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We consider triangular arrays of Markov chains that converge weakly to a diffusion process. We prove
Edgeworth-type expansions of order o(n~'"%), d > 0, for transition densities. For this purpose we
apply the paramatrix method to represent the transition density as a functional of densities of sums of
independent and identically distributed variables. Then we apply Edgeworth expansions to the
densities. The resulting series gives our Edgeworth-type expansion for the Markov chain transition
density.
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1. Introduction

In this paper we study triangular arrays of homogeneous Markov chains X, (k)
(n=1,0 =< k < n) that converge weakly to a diffusion process (for n — co0). Our main
result will give Edgeworth-type expansions for the transition densities. The order of the
expansions is o(n~'7%), 0 > 0. The theory of Edgeworth expansions is well developed for
sums of independent random variables. For more general models, approaches have been
used where the expansion is reduced to models with sums of independent random variables.
This is also the basic idea behind our approach. We will make use of the parametrix
method. In this approach the transition density is represented as a nested sum of functionals
of densities of sums of independent variables. Plugging Edgeworth expansions into this
representation will result in an expansion for the transition density.

Weak convergence of the distribution of scaled discrete-time Markov processes to
diffusions has been extensively studied in the literature (see Skorohod 1965; Strook and
Varadhan 1979). Local limit theorems for Markov chains were given in Konovalov (1981),
Konakov and Molchanov (1984) and Konakov and Mammen (2000; 2001). In Konakov and
Mammen (2000) it was shown that the transition density of a Markov chain converges at
rate O(n~'/?) to the transition density in the diffusion model. For the proof there an
analytical approach was chosen that made essential use of the parametrix method. This
method allows tractable representations of transition densities of diffusions to be obtained
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that are based on Gaussian densities (see Lemma 3.1 below). Similar representations hold
for discrete-time Markov chains X, (see Lemma 5.1 below). For a short exposition of the
parametrix method, see Section 3 and Konakov and Mammen (2000). The parametrix
method for Markov chains developped in Konakov and Mammen (2000) is described in
Section 5.1. Applications to Markov random walks are given in Konakov and Mammen
(2001). In Konakov and Mammen (2002) the approach is used to give Edgeworth-type
expansions for Euler schemes for differential equations. Standard references for the
parametrix method are Friedman (1964) and Ladyzhenskaja er al. (1968) on parabolic
partial differential equations, and for diffusions McKean and Singer (1967).

This paper is organized as follows. In the next section we present our model for the
Markov chain. In Section 3 we give a short introduction to the parametrix method for
diffusions. Our main result, which states an Edgeworth-type expansion for Markov chains,
is given in Section 4. Some auxiliary results are given in Section 5. In particular, in Section
5.1 we recall the parametrix approach developed in Konakov and Mammen (2000) for
Markov chains. The proof of our main result is given in Section 6.

2. Markov chain model

We now give a more detailed description of Markov chains and their diffusion limit. For all
n =1, we consider Markov chains X,(k) where the time & runs from 0 to n. The Markov
chain X, is assumed to take values in R”. The dynamics of the chain X, is described by

Xa(k + 1) = Xy(k) + n”'m{X, ()} + n~ ' Pe,(k + 1), (1)

Here, m is a function m : R? — R”. We make the Markov assumption that the conditional
distribution of the innovation &,(k + 1) given the past X, (k), X,,(k — 1), ... depends only on
the last value X,(k). Given X,(i) = x(i), for i =0, ..., k, the variable ¢,(k+ 1) has a
conditional density g{x(k), -}. The conditional covariance matrix of &,(k + 1) is denoted by
2{x(k)}. Here ¢ is a function mapping R? X R? into R,. Furthermore, X is a function
mapping R? into the set of positive definite p X p matrices. The conditional density of
X,(n), given X,(0) = x, is denoted by p,(x, -). This paper is concerned with the study of the
transition densities p,(x, ). Conditions on m{x(k)}, ¢{x(k), -} and Z{x(k)} are given below.
After time transformation the Markov chain X, defines a process Y, on [0, 1]. More
precisely, put Y,(¢) = X,(k), for k/n <t < (k + 1)/n. Under our assumptions (see below),
the process Y, converges weakly to a diffusion Y(f). This follows, for instance, from
Theorem 1 in Skorohod (1987, p. 82). The diffusion is defined by Y(0) = x and

dY(1) = m{Y(H)}dt + A{Y(0)}dW(¢),

where W is a p-dimensional Brownian motion. The matrix A(z) is the symmetric matrix

defined by A(z)A(z)" = Z(z). The conditional density of Y(1), given Y(0) = x, is denoted by

p(x, -). Recall that the conditional density of Y,(1), given Y,(0) = x, is denoted by p,(x, -).
For our result we use the following conditions.

(Al) For x € R?, let g{x, -} be a density in R” with [¢{x, z}zdz =0 for all x € R?,
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and [ g{x, z}z;z;dz = 0(x) for all x € R” and i, j =1, ..., p. The matrix with
elements 0;(x) is denoted by Z(x).

(A2) There exist a positive integer S’, a constant y > 0 and a function ¥ : R? — R
with supcer»9(x) < oo and [, [|x[|Sp(x)dx < oo for S =2pS’+4 such that
[DYg{x, z}| < y(z) for all x, z€ R? and |v| =0, ..., 6, [DVg{x, z}| < y(z) for
all x,z€R? and |v|=0,...,6, and |D"¢P{x, z}| < k’yp(K~7z) for all
x,z€R?, k=1 and |v|=0, 1.

Here ¢'®(x, z) denotes the k-fold convolution of ¢ for fixed x as a function of z.
(A3) There exist positive constants ¢ and C such that
c<=0'Zxo<C

for all 0, ||6] =1 and x.
(A4) The functions m(x) and X(x) and their derivatives up to order 6 are bounded
(uniformly in x) and Lipschitz continuous with respect to x.

3. The parametrix method

Our approach makes use of the parametrix method. This approach allows series expansions
to be stated for the transition densities of the limiting diffusion and for the Markov chain.
The series only depend on transition densities of ‘frozen’ processes. The ‘frozen’ diffusion
is a Gaussian process that has a Gaussian density as transition density. For the ‘frozen’
Markov chain we obtain transition densities that are densities of sums of independent
variables. In this section we will give an overview on the method for diffusions and Markov
chains.

We now discuss the parametrix method for diffusions. This gives an infinite series
expansion of the transition density p of the limiting diffusion process Y (see Lemma 3.1).
We give a similar expansion for the Markov chain in the next subsection (see Lemma 3.3).
Our proof of Theorem 4.1 is based on the comparison of these two series. The series for
the transition densities is derived by the parametrix method. We give a description of the
parametrix method below.

For the statement of the expansion of p in Lemma 3.1 we have to introduce additional
diffusion processes. For 0 < s <1 and x, y € R?, we define diffusions Y = f/S,x’y that are
defined for s <t=<1 by

Y(s) = x
and
dY (1) = m{y}dt + A{y}dW(%).

The processes Y are called ‘frozen’ diffusions. We define p(s, 7, x, y) as the conditional
density of Y(7) [= f/S,x,y(t)] at the point y, given Y(s) = x. Note that the variable y acts here
twice: as the argument of the density and as a defining quantity of the process ¥ = f/S,x,y.
Furthermore, we denote by j)jv (x,z) the conditional density of Y((j+ 1)/n)
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[= f’j/n,x,y((j + 1)/n)] at the point z, given Y(j/n) = x. The process Y is a simple Gaussian
process. Its transition densities p are given explicitly. By definition, we have that

BGs, 1, x, y) = (2(1 — 8)) " (det=(y)) "/

X exp *%(f =)y —x = (1= s)m}' =) Hy —x— (1~ S)m(y)}} - (2)

Let us introduce the following differential operators L and L:

82
176,105, = " LS5 S o P 5D A,
2
Lo, 139 = mr L5 Sl HLE L2 )
X X

Note that L and L correspond to the infinitesimal operators of ¥ and of the frozen process
Y« y, respectively, that is,

Lf (s, t, x, y) = lim h=ELf (s, 1, Y(s + h), Y)Y (s) = x] = f(s, 1, x, p)}, 3)
LfGs, %, y) = lim b~ {ELf(s, 1, Tyl + 0, ] = G5, 1,3 0} &
We put
H=(L-L)p.
Then
1 . azi)(s3 t’ X, J/) ap(s t X, y)
HG. 1%, 3) =5 30000 — 0y =I5 5n Z(m,(x) () G
(5)
Now we define the following convolution-type binary operation ®:
t
(@ st )= [ du| fsvmx gt 12
K Rp
We write g® H' O for g, and for r=1,2,... we denote the r-fold ‘convolution’

(g@ H""VY® H by g® H.
With the foregoing notation we can state our expansion for p.

Lemma3.1. For 0 =ss<t=<1

e}

pls, t,x, ) => (p& H”)(s, 1, x, y).
r=0

A proof of Lemma 3.1 can be found in McKean and Singer (1967). We will make use of the
bounds on H and p® H" that are stated in the following lemma. Proofs of these bounds
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can again be found in McKean and Singer (1967). For a more detailed proof of Lemma 3.2,
see also Ladyzhenskaja et al. (1968).

Lemma 3.2. There exist constants C and C| (not depending on x and y) such that

|H(s, £, x, y)| < Cip~ ' pcp(y — x)
and

P’

b HO(s, 1 e —
‘p® (Sa s X, y)l 1 r(l +r/2)

¢C,p(y - X),
where 0% = { — 5, $e.p(u) = pPpc(ulp) and

exp(—Clul®)
[ exvt-cioppae

Pc(u) =

4. Edgeworth-type expansions for Markov chains

The following theorem contains our main result. It gives Edgeworth-type expansions for p,.
For the statement of the theorem we introduce the following differential operators:

Al ) = 32D b x ),

=

Al e = S D b 1),

v!
[v|=4

Furthermore,

() = Jqu(x, o)z,

Fats. 160 = (=9 2 Drjpts, 1, x, ),
|v]=3 ’

2

1
Diﬁ(sa t, x, y) + E(t - S)2 Z va(iy) Dz ﬁ(sa t, X, y)a

(s, 1, X, y) = (1 —5) Z Xvﬁ/)

|v|=4 : [v]=3
where y,(x) are the cumulants of the density ¢g(x, -).

Theorem 4.1. Assume (A1)—(A4). Then there exists a constant 6 > 0 such that
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sup (14 [[y — x2S D) pux, ») — p(x, ) — 7 P2ai(x, y) — n" 'y, )| = O(n™'70),

x,yeR?
where S' is defined in (A2) and where

i (x, »N=pEPe Fl[p])(o’ L, x, y)’ (6)
w0, ) = 4(p O (L2 = 1)p)O. 1. % ) + (p & BAPDO, 1, 3, y)

+(p @ Filp @ F1lpIDO, 1, x, y). (7
Here p(s, t, x, y) is the transition density of the diffusion Y(t), and Lx is defined analogously
to L but with the coefficients ‘frozen’ at the point x. The norm ||-|| is the usual Euclidean
norm.

The proof of Theorem 4.1 will be given in Section 6. We now make some remarks
concerning the approximating terms s (x, y) and m,(x, »).

First, it can be shown that the term s (x, y) and each term on the right-hand side of (7)
have sub-Gaussian tails. This means that these terms can be bounded from above by
C exp[—C»(y — x)*] with some positive constants C; and C,.

Secondly, if the innovation density g(x, -) does not depend on x then one obtains that
Ly = L and that p(s, t, x, y) = p(s, t, x, y), where p is defined in (2) with 2(y) =X and
m(y) = m. This gives

mi(x, y) = stjp(o 5, X, U)Z D! p(s, 1, v, y)dv

="

:7Z#VDVJ dst(O s, x, 0)p(s, 1, v, y)dv

[v|=3
= > 20150, 1,x, )
[v|=3
— 40,1, %, y),

(PR Fi[p(s, 1, z, y) = Jdqu(s u, z, w) — ZMD”IB(u 1, w, y)dw
[v|=3

:—Z%’D’”J duJ (s, u, z, w)p(u, 1, w, y)dw

v|=3

—(I—S)Z'uVDvp(s 1, z, y),

v|=3



Edgeworth expansions for Markov chains 597

(Filp & AP, 12 ) = (L =5)9 D ZDL b pls. 1, 2 ),

[v|=3

(2@ F2[pDO, 1, x, ) +(p © F1[p @ F1[ PO, 1, x, y)

stJp(O s, X, D) ZXV Dy p(s, 1, v, )

v|=4
2

F(1—s) Z“”D” B(s, 1,0, y) | do
[v|=3

= ZXV D"J Jp(o, s, x, V)p(s, 1, v, y)dv

v|=4
2

+ Z””DV J l—s)dsjp(() 5, x, 0)p(s, 1, v, y)dv
[v|=3
=m(0, 1, x, y).

Thus from Theorem 4.1 for this case we just obtain the first two terms of the classical
Edgeworth expansion n~'/27,(0, 1, x, y) + n~'@(0, 1, x, ).

Thirdly, if u,(x) =0 for |v| =3 and for x € R?, then F; =0. This gives that the
expansion of Theorem 4.1 holds with

mi(x, y) =0,
(%, ) = (p© PPN, 1 x, ») +4(p & (L2 = )p) 0. 1, x, 1)

If in addition we have that y,(x) =0 for |v| =4, then the first four moments of the
innovations coincide with the first four moments of a normal distribution with zero mean and
covariance matrix X(x). In this case we have F; = 0 and

m(x, ) =0, ®)
(e, 9 =1(p® (L2 = 1)p) (0, 1, x, y). ©)

Fourthly, our expansion can be applied to study the performance of discrete
approximations of diffusions. An Euler approximating scheme is defined by putting
Yo([k +11/n) = Yo(k/n) + 0~ m(Y,(k/n)) + ACYuCk/m)IW (Lk + 11/n) = W(k/n)].

It has been shown that Y, (1) = Y(1) + Op(n~'/?). For a discussion of Euler approximations,
see Kloeden and Platen (1992). For this scheme we have that F; = F, = 0. Thus the
expansion of Theorem 4.1 holds with (8) and (9). This result was obtained by Bally and Talay
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(1996a; 1996b). Higher-order asymptotic expansions for Euler schemes are given in Konakov
and Mammen (2002).

Fifthly, a more refined approximating scheme for stochastic differential equations was
introduced by Mil’shtein (1974). Mil’shtein’s scheme is based on higher-order stochastic
approximations of the stochastic differential equation. Mil’shtein (1974) proved that for his
scheme Y, (1) = Y(1) + Op(n~"). Thus this scheme has a better strong approximation rate than
Euler schemes. We now apply Theorem 4.1 to this approximating scheme. We compare the
approximations of the transition densities for these two schemes. It turns out that the rate is not
improved for Mil’shtein’s schemes, in contrast to the rates of strong approximation mentioned.
However, we argue that Mil’shtein schemes lead to more stable approximations. For simplicity
we consider only the one-dimensional case. For Mil’shtein schemes we have that

Hea) = 03() + - (0 () (), #m@zk%%@,

Yan(X) = tan(x) = 30*(x) = 0 ()0 (x).
Hence,

i (x, y) =0,

0, 7) = H(p @ (L2 = P)p) (0, 1, x, )+ (p@ MYO, 1, x, ),
where

M(s, 1, x, y) = —a(x)o (x )M.

The last expression for m,(x, y) allows us to compare Mil’shtein and Euler schemes. In the
one-dimensional case the function %(Lf‘< — L) p(s, 1, z, y) is equal to

WL = L)p(s, 1,2, ) = R(s, 1, 2, y) = M(s, 1, 2, p),
where

op(s, 1, z, y)

1 1
R(s, 1,z y)=— [5 m(zym'(z) + Z m"(z)0°(z) o

1 ’ 1 ’ 2 1 ' 2 1 3 "
— {2 m(z)o(z)o'(z) + 7 m'(z)o“(z) + Z(O'(Z)O' (2))" + ZO (2)0"(2)

y Ppis, 1, z, )
0z2

By linearity of ® we obtain that, for Mil’shtein schemes,
m(x, ¥) = (p @ R)O, 1, x, y).

Thus Mil’shtein schemes are constructed such that in the expansion the third derivative of the
diffusion density p is eliminated from the expansion of the Euler scheme. This derivative is
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the most unstable and singular summand near the point s = 1. This suggests that Mil’shtein
schemes lead to more stable approximations of transition densities of diffusions. At this stage
this discussion is purely heuristic. The conditions of Theorem 4.1 are not fulfilled for two
reasons. The densities of the innovations depend on n and do not satisfy the required
smoothness conditions. The first point is not crucial. For Mil’shtein schemes the innovation
density ¢,(x, -) depends on n, but asymptotically this dependence vanishes. Theorem 4.1 can
be extended to cover this case. We also conjecture that Theorem 4.1 can be extended to non-
smooth innovation densities. This could be done by introducing a new Markov process X
where one step consists of / subsequent steps of X, that is X ;‘;(k) = X, (kl). Typically, X j
has smoother innovation densities as X,. We conjecture that with / large enough under
appropriate conditions the assumptions of our theorem are satisfied. A detailed discussion of
this will be given elsewhere.

Finally, Theorem 4.1 states an expansion of the Markov transition density with terms of order
n~'/2 and n~'. The coefficients of these terms do not depend on #. This is desirable for many
theoretical applications. If one is interested in numerical approximations, dependence of
coefficients on n does not matter. Then other expansions may be preferable that are less
computer-intensive. In particular, calculation of the diffusion transition density p is highly non-
trivial. An expansion of p, that avoids the calculation of p can be derived from Lemmas 5.1 and
5.2. For this purpose the expansion of p,, given in Lemma 5.2, could be plugged into the formula
of Lemma 5.1. Another modification of Theorem 4.1 would be helpful for numerical
approximations of the diffusion transition density p based on numerical calculations of the
Markov transition density p,. If we could justify the (formal) differentiation of the expansion of
Theorem 4.1, then by iterative use of these expansions we can obtain an expansion for p with
coefficients depending only on p, and on the derivatives of p, (and not on p and its derivatives).
Discussion of the accuracy of these expansions and their usefulness for numerical
approximations is outside the scope of this paper.

5. Some auxiliary results

This section contains some auxiliary results that will be used in the proof of Theorem 4.1.
In Section 3 we represented the transition densities of the diffusion by nested sums of
functionals of densities of ‘frozen’ processes. The difference between the densities of
‘frozen’ Markov chains and Gaussian densities can be treated by Edgeworth expansions.
This is done in Section 5.2. In contrast to Konakov and Mammen (2000a), we now use
higher-order Edgeworth expansions. These are the main steps of the proof of Theorem 4.1.
In Section 5.3 we give some bounds for the kernels and their differences used in the
expansions of the parametrix method.

5.1. Application of the parametrix method to Markov chains

In this subsection we derive a finite series expansion of the transition density p,(s, ¢, x, y)
of the Markov chain (see Lemma 5.1). Here, p,(s, ¢, x, -) denotes the conditional density of
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Y,(1), given Y,(s) = x (in particular, p,(0, 1, x, ¥) = p,(x, y)). Similarly to Section 3, we
again apply the parametrix method and for this purpose we introduce additional ‘frozen’
Markov chains. These are defined as follows. For all 0 < j < and x, y € R?, we define
the Markov chains X, = X njxy- For fixed j, x and y, the chain is defined for i with
j =<i=< n. The dynamics of the chain is described by

X,(j) = x
and
Xo(i+ 1) = X,()) + n~"m{y} + n" P&, + 1).

The stochastic structure of the R”-valued innovations &,(i) is described as follows. Given
X, () =x(]) for [ =j, ..., i, the variable &,(i + 1) has a conditional density g{y, -}. Note
that the condltlonal dlstrlbutlon of X,(i + 1) — X,(i) does not depend on the past_ X, (1) for
I=j, ...,i Let us call X, the Markov chain fiozen at y. We put Y,() = X, {k} for
kjn<t< (k+ 1)/n, and write p,(j/n, k/n, x, y) for the conditional density of X,(k)
[= X, Jjxy(k)] at the point y, given X,(j) = x. Note that, as in the case of a ‘frozen’
diffusion, the variable y acts here twice: as the argument of the density and as a defining
quantity of the process X, =X njxy- Let us introduce the following infinitesimal operators
L, and L,:

Lo.f(j/n, k/n, x, y)=n Upn,/(x, 2f((j+D/n, k/n, z, yydz — f((j+ 1)/n, k/n, x, y)} ,

LofGi/m k/mx. ) = n [Jpﬁ,,(x, DA + 1)/, k. 2 )z — £+ D/, k/m, x, yﬂ,

where we write
Pnj(x, 2) = pa(i/n, (j+1)/n, x, 2)

and where p;, j(x ) denotes the conditional density of X,(j+ 1) [= X, jxy(J+ D] given
X,(j) = x. Note that L, and L, are defined by analogy with the definition of L and L (see
(3)-(4)). We remark that for technical reasons the terms f((j+ 1)/n, ...) appear on the
right-hand side of the definitions of L, f and L,/ instead of f( j/n, ...). The reasons will
become apparent in the development of the proof of Theorem 4.1. For k£ > j we put, by
analogy with the definition of H,

Hn == {Ln - Zn}ﬁn-
The next lemma, from Konakov and Mammen (2000), gives the ‘parametrix’ expansion
of p,.

LemmaS5.1. For 0 < j< k<n

k—j

paCi/ns kfn, x, y) = (Bn @ HY)(i/n, k/n, x).
r=0

Here ®, denotes the following binary ‘convolution-type’ operator:
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k—1

1
F 0 )i/ klnox ) =230 |Gl i/ 5 D b

=i

where in the sum on the right-hand side the term f(i/n, i/n, x, y) is equal to the Dirac
function 6(x — y) at x — y.

5.2. Bounds on p, — p based on Edgeworth expansions

In this subsection we will develop some tools that are helpful in the comparison of the
expansion of p (see Lemma 3.1) and the expansion of p, (see Lemma 5.1). These
expansions are simple expressions in p or p,, respectively. Recall that p is a Gaussian
density (see (2)), and that p, is the density of a sum of independent variables. The
densities p and p, can be compared by application of Edgeworth expansions. This is done
in Lemma 5.2. This is the essential step for the comparison of the expansions of p and p,.
In the lemma bounds are given for derivatives of p,. The proof of the lemma also makes
essential use of Edgeworth expansions. The lemma is a higher-order extension of the results
in Section 3.3 in Konakov and Mammen (2000).

Lemma 5.2. The following bound holds with a constant C for v = (vy, ..., VP)T, with
0<|v|<6:

DY pu(j/n, k/n, x, ) — D' p(j/n, k/n, x, y)
— 0 V2D (j/n, kfn, x, y) — 0 Dla(j/n, k/n, x, p)|
= Cn P My - ),

for all j <k, x and y. Here D denotes the partial differential operator of order v with
respect to z=p 'S2(y)"V2(y —x — p*m(y)). The quantity p again denotes the term
p = [(k = j)/n]'. We write 5}(-) = p=PC*(-/p), where

[1+ [|z]|*]!
[1+ |21 dz’

@ =
|

Proof. We note first that p,(j/n, k/n, x, -) is the density of the vector
k=1
x+pPm(y)+ 72> &+ 1),
=

where, as above in the definition of the ‘frozen’ Markov chain Y,, &,(i + 1) is a sequence of
independent variables with densities ¢g(y, -). Let f,(-) be the density of the normalized sum
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k=1 k-1
2 [ = DR Y Ei+ D = 2T E0) Y 8+ 1),

=) =)
Clearly, we have
Pali/n. K/, x, ) = p~ et Z(») 2 fufp” ()P — x = pPm(p)]}
We now argue that an Edgeworth expansion holds for f,. This implies the following
expansion for p,(j/n, k/n, x, )
i)n(j/na k/n, X, )

S-3
= p Pdet=(y) 2| Y (k= ) PPA=¢: DT Z0) VL — x = pPm()]}-
r=0

+ Ok — TSP+ [{p ' 2 V2L — x = pP2mWIHT) (10)

with standard notation (see Bhattacharya and Rao, 1976, p. 53). In particular, P, denotes a
product of a standard normal density ¢ with a polynomial that has coefficients depending
only on cumulants of order up to »+ 2. Expansion (10) follows from Theorem 19.3 in
Bhattacharya and Rao (1976). This can be seen as in the proof of Lemma 3.7 in Konakov and
Mammen (2000).

It follows from (10) and (A3) that

|BaCi/ s K/, x, p) = PG/ k/nax, ) = 07 PG/ ns k/n, x, p) =m0/ n, k/n, x, )|
< o Pp=3E My — ), (11)
where
pGj/n, kfn, x, y) = p~Pdet=(y)” "2 2m) "/
exp{—3(y —x — p’m(y) p 2 (v — x = P’ m(»)},

a(j/n k. x, y) = —p~'Pdet2(y) 17 Y ’%Dzd){p*z(y)—‘/z(y —x = pPm) },
[v|=3 !

7 (j/n, k/n, x, y) = p~> PdetZ(y) /2 [ > @ DE(P{p’lZ(y)*l/z(y —x- pzm(y))}.
[v|=4 .

2

1 )Zv(y) DZ (p{p*lZ(y)*l/z(y - X — sz(y))}‘| >

|
2 ) p!

in which #,(y) are the cumulants of (y)~'/2&,(i + 1) and D¢ denotes the derivative of ¢ of
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order v. The definitions of 771 and 7, coincide with the definitions given at the beginning of
Section 4. This follows by replacing the differential operator D! by D). For v =0 the
statement of the lemma immediately follows from (11). For v > 0 one proceeds similarly. See
the remark at the end of the proof of Lemma 3.7 in Konakov and Mammen (2000). Ol

From Lemma 5.2 we obtain the following corollary. The statement of this lemma is an
extension of Lemma 3.7 in Mammen and Konakov (2000), where the result has been shown
for 0=<1[b| <2, a=0.

Lemma 5.3. For all j < k, for all x and y, and for all a, b with 0 < |a| + |b| < 6,
“pbp (i ~lal=|b| gS=lal ), _
|DS.D pu(j/ns k/n, x, y)| < Cp &, Iy — ),

where p = [(k — j)/n]'/* (for simplicity the indices n, j and k are suppressed in the
notation) and the constant S was defined in (A2).

5.3. Bounds on operator Kkernels used in the parametrix expansions

In this subsection we will present bounds for operator kernels appearing in the expansions
based on the parametrix method. In Lemma 5.4 we compare the infinitesimal operators L,
and L, with the differential operators L and L. We give an approximation for the error if,
in the definition of H, = (L, —]:,,)13,,, the terms L, and ]:,, are replaced by L and ]:,
respectively. We show that this term can be approximated by K, + M,, where
K, =(L—L)p, and M, is defined in Lemma 5.4. Bounds on H,, K, and M, are given
in Lemma 5.5. These bounds will be used in the proof of our theorem to show that in the
expansion of p, the terms p, ®, H” can be replaced by p, ®, (M, + K,)".

Lemma 5.4. For some constant C,
|Ho(/m, k/n,x, y) = Ka(j/n, K/ n, %, ) = Mo(j/n, k/n,x, )| < G 65(y — ),
where

Kn(]/l’l, k/l’l, X, y) = (L - Z’)i’ﬂ(]/”ﬂ k/}’l, X, y)a

3
M,Gifn, K/, x, ) =Y Mui(j/n, k/n, x, p),
=1
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Mn,l(j/”a k/l’l, X, )’) = Mn,ll(j/na k/l’l, X, y) + Mn,lZ(j/”a k/l’l, X, J’) + Mn,l3(j/n9 k/l’l, X, y)a

DV Nn i > k s vy
MG/ n, kfn,x, y)=n"'2% £ (j/nv' [rx%0) (1y(x) = 1s(¥))s
[v|=3 '

D'p,.(j/n, k/n, x,
MG/, kfn 3 ) =0t Pn(J/ s /n, x, )

[v|=4

X {ﬂv(x) — () = > VIN@, v ) ()t (x) — ﬂ”f(y)]},

=2

Mn,l3(j/n5 k/l’l, X, y)

1
Y { 3 %Jjo[q(x, 0) — q(y, 0)]6” D'A(x + Sh(O))(1 — 6)*dodo
v[=5""

1 Zo,l(wzj“ 40, 0XO + n Lm0 (L — D)D" (x + O(0))dd do

=1

1
-3 Z “()q(y, 0)(0 + n~ 2 m(»)' (1 — OA(L — L)D"A(x + Oh(6))dd do

="

-2y M) v ey '” q(v, 0O + n~ P m(y) (1 = O)D" 2(x + 0h(6))dd d6
[v|=3 ! = 2

oy ) ) m(x) m(y) T J J a(v, )0 + = Pm(»))” D' A(x + Oh(0))dd de}
[v|=4 =1

Muo(j/n, k/n, x, v) = Muo1(j/n, k/n, x, ) + ... +M,u05(j/n, k/n, x, y),

M,51(j/n, k/n, x, y)

n k
Y Deuli/m K x ”Zv(mxx)—ml(y» (Uy—es(3) — e (D)),

V!
v|=3
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A
Mu2a(j/n, k/n, x, y>—n3/2{Z(D )(x)Z VAt (X) = (Do, ()]

[v|=4

+Zm,<y) 3 ” 40, 0XO + ()" (L — DYDY 5Ax + 0h(0))d0 d6

v|=1

v v 1
- mmv;'m(y) > J J g0y, )0 + n™' P m(y)" DI Ax + 0h(6))dd dO

v=2 : v'[=1+ 70

_ Z ZV [mi(X)tty—e;(x) — mi(y)thy—e,(¥)]

="

1
> ”061(% 0)(O + n 2 m(y)” DV Ax + Oh(6))dd dO

P'l=1

. Z Uy(X) ;'/uv(y) ) Z m(y)V’DerV’)L(x)}
[v[=3 ’ [v'|=1

1
Muas(i/m ki x ) =5n2 3 Z(m,m mo| | a0

IV\S'

0" D" A(x + Oh(0))(1 — 9)*dd d6,

Mo b3, =50 322 _fjm;(y)”;[qu, 0~ 400, 0)
0" D" A(x + Oh(0))(1 — 0)*do db,
Mas(i/n, k/n, x, y) = 5n~/? l;; Z” q(x, 6)6” %:1 D" ) (x + Oh(0))
- (mi(x) — mi(»)"0(1 — 6)*dd do,
M3(j/n, k/n, x, ) = Muz1(i/n, k/n, x, p) + ...+ Myu3a(j/n, k/n, x, p),

Mo31(i/m k/nx, y)y=n" > Dupuli/ ,k/n’ = y){[m(x)” —m(»)'].

v!
vl=2

V4
Y vim”W)Imi(y) — rm(x)]},
i=1
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M50/ n, k/n, x, y)—Sn*WZ Z[m[(x)m () = mi(y)mi(y)]

[v|= 5 “ii'=1
1
: “ g(x, 0)6"¢— D'A(x + OI(B))(1 — 8)*do db,
1
Mo/ kx50 = 502 30 LS oy, (y)”o[q(x, 6) - q(y, 0]

[v|= 5 zz*l

L0 DYA(x + OR(O))(1 — 0)*do do,

1
Mysali/m /3 ) =m0 S Zml(x)jjoq(x, o

pi=s”

-3 DG+ ShO)(mi(x) — mi(y)O[1 — 5]*d6 do.
lul=1

Here e, denotes a p-dimensional vector with rth element equal to 1 and with all other
elements equal to 0. Furthermore, for |v| =4 |v'| =2, we define

N, v') = 2V"'=1ado—v)i=1]-2

where yx[-] denotes an indicator function. We put m(x)" = m(x)" - ... - my(x)"» and
m(x)” = 0 and u,(x) = 0 if at least one of the coordinates of v is negative. We also define the
functions

j'(Z) = i)n((]"_ 1)/1’1, k/n> 2, y):
h0) = n"'m(y) + n~'/?6.

Forall j <k, x and y, the function {, is defined as in Lemma 5.2. Here again p denotes the
term p = [(k—j)/n]l/z. For j=k—1and =1, ...,3, we define

M i(j/n, k/n, x, y) = 0.

The proof of Lemma 5.4 is based on some lengthy calculations. It follows the lines of
the proof of Lemma 3.9 in Konakov and Mammen (2000). The difference is that this time
we use higher-order Taylor expansions. Then we replace A(x) = p.((j + 1)/n, k/n, x, y) by
pa(j/n, k/n, x, y) in (L — L)A(x) and in the expressions for M1, Myi2, Mo and M, 5.
To this end we use the Taylor expansion for A in the formula

DL/, K/, x, ) = jzz(y, 6)D"2(x + (B))de.
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Lemma 5.5. For some constant C,

M i(j/n, kfn, x, )| < Cn D2 p 180"y — %), for 1=1,2,3, (12)
|DEDYM i/ m, K, x, )| < Cp T (y— ), for 1=1,2,3, (13)
|DEDY H (i, k/n, x, y)| = Cp T IPEEs A (p — ), (14)
| DD K (/. kfm, x, )| < Cp PRIty — ), (15)

|DIDA[p @y (K + M) D1/ n, k/m, x, p)|
< C’BG, ;) e B(;, Dp”'“lbgf;'“'z(y —x), (16)

for all j <k and y. Here again p = [(k — j)/n]'/?.

Proof. For a, b =0 claims (14) and (15) were shown in Konakov and Mammen (2000,
Lemma 3.10). For a proof of these claims for |a| > 0 or |b| > 0 and for the proofs of (12)
and (16), one proceeds similarly. ]

6. Proof of Theorem 4.1

The main tools for the proof of Theorem 4.1 were given in Sections 5.1-5.3. From
Lemmas 3.1 and 3.2 we obtain that

n ~ y 1
PO, 1x, 0= p&HDO, 1, x, )+ Ry(x, y),
r=0

where R,(x, y) is a function with sub-Gaussian tails, that is, for constants C, C’,
[Ru(x, )| < Cexp[—C'(x = y)’].
With Lemma 5.1, this gives
(0, 1,x, ) — pu(0, 1, x, ) =Ty + ...+ Ts+n *Ry(x, y), (17)

where



608 V. Konakov and E. Mammen

Ty =Y poHO,1,x 0 =Y pa, HO, 1, x, ),
r=0 r=0

Ty=> p& HOO, 1,x,y) =Y p®, (H+ M, +n ' PN)(0, 1, x, y),
r=0 r=0

T3 =" p@u (H+M,+nPN)O, 1, x, y) =Y p®, (K, + M), 1, x, y),
r=0 r=0

Ta=> P& (Kn+ M), 1, %, 9) = > pu @ (Ky+ M), 1, x, y),
r=0 r=0

n n

Ts =3 pu @ (Ko + M)P0, 1, x, ) = Y P @0 HPO, 1, x, ).

r=0 r=0

Here we put Ni(s, t, x, ) = (L — L)@, (s, t, x, y). We now discuss the asymptotic behaviour
of the terms 74, ..., Ts.

Asymptotic treatment of T;. Using Theorem 2.1 and the remark following Theorem 1.1 in
Konakov and Mammen (2002), we obtain that

1 =5 1
T1:_p®n (L_L)2p®n (I)(O’ 1>x’ Y)+_2Rn(x> y)a
2n n

where R,(x, y) is a function with sub-Gaussian tails, that is, for constants C, C’,
[Ru(x, )| < Cexp[-C'(x — y)’]

and where (s, 1, x, y) = > oo (H(s, 1, x, ¥).
Asymptotic treatment of T,. We will show the following expansion of 7, for a constant
C >0 and for 6 > 0 small enough:

o0

T,—4Y p&, HO, 1, x, y)
r=0

+ 3 p@u (H+ Myyy+n 2NN, 1, x, p)
=0

+ > h®u (H+ Mu12) (0, 1, x, y)
=0

3 B (H + Mz, 1, x, )| < Cn~ 0E(y - ). (18)
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For the terms on the left-hand side of (18) we will show the following bounds with a constant
C>0:

|ﬁ ®n (Mn,ll + n71/2N1 + H)(r)(o’ k/l’l, X, y) - i) ®n H(r)(o’ k/}’l, X, y)|

cr /11 o1 (E\UTD2
<—B(=,2) ...-B(=.=)(% LKy, 19
a0 0) (3 D) ()i 9
| @n (M 12+ H)\(O, k/n, x, ¥) — p @, H(0, k/n, x, y)|
cr (11 AV e
< __ I . o2 i r+1,0,k .
“a(35) o 8(55)(5) e, 0)
|l~) ®l’l (H+ Mn,21)(r)(0’ k/}’l, x’ y) - ﬁ®n H(V)(O’ k/n: xs y)|
cr (11 ro1\ (k2
< __ _ R R - r+1,0,k _
D) s e @
|p @ (H + M,3) "0, k/n, x, y) — p®@, H(0, k/n, x, y)|
cr /11 o1\ (E\UT2
< gB(2 2). . rINfK 10k .
() s(G ) (E e mon e

where

gk (x) = max{&y, * ... % () p1 =0, ..., p,=0,p1 + ...+ pF = (k—j)/n},

—1
£ = [1+ ||x||25']1“[1 + ||u||2s']1du} .

We now give the proofs of (18), (19) and (20). The proofs of claims (21) and (22) are
omitted. These claims follow by arguments similar to those used to prove (19) and (20). All
claims are proved iteratively by induction. In the induction steps the bounds given in (19)—
(22) are used for 1 =< k < n — 1. Note that in (18) the terms only appear for £k = n. We start
by proving (19) and (20). The proof of (18) will be given afterwards.

We first prove (19) for » = 1. For this purpose we write

i - B 1
P& (a7 N0, 59y =7 i
v|=3

where
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k
Z {Jﬁ(or .]/n9 .X, u)DZﬁn(]/rh k/na M, y)[ﬂv(”) - ﬂv(y)]d”

—1
J=0

S| =

S, =

V4
> Db/ n, kfn u, y)(mi(u) — mi(y)

+ m(y)pzjia(o, i/ x w
i=1

1 P
3 D0 DL B s ks w p@ () - aiz(y))] du}. (23)

i,I=1

We now decompose the summand

1 1
SV:;ZJ...du—i—;ZJ...du,

JjeJi JEJ2

where J;={j:0=<j<(k—1)/2} and J,={j: (k—1)/2<j<k—1}. With p=
Vk/n—j/n and k = \/k/n we obtain from Lemma 5.3, (23) and (A2), for constants C
and Cy,

=G 'y pTly - )

JE€

n_IZJ...du

JES

k/(2n) dt
=cto-9] Gy

= CCu(y —0)n(2)
< ey - 0B(5. 1
2°2)°
Furthermore, with e, + e; < v (componentwise),

n_IZJ...du

J€J2

IS [Pt im0t - mon

JjeS2

<Dy () ms k/n, u, y)du.

P
JFXv()’)PZ Z JDZ’VJFES[ﬁ(O’ ]/I’l, X, u){m,(u) - mt(y)}] : DZJrgiierieSi)(j/n’ k/l’l, u, y)du

i=1
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033 [Dr0p0, i/ x 000 - 0w}

i,l=1

- DUrerterer=e pji/n, k/n, u, y)du}

< Con! 20k,
2 ;l * ﬁ/n_]/]é (6% )

< Gy —x)

for constants C,, C;3 > 0. Combining the last two estimates, we obtain that

11
S| < C 20k B
5.1 = 80 - 08(5.3):

for some constant C4. This shows claim (19) for » = 1.
We now check the claim for » = 2. We have

P&y M1y + 0PN+ H)P — p, H?
= p @y My + 12N @, (M1 + 072Ny + H)

+ P ®u H®,y (Myq1 + 07 2N)).

The first term on the right-hand side can be bounded as follows

1P @ M1y + 172N @, (M) + 072Ny 4 HY(O, k/n, x, p)l

= C IS o (2 2) et -
< nnZJC (z—x)B 775 W l/né (y —2)dz

n—

For the second term we obtain

611
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|p @ H®y (M11 4+ n~ 2N, k/n, x, )|

_‘ B Z{J (B 0 HO. /1, 5, 10D 5o, k10, )i ) — ()]

="

ST, J(p @0 H)O, j/n, x, u)

ZDHG’])(J'/’L k/}’l, u, y)(m,(u) —mi(y))

1 p
+5 > Drretep(i/n, kfn, u y)ou(u) Oiz(J/))] d”}

s oo

These two terms can be treated as in the proof for » = 1. The first term can be bounded by
use of direct estimates. The second term can be easily bounded after two applications of
partial integrations.

The proof for » =2 follows by iteration and use of similar methods.

The proof of claim (20) follows along similar lines to the proof of (19). Again the region
of the summation is split into two regions, J; and J,. Again, for the treatment of the
second sum partial integration is used.

Turning to the proof of (18), this expansion immediately follows from the following
bounds:

’”ZZ >

[v|=3 ]er

71/227 Z

JEJ

1P @ (Mp11 4+ n~ 2Ny + M1y + Mz + H)'(0, k/n, x, y)

— P @y (Mt + 172Ny 4+ M1n + H)Y(0, k/n, x, p)|

cr 11 1 [k\"2
log(n)B<2 2) ...-B<§,§) <Z> g0k, — x), (24)

|p @ (H + M1 + 02Ny + M), k/n, x, )

— P @y (HA4+ M,y +n 2Ny 4+ M) 0, k/n, x, )|

cr /11 o\ R\ Lok
SWB<E,§)B<§,E>(;) gy =), (25)

P @n (H+ M1 +n" 2Ny + My + M, 3) (0, k/n, x, y)

— P @y (H+ My + 17PNy 4+ Mop 4+ M,5) (0, k/n, x, p)|

cr (11 F (R ok
Sn3/23<2’2> : B<2,2) (n> gy = ), (26)
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1D @ Mgy + 0™ PNy + Mz + H)YO(0, 1, x, )
— P @ (My1+ 0~ 2Ny + H)(O, 1, x, )

— [P @ (M2 + H)” = p@, HN(O, 1, x, y)|

r

C 1

.y —75— Ble ¢ - B(§+ re, e>§(yx),

1P @0 (Mg + 172Ny + Moo + H)D(O, 1, x, y)
— P @y (M1 4 072Ny + H)YD(0, 1, x, y)

— [P ®n (H+ M) = p@, H?)(0, 1, x, )|

r

Py B(l,¢&)-...- B(1+re, e)&(y — x),

1P @ (M1 + n7 V2N + My + My + H) (0, 1, x, ¥)
— PRy (Mg + 07 PNy + Moo + HYD(O, 1, x, y)

—[p @ (H+ M,31)" — p®, H?](0, 1, x, )|

Cr

Py B(1,¢€) - ...- B(1+ re, e)(y — x).

613

27

(28)

(29)

These estimates are valid for any ¢ € (0, %) with a constant C(e) < oo depending on . We
will prove (24) and (27). The proofs of the other claims are quite similar to the proofs of

(19), (24) and (27) and will be omitted.

We prove (24) in two steps. For » = 1, we obtain by use of direct bounds,

5 C (K" /11
|p @n M,1300, k/n, x, y)| < Py (n) B<2, 2) g0k (y — x).

For » =2 we use the bound

k/2

17\
Z(J) < Clogn.
n\n

This gives the additional log factor in (24). The rest of the proof proceeds along the lines of

the proof of (19).

Turning to the proof of (27), denote the expression inside the modulus bars in that

inequality by I',. Then we have the following reccurrence formula:
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[, =0, ®, H+ [p®, My +n 2Ny + M, 12 + H)V.
- Pp®y (M1 + n71/2N1 + H)(rfl)] ®@n (M 11 + n71/2N1)
+ [P @ (M1 + n PNy + M1z + H)UY.

— P @y My + H) D@, M= 1+ IT+ 1. (30)

Note that Iy = I'} = 0. We start with the estimation of the second summand /7 in (30). Let

II:%ZJ...du—&-%ZJ...du.

JjeJi Jj€S2

The following bound is a modification of (20):

- _ k
‘p @n (Myy1 + 12Ny + Mo + H)D (0, PR y)
k
— D@y (M1 + 0PNy + HY (0, =, x, y)‘
n

cr (11 ro1\ (P
$n8<2,2) Cee B<2,2) <n> C’+1’0’k(y—x). (31)

This claim can be proved similarly to (19). Again the sum is split into two regions, J;| and J;,
and for the second sum partial integration is used. For the partial integration we make use of
the following bounds that easily follow from the definition of M, j;:

. i C k—] —(2+|al+[b])/2
|Dl;Dx(Mn,ll +n / Nl)(]/n’ k/l’l, X, y)| < m( n ) ép(y_X),

Cy

i . po A
|DX(M 11 + n™ 2N/ m, k/ny x, x + )| < iR (T]> Ep(v),

for some constants C, C, > 0. We also have that for some constants C; and Cg,

|D4DE(p @y (M 11+ n~ 2NN, k/n, x, )|

o1l AV s
< B(z’ 5) o B(z’ z) (‘) o >
|D€(ﬁ Qn (Mn,ll + nil/le)(r))(O’ k/l’l, X, X+ U)|
c; (11 oL\ (R)?
Salld) Y

Inequalities (32) and (33) can be shown as in the proof of (5.7) and (5.8) in Konakov and
Mammen (2002).
Using (31) we obtain, for » = 2,
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1 J cr! ( 1) (r—l 1)
- coodul = B B{——., =
‘ n; n 272 2 72
(r-3)/2 1 o
X — o |6 (= )iy — wdu
L6 )
cro /11 ro1 (kU2
< Bl=,=) ... -Bl=,= |- rLOkG, —x). 34
) s () e oo
C r-l 1 1
B(e, €)B +e£ -...- B E—i—(r—Z)s,s

For j € J, we have, with ¢ € (0, %),
(r—2)e 1 o
X Z( ) nl/z—e(k/n_j/n)l_gJC"j(”_x)g(y—u)du

JjeS2

J€J2

1A

. (r—1)e
52 B(e, S)B<l+e e) e B(1+(r e, s> <5) gk, —x). (35)
€ 2 n

To estimate the term /Il in (30) we use the following estimate for the derivatives:

DS @p (M1 + 17PN 4+ Moo+ H) = p @, (M 12 + H)OYO, k/n, x, )|

cro /11 F\ (NP2

Inequality (36) can be shown by induction on 7. The basic tools are integration by parts
and the following estimates for H and p,:

ik ik C
Df’;H(i, =, x, y) + Di’H<i, -, X, y)’ S —¢cp(y—x), (37)
n’ n n’ n p

(i k . ik c
‘D;‘Dxpn<£9;5xr y) DIDxpn(]’ ax’ y>‘$;§p(y_x)~ (38)

Inequality (37) is contained in Lemma 3.4 in Konakov and Mammen (2000). Inequality (38)
can be shown by direct calculations. The proof uses the representation of p, and of its
derivatives (with respect to covariance and mean) from Lemma 3.7 in Konakov and Mammen
(2000). To estimate the derivatives we also use Lemma 4 from Konakov and Molchanov
(1984). We omit the details. For estimating the term /// in (30) we again split the summation

region
III—;ZJ dut— ZJ

JjeN /6-]2

To estimate (1/n))" ., | ... du we use the direct estimate
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) ) ok
‘p@)n (M, +n 12N, + Mo + H) 1)<0, el y)

- - k
— P @y (My1n+ H)Y (o, %, y) ’

crt 11 r—1 1\ ("2 .

To estimate (1/n)) . e | ... du we apply integration by parts and (36) several times. This
completes the proof of (27).
Asymptotic treatment of T3. We will show that

n n

~ ~ 1 (r)

Ty=> p&, HOO, 1, x, ) =Y _ p@, [H+nN2} 0,1, x, )+ Ri(x, »), (39
r=1 r=1

with Ny(s, £, x, ) = (L — L)aa(s, t, x, ¥), |R¥(x, y)| < Cn~ ' &y —x) for 6 >0 small

enough, and a constant C depending on o. For the proof of (39) it suffices to show that, for &

small enough,

S P @ (H+M,+n PNy + 07 N0, 1, x, ) =D p @y (K + M), 1, x, )

r=1 r=1

< Cn '8y — x), (40)

> P ®a (H+ My +n 2N, 1, x, p).

r=1

P&y (H+ M, + n 2Ny + n"'N)(0, 1, x, y)

r=1
- [Z p@n HP0, 1,5, ) =Y p@, (H+n'N)"(0, 1, x, y)] ‘

r=1 r=1

< Cn’l’éé(y—x). (41)

Let us prove (40). Denote, for 0 < m < n,

Ds (0, j/n, %, y) = > [P &y (Ky + M), j/n, x, y)
r=0
— P& (H+ M+ n 2Ny + n ' N0, j/n, x, p)].

Then we have to show that

D340, 1, x, y)| < Cn™'°&(y — x).
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We now make iterative use of
D3,m = D3,mfl Qn (H + Mn + n_l/le + n_lNZ) + hmfla

for m=1,2,..., where

(0, j/n, x, y) = — Emj P @n (Ky+ M) @, (H=Ky+n >Ny + n"'No)O, j/n, x, y)
=0
= Sum @ (L= L)dn(0, j/n, x, y)
with
dp=pu—p—n"a -2,
Snm(0, i/n, x, y) = Em: P @ (Ko + M), i/n, x, y).
r=0

Iterative application of this equation gives

n—1

D30, 1, x, ) =Y e @y (H+ M, +n PN+ 0 !N 7700, 1, x,). (42)
r=0

To prove (40) we will show that

\hy @y (H + M, + 07 2Ny 4+ 07 Np) =000, 1, x, p)|

< nlécnrlB<1’ %) R B<HTI’1, %) C(y — x), (43)

For this purpose we decompose the left-hand side of (43) into four terms:
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1 . ‘ .
ay) = g Jh,(O, i, X, u)(H+ M, +n 2N, + nlNz)("'l)(l, 1, u, y)du,
- n n n
0<i<n/2
1
ayp = E A ﬁ E A JSnr<Oa > X, U)
n/2<isn 0<k=i/2
) . .
X (L — Lyd, (—, Lo, u)(H + M+ 02N+ Ny (i, 1, u, y) dvdu,
n’ n n

1 ~ k
az= = > J(LILZ)S"’r<O’n’x’ u)

n/2<isn’ i/2<k<i—n®

. )
X d, (-, Lo, u)(H+ M, +n 2N, + n-‘Nz)<"-’-'>(i, 1, u, y)dudu,
n n n

S by Jw ok

n/2<isn’ i—n¥<ks=i-1

N
~
N

Il

ki .
X d, < Lo, u)(H M+ 072N+ N <’, 1,0, y> dvdu.

n n n

Here L' and L' denote the adjoint operators of L and L. Note that

2
(L' — Zt)f(S, t, x, u) = l 8—

t
2 = auiaujlj‘(sﬂ 5 Xy u)

0
X (03(u) = 05i(¥)] = Za[f(sa 4, x, w)(mi(u) — mi(y))]-

In particular, we have
h, = (L' = LS, @, d,.
For the proof of (43) it suffices to show, for j =1, ..., 4, that
1 n—r—11
—1-0 prn—r—
jay,| < n'70C 13(1,5) e B<f,5)c<y—x). (44)

For j =2, claim (44) follows from (12) and (15) by noting that, for k < i/2, n/2 </,
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k 5-2
S"’r(o’ '’ U> ‘ < Clkjmn(0 =),

i
‘(H + M, 4 n 2Ny 4 0Ny (;, 1, u, y) '

- -l i\ ? 1 n—r—11
\C 1—; B 1,5 B #,E C((nfi)/n)l/z(y_u)’

(ki 3/2 55—
‘(L — Lyd, (;, U u) ‘ < Cn PG00y (0 = w). (45)

Let j = 3. We apply the fact that i/2 < k <i— n%, n/2 < i. It follows from (11), (13),
(15) and (45) that

(L' = L)Su.1(0, k/n, x, 0)| < CL5/foyin (0 — ),
| du(k/n, i/n, v, w)| < Cn>p=3 8% (u - v)

with p = \/(i — k)/n. Note that

. k ko
'— J(L’ —INS,, (o, £ ox u) d, <—, Lo, u> dv
ni/2<k<i7n‘3' n non

> n )

i)2<k<i—n®

< el S -

n .
i/2<k<i—n°®

=

S| =

< Cn "5 (u - x),

for 0" small enough.
Now let j=4. For i — n® < k<i—1, n/2 <i, we have
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« k ki
J(Lt - Lt)Sn,r <Oa ;, X, U)i)n <na %9 U, u)dU

= J(Lt - i‘t)Sn,r (0, %) X, U — % - @) q(i_k)(ua W)dW
n
= (L' = IS,,, (0, - m(”)>
n n

1 <& PR k mu)\]i—k
+ 5};} DWjW/ |:(L - L )Sn,r(os ;’ X, U — T n Oj,l(u)

+ 0" (u - x),

for 6 small enough. Here (A2) has been applied and the equalities
Jq(i’k)(u, wydw =1, Jw;q("’k)(u, w)dw = 0, Jw;qu(i’k)(u, wydw = (i — k)o ji(u)

used. The same expansion holds with p, replaced by p. Furthermore, one can show by partial
integration that

- k 1 . 1. ki 1
Jo = 205,00 ) | ] (o o = 00—,

for 6 small enough. Hence, (44) holds for j = 4.
Finally, let j = 1. We define

as= Yy iz > J(L’if)sn,,(o,%‘,x, u>

n :
0<i<n/2 i—nd' <k<i-1

5
n

L )
d, <—, Lo, u)(H M+ 0PN+ Ny (i 1, u, y>du du.
n n

By integrating by parts with respect to v and by using (45) and arguments as in the proof of
(44) for j =4, one can show that

la,s| < O(n_l_‘s)B<1, %) ca B(n—Tr—l’ %) (y —x),

for & small enough. Now, by using arguments as in the proof of (44) for j = 3, one can show
that

s 1 n—r—11
ja—ars|<Om'")B(1,2) ... Bl ———, = -
06— arsl = 00 0(1.3) - B(PTS T D)y -,
for & small enough. This shows (44) for j = 1.

Now for (39) it remains to show (41). This can be done by arguments as in the proof of
(27).



Edgeworth expansions for Markov chains 621

Asymptotic treatment of T,. We will show that

Ty= —n /2 Zﬁl ®n (H+ M1 + V2N, 1, x, y)
r=0
—n 'Y @, HOO, 1, x, y) + Ry(x, ) (46)
r=0

with  |R,(x, )| = o(n~'7%) - &y —x). Note, first, that with  S,(s, 7, x, y) =
S (K + M), t, x, ), the term T4 can be rewritten as

Ty =(p—pn)O, 1, x, ¥) + (P — Pn) @n Su(0, 1, x, y).
To prove (46), we start by showing that, for 0 > 0 small enough (uniformly for x,

y € RP),

1 : : ,
‘; 3 J(pn —p)(o,i, x, u)S(i 1, 1, y)du < 'Ly —x), @7

1<j=<n®

for 0’ small enough. For the proof of (47) we will show that, uniformly for 1 < j < »n° and
for x, y € R?,

Jf?n(()» J/m, x, wSy(i/n, 1, u, yydu = S,(j/n, 1, x, y)+ o(n Ly — X)), (43)
Ji’(oa J/m x, wS,(i/n, 1, u, y)du = S,(j/n, 1, x, y)+ o(n~°L(y — x)). (49)

Claim (47) immediately follows from (48) and (49).

We now show (48) for j = 1. The proof for j = 1 and for (49) follows along the same
lines and, in particular, makes use of the last condition in (A2). For the proof we will make
use of the fact that, for all 1 < j<n and all x, y € R? and |v| =1,

1DYS.(j/n, 1, x, )| < CA = j/n)"'Ey(y — x) (50)

for some constant C > (. Claim (50) can be shown with the same arguments as in the proof
of (5.7) in Konakov and Mammen (2002). Note that the function @ in that paper has a
similar structure to S,. For 1 < j < n°, the bound (50) immediately implies, for a constant
C' >0,

|DLSu(j/n, 1, x, )| < C'E(y — ). (5D

We have p,(0, 1/n, x, u) = n?/>q[u, /n(u — x — n~"m(u))]. Denote the determinant of the
Jacobian matrix of u — n~'m(u) by A,. So, because of (A2) and (51), and substituting

w = /n(u—x — n~ m(u)),
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Jpn(o 1/n, x, u)S, < 1, u, y>du

= J n”/zq<u, ﬁ(u—x—%m(a)))&,(%, 1, u, y)du

1
= q<x+w+mi”),w>An1Sn(n 1, +T+m(”) y>dw

= {tge. w) + o(n™ 2w+ DL + o(n)S, (1 1 x+7+’"(”) y)dw

n

=S, ( L, x, y) + o(n~ é)@(yfx)
From (47) we obtain that, for some & > 0,
L= (p~ p)O, 1% +%né;§nj(i7 o002 oxu)su (Lot yYaut Ry )
with |R,(x, y)| < Cn~'%'E(y — x).

We now make use of the expansion of p, — p given in Lemma 5.2 . We have, with
p=(j/m'2 = b1,

‘ Z 32 Jjgﬂ(” — S, (n 1, u, y>du

/n"

n! Z p72+6’Jgp(u —x)S, (%, 1, u, y> dul,

j=n®

< C}’l7176

where 8’ < (1 —0)~!, and 8” > 0 is small enough. Now using arguments similar to the
proof of (19), we obtain that

n
n! Zp’”‘y‘[ »(u—x)S, ( 1, u, y>du C&(y — x),
=
for a constant C. This shows that
Ty = — [n_l/zftl + n_]frz} 0,1, x, y)
J J ,
__Z P +n 7 O,;,x,u S, ;,1,u,y du+ R,'(x, ),
j=n?

with |R,"(x, )| < Cn~'%"E(y — x).
Claim (46) now follows from (47) by application of the expansions of K,, used above.
Asymptotic treatment of Ts. From Lemma 5.4 we immediately obtain that
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75| < O(nE(y = ).
Plugging in the asymptotic expansions of Ty, ..., Ts. We now plug the asymptotic

expansions of T, ..., Ts into (17). This gives

o0
P, ¥) = p(x, ) 2= 072> "0 @, (H+ Mgy + 17 2PNDAO, 1, x, p)
r=0

+ Zﬁ ®n [(H + Mn,ll + nil/le)(r) - H(V)](O’ 19 X, J’)
r=0

+> P @ [(H+ M) = HY)0, 1, x, y)
=0

1o , 1 e
+=3 @@ HO0, 1, x, 9) = 5= p @, (L— L)’ p®, DO, 1, x, y),
n r=0 2n
(52)

where = denotes an equality up to terms that are smaller in absolute value than
Cn~'=% exp[—C'(x — y)?] for positive constants C, C’ and 0.

To prove Theorem 4.1 it remains to show that the right-hand side of (52) can be
approximated by n~'/?m;(x, y) + n~'m(x, y). We prove this claim in three steps. First, we
prove that p,(j/n, k/n, x, y) can be replaced by p(j/n, k/n, x, y) in M, 11, M,12, M1
and M, 3;. Then, we show that the convolution operator &, can be replaced by the operator
® in (52). Finally, we show that the resulting expression is asymptotically equivalent to
n=2m(x, y) + n7lma(x, ).

Asymptotic replacement of p, by p. We now show that

palx, ») = plx, ) = 02y + pt @, Byl ®, DO, 1, x, »)
+n Y[+ @ @, @@, By + pt @, By + pl @, R3] @, O, 1, x, »).
+pt @, Ry @, )20, 1, x, y) +5p @, (L2 = L2)pY0, 1, x, »)}, (53)

where
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3'Rl(S) Z, x, y) = (L - Z‘)ﬁl(sa t, x, )’) + M3(S, t, x, y) - M3(s, t, x, y)a

Ry(s, t, x, y) = (L — i)f[z(s, t, X, y)+ My(s, t, x, y) — M4(s, t, x, ),

1
3'RS(Sa Z, x, y) = Z ﬁDzi)(Sa Z, x, y)(Xv(x) _Xv(y))a

[v|=4""

) 1
MyGs, b, 2 p) = 3 EEZDUpGs, 1%, ),
[v|=3 '

v ptv(y) Vo~
M3(S) t, X, J’) = Z ! Dxp(sa t, X, y)a
[v|=3 '
_ lui/(x) Vi
My(s, t, x, y) = Z ' Dimy(s, t, x, ),

=

Ma(s, t,x, 0) = > mv('y) Dizi(s, 1, x, ),
[v|=3 ’

PGs, 1, x, ) = (P @y P)(s, 1, X, ¥).

We will make use of the approximation

palx, ¥) = p(x, )2 72> "7 @, (H+ Nopy + 07 2NDD(0, 1, x, )
r=0

P @y [(H+ Noypy + 07 V2NDD — HDY0, 1, x, p)

n
gk

i
(=]

P @y [(H+ Nyi2)” — HYO, 1, x, )

n
M2

S
Il
(=}

ﬁ On [(H+ Nn,21)(r) - H(r>](0a 13 X, y)

hE

~
Il
[=}

+ Y p®, [(H+ Nu3)” — HJO, 1, x, p)

NgE

I
(=]
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+ > p @ [(H+ n ' Ny — HJ(0, 1, x, y)
r=0

p @n [(H + n~'N3)"” = HP)(0, 1, x, y)

+
NgE
S

(=]

1
+= an @y HOO, 1,5, 3) =5 p &y (L= L)' p @, @0, 1, x, ),
r=0

(54)

where Ni(s, t, x, ¥) = My(s, t, x, y) — M4(s, t, x, y) and where N, ; is defined as M, ; but
with p, replaced by p.
A proof of (54) is given below. To simplify (54) we make use of the identities

> p@n [(H+n "N = HOYO, 1, x, y)

r=0

=1 :
Zn— B, (N @, )70, 1, x, y), (55)

Z o [(H + n7 2N — HOY0, 1, x, ¥)

P @ (N @, @)7(0, 1, x, p), (56)

\\Mg

r/2

where N is one of the functions #nN, 12, nN,21, nN,3, N, or N3 and where
N’ = nl/ 2Nn,11 + Nj. These identities follow from linearity of ®, by simple calculations.
We will show the following approximations for the right-hand sides of (55) and (56):

<1 1
D@ (N @y @70, 1x, y) = p @, N @, @0, 1, x, ), (57)
r=1
o0
1 d ’ (r) 1 d
Yot e (N, @70, 1, x, 1) 2 2 p’ @, No, @0, 1, x, y)
r=1 h n

1
+ = p @ (N @ @20, 1, x, ). (58)

We prove (57) for N = nN, ». The proofs for the other cases are essentially the same.
For r =1 and |v| =4 it is sufficient to estimate

k—1 . .
1 B k
- de (0, L x, ) D'p (’, =z y) (t(2) — pn(y))dz.
=0 n n n n

Splitting the last sum into two sums
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T
L

=) D>
{j:j/n<k/2n} {j:j/n>k/2n}

Il
o

J
we obtain by applying integration by parts and using Theorem 2.3 in Konakov and Mammen
(2002) that

. k K\ 2
‘(P @ N ®, @) (0, % y)‘ < C(;) b iy (¥ —X).

This bound implies

1 k 1 ~
‘zpd @ (N @, ®)? <0, -, X, y>‘ = ‘Hé (P& N®, @)@, (0N @, )
n n n

/] o\ -1/
= i B(E» 8) (Z) Peik/myr(y —x),

for & small enough. Iterative application of similar arguments for » = 2 gives

1 k
‘;pd n (N Qn q))(r)(os ;5 X, y)‘

cr (1 1 1 k\ VA
< WB<E’ s)B(EJr e, s> B<§+ (r —2)e, s> <Z> ¢C,(k/n)1/z(y —X).

(59)
The bound (59) immediately implies (57) for N = nN, 1.
By plugging (57) and (58) into (54) and taking into account the relation
1 ~ ik 1 ik
—(Lx — L)2ﬁ<i, -, x, y) +-R; (i, —, X, y)
2n non n non
ik
= (Nn,12 + Nn,21 + Nl’l,31)<i) — X, y)»
n n
we obtain (53) by collecting similar terms. So it remains to show (54).
To do so, we shall use the recurrence relation
lZ P @ (H+ M) =" pe, (H+ Nn,lzw] ©, 1,x, )
r=0 r=0
n—1 n—1
- Z[N) ®n (H + Mn,lZ)(r) - ZIB ®n (H + Nn,lZ)(r)]
r=0 r=0
Qn (H + Mn,12)(07 1: X, y) + Sn Rn (Mn,12 - Nn,12)(0a 1, X, y), (60)

where S,(s, £, x, y) = 32" p @n (H + N,12)"(s, ¢, x, y). For fixed v, |v| = 4, we consider
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1 n—1 . . .
—zzjsn@,i, X, u) Gl y)<D;pn (i, L, y) —Dzi)(i, L, y))du
n = n n n
1 1
== ZA ot Z =1+ 1, (61)

where

Gy(u, y) = uy(u) — t(y) — Z VINW, v")p (0) ity () — iy ()
v'|=2

with N(v, v") defined as in the statement of Lemma 5.4.

We start by estimating /. For the summand in / for j=n—1 we have to consider
Po(n—1/n, 1, u, y) = n??qy, /n(y —u — m(y)/n)]. With the substitution w =
Vn(y —u— m(y)/n) and using integration by parts, one obtains

—1 —1
JSn (0, — , X, u) G,(u, y)D) p, <—n , 1, u, y) du
n n

= nf’/szz [S,, (0, "—;1 X, u) Gy(u, y)]q(y, ﬁ(y— u —%m(y)»d“

= JD; [Sn(O, n—_l, X, y—W—m(y)> Gv<y—w—m(y), y)]q(y, w)dw
n Jn oo on n

\/ﬁ
=D’ {S,, (0, ”—nl x, u> G (u, y)}

Analogously,

+ o(n~%)&(y — x).
u=y

—1 —1
an (o, LA u) Gy(u, Y)D' p ("— 1, u, y) du
n n
n—1
- DZ |:Sn <09 Ta X, l/l> GV(“’ y):|

These two expansions imply that the summand in [ for j=n—1 is smaller than
Cn279¢(y — x), for ¢’ small enough. For n— n® < j < n—2, one can show the same
bound. This implies that

+ o(n*)&(y — x).
u=y

11| < Cn "8y — x), (62)

for &' small enough.
We now treat the sum /7. For 0 < j < n— n® we have that p, = \/1 — j/n = n®"D/2,
By applying integration by parts we obtain
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1 . . .
n=— 3 JDz'[sn<o,fq,x,u)Gv(u,y)}Dz“{m(fq,l,u,y)ﬁ(fq,l,u,yﬂdu

0=<j<n—nd

| . . .
== Z JDf/ [S,, (0, i, X, u)] Gy(u, y)D) [p,, (i, 1, u, y) —f)(i, 1, u, y>}du
n n n n

0<j<n—no

| . . .
t— S Do ls. (0.1, 5 u)[ DG DL B (L L y) — B( L 1wy )| du
n2 u n u u n n

0<j<n—nd
| . . .
+= > jsn (o,i,x, u) DGy (u, y) Dy [ian (i, 1, u, y) p(i, 1, u, y)}du
n 0s<j<n—nd n n n
=I'+1'+1'

For I' one can show that |/'| < Cn~'"°¢(y — x), with O small enough. The summands /I’
and //I' can be bounded similarly. Because of the expansion given in Lemma 5.2, this only

requires application of the estimate
D; [Sn (0, i, X, uﬂ
n

1 3
DSV Gl — wdu
S [
< (Cn 1-0 ;Zpl 1p22+6 Jépl(u —X)sz(y— u)du
j=1

0=<j<n—n®

< Cin 0Ly — ),

with p; = +/j/n and 6’ and 6” small enough. With the resulting bound on /7 and with (61)
and (62) we obtain

|Sn ®n (Mn,12 - Nn,lZ)(Oa 1; X, y)| = Cnn_]_élg(y - x), (63)

where > 0° | C, < co. From iterations of (60) and (63) we obtain

< Cnfl*éf(y — X).

o0 o]
[Z P @ (H+ M) = pe, (H+ N,,,u)‘”} . 1,x, )
r=0 r=0

For the terms in (52) that contain M ,; and M, 3, analogous estimates can be obtained for
the errors if M,,; and M,3, are replaced by N,»; and N,3;, respectively. In M, ;; we
replace p, by p+ n'/?7; and we obtain a similar bound for the resulting error. By collecting
these bounds we obtain (54).

In the next step of the proof of Theorem 4.1 we will replace p? by p in our expansion of
Pn— P-

Asymptotic replacement of p? by p. We now show that in (53) p¢ can be replaced by p.
This gives the expansion
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Pa(x, ¥) = plx, ) 2 0™ Pl 4 p @, Bi] @, DO, 1, x, )
+n H[m +m @, @R, By + po, Ry + p e, Ry]®, DO, 1, x, ¥)
+p @ B @, D)0, 1, x, y) +3p @, (L3 = L)p(O, 1, x, y)}. (64)

The proof of claim (64) immediately follows from the formula

I /
.p<0a_7x9 y>_pd<09_ax9 y>’
n n
c 1 ¢ e+ 1 e\ /12 1
= - B(E’ E) B(T, E) (;) Demr(y —Xx), S (0, 5) (65)

To prove (65) we proceed as in the proof of Theorem 2.1 in Konakov and Mammen (2002).
This gives the relation

/ /
p<0)7x7y>_pd(073x5 y)
n n

1 ~ / 1 /
:_p®n (L_L)Zi)@nq) Oa_sxay +_R Oa_sxay s (66)
2n n n? n

where

I=1 1 i=1 o(j+1)/n N\ 12 1
R(O,i,x,y)z Z;ZJI [n(u—i)} duJO(l—é)chsz

=0 Jj/n

N —

: Up(O, s, %, U)(L — i)3p(s,, i v, z> dv® (i % z, y)] (67)

with s; = s5;(u, 0) = j/n+ 0(u — j/n). By iteratively using integration by parts in (67), a
derivative operator of order 3 can be transferred from p to ® and a derivative operator of
order 1 can be transferred from p to p. We also make use of the inequality

2

IDEp(s, 1, & E+x)| < Ci(t— ) P exp {—Cz I }
(t—=s)
This enables us to pass from derivatives with respect to v to derivatives with respect to z.
Using beta functions to bound the integrals appearing in the definition of R(0, %, X, ¥), one
can show that 77 2R(0, £, x, y) is bounded by the right-hand side of (65). The first summand
in the right-hand side of (66) can be estimated analogously. For the proof of this claim with
the help of integration by parts a derivative operator of order 1 is transferred from p to ®
and a derivative operator of order 2 from p to p. By using linearity of ®, and by applying
(65) we easily obtain that p? can be replaced by p. To prove that ®, can be replaced by ®
in the last summand of (53), we proceed as in the proof of Theorem 2.1 in Konakov and
Mammen (2002). This gives the inequality
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C
P& (L, = L)p(0, 1, %, y) = p@ (L, = L)p(0, 1, x, p)| < —pea(y = x).

We now come to the next modification of our expansion of p, — p.

Asymptotic replacement of p @, (31 ®, ®)P(0, 1, x, y) by p@ R ®, ®)?(0, 1, x, )
and of p®, R; ®, O, 1, x,y) by pR,;®, ®0O,1,x, y),i=1,2,3 We now show the
expansion

pa(x, ¥) = p(x, ) = 0Pl + p@ Ri] @, @O, 1, x, y)
+n H[m+m @, P, B+ pe Ry + pRBs]®, PO, 1, x, »)
+p 0@ ®, )0, 1, x, »)+3p® (L2 — L)p(O, 1, x, y)}. (68)
This follows from the estimates
p@R; @, @O, 1, x,y) — p@, R; ®, DO, 1, x, y)| < Ce)n T pei(y —x) (69

for i =1, 2,3 and for ¢ € (0, %). Thus it remains to prove (69), which we do for i = 1. The
proof for i =2, 3 is quite similar. Because of linearity of ® it is sufficient to consider the
differences corresponding to the four summands in the definition of &,(s, ¢, x, y). The proof
for the four summands is quite similar. We only consider the difference p ®
L7, ®, D00, 1, x, ) — p®, L7, @, D0, 1, x, y). As in the proof of Theorem 2.1 in
Konakov and Mammen (2002), with H replaced by L ®, ®, we obtain

P& La @, ®0, 1, x, y) — p®, L ®, D0, 1, x, y)

1 .. 1
:Ep ®n (LL — LL); ®, P(0, 1, x, y)—&-ﬁR(O, 1, x, »),

where now

1n71 1 =1 o(j+1)/n j 2 1
RO, 1, x, y) = 5 ;ZJ [n(u—;)] duJO(l —é)déjdz

=0 " =0 Ji/n

- l l
: Up(O, sj, X, O)LL — LLY* <sj, -, 0, z)ducb(—, 1, z, yﬂ
n n

These terms can be bounded by using integration by parts and dividing the sums in the
definition of R into appropriate partial sums. This completes the proof of (68).
We now further simplify our expansion of p, — p. We prove the expansion

palx, ¥) = p(x, ) = n 2 (p @ Filpal)(O, 1, x, y)
+ 1 Y (p® Falpal)O, 1, x, y) + (p @ F1[p @ F1lpalD(O, 1, x, y).

+3p @ (L, — L*)p(0, 1, x, »)}, (70)



Edgeworth expansions for Markov chains 631

where for t € {1/n,..., 1}, s€[0, t —1/n]

pa(s, t, 0, y) = (p &, ®)(s, 1,0, y)

ntl
_p(stuy)—i—z J ( J UZ)CI>1< tzy)dz.

j>ns

Here @, = °° | H", H" = H""Y @, H, and the binary type operation ®, is defined as
follows:

nt—1 . .
1
(f & 8)s, 1, %, 3) = Z;Jf(s, L%, )g(i t 2 y)dz.

j=ns

Note that for s € {1/n, ..., 1} the operator ®, coincides with ®,.
The proof of (70), begins by noting that the linearity of ® implies

(P®3Rl)(ss f, x, y) = (p® Lﬁl)(sa Z, X, J’) - (p®z‘ﬁ1)(sa Z, X, y)

+ (p ® M3)(S’ Z, x, y) - (p 0y M3)(Sa Z, X, y) (71)

We now consider the second summand on the right-hand side of (71):

(p @ La))(s, t, x, y) = Z#V(y)J erp(s 7, x, 0)(t — T)D), (Lp(z, t, v, y)dv
[v|=3 S
Uy (y) (2 m(y)
o Al
[v]=3 s Iv]=3 o2
=1+1.

By application of the Kolmogorov backward and forward equations and by using integration
by parts with respect to the time variable, we obtain that
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-2

[v|=3

-2

[v|=3

(s+1)/2
)

p!

(t—>s)

D} p(t, t, v, y)(

ap(ss T, X, U)

ot

s+t

Analogously,

Il = Z
[v|=3

D

(s+1)/2
vl
(s+1)/2

vl

2

w(y)

o

(t—s)

2

, X, U)D

dr(t—T)JL p(s, T, x, v)D} p(t, t, v, y)dv

s+t

(t

o~
v

p!

[v|=3

()
p!

()

!

2

p(s. %5

(S
s X, U)sz(Ta

V. Konakov and E. Mammen

) (s+0)/2 0 N
U (y)J J dt(t — 1) p(s, T, x, V)5 (Dyp(, t, v, y))
M(y)J [P(s 7, x, )(t = DDy (T, 1, v, IS

—1)— p(s, T, X, U)) d‘r]

t .
p(%, t, U, y)dv+m(s, t, X, y)

erp(s 7, x, V)D) p(z, t, v, y)dv.

t
+ t, v, y)du

1
J dz(t — )JL p(s, 7, x, V)D} p(t, t, v, y)dv
(s+1)/2

t
J erp(s, 7, x, V)D), p(z, t, v, y)dv.
(s+0/2

(72)

(73)

|v|=3

Substituting (p ® La;)(0, 1, x, y) = I + II into (71), we obtain, after cancellation of some
terms,

(s, %, y)+ (p @RS, 1, x, p) = (p © M3)(s, 1, x, ). (74)
Similarly, by using integration by parts with respect to the time variable, we obtain
(71 & P1)(s, 1, x, )+ (p @By & Pi)(s, 1, x, ) =(p®@ M3 &) Pi)(s, 1, x, ), (75)
where t € {1/n, ..., 1}, s € [0, t — 1/n]. From (74) and (75) we have
(T @ P)(s, 1, x, y)+ (p @R @, P)s, t, x, y)
=(p® M3 &, ®)s, 1, x, y) = (p @ Filpal)(s, 1, x, y). (76)

Using arguments similar to the proof of (76) one can show that
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(1 @ @+ p Ry @, 4 p B3 @, P)(s, 1, x, y)
= (PO M4, ©+ p@ F[p] @y P)(s, 1, x, y)
= (p @ My &) ®)s, 1, x, y) + (p @ Falpal)(s, 1, x, y). (77)
By plugging (76) and (77) into (68) we obtain that the right-hand side of (70) is equal to
n ! P(p @ FilpaO, 1, x, ») + n"H{(p @ Falpal +3p ® (L, — LP)p
+PRMy®, P+ ®, PR, By ®, P+ pe R @, P)P)O, 1, x, )} (78)
For the sum of the two last terms in (78) we obtain, from (76),
[ @, @+ p R ®, PR, R @, D)0, 1, x, y)
={(p @ Filpal) @ By @, P}O, 1, x, y) = p @ Filpa @ (B1 @y PO, 1, x, »).
Moreover,

(p® My ®;7 (I))(O’ L, x, y)

1
= J dqu(O, u, x, ) Z ,uzl('v) Dy (1 &, P)(u, 1, x, y)]dv,
0 =3

and, hence, the sum of the last three terms in (78) is equal to
(p @ Film @, ® + pa @, Bi @, PO, 1, x, y).
For the proof of (70) it remains to show that
(p @ Film @, © + pa @, By &, PO, 1, x, y)
~ (p @ Filp @ FalpalDO, 1, x, y). (79)
We shall show that
n N (p @ Fil(p = pa) @ (1 @, IO, 1, x, y) 20 (80)
and
n(p @ Filp & Ri @, DO, 1, x, ) = 0 (p@ Filp @ B @, PO, 1, x, y). (81)
Then (79) will follow from (80), (81) and (76). We now make use of the representation
plu, j/n, x, y) = pau, j/n, x, y) = (p @ H — p & H)(u, j/n, x, y)
+{(p® H—p®, H)& ®1}u, j/n,x,y), (82)

where
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)/ n

dTJp(T/I, T, X, Z)H<T’ i: Z, J’>dz+R<”, 15 X, J’)>
n n

S NEEE

(p®» H—-p&, H)<u,£,x,y) :J

u

i—1

=
I/~
=
S |~
=
<
~_
Il
~.

i=7*(u)

< 23(nL1s)|

where j*(u) = [un] + 1 (with the convention that [x] =x—1 for x€N) and 7* =
(i, 8, T) = i/n + &(t — i/n). Representation (82) was obtained in the proof of Theorem
2.1 in Konakov and Mammen (2002). For the remainder term R the following estimate holds
uniformly in 6 € [0, 1] and for j = j*(u) + 2:

Il
~.

dzdd dr,

=7*

R(u’ < ]‘52 : : Pp(y —x)
U, =, x <— —- : —x
A n n (j/n—i+1/n)p? oy

i=j"(u)

J/n dr Cc (Ub/n dr C
e e e M vy s SR L

C
< 2= BE Doy — ), (83)

where p = /j/n—u. For j=j*(u)+ 1 the estimate (83) follows directly from the
definitions of p and pa. Moreover,

)/ n j
J erp(u, T, x,z)H (”L’, =,z y> dz
n

u

=

o [Fw
n

C
_u'qu(y_x)sﬁ'(pp(y_x)
(84)

and, hence, the estimate (83) holds for the first summand in (82). It is easy to obtain that the
same estimate (83) remains true for the second summand in (82): it follows from the
smoothing properties of the operation ... ®;, ®;. Hence, we obtain an estimate

J J c
p\u, =, X% Y| —pAa\U —, X ) = 1/2—¢ B(Ea 1)¢ﬂ(y - x)' (85)
n n nl/

We only sketch the proof of (80) and (81). From the definitions of 3; and ®; we have

. e—1/2 1
‘(3&1 ®n q)l)(ﬁ’ 1, z, y)‘ < Cn€<1 —i) B(s, E) “Pa—jyr(y — 2), (86)

n

and from (85) and (86),

, C(e)
‘(p — pA) @ By ®,Pi(u, 1, v, y)‘ S i Da—uy2(y — V). (87)
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Now for each summand in (80) we split the integral into two integrals

n—1 .
o [ ] 0 wx 02 | $7 L fip— pir (L) e, @ (L1 0) ae

/:j*(zo
1/2 1
:rflj du ...+ n*J du =1+ 1I. (88)
0 1/2

By integration by parts we obtain from (87) that I ~ 0. To estimate / we consider two cases:
(@) j/n—u=y (b) j/n—u<i 1—j/n=1 In case (a) we differentiate with respect to v
in (88) and use (82). With the substitution v + w' = w, we have

7 w)/n Jj
J erp(u, 7, D, W)H(‘L’, =, w, z> dw
" n

- (u)/n Jj
J erp(u, 7,0, 0+ w’)H(r, —,v+w, z) dw’
n

u

D,

C
= ; . ¢(j/n7u)'/2(z — U),

where we have used the fact that j/n — 1 >% for 7 € [u, j*(u)/n] for n large enough, and
where we have used the inequality

D p(u, 7, 0, 0+ w)| < —C . exp|—C [w? (89)
P (T — u)r/? T—ul
This inequality is proved in Freedman (1964, p. 260). The other terms in (82) can be
estimated analogously. Finally, in case (b) with similar substitutions we make use of (89)
and of the following inequality (see Konakov and Mammen 2002):

, G [w' |2
|DyH(u, T, v, v+ w')| < m'exp[ Cz

—u

The proof of (81) is similar to the proof of Theorem 2.1 in Konakov and Mammen (2002),
but with A in Konakov and Mammen (2002) replaced by 3R;. We omit the details. This
completes the proof of (70).

Asymptotic  replacement of pan by p. We start with a comparison of
nYp@FpDO, 1, x, ) and n'(p® Fa[pal)O, 1, x, y). Note that by linearity the
difference of these two terms is equal to n~'(p ® Fa[p — pal)(O, 1, x, ). We will use the
following simple estimates

-0

J” dqu(O, u, x, z) - xu(2) DY p(u, 1, z, y)dz} =< Cnié(p(y —X),
0

1
J duJDz[p(O, u, x, z) - xu(2)] - p(u, 1, z, y)dz| < Cn’%)(y —X),

1—n—
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-0

J dqu(o, u, x, z) - xu(2) D% pa(u, 1, z, y)dz
0

< Cn°¢(y —x),

< Cn°p(y — x).

1
H bduJDz[pm, Uy %, 2) - 72(2)] - pat, 1, 2, p)dz

l—n—
From the first and third bounds we see that it suffices to consider D.(pa — p)(u, 1, z, y) for
uel[n?, 1—n?°]. We obtain

-0

1—n
J dujp(o, Uy %, 2) - 7(2) - DUp — ), 1, 2, y)dz

2o
o

1/2 1—n~
:J du...+J du ... =1-+1I.
n=o 1/2

The relation n~! - II ~ 0 follows from (84) and from the following estimates:

7 (u)
n

3

jln | D0, %, 91,2

1/2

1-n° -k
< C(,zb(y—x)~Jl/2 \/%— udu

(i+1)/n i1

—Uu- ¢(17u)l/2(y - Z)dZ

n—1 C
$C¢(y—x)~;J —uduiﬁqb(y—x), (90)

i/n
n=1 " o(i+1)/n 1
J (t— l/n)J JLL’;p(u, 7,2z, V)H(t, 1, U, y)|;—p+dvdd dr
0

=y 7

n—1 (i+1)/n 1 5 B
3 | e im] [ L bz 0 Lup(e 10 )l dodode
. j 0

=1+ 1. 91)
Taking into account that u € [n%, 1 — n=°], we obtain

) C - 1
11 < W(l —u)°® 1/2B<6, 5) (v — 2),

and an analogous estimate holds for //'. Thus, n~! - I ~ 0. For u € [n~°, 1], we have that

12
s J duJDz[p(o, u, %, 2) - 1(@(p — ), 1, 2, y)dz ~ 0.

0o

This can be shown by using
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C
[DLPO, 1%, 2) - 2D = = Pz =9 < C- 12 pa(z = ).

Thus, the only difference from the previous estimate of /7 is an additional factor n%°, where
0 > 0 can be chosen arbitrary small. Using the estimates of I and /I, we obtain

n(p @ Falpa)O0, 1, x, y) = n~(p @ Fa[ p])(O, 1, x, p). 92)
We now prove that
n(p@ Filp@ FAlpIDO, 1, x, y) = n ' (p @ Filp @ FilpalDO, 1, x, y)
=n ' (p@ Filp® Filp — palDO, 1, x, y) = 0. (93)

We proceed as above. We consider a typical summand in (93):

nIE dqu(O, u, x, z)Uy(z)

1
- D! U erp(u, 7, z, V)U, (V) Dy(p — pa)T, 1, v, y)dv} dz. 94)

As in the proof of (92), it is enough to consider the integral over u € [n~?, 1 — n~°]. Now
(94) is a sum of the integrals over the boundary regions and of the following integrals:

1/2 (14-u)/2
I =n! duJDZJ dIJ...,

i’lilS u

1/2 1
I =n" duJDZJ d‘L’J...,
no (14u)/2

1-n=° (14-u)/2
Iy =n" duJDgJ er...,

1/2 u

-0

I—n 1
Iy=n" duJDZJ er....
Ji2 (1+w)/2

We show that /; ~ 0, i =1, 2, 3, 4. The proofs for all cases are similar. They use integration
by parts and estimates for the derivatives of p or of p — pa. We consider only the case /5.
For this case 7 — u 2% and we obtain from (85) that

1/2
n71J dqu(O, u, x, z)Uy(z)
)

n

. DY

z

(

C(e
< SO g -0 =0,

1
j ; drjp(u, 7, 2 VD — pa)T. 1, D, y)dv] dz
14u)/2
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for & € (0, J). This shows (93).
We now consider the first term in (70):

n 2 (p @ Filpal)O, 1, x, y) = n~ 2 (p @ Filp)O, 1, x, »)
—n 2 (p@ Filp — paDO, 1, x, ). (95)
By (82) the last term in (95) is equal to

—n P(p@ F[SINO, 1, x, y) — n” 2 (p @ FI[SDO, 1, x, )

—n P2 (p® FISDO, 1 x, ), (96)
where
J* )/ n
Si(u, 1, z, y) = Ju drjp(u, T, z, V)H(t, 1, v, y)do,
So(u, 1, z, y) = R(u, 1, z, y),
Si(u, 1,2z, y) ={(p@ H— pR, H)®, ©1}u, 1, z, y).
From (83),

C(e)
S e P -0=0,

1
n_l/ZJ duJDg[p(o, u, x, 2)u(2)|R(u, 1, z, y)dz
1—n—o

for 0 < & < 0. Analogously,

n=o

'n_l/zj dqu(O, u, x, 2)u(z2) DL R(u, 1, z, y)dz c(e)
0

S e Py —x) = 0.

For u € [n, 1 — n=°] we obtain

5

1—n~
Y J | duJ PO, u, x, (DR, 1, 2, y)dz

12
_ ,fl/zj duJ p(O, u, x, 2 (2)DR(u, 1, z, y)dz
=0

)

1—n~
2] du| DO, xR 12 )z = 1 I
12

We have / ~ 0 and /I ~ 0. This follows from simple estimates and from the following
estimate for n~'/2R(u, 1, z, y) with u € [n%, 1 — n™°]:
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n—2 (i+1)/n i
[, ()
i/n n

i=j*(u)+1

639

|n"2R(u, 1, z, y)| < n 12

1
X J J[p(u, 7,z 0)(L - Z)zﬁ(r, 1, v, )]|r—e+dv dd dz
0

(* @1/ i\ (! _

a1 (r—ﬂ[mmuzwu—m%mhmwuﬁwwm
JF@)/n nJjJo
1 i 1 ~

n—l/Z J (T - ;)J J[p(ua T, z, U)(L - L)zp(rs 1’ U, y)]‘T:T*dUdé de
1-1/n 0
= 1 - (J*(+1)/n ¥ (u)
) o anPa—wr(y -2+ I/Z'J (T— )
S <1 i 1) Fw/n n
n

x_ % 1/2J1 Pl ”[L’ (u, 7,z v)(L — L) p(z. 1, 0, y)
T 2/ n - u,7, z - s 1y Uy
(1 —1)32 1-1/n n 0 P P 4

+ LY(L - L)' p(u, 7, z, 0) p(1, 1, v, y)]dvdd de

_[ ¢ (' d C
e ) (1= pi-e + 15/2-30]2 iy —2).

Thus, we obtain n '2(p @ Fi[S:])(0, 1, x, y) ~ 0. The proof that n '/2(p ® F[S])
0,1, x, yy~0 is quite similar. First, we show that it is enough to consider u €
[7n°, 1 — n°]. Then the assertion follows from the following estimates

1/2
wq(qm%mmwwﬂhww
)

1/2
nMJMMMmmm
n—é

X D

u

J*(w)/n
J drjp(u, T,z,z+U0)H(t, 1, z+ V', y)du’} dz
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/ .
< Cnl/zj1 ’ (J*(u) - u>du Py —x) =0,

ao\ N

-0

1—n
‘n—‘/zj duJD:[p(o, y %, (IS, 1, 2, y)dz
12

C 1-n° >k

1/2 n

The same estimate holds true for the last summand in (96), that is,
n 2 (p® FiS)O, 1, x, y) = 0.

This follows from the smoothing properties of the operation ... ®; ®; and it can be shown
by similar methods to those used above. This completes the proof of Theorem 4.1.
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