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In this paper we present a unified approach to obtaining rates of convergence for the maximum

likelihood estimator (MLE) in Brownian semimartingale models of the form

dX t ¼ �n,Ł
t dt þ � n

t dWt, t < Tn:

We show that the rate of the MLE is determined by (an appropriate version of) the entropy of the

parameter space with respect to the random metric hn, defined by

h2n(Ł, ł) ¼
ðTn

0

�n,Ł
s � �n,ł

s

� n
s

� �2

ds:

Several known results for the rates in certain popular sub-models of the Brownian semimartingale

model are shown to be special cases in our general framework.
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1. Introduction

In the last few decades, the development of empirical process methods has significantly

improved our understanding of the asymptotic behaviour of statistical procedures. An

important example is the mathematical description of the intuitive fact that the degree of

difficulty of an estimation problem depends on the size, or rather the complexity, of the

model. Using the notion of entropy and tools such as uniform exponential inequalities,

loose statements of this type can now be made very precise.

For maximum likelihood estimation, there are results for various models which state that

the rate of convergence of the maximum likelihood estimator (MLE) is determined by the

entropy of the (possibly infinite-dimensional) parameter space relative to the Hellinger

metric. Wong and Shen (1995) and van de Geer (1995a) consider independent and

identically distributed (i.i.d.) observations from a density p0 belonging to a set P of

densities with respect to a dominating measure �. The Hellinger metric on P is defined by
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h2(p, q) ¼
ð
(
ffiffiffiffi
p

p � ffiffiffi
q

p
)2 d�:

Denoting the MLE based on the first n observations by p̂pn, it turns out that the rate at which

h( p̂pn, p0) vanishes is determined by the bracketing entropy of the parameter space P with

respect to the Hellinger distance (see, for example, Corollary 3.5 of van de Geer 1995a). A

similar result is true if we observe a counting process on some time interval [0, T ], with a

continuous compensator of the form

At ¼
ð t
0

as �(ds),

for a (possibly random) intensity a belonging to a set A of intensity processes with respect to

a given (possibly random) dominating measure �. For this model the rate of the MLE is

determined by the entropy with bracketing of A relative to the Hellinger metric, which is

defined by

h2(a, b) ¼
ðT
0

(
ffiffiffi
a

p
�

ffiffiffi
b

p
)2 d�

(see van de Geer 1995b, Theorem 4.3). The metric is random in this case, which requires a

more careful definition of the appropriate version of entropy than in the i.i.d. situation.

The aim of the present paper is to address, at the same level of abstraction, the problem

of finding the rate of the MLE in model

dX t ¼ �n,Ł
t dt þ � n

t dWt, t < Tn: (1:1)

Here Ł is a parameter which belongs to some abstract parameter space ¨, W is a Brownian

motion, �n,Ł and � n are arbitrary adapted processes such that the stochastic differential

equation (1.1) makes sense, and Tn is a non-random number. More precisely, we wish to

show that there exists a (random) metric hn on the parameter space ¨ such that an

appropriate version of the entropy of ¨ with respect to hn determines the rate. Up till now,

results of this type have only been available for certain special cases of (1.1). We mention

Nishiyama (1999) who treats the classical signal in Gaussian white noise model, the results

of Nishiyama (2000) for the perturbed dynamical system, and van Zanten (2003a) who deals

with the ergodic diffusion model. Our main goal is to unify all these results. We define a

version of entropy (without bracketing) relative to a random metric and we show that it is the

random distance hn defined by

h2n(Ł, ł) ¼
ðTn

0

�n,Ł
s � �n,ł

s

� n
s

� �2

ds (1:2)

which determines the rate of the MLE in the general model (1.1). This complements the cited

results of van de Geer (1995a; 1995b) and Wong and Shen (1995) for i.i.d. data and point

processes.

Next, we explain how results for special cases of (1.1) follow from the general theory.

Roughly speaking, we show that we can obtain rates for a concrete model if, with large

probability, we have a control over the random metric (1.2) of the form
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d (
hn

cn
( d, 1 (1:3)

where the numbers cn and the metrics d and d are deterministic. In this case it is the

ordinary metric entropy with respect to d of a d-ball around the true parameter which yields

the rate of the MLE. Arguing like this, the results of Nishiyama (1999; 2000) and van Zanten

(2003a) cited above are easily seen to be special cases in our general framework. For certain

null recurrent or transient diffusion models we also have a control of the form (1.3), and

hence such models can also be handled by our methods. We illustrate this by considering a

transient diffusion model studied, for instance, in Section 3.5 of Kutoyants (2004).

Although our results are all stated for a one-dimensional model (1.1), this restriction is

certainly not essential. Generalizations to higher dimensions are straightforward, but omitted

for the sake of readability. A non-trivial restriction of the presented results should also be

noted. There exist examples of models of the form (1.1) for which we do not have a

deterministic control such as (1.3) over the random metric hn. In such cases it is sometimes

possible to obtain random rates of convergence for the MLE. We refer to Loukianova and

Loukianov (2003a) for this approach.

The remainder of the paper is organized as follows. In the next section we first provide a

general result on rates of convergence of M-estimators, tailored to our purposes. Then in

Section 3 we derive a new uniform exponential inequality for families of continuous local

martingales, which is an essential ingredient for our main results. Its proof relies on a

chaining argument for random metrics, which is given in the Appendix. Section 4 contains

the main results of the paper. We first prove that it is the entropy relative to the random

metric (1.2) which determines the rate of convergence of the MLE in the model (1.1). We

then show that if we have deterministic control like (1.3) over the random metric, then the

entropy with respect to the random metric can be replaced by ordinary entropy relative to a

deterministic metric. In Section 5 we recover several known results for special cases of the

model (1.1) from our general theory.

2. Rates of convergence of M-estimators

In this section we state a result on general M-estimation, which is a straightforward

adaptation of well-known results in this area (see, for example, van der Vaart and Wellner

1996; van de Geer 2000). The main reason for the adaptation is that we wish to work with

a random metric on the parameter space. Moreover, in the applications we will encounter

we can typically only control the metric and the associated entropy on some event which

has large probability. Results available in the literature, such as Theorem 3.4.1 of van der

Vaart and Wellner (1996), are not directly suited to this situation. The following theorem

provides us with sufficient flexibility for our purposes.

1We write a ( b if a < Cb for some positive constant C which is universal, or at least constant throughout the
paper.
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Theorem 2.1. Let Z and Z be random maps on a set ¨, and let Ł0 be a (possibly random)

element of ¨. Let Ł 7! r(Ł, Ł0) be a random map from ¨ to [0, 1) and let 0 < � < 1 and

s . 0 be arbitrary. Suppose that for an event A and for all � 2 [0, �) and x > 0,

sup
r(Ł,Ł0)<�

Z(Ł)� Z(Ł0) ( �rs(Ł, Ł0) (2:1)

and

P sup
r(Ł,Ł0)<�

(Z� Z)(Ł)� (Z� Z)(Ł0)ð Þ > x, A

 !
( e�x2=j2(�), (2:2)

where � 7! j(�)=� p is decreasing on [0, �) for some p , s. Assume that the numbers

a, r . 0 satisfy the relation

rsj
a

r

� �
( aq

for some q , s. Then if Ł̂Ł is a random element of ¨ such that Z(Ł̂Ł) > Z(Ł0), we have that

P(rr(Ł̂Ł, Ł0) . a, A) ( C(a, p, q, s)e�a2(s�q) þ P(r(Ł̂Ł, Ł0) . �, A),

where C(a, p, q, s) , 1 is a constant with the property that C(a, p, q) # 0 as a ! 1.

Proof. To simplify the notation, set G(Ł) ¼ (Z� Z)(Ł)� (Z� Z)(Ł0). For j ¼ 1, 2, . . . ,
define the random sets S j ¼ fŁ 2 ¨ : a2 j�1 , rr(Ł, Ł0) < a2 jg. Then we have

P(rr(Ł̂Ł, Ł0) . a, A) <
X

j:a2 j<r�

P(Ł̂Ł 2 S j, A)þ P(r(Ł̂Ł, Ł0) . �, A):

If Ł̂Ł 2 S j, the supremum of the map Z� Z(Ł0) over S j is non-negative, so

P(Ł̂Ł 2 S j, A) < P sup
Ł2S j

Z(Ł)� Z(Ł0) > 0, A

 !
:

For Ł 2 S j and a2 j < r� we have r(Ł, Ł0) < �. So by assumption (2.1) we have for every j

appearing in the sum, for some constant c . 0,

P(Ł̂Ł 2 S j, A) < P sup
Ł2S j

G(Ł0) > crs(Ł, Ł0), A

 !

< P sup
rr(Ł,Ł0)<a2 j

G(Ł0) > c
a2 j�1

r

� �s

, A

 !
:

By assumption (2.2), it follows that the last probability is bounded, up to a constant, by

exp � c2a2s2s(2 j�2)

r2sj2(a2 j=r)

� �
:

Since � 7! j(�)=� p is decreasing on [0, �), we have j(a2 j=r) < 2 pjj(a=r) for every j
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appearing in the sum. Using also the assumption on r we obtain, for every j appearing in the

sum,

P(Ł̂Ł 2 S j, A) ( e�Da2(s�q)22 j(s� p)

,

for a constant D . 0 depending only on s. This implies that the assertion of the theorem

holds true with the constant

C(a, p, q, s) ¼
X
j>1

e�a2(s�q)(D4(s� p) j�1),

which clearly has the desired properties. h

In the next section we will apply Theorem 2.1 to random maps Z and Z which have the

property that Z(Ł)� Z(Ł) is the terminal point of a continuous local martingale which

depends on Ł. The choice of random distance r will be such that (2.1) is satisfied

automatically (with s ¼ 2). To verify (2.2) we need an appropriate uniform maximal

inequality for continuous martingales. This is the subject of the next section.

3. A uniform exponential inequality for continuous martingales

The uniform exponential inequality we derive in this section can be viewed as a

generalization of the maximal inequality for continuous local martingales of Nishiyama

(1999). Nishiyama’s result deals with a collection M of continuous martingales, metricized

by a given non-random metric d. It gives an entropy bound for expectations of quantities of

the form

sup
M ,N2M
d(M ,N )<�

jMt � Ntj:

Our new result essentially gives entropy bounds for expectations of quantities such as

sup
M ,N2M

hM�Ni t<�

jMt � Ntj,

where hMi is the quadratic variation process, or bracket, of the continuous martingale M . So

instead of considering a given deterministic metric on M, we endow the class of martingales

with the natural random metric induced by the brackets. We use the same version of ‘entropy

relative to a random distance’ as, for instance, van de Geer (2002).

The classical Bernstein inequality for continuous local martingales says that if M is a

continuous local martingale vanishing at 0, with quadratic variation process hMi, then for

all x, L . 0,

P sup
t>0

jMtj > x, hMi1 < L

� �
< e�x2=2L (3:1)

(see for instance Revuz and Yor 1999, pp. 153–154). Now suppose we have a collection M
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of continuous local martingales, defined on a single filtered probability space. We endow M
with the random semimetric rM, defined by r2M(M , M9) ¼ hM � M9i1. Using this notation,

(3.1) states that for M , M9 2 M,

P kM � M9k1 > x, r2M(M , M9) < L
� �

< e�x2=2L (3:2)

for all x, L . 0.

It is convenient to express this inequality in terms of Orlicz norms. Recall that for a

Young function ł (an increasing, convex function on Rþ with ł(0) ¼ 0), the ł-norm of a

random variable X is defined as

kXkł ¼ inf C . 0 : Eł
jX j
C

� �
< 1

� 	
:

A sub-Gaussian inequality like (3.2) can be formulated in terms of the ł2-norm, where

ł2(x) ¼ exp(x2)� 1. If a random variable X has a distribution with tails satisfying

P(jX j . x) < K exp(�Cx2), then kXk2ł2
< (1þ K)=C (van der Vaart and Wellner 1996,

Lemma 2.2.1). Hence, (3.2) translates into

kkM � M9k11frMM ,M9)<Lgkł2
< 2L (3:3)

for M , M9 2 M and L . 0. Conversely, it is also true that a bound on the ł2-norm as in

(3.3) leads to a sub-Gaussian tail bound like (3.2). Hence, the two formulations are

equivalent. We use the Orlicz norms because they are more convenient from a technical point

of view.

Below we present a uniform extension of inequality (3.3). We will keep M9 fixed, and let

M range over the entire class M. An upper bound will be given in terms of the ‘size’ of

M with respect to the random distance rM. To measure this size we use the notion of

‘entropy with respect to a random distance’ or ‘partioning entropy’ (without bracketing) as

in van de Geer (2002); see also van de Geer (1995b) for a version with bracketing.

For the general definition, consider a collection X of random elements of an arbitrary set

(usually a vector space), defined on a common probability space (�, F , P). Suppose that

for every pair X , Y 2 X we have a non-negative random variable r(X , Y ), and that these

have the property that, almost surely, r(X , Y ) < r(X , Z)þ r(Z, Y ) for all X , Y , Z 2 X .

Definition 3.1. For every event A 2 F and 0 , � < � < 1 we define the covering number

N (�, X , Y , �, r, A) as the smallest number n for which there exist X1, . . . , X n 2 X such

that, for every X 2 X, there exists an index i 2 f1, . . . , ng such that r(X , X i) < � on the

event A \ fr(X , Y ) < �g. For � ¼ 1 we write N (�, X , Y , 1, r, A) ¼ N (�, X , r, A) and

N (�, X , r, �) is abbreviated to N (�, X , r).

Let us emphasize that in this definition it is essential that the map X ! fX1, . . . , X ng
which assigns to X 2 X an X i such that r(X , X i) < � on the event A \ fr(X , Y ) < �g, is
deterministic. It may depend on anything else however; in particular, it will typically

depend on the event A. The number N (�, X , Y , �, r, A) should be thought of as the �-
covering number of the ball around Y of r-radius �.
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In concrete cases the event A may be used to control the random distance r by a

deterministic metric, in order to obtain bounds in terms of the covering numbers for a

suitable deterministic distance, for which many useful results exist in the literature. The

following simple lemma is useful in this regard.

Lemma 3.1. For Y 2 X, suppose there exist constants c, C . 0 and deterministic pseudo-

metrics d and d on X , such that, on the event A, cd(X , Y ) < r(X , Y ) for all X 2 X and

r(X , X 9) < Cd(X , X 9) for all X , X 9 2 X . Then N (�, X , Y , �, r, A) < N (�=C, X�=c, d),

where X� ¼ fX 2 X : d(X , Y ) < �g.

Proof. Suppose that d(X , Y ) . �=c. Then on A we have r(X , Y ) . �, so that A\
fr(X , Y ) < �g ¼ ˘. It follows that we only have to consider X 2 X�=c. For N ¼
N (�=C, X�=c, d), let fX 1, . . . , X Ng be an �=C-net of X�=c for the metric d. Then for

X 2 X�=c there exists an X i such that on A \ fr(X , Y ) < �g we have r(X , X i)

< Cd(X , X i) < �. h

The covering numbers of Definition 3.1 have precisely the properties needed to make

inequality (3.3) uniform in M , using a straightforward chaining method. It is shown in the

Appendix that this works in great generality. Consider a class X of random elements of a

vector space V, a random semimetric r on X and a Young function ł such that

lim sup
x, y!1

ł(x)ł(y)=ł(cxy) , 1

for some constant c . 0. Then if, for the event A,

k kX � YkV1A\fr(X ,Y )<�gkł ( �

for X , Y 2 X and � . 0, we have the uniform inequality




 supX2X
kX � YkV1A\fr(X ,Y )<�g







ł

< C

ð�
0

ł�1(N (�, X , Y , �, r, A)) d�, 2

where C is positive constant that only depends on ł, and ł�1 is the inverse of ł (see

Theorem A.1).

We now apply this general result to the class of continuous local martingales M,

endowed with the random distance rM. Note that for the Young function ł2(x) ¼
exp(x2)� 1 we have ł�1

2 (x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(1þ x)

p
. For x > 2 it holds that log(1þ x) < log(2x) ¼

log 2þ log x < 2 log x, so ł�1(x) (
ffiffiffiffiffiffiffiffiffiffi
log x

p
. Hence, in view of (3.3), we arrive at the

following result.

Theorem 3.2. Let M be a collection of continuous local martingales, and for M , M9 2 M
define r2M(M , M9) ¼ hM � M9i1. Then for every M9 2 M,

2Expectations of possibly non-measurable suprema should be interpreted as outer expectations.
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 sup
M2M

sup
t>0

jMt � M9tj1A\fhM�M9i1<�2g







ł2

(

ð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, M, M9, �, rM, A)

p
d�,

for every event A and all � . 0.

By stopping the martingales it is easily seen that the result of the theorem is also true

with 1 replaced by any stopping time �. Indeed, we simply apply the preceding theorem to

the class M9 ¼ fM � : M 2 Mg of stopped martingales. (We use the standard notation

M �
t ¼ M�^ t.) We have that hM � � M9�i1 ¼ hM � M9i�, leading to the following equivalent

result.

Theorem 3.3. Let M be a collection of continuous local martingales and � a stopping time.

For M , M9 2 M define r2M(M , M9) ¼ hM � M9i�. Then for every M9 2 M,




 sup
M2M

sup
t<�

jMt � M9tj1A\fhM�M9i�<�2g







ł2

(

ð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, M, M9, �, rM, A)

p
d�,

for every event A and all � . 0.

A bound on the ł2-norm implies a sub-Gaussian bound on tail probabilities. Indeed, by

definition of the Orlicz norm and Markov’s inequality,

P(jX j > x) < 1 ^ 1

ł2(x=kXkł2
)
< 2e�x2=kXk2ł2

for all x . 0. So in terms of tail probabilities, Theorem 3.3 reads as follows.

Theorem 3.4. Let M be a collection of continuous local martingales and � a stopping time.

For M , M9 2 M define r2M(M , M9) ¼ hM � M9i�. Then for every M9 2 M, any event A

and all x, � . 0,

P sup
M2M

sup
t<�

jMt � M9tj1A\fhM�M9i�<�2g > x

� �
< 2e�x2=Cj2(�),

where

j(�) ¼
ð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, M, M9, �, rM, A)

p
d�

and C . 0 is a universal constant.

We remark that Theorem 3.3 extends the maximal inequality presented by Nishiyama

(1999). Nishiyama considered a class M of continuous local martingales endowed with a

non-random metric d. He introduced the so-called ‘quadratic modulus’, which is defined as

kMkd,� ¼ sup
d(M ,N ).0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hM � Ni�

p
d(M , N )

:
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If we use this quantity to control the random metric rM, it is not very hard to obtain

Theorem 2.3 of Nishiyama (1999) as a corollary of our Theorem 3.3. So Theorem 3.3 can be

viewed as an extension of Nishiyama’s maximal inequality, giving a uniform exponential

inequality for continuous martingales without referring to some auxiliary deterministic

metric. Instead, the size of the class M is measured by the natural distance induced by the

brackets of the martingales.

4. The rate of the MLE in the Brownian semimartingale model

For every n 2 N, let (�n, F n, (F n
t ), P

n) be a filtered probability space. On this stochastic

basis, suppose that we have a standard Brownian motion W n and adapted processes X n,

�n,Ł0 and � n satisfying

X n
t ¼ X n

0 þ
ð t
0

�n,Ł0
s dsþ

ð t
0

� n
s dW

n
s , t < Tn, (4:1)

where Tn is a positive (non-random) number. It is implicitly understood that the processes

�n,Ł0 and � n are such that the Lebesgue and Itô integrals are well defined.

We suppose that Ł0 is an unknown element of the abstract parameter space ¨. To

estimate it we use the MLE defined by

Ł̂Łn ¼ argmax
Ł2¨

ðTn

0

�n,Ł
s

(� n
s )

2
dX n

s �
1

2

ðTn

0

�n,Ł
s

� n
s

� �2

ds: (4:2)

The MLE is assumed to exist with probability one.

Under certain regularity conditions the expression on the right-hand side of (4.2) is

precisely the log-likelihood log dPn
Ł=dP

n
0, where Pn

Ł is the law of the process X n with Ł
instead of Ł0 in (4.1) (observed up to time Tn) and Pn

0 is the law of the process X n which

satisfies (4.1) with � � 0; (see, for example, Liptser and Shiryayev (1977) or Jacod and

Shiryaev (1987). However, we will not need to impose precise conditions implying absolute

continuity. For our purposes it suffices to assume the minimal requirement that for every

Ł 2 ¨, ðTn

0

�n,Ł
s

� n
s

� �2

ds , 1 (4:3)

Pn-almost surely, which is needed to ensure that the integrals in (4.2) are well defined.

It is easily seen that this set-up fits into the setting of Theorem 2.1. Indeed, define the

random maps Zn and Zn on ¨ by

Zn(Ł) ¼
ðTn

0

�n,Ł
s

(� n
s )

2
dX n

s �
1

2

ðTn

0

�n,Ł
s

� n
s

� �2

ds

and
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Zn(Ł) ¼
ðTn

0

�n,Ł
s �n,Ł0

s

(� n
s )

2
ds� 1

2

ðTn

0

�n,Ł
s

� n
s

� �2

ds:

Then

Zn(Ł)� Zn(Ł0) ¼ � 1

2
h2n(Ł, Ł0),

where hn is the random semimetric on ¨ defined by

h2n(Ł, ł) ¼
ðTn

0

�n,Ł
s � �n,ł

s

� n
s

� �2

ds: (4:4)

If we let hn play the role of r in Theorem 2.1, condition (2.1) is automatically fulfilled (for

s ¼ 2 and � ¼ 1). As for condition (2.2), observe that

(Zn � Zn)(Ł)� (Zn � Zn)(Ł0) ¼
ðTn

0

�n,Ł
s � �n,Ł0

s

� n
s

dW n
s :

Hence, the required uniform exponential inequality is provided by Theorem 3.4.

A straightforward application of Theorems 2.1 and 3.4 now yields the following result,

which states that it is the entropy with respect to the metric (4.4) which determines the rate

of the MLE. This complements the analogous results of van de Geer (1995a) and Wong and

Shen (1995) for i.i.d. observations, and van de Geer (1995b) for counting processes.

Theorem 4.1. Let n 2 N be fixed and let A be an arbitrary event. Suppose thatð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, ¨, Ł0, �, hn, A)

p
d� ( j(�),

for all � 2 [0, �), where � < 1 and j is a function such that � 7! j(�)=� p is decreasing on

the interval [0, �) for some p , 2. Moreover, assume that the numbers a, r . 0 satisfy the

relation

r2j
a

r

� �
( aq

for some q , 2. Then

Pn(rhn(Ł̂Ł, Ł0) . a, A) ( C(a, p, q)e�a4�2q þ Pn(hn(Ł̂Ł, Ł0) . �, A),

where C(a, p, q) , 1 is a constant with the property that C(a, p, q)#0 as a ! 1.

In specific Brownian semimartingale models the random metric (4.4) typically converges,

after a suitable normalization, to a deterministic metric on the parameter space. The latter

can be viewed as the ‘natural’ distance for that specific model. In particular, the normalized

random metric will usually be equivalent to some non-random metric, with large

probability. If we have such deterministic control over the metric (4.4), the rate of

convergence of the MLE is determined by the entropy of the parameter space relative to

this natural non-random metric.
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Theorem 4.2. Suppose we have semimetrics d and d on ¨ such thatð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, ¨�, d)

q
d� ( j(�)

for all � 2 [0, �), where � < 1 and j is a function such that � 7! j(�)=� p is decreasing on

the interval [0, �) for some p , 2, with ¨� ¼ fŁ 2 ¨ : d(Ł, Ł0) < �g. Moreover, let rn and

cn be sequences converging to infinity, satisfying

r2nj
1

rn

� �
( cn:

Finally, suppose that for every ª . 0 there exists an event A with probability at least 1� ª
and constants c, C . 0 such that:

(i) there exists an a0 . 0 such that on the event A,

cd(Ł, Ł0) <
1

cn
hn(Ł, Ł0)

for all n 2 N and Ł 2 ¨ with a0=rn , d(Ł, Ł0) , �;
(ii) on the event A,

1

cn
hn(Ł, ł) < Cd(Ł, ł)

for all n 2 N and Ł, ł 2 ¨.

Then if d(Ł̂Łn, Ł0) converges to 0 in probability, d(Ł̂Łn, Ł0) ¼ OP(r
�1
n ). If the conditions

involving � are satisfied for � ¼ 1, the assumption of consistency can be dropped.

Proof. Let ª . 0 be given and consider the event A and the numbers a0, c, C . 0 given in

assumptions (i) and (ii). We fix n for a moment and introduce the new parameter spaceë̈ ¼ fŁ 2 ¨ : � . d(Ł, Ł0) . a0=rng [ fŁ0g. By (i) and (ii) and Lemma 3.1 we have

N (�, ë̈ , Ł0, �, hn, A) < N
�

cnC
, ë̈ �=c, d

� �
¼ N

c�

cnC
, ë̈ �, d

� �
,

where ë̈ � ¼ fŁ 2 ë̈ : d(Ł, Ł0) < �g. It follows that for � , cnC�=c,ð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, ë̈ , Ł0, �, hn, A)

q
d� <

cnC

c

ðc�=cnC
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, ¨�, d)

q
d�

¼ cnC

c
j

c�

cnC

� �
¼: jn(�):

On the event f� . d(Ł̂Łn, Ł0) . a=rng for a . a0, the MLE does not change if we replace the

parameter space ¨ by the smaller space ë̈ . By assumption (i) we have for a > a0 and n

large enough,
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Pn(� . d(Ł̂Łn, Ł0) . a=rn, A) < Pn rnhn(Ł̂Łn, Ł0) . acnc, A
� �

:

Note that the assumption on j implies that for a > 1 and n large enough,

j
a

rn

� �
< j

1

rn

� �
a p:

Hence, the numbers r9n ¼ rn=cnc and the function jn satisfy

(r9n)
2jn

a

r9n

� �
( a p

By Theorem 4.1 (applied with ë̈ instead of ¨, jn instead j, �n ¼ �cnC=c instead of � and

r9n instead of rn) and assumption (ii), it follows that

Pn(rnd(Ł̂Łn, Ł0) . a, A) < C(a, p, p)e�a4�2 p þ Pn(cd(Ł̂Łn, Ł0) . �, A)þ Pn(d(Ł̂Łn, Ł0) > �):

By assumption the second and third terms on the right-hand side vanish as n ! 1 (or vanish

identically if � ¼ 1). Since A has probability at least 1� ª, it follows that for a large

enough,

lim sup
n!1

Pn(rnd(Ł̂Łn, Ł0) . a) < 2ª:

This completes the proof. h

Applications of the theorem to some specific models are considered in the next section.

Let us remark here that condition (i) of the theorem can sometimes be verified by showing

that

sup
d(Ł,Ł0),�

���� 1cn hn(Ł, Ł0)� d(Ł, Ł0)

���� ¼ OP

1

rn

� �
: (4:5)

Indeed, if this holds there exists a constant L . 0 such that with probability at least 1� ª,

rn

���� 1cn hn(Ł, Ł0)� d(Ł, Ł0)

���� < L

for all n 2 N and Ł 2 ¨ such that d(Ł, Ł0) , �. It follows that if we choose a0 so large that

L=a0 < 1=2, then on this event we have

1

cn
hn(Ł, Ł0) >

1

2
d(Ł, Ł0)

for all n 2 N and Ł such that a0=rn , d(Ł, Ł0) , �. This is precisely the requirement of

condition (i) of the theorem.

The restriction on the rates rn implied by (4.5) is in fact quite natural. We should view

the rate at which hn=cn ! d as the ‘parametric’ rate for that specific model. The restriction

is then simply that the rate rn of the MLE over an arbitrary, possibly infinite-dimensional

parameter space should not be faster than the parametric rate.
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The pseudo-metric d can in many examples be taken equal to the natural metric d. In

order to verify condition (ii) it may be convenient to take a larger distance in certain cases.

However, it should be noted that this could lead to a less tight upper bound for the rate of

the MLE.

5. Examples

The aim of this last section is to show that our results for the general model (4.1) allow us

to recover some well-known results for special cases. For a specific model one has to

consider the random metric (4.4) and find the deterministic metric with which, after a

suitable normalization, it is equivalent with large probability. Candidates for this

normalization and natural non-random metric are usually easily found in concrete cases.

The asymptotic properties of the particular model can then be used to verify conditions (i)

and (ii) of Theorem 4.2. This yields an upper bound for the rate of convergence of the

MLE relative to the natural metric for the model under consideration.

Since our interest in this paper is in rates of convergence, we will assume existence and

consistency of the MLE. For results on these matters, see for instance Kutoyants (2004),

Loukianova and Loukianov (2003b), van Zanten (2001) and the references therein.

5.1. Signal in white noise

The first example is the ‘signal in white noise model’, given by the stochastic differential

equation

dX n
t ¼ Ł0(t) dt þ � n dWt, t < T :

Here the time horizon T is fixed, Ł0 is an unknown function in ¨ � L2[0, T ], called the

signal, and the number � n . 0 is the noise level. It is assumed that � n ! 0 as n ! 1. This

model has been studied in detail with the help of entropy methods by Nishiyama (1999). In

this subsection we briefly show that it fits into our general framework.

In this case the metric (4.4) is in fact deterministic itself, and is given by

hn(Ł, ł) ¼
1

� n

kŁ� łkL2[0,T ]:

Hence, in Theorem 4.2 we take cn ¼ 1=� n and for d and d we take the L2[0, T ] distance.

The theorem then yields the following result for this model, first obtained by Nishiyama

(1999).

Proposition 5.1. Suppose thatð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, ¨�, k � kL2[0,T ])

q
d� ( j(�)

for all � 2 [0, �), where � < 1 and j is a function such that � 7! j(�)=� p is decreasing on

Rate of convergence of the MLE in Brownian semimartingale models 655



the interval [0, �) for some p , 2, and ¨� ¼ fŁ 2 ¨ : kŁ� Ł0kL2[0,T] < �g. Let rn be

sequence converging to infinity such that

r2nj
1

rn

� �
(

1

� n

:

Then if the MLE Ł̂Łn exists and is consistent,

kŁ̂Łn � Ł0kL2[0,T] ¼ OP

1

rn

� �
as n ! 1. If the conditions are satisfied for � ¼ 1, the assumption of consistency is not

necessary.

For applications of Proposition 5.1 to various concrete examples of ¨, such as smooth

parametric classes or classes of monotone functions, see Nishiyama (1999; 2000).

5.2. Perturbed dynamical system

Next we consider the model

dX n
t ¼ Ł0(X

n
t ) dt þ � n dWt, t < T , X n

0 ¼ x0,

where the true parameter Ł0 belongs to some class of functions ¨, and the noise level � n is a

positive number that vanishes as n ! 1. The random semimetric hn is now given by

hn(Ł, ł) ¼
1

� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
0

(Ł(X n
t )� ł(X n

t ))
2 dt

s
:

To obtain the candidate for the ‘natural’ metric d, observe that it is plausible that as n ! 1,

the process X n will tend to the solution t 7! xt of the unperturbed ordinary differential

equation dxt ¼ Ł0(xt) dt. In particular, we can expect that

� 2
nh

2
n(Ł, Ł0) !

ðT
0

(Ł(xt)� Ł0(xt))
2 dt ¼: d2(Ł, Ł0):

If we consider, for instance, a parameter space ¨ such that the functions in the space are

uniformly Lipschitz continuous in the sense that

sup
Ł2¨

sup
x 6¼ y

jŁ(x)� Ł(y)j
jx� yj , 1, (5:1)

the argument above can be made precise and we can apply Theorem 4.2. The proof of the

following proposition uses some ideas from Section 6.4 of Nishiyama (2000).

Proposition 5.2. Suppose that (5.1) holds for the parameter space ¨ and supŁ2¨kŁk1 , 1.

Moreover, suppose that
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ð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N (�, ¨�, k � k1)

p
d� ( j(�)

for all � 2 [0, �), where � < 1 and j is a function such that � 7! j(�)=� p is decreasing on

the interval [0, �) for some p , 2, and ¨� ¼ fŁ 2 ¨ : d(Ł, Ł0) < �g. Let rn be a sequence

converging to infinity such that � n rn remains bounded and

r2nj
1

rn

� �
(

1

� n

:

Then if the MLE Ł̂Łn exists and kŁ̂Łn � Ł0k1 ! 0 in (outer) probability,

d(Ł̂Łn � Ł0) ¼ OP

1

rn

� �
as n ! 1. If the conditions are satisfied for � ¼ 1, the assumption of consistency is not

necessary.

Proof. Observe that if Ł0 is Lipschitz, the Gronwall inequality (Karatzas and Shreve 1991,

pp. 287–288) implies that

sup
t<T

jX n
t � xtj ¼ OP(� n)

as n ! 1. By (5.1), it follows that

sup
Ł2¨

sup
t<T

jŁ(X n
t )� Ł(xt)j ¼ OP(� n)

as n ! 1. Hence, we have����� nhn(Ł, ł)� d(Ł, ł)

����2 < ðT
0

(Ł(X n
t )� Ł(xt))� (ł(X n

t )� ł(xt))
� �2

dt

< 2

ðT
0

Ł(X n
t )� Ł(xt)

� �2
dt þ 2

ðT
0

ł(X n
t )� ł(xt)

� �2
dt,

whence

sup
Ł,ł2¨

����� n hn(Ł, ł)� d(Ł, ł)

���� ¼ OP(� n):

This shows that condition (i) of Theorem 4.2 is satisfied with cn ¼ 1=� n, provided that the

rate rn is not faster than 1=� n, which is the parametric rate for this model (see the remarks

following the theorem). Clearly, condition (ii) is satisfied with d the uniform distance

k � k1. h

Using the preceding proposition it is straightforward to recover, for instance, the result of

Nishiyama (2000, pp. 111–112) dealing with a class ¨ such that all functions Ł 2 ¨ vanish

outside some bounded set I � R and ¨ � CÆ
M (I), C

Æ
M (I) being the space of functions f on

I such that k f kÆ < M , where
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k f kÆ ¼ max
k<Æ

k f (k)k1 þ sup
x, y

j f (Æ)(x)� f (Æ)(y)j
jx� yjÆ�Æ

and Æ is the greatest integer (strictly) smaller than Æ. Using a well-known entropy bound for

this function space an upper bound,

rn ¼ ��2Æ=(2Æþ1)
n ,

for the rate of the MLE with respect to the natural metric d can be obtained.

5.3. Ergodic diffusions

In this subsection we consider the stochastic differential equation

dX t ¼ Ł0(X t) dt þ � (X t) dWt, t < Tn:

Under certain regularity conditions (see Karatzas and Shreve 1991, Section 5.5), this equation

generates a strong Markov process on a (possibly unbounded) open interval I � R, with scale

function s0 given by

s0(x) ¼
ðx
x0

exp �2

ð y

x0

Ł0(z)

� 2(z)

� �
dy

(x0 is an arbitrary, but fixed point in the state space) and speed measure

m0(dx) ¼
dx

s90(x)� 2(x)
:

We assume that m0 has finite total mass, that is, m0(I) , 1. Then the diffusion is ergodic, and

the normalized speed measure �0 ¼ m0=m0(I) is the unique invariant probability measure. For

simplicity, the initial law of the diffusion is supposed to be degenerate in some point x 2 I . The

endpoint Tn of the observation interval is assumed to tend to infinity as n ! 1.

In this model the semimetric hn in (4.4) is given by

h2n(Ł, ł) ¼
ðTn

0

Ł(X t)� ł(X t)

� (X t)

� �2

dt:

To define the metric d we choose a fixed compact J � I and define

d(Ł, ł) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
J

Ł� ł

�

� �2

d�0

s
¼





Ł� ł

�
1J







L2(�0)

:

For d we take

d(Ł, ł) ¼





Ł� ł

�







L2(�0)

:

The fact that these metrics satisfy conditions (i) and (ii) of Theorem 4.2 follows from results
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of van Zanten (2003b). To see this, let (l t(x), t > 0, x 2 I) be the diffusion local time of the

process X relative to the speed measure, see, for instance, Itô and McKean (1965). Then

1

Tn

h2n(Ł, ł) ¼
m0(I)

Tn

ð
I

Ł(x)� ł(x)

� (x)

� �2

lTn
(x) �0(dx)

> m0(I) inf
x2J

1

Tn

lTn
(x)d2(Ł, ł):

According to Theorem 3.2 of van Zanten (2003b) it holds that

sup
x2J

���� 1Tn

lTn
(x)� 1

m0(I)

����! 0

in probability. In particular, we have

inf
x2J

1

Tn

lTn
(x) >

1

2m0(I)

with probability tending to 1, which covers condition (i). Observe that we have cn ¼
ffiffiffiffiffiffi
Tn

p
in

this case. Next, note that

h2n(Ł, ł)

c2n
<

1

Tn

sup
x2 I

lTn
(x)

� �
m0(I)d

2(Ł, ł):

This shows that condition (ii) is satisfied, since the local time has the property that

1

Tn

sup
x2 I

lTn
(x) ¼ OP(1)

as n ! 1 (see van Zanten (2003b), Theorem 3.1).

Summarizing, our general theorem yields the following result for the ergodic diffusion

model.

Proposition 5.3. Let J � I be compact. Suppose thatð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N �, ¨�,






 �
�







L2(�0)

0@ 1A
vuuut d� ( j(�)

for all � 2 [0, �), where � < 1 and j is a function such that � 7! j(�)=� p is decreasing on

the interval [0, �) for some p , 2, and

¨� ¼ Ł 2 ¨:






Ł� Ł0
�

1J







L2(�0)

< �

8<:
9=;:

Let rn be a sequence converging to infinity such that

r2nj
1

rn

� �
(

ffiffiffiffiffiffi
Tn

p
:
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Then if the MLE Ł̂Łn exists and k(Ł̂Łn � Ł0)=�kL2(�0) ! 0 in probability,




 Ł̂Łn9� Ł0
�

1J







L2(�0)

¼ OP

1

rn

� �
:

If the conditions are satisfied for � ¼ 1, the assumption of consistency is not necessary.

The main difference with Theorem 4 of van Zanten (2003a) is that for the preceding

result we do not need the somewhat artificial condition on the tails of the invariant law �0
needed in the latter paper. The new result is therefore applicable to a wider class of ergodic

diffusion models. The entropy calculations in concrete cases are very similar, and we refer

to van Zanten (2003a) for examples.

5.4. Null recurrent and transient diffusions

As mentioned in the Introduction, we can also handle null recurrent or transient diffusion

models for which we have deterministic control over the random metric (4.4). As an

illustration, consider the model

dX t ¼ Ł0jX tjk dt þ � dWt, X 0 ¼ x0, t < Tn,

where Ł0 is an unknown element of an open set ¨ � (Æ, �) for certain Æ, � . 0, � . 0,

k 2 (0, 1) and Tn ! 1 as n ! 1. This model is studied, for instance, in Section 3.5.2 of

Kutoyants (2004). The MLE Ł̂Łn for this model exists, is consistent, and is asymptotically

normal with rate T (1þk)=(2�2k)
n (Kuyoyants 2004, Proposition 3.45). This rate can easily be

recovered using our general results.

Indeed, the metric hn is in this case given by

h2n(Ł, ł) ¼
Ł� ł

�

� �2ðTn

0

jX tj2k dt:

It is well known that for the present model, X t � Ct1=(1�k) almost surely as t ! 1, for a

positive constant C (see, for example, Gikhman and Skorohod 1969). This implies, in

particular, that

1

T (1þk)=(1�k)
n

ðTn

0

jX tj2k dt

converges almost surely to a positive limit, and hence conditions (i) and (ii) of Theorem 4.2

are fulfilled with cn ¼ T (1þk)=(2�2k)
n and d ¼ d the Euclidean distance. The entropy integral is

in this case equal to a multiple of �, which leads to the rate rn ¼ cn ¼ T (1þk)=(2�2k)
n , as

desired.

We remark that similar null recurrent or transient diffusion models, such as the null

recurrent model studied by Höpfner and Kutoyants (2003), the transient Ornstein–

Uhlenbeck process and the extension considered by Dietz and Kutoyants (2003), can be

handled in the same way. The crucial point is that in all these cases, the metric hn
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converges at a deterministic rate. When this is not the case our method brakes down, and

one has to resort to different techniques. See for instance Loukianova and Loukianov

(2003a), who consider random rates of convergence.

Appendix: Entropy inequalities for random metrics

Let X be an arbitrary collection of random elements of some normed vector space V. The
norm of V is simply denoted by j � j. It is well known that if there exists a metric d on X
such that kX � Ykł ( d(X , Y ) for all X , Y 2 X , then a chaining argument can be used to

obtain the uniform inequality




 sup
d(X ,Y )<�

jX � Y j






ł

(

ð�
0

ł�1(N (�, X�, d)) d�: (A:1)

Here X� is the ball of d-radius � around Y and N (�, X�, d) is the minimal number of balls

of radius � that are needed to cover X�. (See Chapter 11 of Ledoux and Talagrand (1991), or

Chapter 2.2 of van der Vaart and Wellner (1996) for maximal inequalities of this form.)

Here we derive the extension of this result to collections of random variables endowed

with a random pseudo-metric. We assume that for all X , Y 2 X we have a non-negative

random variable r(X , Y ), and that these have the property that almost surely

r(X , Y ) < r(X , Z)þ r(Z, Y ) for all X , Y , Z 2 X . Recall Definition 3.1 of the covering

numbers with respect to the random norm. We assume throughout that the Young function

ł has the property that

lim sup
x, y!1

ł(x)ł(y)=ł(cxy) , 1

for some constant c.

Theorem A.1. Let X be a collection of random elements of a normed vector space V.
Suppose that X is endowed with a random pseudo-metric r, and let A be an arbitrary event.

Suppose that for all X , Y 2 X and � . 0,

kjX � Y j1A\fr(X ,Y )<�gkł < �:

Then for every Y 2 X and all � . 0,




 supX2X
jX � Y j1A\fr(X ,Y )<�g







ł

< C

ð�
0

ł�1(N (�, X , Y , �, r, A)) d�,

where C . 0 is a constant that only depends on ł.

Proof. Replacing X by the collection fX � Y : X 2 Xg, we reduce to the case that Y ¼ 0, so

we can assume Y ¼ 0 without loss of generality. For j ¼ 0, 1, 2, . . . , let X j be a set of

n j ¼ N (�2� j, X , Y , �, r, A) elements of X such that, for every X 2 X, there exists a fixed

X j 2 X j such that r(X , X j) < �2� j on the event A \ fr(X , 0) < �g. So for every X 2 X,
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we have an infinite ‘chain’ X , . . . , X j, X j�1, . . . , X0 that starts at X and ends at some

element X0 2 X 0. By construction X j1A\fr(X ,0)<�g ! X1A\fr(X ,0)<�g in ł-norm as j ! 1,

so we have the equality

(X � X 0)1A\fr(X ,0)<�g ¼
X1
j¼0

(X jþ1 � X j)1A\fr(X ,0)<�g

in ł-norm. Since on the event A \ fr(X , 0) < �g we have that r(X , X j) < �2� j and hence

r(X jþ1, X j) < r(X , X jþ1)þ r(X , X j) < �2� jþ1, it follows that

jX � X 0j1A\fr(X ,0)<�g <
X1
j¼0

jX jþ1 � X jj1A\fr(X jþ1,X j)<�2� jþ1g

<
X1
j¼0

maxjU � V j1A\fr(U ,V )<�2� jþ1g,

where the maximum in the jth term is over all ‘links’ (U , V ) from X jþ1 to X j. There are at

most n j such links, and by assumption the ł-norm of each random variable appearing in the

maximum is bounded by �2� jþ1. Hence, the ł-norm of the jth term in the sum is bounded

by Cł�1(n j)�2� jþ1, where C is a constant that only depends on ł (see, for instance, van der

Vaart and Wellner 1996, Lemma 2.2.2). It follows that




supX2X
jX � X 0j1A\fr(X ,0)<�g







ł

< 2C
X1
j¼0

ł�1(N (�2� j, X , Y , �, r, A))�2� j

< 4C

ð�
0

ł�1(N (�, X , Y , �, r, A)) d�: (A:2)

The same argument as before implies that

jX j1A\fr(X ,0)<�g < jX � X0j1A\fr(X ,0)<�g þ jX 0j1A\fr(X0,0)<2�g,

where X 0 is the endpoint in X 0 of the chain starting at X . Hence, by (A.2) we have



sup
X2X

jX j1A\fr(X ,0)<�g






ł

< 4C

ð�
0

ł�1(N (�, X , Y , �, r, A)) d�þ kmaxjX 0j1A\fr(X0,0)<2�gkł,

where the latter maximum is over all endpoints X 0 in X0 of chains that start at some X 2 X .

There are at most n0 such endpoints, so by the assumption of the theorem and Lemma 2.2.2

of van der Vaart and Wellner (1996) we have

kmaxjX0j1A\fr(X0,0)<2�gkł < 2C�ł�1(N (�, X , Y , �, r, A)):

If we combine this with what we already had we obtain

ksup
X2X

jX j1A\fr(X ,0)<�gkł < 4C

ð�
0

ł�1(N (�, X , Y , �, r, A)) d�þ 2C�ł�1(N (�, X , Y , �, r, A)):

This yields the statement of the theorem. h
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van der Vaart, A.W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes with

Applications to Statistics. New York: Springer-Verlag.

van Zanten, J.H. (2001) A note on consistent estimation of multivariate parameters in ergodic diffusion

models. Scand. J. Statist., 28, 617–623.

van Zanten, J.H. (2003a) On empirical processes for ergodic diffusions and rates of convergence of

M-estimators. Scand. J. Statist., 30, 443–458.

Rate of convergence of the MLE in Brownian semimartingale models 663



van Zanten, J.H. (2003b) On uniform laws of large numbers for ergodic diffusions and consistency of

estimators. Statist. Inference Stochastic Process., 6(2), 199–213.

Wong, W.H. and Shen, X. (1995) Probability inequalities for likelihood ratios and convergence rates of

sieve MLEs. Ann. Statist., 23, 339–362.

Received February 2004 and revised November 2004

664 H. van Zanten


	1.&X;Introduction
	Equation 1
	Equation 2
	Equation 3
	2.&X;Rates of convergence of M-estimators
	Equation 4
	Equation 5
	3.&X;A uniform exponential inequality for continuous martingales
	Equation 6
	Equation 7
	Equation 8
	4.&X;The rate of the MLE in the Brownian semimartingale model
	Equation 9
	Equation 10
	Equation 11
	Equation 12
	Equation 13
	5.&X;Examples
	5.1.&Y;Signal in white noise
	5.2.&Y;Perturbed dynamical system

	Equation 14
	5.3.&Y;Ergodic diffusions
	5.4.&Y;Null recurrent and transient diffusions

	Appendix: Entropy inequalities for random metrics
	Equation 18
	Acknowledgement
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr19
	mkr20
	mkr21
	mkr22
	mkr23

