Theorem 2.1 be fulfilled and A, B, C 2 BRd .

If � > 2Æ, then

lim
n!1

sup
t>rn

����P b�1
n �9 2 tA, b�1

n � 0 2 tB, b�1
n (�(n) � �9� � 0) 2 Cj�(n) ¼ bn te�

� �

�S(C)(	2(e
�))�1

ð
A\(e��B)

	(u)	(e� � u)du

���� ¼ 0, (2:5)

where �9 and � 0 denote the two summands in the sum �(n) with largest absolute value.
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If � , 2Æ, then (2.5) remains valid if the supremum is taken over rn < t < nk=rn. As for

bigger values of t, the following relation holds:

lim
n!1

sup
t>rn nk

����P b�1
n (�(n) � �9) 2 Aj�(n) ¼ bn te�

� �
� S(A)

���� ¼ 0, (2:6)

where �9 denotes the summand in the sum �(n) with largest absolute value.

Now assume that � (E0) . 0, that is, there is a ‘hole’ in the support of h(e). Then the

nature of the large deviation in the direction e� 2 int E0 is the same as in the case of finite

number of singular directions. More precisely, the large deviation is explained by two

abnormally large summands. However, the case seems to be much more complicated, as

does that concerning the asymptotic formula for ~ppn(te
(n)) for t ! 1, as e(n) ! @E0. The

authors will discuss these cases elsewhere.

3. Auxiliary statements

Henceforth, Bk(0, r) ¼ (x 2 Rk : jxj < r), for r . 0, and c denotes any positive constant

whose concrete value is of no importance. This means that, for example c þ c ¼ c and

c2 ¼ c. By ø(t) we denote any non-negative function such that lim t!1ø(t) ¼ 0, while Ł
always varies within [�1, 1].

3.1. Marginal densities

Let e� 2 E0 and C be an orthogonal matrix such that Ce� ¼ (0, . . . , 0, 1)T. If � has a

density from P0 then the density of C� also belongs to P0 with h(e) be replaced by h(CTe).

So, without loss of generality, we may assume that e� ¼ (0, . . . , 0, 1)T. For any

x ¼ (x1, . . . , xd), define x ¼ (x1, . . . , xd�1). Then x ¼ (x, xd).

Lemma 3.1. If p(x) 2 P0, then the marginal density p(x) of � ¼ (�1, . . . , �d�1) is bounded

and admits the representation (cf. Definition 1.1)

p(x) ¼ h(ex)þ Łø(jxj)
jxjd�1þÆ

, jxj . 1,

where h(e) is a strictly positive continuous function on Sd�2.

Proof. Since P0 � P, we may represent p(x) as

p(x) ¼ h(ex)þ Łø(jxj)
jxjdþÆ

, jxj . 1:

Note, first, that
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ð1
�1

ø((jxj2 þ z2)1=2)dz

(jxj2 þ z2)(dþÆ)=2
¼ Łø(jxj)

ð1
�1

(jxj2 þ z2)�(dþÆ)=2dz ¼ Łø(jxj)jxj�d�Æþ1:

Further, ð1
�1

h(e(x,z))dz

(jxj2 þ z2)(dþÆ)=2
¼ jxj�d�Æþ1

ð1
�1

h(e(ex,z)
)dz

(1þ z2)(dþÆ)=2
:

It is evident that the function

h(ex) ¼
ð1
�1

h(e(ex ,z)
)dz

(1þ z2)(dþÆ)=2

is continuous and positive. The lemma is proven. h

Let �(1), . . . , �(n) be independent copies of �. Denote by pn(x) the densities of �(1)

þ. . . þ �(n), n ¼ 1, 2, . . .. Here

bn ¼ b0n1=Æ, b0 ¼ (l0ÆcÆ)
1=Æ, l0 ¼ Æ�1

ð
Sd�2

h(e)� (de),

where � denotes the spherical Lebesque measure on BSd�2 . From Lemma 3.1 and Proposition

1.1 we arrive at the following statement.

Corollary 3.2. Let s(x) be the density of the Æ-stable distribution determined by Æ and �,

where

�(E) ¼

ð
E

h(e)� (de)ð
Sd�2

h(�)� (d�)
, E 2 BSd�2 :

Under the conditions of Lemma 3.1 the strong form of the Gnedenko local limit theorem

holds, that is,

lim
n!1

sup
x2Rd�1

���� b
d�1

n pn(bnx)

s(x)
� 1

���� ¼ 0:

The proof of the next result is similar to that of Lemma 3.1.

Lemma 3.3. Let � ¼ (�1, . . . , �d), d > 2. If p(x) 2 P0 then the marginal density p�(t) of the

random variable �d 2 R1 is bounded and admits the representation

p�(t) ¼ h�(t)þ Łø(jtj)
jtj1þÆ

, jtj . 1,

where

h�(t) ¼
ð
Rd�1

h(e(x,sign( t)))dx

(1þ jxj2)(dþÆ)=2
. 0:
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3.2. Truncated densities

Consider a random vector 
 ¼ 
r such that

P(
 2 A) ¼ P(� 2 Aj j�j < r), A 2 BRd :

Obviously, the distribution of 
 is absolutely continuous and its density q(x) ¼ qr(x) is of the

form

q(x) ¼ (P(j�j < r))�1 p(x)1Bd (0,r)(x): (3:1)

Let qn(x) be the densities of 
(1) þ . . . þ 
(n), n ¼ 1, 2, . . . , where 
( j), j ¼ 1, 2, . . . ,
are independent copies of 
.

Lemma 3.4. Let the distribution of � be from the domain of normal attraction of S. If

supx2Rd p(x) , 1, then

lim
n!1

sup
r>rn bn

sup
x2Rd

jbd
nqn(bnx)� s(x)j ¼ 0: (3:2)

Proof. Let r > rnbn. Denote by ł(y) and jr(y) the characteristic functions corresponding to

p(x) and q(x) ¼ qr(x), respectively. We should verify the following relations:

lim
n!1

sup
j yj<Y

jjn
r (b

�1
n y)� ŝs(y)j ¼ 0;

sup
r>rn b n

jjr(y)j < jł(y)j(1þ O(n�1)), jyj < Y ;

sup
r>rn b n

sup
x2Rd

q(x) , 1:

Here Y is any fixed positive constant.

The first two relations follow from the representation

jr(y) ¼ ł(y)þ O(r�Æ):

The third one is quite evident. The lemma is proven. h

Let � ¼ (�1, . . . , �d) ¼ (�, �d). Consider the random vector 
 2 Rd�1 and the random

variable 
d 2 R1 such that

P(
 2 A) ¼ P(� 2 Aj j�j < r), A 2 BRd�1 ,

and

P(
d < t) ¼ P(�d < tj j�d j < r), t 2 R1:

Obviously, both distributions are absolutely continuous, with densities

q(x) ¼ (P(j�j < r))�1 p(x)1Bd�1(0,r)(x),

where p is the density of �, and
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q�(t) ¼ (P(j�d j < r))�1 p�(t)1[�r,r](t),

respectively.

Let qn and q�n , n . 1, stand for the nth convolutions of q and q�, respectively.

Lemma 3.5. If p(x) 2 P0 then, as n ! 1, zn�1=Æ ! 1,ð
jxj.z

qn(x)dx ¼ o(nz�Æ),

ð
j tj.z

q�n (t)dt ¼ o(nz�Æ),

provided rn�1=Æ ! 1, zr�1 ! 1.

Proof. First, note that by Lemma 3.1 p(x) satisfies the conditions of Theorem 1 of Zaigraev

(1999). So, in order to prove the first statement it suffices to alter slightly the proof of

Lemma 4 therein, where, in contrast to the case considered here, the projection of � onto the

direction of the large deviation is truncated. As to the second statement, it follows from

Lemma 3.3 and Tkachuk (1973). h

3.3. More about the tail properties of s(x)

Here we give two facts concerning the asymptotic properties of the limit Æ-stable density.

The first is a direct corollary of Theorem 1 of Fristedt (1972).

Lemma 3.6. If a random vector � has the distribution S then, as r ! 1,

E j�j21Bd (0,r)(�)
� �

¼ cr2�Æ(1þ o(1)):

The next fact is very important, but not quite obvious.

Lemma 3.7. Let p(x) 2 P0, and 	(x) is given by (2.4). Then

	2(e
�) ¼

ð
Rd

	(x)	(e� � x)dx , 1:

Proof. Represent 	2(e
�) as follows:

	2(e
�) ¼

ð
jxj<1=2

þ
ð
jx�e�j<1=2

þ
ð
(x:jxj.1=2,jx�e�j.1=2)

¼ I1 þ I2 þ I3:

Obviously, I1 ¼ I2. From (2.2) and (2.4), it follows that

I1 < c

ð
jxj<1=2

h(ee��x)jxj�d�Ædx < c

ð
jxj<1=2

jee��x � e�j2jxj�d�Æ dx:

For jxj < 1=2 we have je� � xj > 1=2 and, therefore,

jee��x � e�j2 < 2jxj2
je� � xj2 < 8jxj2: (3:3)
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Hence,

I1 < c

ð
jxj<1=2

jxj�d�Æþ2 dx , 1:

Further,

I3 < c

ð
jxj.1=2

jxj�d�Ædx , 1:

The lemma is proven. h

4. Proof of Theorem 2.1

Put z ¼ bn t and let t ! 1. Recall that bn ¼ b0n1=Æ.

Consider the events

An,0 ¼ fj�( j)j < ªz, j ¼ 1, . . . , ng,

An,1 ¼ fj�( j)j < ªz, j ¼ 1, . . . , n � 1, j�(n)j . ªzg,

An,2 ¼ fj�( j)j < ªz, j ¼ 1, . . . , n � 2, j�(n�1)j . ªz, j�(n)j . ªzg;

An,3 is the event that at least three variables among j�(1)j, . . . , j�(n)j are greater than ªz,

where the constant ª 2 (0, 1) is to be specified later.

Then pn(ze�) can be represented as

pn(ze�) ¼ pn,0(ze�)þ npn,1(ze�)þ n(n � 1)

2
pn,2(ze�)þ pn,3(ze�), (4:1)

where

pn, j(ze�) ¼ lim
j˜j!0

j˜j�d P ze� � �(n) d ze� þ ˜, An, j

� �
, j ¼ 0, 1, 2, 3

and � (d) denotes componentwise ordering.

We begin with the contribution of the largest summand. Substituting r ¼ ªz in (3.1), we

obtain

(P(j�j < ªz))n�1 ¼ 1þ o(1)

and, therefore,

pn,1(ze�) ¼ I n(z)(1þ o(1)), (4:2)

where, in view of (2.1),

I n(z) ¼
ð
juj.ªz

p(u)qn�1(ze� � u)du ¼ I þ J , (4:3)
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I ¼
ð
juj.ªz

h(eu)

jujdþÆ
qn�1(ze� � u)du, J ¼

ð
juj.ªz

d(eu)þ Łø(juj)
jujdþ�

qn�1(ze� � u)du:

First, consider I. It is easily seen that

I ¼
ð ð

juj2þu2
d
.ª2 z2

h(e(u,ud ))

(juj2 þ u2
d)

(dþÆ)=2
qn�1(�u, z � ud)dudud < (ªz)�d�Æ I9, (4:4)

where

I9 ¼
ð ð

juj2þ(z�ud )2.ª2 z2
h(e(u,z�ud ))qn�1(�u, ud)du dud :

Let I1, I2 and I3 be the parts of I9 corresponding to the sets

A1 ¼ (u 2 Rd : juj2 þ (z � ud)
2 . ª2z2, juj < �z, jud j < �z),

A2 ¼ (u 2 Rd : juj2 þ (z � ud)
2 . ª2z2, juj < �z, jud j . �z),

A3 ¼ (u 2 Rd : juj2 þ (z � ud)
2 . ª2z2, juj . �z),

respectively, where 0 , � , 1� ª is a fixed small number. Then

I9 ¼ I1 þ I2 þ I3: (4:5)

First, we estimate I1. By (2.2),

h(e(u,z�ud )) < cje(u,z�ud ) � e�j2:

Since (cf. (3.3))

je(u,z�ud ) � e�j2 < 2juj2
juj2 þ (z � ud)2

,

we obtain

I1 < cz�2

ð ð
(u:juj<�z)

juj2qn�1(�u, ud)du dud :

Obviously, for all sufficiently large n,

qn�1(u) <
pn�1(u)

(P(j�j < ªz))n�1
< 2pn�1(u), u 2 Rd :

Then

I1 < cz�2

ð
juj<�z

juj2 pn�1(u)du,

where pn�1(u) is as in Lemma 3.1. By Corollary 3.2,ð
juj<�z

juj2 pn�1(u)du ¼ b
2

n

ð
juj<�zb�1

n

juj2s(u)du(1þ o(1)):
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From Lemma 3.6 it follows that, as t ¼ zb�1
n ! 1,ð

juj<� t

juj2s(u)du ¼ c�2�Æ t2�Æ(1þ o(1)):

Thus, for all sufficiently large n,ð
juj<�z

juj2 pn�1(u)du < c�2�Æz2�Æb
Æ
n

and, therefore,

I1 < c�2�Ænz�Æ: (4:6)

The term I2 is simpler. Here, for all sufficiently large n,

I2 < c

ð
A2

qn�1(�u, ud)dudud < c

ð
jud j.�z

q�n�1(ud)dud ,

where q�n�1 is defined as in Section 3.2. In view of Lemma 3.5, we have

I2 ¼ o(nz�Æ): (4:7)

As to I3, it is evident that, for all sufficiently large n,

I3 < c

ð
juj.�z

qn�1(u)du,

where qn�1 is defined as in Section 3.2. By virtue of Lemma 3.5, we have

I3 ¼ o(nz�Æ): (4:8)

Combining (4.4)–(4.8) yields

I < c�2�Ænz�d�2Æ, (4:9)

provided n is sufficiently large.

We now estimate J in (4.3). First, note that

J ¼
ð
juj.ªz

d(eu)qn�1(ze� � u)du

jujdþ�
(1þ o(1)) ¼ z�d��J 9(1þ o(1)), (4:10)

where

J 9 ¼
ð ð

juj2þ(z�ud )2.ª2 z2

d(e(u,z�ud ))qn�1(�u, ud)du dud

(juj2=z2 þ (1� ud=z)2)(dþ�)=2
:

Denote by J1, J2 and J3 the parts of J 9 corresponding, respectively, to the sets A1, A2 and

A3, that is,

J 9 ¼ J1 þ J2 þ J3: (4:11)

If u 2 A1 then d(e(u,z�ud )) ¼ d(e�)þ cŁ�, and recall that d(e�) . 0. If � . 0 is

sufficiently small then
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A1 ¼ (u 2 Rd : juj < �z, jud j < �z)

and

juj2=z2 þ (1� ud=z)2 ¼ 1þ cŁ�:

Therefore,

J1 ¼ (d(e�)þ cŁ�)

ð
jud j<�z

ð
juj<�z

qn�1(u, ud)du dud

and, by Lemma 3.4,

J1 ¼ d(e�)þ cŁ�, (4:12)

provided n is sufficiently large.

As to J2, again for all sufficiently large n, by virtue of Lemma 3.5 we have

J2 < c

ð
jud j.�z

q�n�1(ud)dud ¼ o(nz�Æ): (4:13)

J3 is estimated in the same way as I3. We thus obtain

J3 ¼ o(nz�Æ): (4:14)

From (4.10)–(4.14) it follows that, for all sufficiently large n, we have

J 9 ¼ d(e�)þ cŁ�

and, therefore,

J ¼ (d(e�)þ cŁ�)z�d��: (4:15)

Since � . 0 can be arbitrarily small, in view of (4.2), (4.3), (4.9) and (4.15) we arrive at the

following statement.

Lemma 4.1. Under the conditions of Theorem 2.1 as n ! 1, zn�1=Æ ! 1,

pn,1(ze�) ¼ d(e�)z�d��(1þ o(1))þ o(nz�d�2Æ):

Turning now to the contribution of the two largest summands, denote

I ¼
ð
juj.ªz

ð
jvj.ªz

p(u) p(v)qn�2(ze� � u � v)du dv,

I1 ¼
ð
juj.ªz

ð
jvj.ªz

	(u)�(v)qn�2(ze� � u � v)du dv,

I2 ¼
ð
juj.ªz

ð
jvj.ªz

juj�d�Æjvj�d��qn�2(ze� � u � v)du dv,

where 	(x) is given by (2.4). Then it is evident that

pn,2(ze�) ¼ I(1þ o(1)), (4:16)
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where

I ¼ I1 þ cŁI2: (4:17)

First, we estimate I1. With the change of variables u ¼ zx, v ¼ z(e� � x � y) we obtain

I1 ¼ z�2Æ

ð
A

	(x)	(e� � x � y)qn�2(zy)dx dy ¼ z�d�2Æ(I11 þ I12),

where

A ¼ (x, y) 2 R2d : jxj . ª, je� � x � yj . ª
� �

:

Here

I1i ¼ zd

ð
Ai

	(x)	(e� � x � y)qn�2(zy)dx dy, i ¼ 1, 2,

where

A1 ¼ (x, y) 2 R2d : jxj . ª, je� � x � yj . ª, jyj < �n

� �
,

A2 ¼ (x, y) 2 R2d : jxj . ª, je� � x � yj . ª, jyj . �n

� �
and �n . 0.

Choose �n ! 0 so that �nzb�1
n ! 1. Since the function h(e) is continuous, in view of

Lemma 3.4 we obtain, as n ! 1,

I11 ¼
ð
(x:jxj.ª,je��xj.ª)

	(x)	(e� � x)dx þ o(1):

The obvious inequality 	(x) < cjxj�d�Æ yields

I12 < c

ð
jxj.ª

jxj�d�Ædx

ð
j yj.z�n

qn�2(y)dy:

By virtue of Lemma 3.4, I12 ¼ o(1) as n ! 1 for any ª 2 (0, 1). Thus,

I1 ¼ z�d�2Æ

ð
(x:jxj.ª,je��xj.ª)

	(x)	(e� � x)dx þ o(z�d�2Æ): (4:18)

As to I2, we have

I2 < cz�d��

ð
juj.ªz

juj�d�Æ du

ð
Rd

qn�2(ze� � u � v)dv < cz�d�Æ��: (4:19)

Recall that � . Æ. In view of (4.16)–(4.19) we arrive at the following statement.

Lemma 4.2. Under the conditions of Theorem 2.1 as n ! 1, zn�1=Æ ! 1,

pn,2(ze�) ¼ z�d�2Æ

ð
(x:jxj.ª,je��xj.ª)

	(x)	(e� � x)dx þ o(z�d�2Æ):

We now consider the contribution of the ‘normal’ summands. Let q(x) ¼ qr(x) be defined
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as in (3.1) with r ¼ ªz. Consider the density q(s)(x), s . 0, associated with q(x) and having

the form

q(s)(x) ¼ ( f (s))�1esxd q(x),

where x ¼ (x1, . . . , xd) and

f (s) ¼
ð
jxj<ªz

esxd q(x)dx:

By Cramér’s transformation we have

pn,0(ze�) ¼ (P(j�j < ªz))n( f (s))ne�szq(s)
n (ze�), (4:20)

where q(s)
n is the nth convolution of q(s), n . 1. Put

s ¼ Æª�1z�1 ln(zn�1=Æ), (4:21)

where 0 , ª , Æ=(d þ 2Æ).

Lemma 4.3. If s is given by (4.21) then, as n ! 1, zn�1=Æ ! 1,

f (s) ¼ 1þ O(n�1):

Proof. Let Æ9 . Æ and

f 1(s) ¼
ð
jxj<Æ9=s

esxd q(x)dx, f 2(s) ¼
ð
Æ9=s,jxj<ªz

esxd q(x)dx:

Then

f (s) ¼ f 1(s)þ f 2(s): (4:22)

If 0 , Æ , 1, then

f 1(s) ¼ 1�
ð
Æ9=s,jxj<ªz

q(x)dx þ
ð
jxj<Æ9=s

(esxd � 1)q(x)dx ¼ 1þ O(sÆ)þ f 11(s):

By Lemma 3.3,

f 11(s) ¼
ð
jxj<Æ9=s

(esxd � 1)q(x)dx ¼ O s

ðÆ9=s

�Æ9=s

jtjq�(t)dt

 !
¼ O(sÆ):

For 1 , Æ , 2, we have

f 1(s) ¼ 1�
ð
Æ9=s,jxj<ªz

q(x)dx þ s

ð
jxj<Æ9=s

xd q(x)dx þ
ð
jxj<Æ9=s

(esxd � 1� sxd)q(x)dx:

Again by virtue of Lemma 3.3,ð
jxj<Æ9=s

(esxd � 1� sxd)q(x)dx ¼ O s2
ðÆ9=s

�Æ9=s

jtj2q�(t)dt

 !
¼ O(sÆ):
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Therefore, thanks to the relations P(j�j < ªz) ¼ 1þ O(z�Æ) andð
jxj<Æ9=s

xd p(x)dx ¼ �
ð
jxj.Æ9=s

xd p(x)dx ¼ O(sÆ�1),

we obtain

f 1(s) ¼ 1þ O(sÆ): (4:23)

Further,

f 2(s) <

ð
Æ9=s,jxj<ªz

esjxjq(x)dx ¼
ð
Æ9=s,jxj<ªz

jxjÆ9 exp(sjxj � Æ9 ln jxj)q(x)dx:

Since the function st � Æ9 ln t increases in (Æ9=s, ªz), in view of (4.21) we obtain

f 2(s) < (ªz)�Æ9eªsz

ð
Æ9=s,jxj<ªz

jxjÆ9q(x)dx ¼ O(z�Æeªsz) ¼ O(n�1): (4:24)

From (4.22)–(4.24) it follows that

f (s) ¼ 1þ O(sÆ)þ O(n�1):

It remains to note that nsÆ ¼ O(t�Æ(ln t)Æ) ¼ o(1). The lemma is proven. h

Lemma 4.4. If s is defined by (4.21) then, as n ! 1, zn�1=Æ ! 1,

sup
x2Rd

q(s)
n (x) ¼ O(n�d=Æ):

Proof. Let łs(y) be the characteristic function corresponding to q(s)(x). Since q(s)(x) is

bounded, we may use the inverse formula and obtain

sup
x2Rd

q(s)
n (x) < (2�)�d(I1 þ I2), (4:25)

where

I1 ¼
ð
j yj<�

jłs(y)jndy, I2 ¼
ð
j yj.�

jłs(y)jn dy

and � . 0 is a fixed small number.

First, we estimate I1. We confine ourselves to the case Æ 2 (1, 2) because the case

Æ 2 (0, 1) is much simpler. From (4.22) and (4.24) it follows that

łs(y) ¼ ( f (s))�1

ð
jxj<ªz

eih y,xiþsxd q(x)dx ¼ łs1(y)þ cŁn�1, (4:26)

where

łs1(y) ¼ ( f1(s))
�1

ð
jxj<Æ9=s

eih y,xiþsxd q(x)dx, Æ9 . Æ:

Denote
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a(s) ¼ (a1(s), . . . , ad(s)) ¼ ( f 1(s))
�1

ð
jxj<Æ9=s

xesxd q(x)dx:

Note that ja(s)j ! 0 as s ! 0. Then

łs1(y)e�iha(s), yi ¼ 1� ( f 1(s))
�1

ð
jxþa(s)j<Æ9=s

(1� coshy, xi)es(xdþad (s))q(x þ a(s))dx

þ i( f 1(s))
�1

ð
jxþa(s)j<Æ9=s

( sinhy, xi � hy, xi)es(xdþad (s))q(x þ a(s))dx ¼ 1� R þ iI :

Recall that Æ . 1. By (2.1),

jI j < c

ð
Rd

j sinhy, xi � hy, xij p(x þ a(s))dx < c

ð
Rd

jx þ a(s)j�d�Æj sinhy, xi � hy, xijdx

< c

ð
Rd

jxj�d�Æj sinhy, xi � hy, xijdx

¼ cjyjÆ
ð
Rd

jxj�d�Æj sinhe y, xi � he y, xijdx ¼ cŁjyjÆ,

while, for a sufficiently large N ,

R > c

ð
N,jxþa(s)j<Æ9=s,exþa(s)2E9

(1� coshy, xi)jx þ a(s)j�d�Æ dx,

where

E9 ¼ (e 2 Sd�1 : h(e) > h9=(2� (Sd�1))), h9 ¼
ð
Sd�1

h(e)� (de):

So,

R > cjyjÆ
ð

N j yj,jxj<Æ9j yj=s,ex2E9

(1� coshe y, xi)jxj�d�Ædx > cmax(jyjÆ, sÆ):

This implies that, for all sufficiently small � . 0 (see (4.26)),

jłs(y)j < (1� cmax(jyjÆ, sÆ))(1þ cŁn�1):

Thus,

I1 < cn�d=Æ þ csd < cn�d=Æ: (4:27)

Now we estimate I2. It is clear that

I2 < sup
j�j>�

jłs(�)j
 !n�2ð

Rd

jłs(y)j2 dy:

For a fixed N . 0, we have
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sup
x2Rd

jq(s)(x)� p(x)j ¼ max sup
jxj<N

j � � � j, sup
N,jxj<(dþÆ)=s

j � � � j, sup
jxj.(dþÆ)=s

j � � � j
 !

¼ max(˜1, ˜2, ˜3),

It is evident that as n ! 1, zn�1=Æ ! 1,

˜1 ¼ sup
jxj<N

j( f (s)P(j�j < ªz))�1esxd p(x)� p(x)j ¼ o(1)

since s ! 0. Further,

˜2 < (2edþÆ þ 1) sup
jxj.N

p(x) ¼ ø(N ):

Finally,

˜3 < c sup
(dþÆ)=s,jxj<ªz

esjxjjxj�d�Æ þ sdþÆ

 !
:

As in the proof of Lemma 4.3, we have

esjxj�(dþÆ)ln jxj < ceªszz�d�Æ ¼ cn�1z�d :

Therefore, ˜3 ¼ o(1).

Thus, as n ! 1, zn�1=Æ ! 1,

sup
x2Rd

jq(s)(x)� p(x)j ¼ o(1),

since N can be arbitrarily large.

Now, taking into account the fact that p(x) is bounded, by Parseval’s equality we obtain

(2�)�d

ð
Rd

jłs(y)j2 dy ¼
ð
Rd

(q(s)(x))2 dx ¼
ð
Rd

( p(x))2 dx þ 2Ł sup
x2Rd

jq(s)(x)� p(x)j < c:

It is evident that, as s ! 0,

sup
y2Rd

jłs(y)� ł(y)j ¼ o(1):

Thus, for all sufficiently large n and sufficiently large zn�1=Æ, we have

sup
j yj.�

jłs(y)j < r , 1

and

I2 < crn�2 ¼ o(n�d=Æ): (4:28)

In view of (4.25), (4.27) and (4.28), the lemma follows. h

Taking into account (4.20), (4.21) and Lemmas 4.3 and 4.4, we arrive at the following

statement.
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Lemma 4.5. Under the conditions of Theorem 2.1 as n ! 1, zn�1=Æ ! 1,

pn,0(ze�) ¼ o(n2z�d�2Æ),

provided 0 , ª , Æ=(d þ 2Æ).

In order to complete the proof of Theorem 2.1, all that remains is to estimate the term

pn,3(te
�) in (4.1). By definition,

pn,3(ze�) < n3

ð
juj.ªz

p(u)du

ð
jvj.ªz

p(v)dv

ð
jwj.ªz

qn�3(ze� � u � v� w) p(w)dw:

For all sufficiently large jwj, we have p(w) < cjwj�d�Æ. Hence,ð
jwj.ªz

qn�3(ze� � u � v� w)p(w)dw ¼ O z�d�Æ
� �

and, therefore,

pn,3(ze�) ¼ O n3z�d�Æ(P(j�j . ªz))2
� �

¼ O n3z�d�3Æ
� �

: (4:29)

Combining (4.29) and Lemmas 4.1, 4.2 and 4.5, we conclude that, for any

0 , ª , Æ=(d þ 2Æ),

pn(ze�) ¼

d(e�)nz�(dþ�)(1þ o(1))þ 1

2
n2z�(dþ2Æ)

ð
(x:jxj.ª,je��xj.ª)

	(x)	(e� � x)dx þ o
�

n2z�(dþ2Æ)
�
:

By Lemma 3.7, ð
(x:jxj.ª,je��xj.ª)

	(x)	(e� � x)dx ¼ 	2(e
�)þ ø(1=ª):

Since ª can be arbitrarily small and ~ppn(te
�) ¼ bd

n pn(ze�), z ¼ bn t, bn ¼ b0n1=Æ, the theorem

follows.

5. Proof of Theorem 2.4

First, let � > 2Æ. Again put z ¼ bn t, where bn ¼ b0n1=Æ, and let t ! 1.

Let An,i, i ¼ 0, 1, 2, 3, be as in the proof of Theorem 2.1. Then, for any event A9,

lim
j˜j!0

P(ze� � �(n) d ze� þ ˜, An, j, A9)

P(ze� � �(n) d ze� þ ˜)
<

pn, j(ze�)
pn(ze�) , j ¼ 0, 1, 3:

Put

AR ¼ A \ Bd(0, R), BR ¼ B \ Bd(0, R), CR ¼ C \ Bd(0, R),

where R . 0 is a fixed large number. For the sake of brevity, denote
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Pn, t ¼ P b�1
n �9 2 tAR, b�1

n � 0 2 tBR, b�1
n (�(n) � �9� � 0) 2 CRj�(n) ¼ bn te�

� �
:

Taking into account Lemmas 4.1, 4.2 and 4.5 as well as (4.29), we obtain

Pn, t ¼ P9n, t þ o(1),

where

P9n, t ¼
n

2

� �
P �9 2 zAR, � 0 2 zBR, �

(n) � �9� � 0 2 bnCR, An,2j�(n) ¼ ze�
� �

:

As in the proof of Theorem 2.1, where we considered the contribution of the two largest

summands, we obtain

P9n, t ¼ zd(	2(e
�))�1

ð
A�
	(x)	(e� � x � y)qn�2(zy)dx dy þ o(1),

where

A� ¼ (x, y) 2 R2d : x 2 ARnBd(0, ª), e� � x � y 2 BRnBd(0, ª), y 2 z�1bnCR

� �
:

It is clear that the set A� is covered by A1 defined in that proof. Further,

P9n, t ¼ (	2(e
�))�1

ð
A�1
	(x)	(e� � x)dx

ð
bn C R

qn�2(y)dy þ o(1),

where

A�1 ¼ x 2 Rd : x 2 ARnBd(0, ª), e� � x 2 BRnBd(0, ª)
� �

:

By Lemma 3.4, as n ! 1, ð
bn C R

qn�2(y)dy ¼ S(CR)þ o(1):

Since ª can be arbitrarily small and R can be arbitrarily large, (2.5) follows.

The case � , 2Æ, rn < t < nk=rn is dealt with similarly.

Now let � , 2Æ, t > rn nk. For the sake of brevity, denote

Qn, t ¼ P b�1
n (�(n) � �9) 2 ARj�(n) ¼ bn te�

� �
:

Taking into account Lemmas 4.1, 4.2 and 4.5 as well as (4.29), we obtain

Qn, t ¼ Q9n, t þ o(1),

where

Q9n, t ¼ nP �(n) � �9 2 bn AR, An,1j�(n) ¼ ze�
� �

:

By Lemma 4.1,
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Q9n, t ¼
zdþ�

d(e�)

ð
ze��u2bn A R

p(u)qn�1(ze� � u)du ¼ zdþ�

d(e�)

ð
ze��u2b n A R

h(eu)

jujdþÆ
qn�1(ze� � u)du

�

þ
ð

ze��u2b n AR

d(eu)þ Łø(juj)
jujdþ�

qn�1(ze� � u)du

�
¼ zdþ�

d(e�) (I þ J ):

For all sufficiently large n, the set fu 2 Rd : ze� � u 2 bn ARg is covered by fu 2
Rd : juj . ªzg. Therefore, I can be estimated as in Theorem 2.1, where we considered the

contribution of the largest summand (see (4.3)–(4.9)). As to J , we have (cf. (4.10))

J ¼
ð

ze��u2b n AR

d(eu)

jujdþ�
qn�1(ze� � u)du(1þ o(1))

¼ z�d��

ð
(u,ud )2bn A R

d(e(�u,z�ud ))qn�1(u, ud)du dud

(juj2=z2 þ (1� ud=z)2)(dþ�)=2
(1þ o(1)):

For all sufficiently large n, the set bn AR is covered by A1 defined in the proof of Theorem

2.1, where we considered the contribution of the largest summand (see (4.5) and (4.11)).

Thus,

J ¼ z�(dþ�) d(e�)
ð

bn A R

qn�1(u)du þ o(1)

� �
:

By Lemma 3.4, as n ! 1, ð
b n AR

qn�1(u)du ¼ S(AR)þ o(1):

Since R can be arbitrarily large, (2.6) follows. The theorem is proven.
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