
On the unlimited growth of a class of

homogeneous multitype Markov chains
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1. Introduction

The study of the extinction and/or the indefinite growth of certain biological (human,

animal, cell, . . .) and physical (particle, cosmic ray, . . .) populations have given rise to a set

of mathematical models known as branching processes. There have been so many major

works on this topic that branching processes have acquired their own nomenclature related

to population dynamics. Nevertheless, most branching processes can be considered as

examples of a more general class of Markov processes, sometimes known as Markov

population processes (see, for example, Klebaner 1994).

In the present work, we focus on homogeneous multitype Markov chains in discrete time

that take values in the space of vectors with non-negative integer coordinates. We

investigate the indefinite growth of these chains, providing one set of conditions for such an

event to have positive probability and another set for it to have null probability. However,

we try not to lose the perspective of branching processes and population dynamics, and we

retain their special terminology. Indeed, we consider not only the classical multitype

Galton–Watson branching process, but also other modified multitype branching processes,

from the more general viewpoint of homogeneous multitype Markov chains. For such

processes, indefinite growth and extinction are complementary phenomena, so that the two

problems can be dealt with together.

To this end, we consider a homogeneous m-dimensional Markov chain (HMMC)

fZ(n)gn>0 whose states have non-negative integer coordinates, S � Nm
0 , where S is the set

of states. This chain can model a population where individuals of m different types coexist.

In particular, the ith coordinate of Z(n) can represent the number of individuals of type i n

generations after the observation was started. The event we are interested in, known as

explosion of the chain, is fkZ(n)k ! 1g, where k � k is an arbitrary norm on Rm. By the

equivalence of norms on Rm we can also write the explosion event as fZ(n)1 ! 1g, with
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1 the m-dimensional vector with all coordinates equal to unity. This simply means that the

total number of individuals grows indefinitely in the explosion event.

We obtain sufficient conditions for the explosion event to have positive probability in

Section 2 and null probability in Section 3. In Section 4 we introduce a new general class

of controlled multitype branching processes, and apply the criteria obtained in the preceding

sections to investigate the extinction or survival of populations modelled by such processes.

We shall consider, for each vector � with positive coordinates (� 2 Rm
þ), the sequence of

linear functionals fZ(n)�gn>0. This process is not a Markov chain, but it has some

remarkable properties. Indeed, fkZ(n)k ! 1g ¼ fZ(n)� ! 1g, so that the explosion of

the chain is equivalent to the unlimited growth of the sequence of functionals. In relation to

this sequence of linear functionals we can introduce the variables ��n, n > 0, and the

functions g�(z) and � 2
�(z), defined for every non-null vector z 2 Nm

0 by:

��nþ1 :¼ Z(n þ 1)�� E[Z(n þ 1)�jZ(n)],

g�(z) :¼ (z�)�1E[Z(n þ 1)�jZ(n) ¼ z] � 1,

� 2
�(z) :¼ (z�)�1 var[Z(n þ 1)�jZ(n) ¼ z]:

Note that, although they depend on the chosen vector �, there is no ambiguity, so that we

shall henceforth omit � in the notation and write �n, g(z) and � 2(z) instead of ��n, g�(z) and

� 2
�(z), respectively.

2. Sufficient conditions for unlimited growth with positive
probability

In this section we provide sufficient conditions for the process fZ(n)gn>0 to grow

indefinitely, P[kZ(n)k ! 1] . 0. The conditions proposed will depend on a process of the

type fZ(n)�gn>0 for some � 2 Rm
þ . In particular, we establish the following result:

Theorem 1. Let fZ(n)gn>0 be an HMMC. Suppose there exists a vector � 2 Rm
þ such that

lim inf
kzk!1

g(z) . 0 (1)

and E j�nþ1j1þ�jZ(n) ¼ z
� �

¼ O(kzk�) for some � > 0. There then exists a constant N > 0

such that P[kZ(n)k ! 1jZ(0) ¼ z(0)] . 0 if kz(0)k . N .

Proof. From (1), there exist r . 1 and N0 . 0 such that if kzk . N0, then

(z�)�1E[Z(n þ 1)�jZ(n) ¼ z] > r: (2)

Since � 2 Rm
þ , it suffices to prove that, for kzk large enough,

P[Z(n)� ! 1jZ(0) ¼ z] . 0

or, more specifically, that there exist N . 0 and � . 1 such that if kzk . N , then
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P
\1
n¼0

fZ(n þ 1)� . �Z(n)�gjZ(0) ¼ z

" #
. 0:

Let 0 , � , r � 1, and consider � ¼ r � �. For simplicity, we shall use the notation

An :¼ fZ(n þ 1)� . (r � �)Z(n)�g, n > 0:

From (2) and Markov’s inequality, for each z 2 Nm
0 such that kzk . N0 and for every � > 0,

P[Ac
njZ(n) ¼ z] ¼ P

Z(n þ 1)�

Z(n)�
< r � �jZ(n) ¼ z

� �

< P
Z(n þ 1)�

Z(n)�
<

E[Z(n þ 1)�jZ(n)]

Z(n)�
� �jZ(n) ¼ z

� �

< P

���� Z(n þ 1)�� E[Z(n þ 1)�jZ(n)]

Z(n)�

���� > �jZ(n) ¼ z

� �

<
E j�nþ1j1þ�jZ(n) ¼ z
� �

�1þ�(z�)1þ�
:

By hypothesis, there exists some � > 0 satisfying E j�nþ1j1þ�jZ(n) ¼ z
� �

¼ O(kzk�). For this

value of � it is possible to find constants C9, N1 . 0 such that if kzk . N1, then

E j�nþ1j1þ�jZ(n) ¼ z
� �

< C9(z�)�. Hence, if kzk . maxfN0, N1g, and writing C :¼ ��1��C9,

we obtain

P[Ac
njZ(n) ¼ z] < (z�)�1C: (3)

Also, for kzk . maxfN0, N1g and k > 1,

P
\k
n¼0

AnjZ(0) ¼ z

" #
¼ P[A0jZ(0) ¼ z]

Yk

n¼1

P Anj
\n�1

l¼0

Al \ fZ(0) ¼ zg
" #

:

For every ~zz 2 Nm
0 , define B~zz :¼

Tn�1
l¼0 Al \ fZ(0) ¼ zg \ fZ(n) ¼ ~zzg. It is obvious that

fB~zzg~zz2Nm
0

is a partition of the set
Tn�1

l¼0 Al \ fZ(0) ¼ zg, and, moreover, Z(n)� . z�(r � �)n

on
T

n�1
l¼0 Al \ fZ(0) ¼ zg. Consequently,

P Anj
\n�1

l¼0

Al \ fZ(0) ¼ zg
" #

¼ P Anj
[
~zz

B~zz

" #
> inf

~zz�.z�(r��)n
P[AnjB~zz]

¼ inf
~zz�.z�(r��)n

P[AnjZ(n) ¼ ~zz]:

(4)

Since ~zz� . z�(r � �)n and r � � . 1, and from the equivalence of norms on Rm, there exists

a constant N2 . 0 such that if kzk . N2 then k~zzk . maxfN0, N1g. If kzk . N

:¼ maxfN0, N1, N2g, then from (3) and (4) we obtain

P Anj
\n�1

l¼0

Al \ fZ(0) ¼ zg
" #

> 1 � C

(z�)(r � �)n
,
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and therefore, if we choose N > C, we deduce for kzk . N that

P
\1
n¼0

AnjZ(0) ¼ z

" #
¼ lim

k!1
P
\k
n¼0

AnjZ(0) ¼ z

" #
>
Y1
n¼0

1 � C

(z�)(r � �)n

� �
:

The above product is positive because
P1

n¼0(r � �)�n , 1, which concludes the proof. h

For some Markov population processes, condition (1) is sufficient for the population to

have unlimited growth with positive probability. For example, classical multitype branching

processes, which are particular cases of HMMC, with irreducible matrix of means and

associated Perron–Frobenius eigenvalue r, satisfy condition (1) if r . 1, with � 2 Rm
þ

a right eigenvector associated with r (Seneta, 1981). Moreover, in this case

P[kZ(n)k ! 1] . 0 is equivalent to r . 1 (Mode, 1971). However, there exist HMMCs

satisfying (1) for which the explosion event has null probability, giving rise to a richer

behaviour than that of the classical multitype branching process, as is illustrated in the

following example:

Example 1. Let fZ(n)gn>0 be an HMMC such that the null state is absorbing and the

transition probabilities for each non-null vector z satisfy

P[Z(n þ 1) ¼ 0jZ(n) ¼ z] ¼ �1=kzk,

P[Z(n þ 1) ¼ b(1 � �1=kzk)�1c(a1z1, . . . , amzm)jZ(n) ¼ z] ¼ 1 � �1=kzk,

where 0 is the null vector, 0 , � , 1, ai 2 N for all i 2 f1, . . . , mg, bxc denotes the greatest

integer less than or equal to x, and kzk ¼ z1.

If a :¼ minfai, i ¼ 1, . . . , mg is greater than unity, then condition (1) holds by taking

� ¼ 1. However, it is easy to prove by induction on n that, for all n > 1 and z 2 Nm
0 ,

P kZ(n)k . 0jZ(0) ¼ z½ � < (1 � �)n, n > 1,

and hence that P[kZ(n)k ! 1] ¼ 0. h

Using the terminology of branching processes, we say that an HMMC satisfying

condition (1) is supercritical. As we saw in Example 1, there are supercritical HMMCs

which do not have unlimited growth. Unlike classical multitype branching processes, we can

determine a wider set of situations for which the positive probability of the explosion of the

chain is guaranteed. We posit the following result assuming the existence of moments of

order greater than that required in Theorem 1:

Theorem 2. Let fZ(n)gn>0 be an HMMC, and let z(0) 2 S be such that,

for every C . 0, there exists n > 1 such that P[Z(n)1 . CjZ(0) ¼ z(0)] . 0: (5)

Assume there exists a vector � 2 Rm
þ for which either

lim
kzk!1

g(z) ¼ 0 and lim inf
kzk!1

2(z�)g(z)

� 2(z)
. 1 (6)
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or

lim
kzk!1

g(z) . 0 and � 2(z) ¼ O(kzk):

Assume further that, for some 0 , � < 1 and Æ . 0, at least one of the following equalities

holds:

E j�nþ1j2þ�jZ(n) ¼ z
� �

¼ o g(z)(z�)2þ�=(log (z�))1þÆ

� �
,

E j�nþ1j2þ�jZ(n) ¼ z
� �

¼ o (z�)1þ�� 2(z)=(log (z�))1þÆ

� �
:

Then P[kZ(n)k ! 1jZ(0) ¼ z(0)] . 0.

We omit the proof, which follows steps similar to those of Theorem 2 in Klebaner (1989)

in the context of population-size-dependent multitype branching processes, given that the

inequality

E[(log (Z(n þ 1)�þ 3))�ÆjZ(n) ¼ z] < (log (z�þ 3))�Æ � Æ
g(z)

(log (z�))Æþ1
(1 þ o(1))

þ Æ

2

� 2(z)

(z�)(log (z�))Æþ1
(1 þ o(1))

holds for Æ . 0 and kzk large enough.

3. Sufficient conditions for unlimited growth with null

probability

In this section we investigate conditions for the explosion of the chain to be a null event,

P[kZ(n)k ! 1] ¼ 0. As was noted above, if � 2 Rm
þ then it suffices to obtain conditions

guaranteeing that P[Z(n)� ! 1] ¼ 0. Hence, we formulate the following theorem:

Theorem 3. Let fZ(n)gn>0 be an HMMC. If there exist a constant A . 0 and a vector

� 2 Rm
þ such that

sup
z2Nm

0 :kzk>A

g(z) < 0, (7)

then P[kZ(n)k ! 1] ¼ 0.

Proof. Let A . 0 and � 2 Rm
þ be such that condition (7) holds. It will suffice to show that

P[Z(n)� ! 1jZ(0) ¼ z(0)] ¼ 0

for every vector z(0) 2 Nm
0 . From the equality
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fZ(n)� ! 1g ¼
[1
l¼0

min
n> l

Z(n)� > A

� 	
\ fZ(n)� ! 1g

� �

and the fact that fZ(n)gn>0 is an HMMC, it suffices to prove that, for every z 2 Nm
0 such that

z� > A,

P min
n.0

Z(n)� > A

� 	
\ fZ(n)� ! 1gjZ(0) ¼ z

� �
¼ 0: (8)

To this end, define the auxiliary process fZ�(n)gn>0 by Z�(0) :¼ Z(0) and, for n > 0,

Z�(n þ 1) :¼ 0 if Z�(n)� , A,

Z(n þ 1) if Z�(n)� > A:

�

It is easy to verify that fZ�(n)gn>0 is an HMMC and that condition (8) is equivalent to

P min
n.0

Z�(n)� > A

� 	
\ fZ�(n)� ! 1gjZ�(0) ¼ z

� �
¼ 0:

Moreover, from (7), we obtain

sup
z2Nm

0 :z6¼0

E[Z�(n þ 1)�jZ�(n) ¼ z]

z�
< 1,

and consequently fZ�(n)�gn>0 is a non-negative supermartingale with respect to the

sequence of � -algebras fF ngn>0, defined by F n :¼ � (Z�(0), . . . , Z�(n)). Applying the

martingale convergence theorem, we obtain that fZ�(n)�gn>0 converges almost surely to a

finite limit, and therefore the proof is complete. h

For classical multitype branching processes with irreducible matrix of means and

associated Perron–Frobenius eigenvalue r, condition (7) holds if and only if r < 1, with

� 2 Rm
þ a right eigenvector associated with r and therefore P[kZ(n)k ! 1] ¼ 0 (Mode

1971). However, in the general context of HMMCs it is possible to obtain another set of

conditions for non-explosion allowing g(z) to be non-negative and assuming the existence

of moments of order greater than 2. In this sense, we establish the following result:

Theorem 4. Let fZ(n)gn>0 be an HMMC such that there exists a vector � 2 Rm
þ for which

lim
kzk!1

g(z) ¼ 0: (9)

Assume further that

lim sup
kzk!1

2(z�)g(z)

� 2(z)
, 1, (10)

and, for some �, 0 , � < 1, either

E j�nþ1j2þ�jZ(n) ¼ z
� �

¼ o (z�)2þ� g(z)

 �

or
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E j�nþ1j2þ�jZ(n) ¼ z
� �

¼ o (z�)1þ�� 2(z)

 �

is satisfied. Then P[kZ(n)k ! 1] ¼ 0.

The proof is similar to that of Theorem 3(1) in Klebaner (1991), again in the context of

population-size-dependent multitype branching processes, given that if kzk is large enough,

then

E[log (Z(n þ 1)�þ 1)jZ(n) ¼ z] < log (z�þ 1) þ g(z)(1 þ o(1)) � � 2(z)

2(z�)
(1 þ o(1)):

Again using the nomenclature of branching processes, we say that an HMMC is near-

critical if

lim inf
kzk!1

g(z) < 0 < lim sup
kzk!1

g(z):

Hence, under condition (9), a near-critical HMMC may or may not have unlimited growth

with positive probability (see Theorems 2 and 4, respectively).

Finally, we say that an HMMC is subcritical if

lim sup
kzk!1

g(z) , 0:

In this case, we deduce from Theorem 3 that the explosion event has null probability.

A significant situation is when there is extinction–explosion duality, that is,

P[Z(n) ! 0] þ P[kZ(n)k ! 1] ¼ 1: (11)

This behaviour is typical in branching process. Under this condition, P[kZ(n)k ! 1] ¼ 0

implies P[Z(n) ! 0] ¼ 1, that is, the population becomes extinct almost surely. Using

Markov chain theory (see Chung 1967), it is not hard to deduce that if the null state is

absorbing and every non-null state is transient then (11) holds. Indeed, conditions such as

P[Z(1) ¼ 0jZ(0) ¼ z] . 0 for all z 2 Nm
0 are sufficient to guarantee the transience of every

non-null state, obviously as long as 0 is absorbing. For example, non-singular irreducible

classical multitype branching processes satisfy (11). However the results we have provided

also apply to other processes whose behaviour is not determined by the extinction–explosion

duality, such as branching models with immigration.

Remark 1. The proposed division of HMMCs into supercritical, near-critical, and subcritical

leads to exhaustive categories with intersections that are empty for the process fZ(n)�gn>0

(for which obviously the division is also valid), but not necessarily empty for fZ(n)gn>0.

However, it is not only fundamental in determining unlimited growth, but also the starting

point for the study of the asymptotic behaviour of HMMCs, analogously to the case in

branching processes.
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4. On controlled multitype branching processes

In this section, we apply the results obtained for an HMMC to a general class of controlled

multitype branching processes that have as yet not been investigated. The main points to

focus on in order to obtain homogeneous branching models that more accurately describe

real situations are: to consider population-size-dependent reproduction; to establish control

of the number of each type of progenitor according to the population size; and to allow

interaction between individuals of the same generation at reproduction time, that is,

‘dependent offspring’.

Control of the progenitors has been proposed by Sevast’yanov and Zubkov (1974) in a

deterministic way, and population-size-dependent reproduction has been considered by

Klebaner (1989). We introduce a new multitype model integrating control and size-

dependent reproduction. This process generalizes to the one-dimensional model with control

and reproduction dependent on population size considered by Küster (1985), who studied it

for one particular situation only. In our proposed model, we assume that the number of each

type of progenitor is controlled by a random mechanism, and consider possible dependence

in the reproduction between individuals of the same generation. The introduction of

dependence represents an important novelty with respect to classical branching models,

since their implicit assumption of independence can only be considered to be a mere

theoretical simplification of the more complex types of reproductive behaviour in nature.

The following mathematical model is a possible description of such a situation:

Definition 1. Let fX i,n, j(z) : i ¼ 1, . . . , m; n ¼ 0, 1, . . .; j ¼ 1, 2, . . .; z 2 Nm
0 g and f�n(z) :

n ¼ 0, 1, . . .; z 2 Nm
0 g be two independent sequences of m-dimensional, non-negative,

integer-valued random vectors satisfying the following conditions:

(i) For each z 2 Nm
0 , the random vectors f�n(z)gn>0 are independent and identically

distributed.

(ii) If n, ~nn 2 N0 are such that n 6¼ ~nn, then the random vectors �n(z) and � ~nn(~zz) are

independent for every z, ~zz 2 Nm
0 .

(iii) For fixed z 2 Nm
0 , the stochastic processes fX i,n, j(z) : i ¼ 1, . . . , mg j>1,

n ¼ 0, 1, . . . are independent and identically distributed.

(iv) If n, ~nn 2 N0 are such that n 6¼ ~nn, then for any z, ~zz 2 Nm
0 the sequences

fX i,n, j(z) : i ¼ 1, . . . , m; j ¼ 1, 2, . . .g and fX i, ~nn, j(~zz) : i ¼ 1, . . . , m; j ¼ 1, 2,

. . .g are independent.

The sequence of m-dimensional random vectors fZ(n)gn>0 defined recursively as

Z(0) ¼ z 2 Nm
0 , Z(n þ 1) ¼

Xm

i¼1

X�n
i ( Z(n))

j¼1

X i,n, j(Z(n)), n > 0,

will be referred to as a controlled multitype branching process with random control and

population-size-dependent reproduction (CMPD).

The controlled multitype branching process proposed by Sevast’yanov and Zubkov (1974)
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and the population-size-dependent multitype branching process introduced by Klebaner

(1989) can be deduced as particular cases of the CMPD. Moreover the process defined

allows us to derive new multitype branching models as yet uninvestigated in the literature,

and to extend the existing models by, for example, considering dependent offspring.

By definition, a CMPD is an HMMC, and the results of the previous sections can

therefore be applied. First, we shall provide conditions for equality (11) to hold. Then, we

shall analyse the particular form of the function g(z) and give a classification for this type

of process. Finally, we set suitable bounds for E[j�nþ1jªjZ(n) ¼ z] when ª > 1, in order to

determine whether or not there exists unlimited growth of the CMPD.

From the relationship between the control and reproduction vectors, it is not difficult to

prove that the null state is absorbing if and only if, for each i 2 f1, . . . , mg,

P f�0
i (0) ¼ 0g [ f�0

i (0) . 0, X i,0, j(0) ¼ 0, j ¼ 1, . . . , �0
i (0)g

� �
¼ 1:

Also every non-null vector z 2 Nm
0 is transient if

P
\m
i¼1

(f�0
i (z) ¼ 0g [ f�0

i (z) . 0, X i,0, j(z) ¼ 0, j ¼ 1, . . . , �0
i (z)g)

" #
. 0:

If these conditions are satisfied, then (11) holds. Hence, if explosion is a null event, then the

process becomes extinct almost surely, or, equivalently, the only form of survival is the

explosion of the process to infinity.

In order to obtain a useful expression for g(z), we shall henceforth assume that, for every

z 2 Nm
0 and i 2 f1, . . . , mg, the random vectors X i,0,k(z), k > 0, are identically distributed,

and if zi ¼ 0, then

P f�0
i (z) ¼ 0g [ f�0

i (z) . 0, X i,0, j(z) ¼ 0, j ¼ 1, . . . , �0
i (z)g

� �
¼ 1:

Hence we can define for each z 2 Nm
0 the matrix M(z) :¼ (mij(z))1<i, j<m, where

mij(z) :¼
E[�0

i (z)]E[X i,0,1
j (z)]

zi

if zi . 0

0 if zi ¼ 0:

8><
>:

Intuitively, mij(z) can be regarded as the average number of individuals of type j generated

by each individual of group i in a generation, given that z individuals coexist in this

generation.

Under these hypotheses, one obtains

E[Z(n þ 1)jZ(n) ¼ z] ¼ zM(z), z 2 Nm
0 : (12)

We further assume that, for every i, j 2 f1, . . . , mg, the limit

mij :¼ lim
kzk!1:zi 6¼0

E[�0
i (z)]E[X i,0,1

j (z)]

zi

(13)

exists, and M :¼ (mij)1<i, j<m is an irreducible matrix with Perron–Frobenius eigenvalue r
and an associated right eigenvector � 2 Rm

þ.
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From (12) and (13),

lim
kzk!1

g(z) ¼ r� 1,

and therefore we derive that a CMPD is subcritical if r , 1, near-critical if r ¼ 1, and

supercritical if r . 1. This classification is similar to the classical multitype branching

process case, although with different associated behaviour, as we have already shown.

With the behaviour of g(z) known, let us now set suitable bounds for the conditioned

central moments E[j�nþ1jªjZ(n) ¼ z] for ª > 1 and z 2 Nm
0 . We have

E[j�nþ1jªjZ(n) ¼ z] ¼ E

����Xm

i¼1

X�n
i (z)

j¼1

X i,n, j(z)�� E[�n
i (z)]E[X i,n,1(z)�]

 !����
ª

" #
:

Since

X�n
i (z)

j¼1

X i,n, j(z)�� E[�n
i (z)]E[X i,n,1(z)�] ¼

X�n
i (z)

j¼1

(X i,n, j(z)�� E[X i,n,1(z)�])

þ (�n
i (z) � E[�n

i (z)])E[X i,n,1(z)�] ,

and using jx þ yjr < Cr(jxjr þ jyjr), r . 0, for some constant Cr . 0 (see Grimmett and

Stirzaker, 1992, p. 287), we obtain

E[j�nþ1jªjZ(n) ¼ z] < A1

Xm

i¼1

E

����X
�n

i (z)

j¼1

(X i,n, j(z)�� E[X i,n,1(z)�])

����
ª

" #

þ A2

Xm

i¼1

E[j�n
i (z) � E[�n

i (z)]jª](E[X i,n,1(z)�])ª,

for certain constants A1, A2 . 0. Moreover, in the general case, that is, when the random

vectors X i,n, j(z), j ¼ 1, 2, . . ., i ¼ 1, . . . , m, are not necessarily independent for each fixed

z 2 Nm
0 and n > 0, it can be shown that

E

����X
�n

i (z)

j¼1

(X i,n, j(z)�� E[X i,n,1(z)�])

����
ª

" #
(14)

< E[�n
i (z)ª]E jX i,n,1(z)�� E[X i,n,1(z)�]jª

� �
: (15)

On the other hand, if such vectors are independent, using von Bahr–Esseen and

Marcinkiewicz–Zygmund inequalities (von Bahr and Esseen 1965; Chow and Teicher

1997), one finds that (14) can be bounded by either

E[�n
i (z)]E jX i,n,1(z)�� E[X i,n,1(z)�]jª

� �
, if 1 < ª , 2, (16)

or

E[�n
i (z)ª=2]E jX i,n,1(z)�� E[X i,n,1(z)�]jª

� �
, if ª > 2: (17)
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Hence, we can apply the HMMC results to CMPDs, taking the magnitude of r and the

above bounds into account to investigate both the unlimited growth and the extinction of

the population under (11). To summarize, we deduce that P[kZ(n)k ! 1] ¼ 0 if at least

one of the following conditions is satisfied:

(i) r , 1;

(ii) r ¼ 1, and for each i, j 2 f1, . . . , mg and kzk large enough,

E[X
i,0,1
j (z)]E[�0

i (z)] < mijzi ;

(iii) r ¼ 1, condition (10) holds, and for some 0 , � < 1 and for every i 2 f1, . . . , mg,
both (15) with ª ¼ 2 þ � and E[j�n

i (z) � E[�n
i (z)]j2þ�](E[X i,n,1(z)�])2þ� are either

o((z�)2þ� g(z)) or o((z�)1þ�� 2(z)).

On the other hand, P[kZ(n)k ! 1jZ(0) ¼ z(0)] . 0 when at least one of the following

conditions holds:

(iv) r ¼ 1, z(0) satisfies (5), (6) holds, and, for some 0 , � < 1, Æ . 0 and for every

i 2 f1, . . . , mg, both E[j�n
i (z) � E[�n

i (z)]j2þ�](E[X i,n,1(z)�])2þ� and (15) with

ª ¼ 2 þ � are either

o((z�)2þ� g(z)=(log (z�))1þÆ)

or

o((z�)1þ�� 2(z)=(log (z�))1þÆ);

(v) r . 1, z(0) is large enough, and, for some � > 0 and every i 2 f1, . . . , mg, both

(15) with ª ¼ 1 þ � and E[j�n
i (z) � E[�n

i (z)]j1þ�](E[X i,n,1(z)�])1þ� are O(kzk�).

Remark 2. Under the independence assumption, (15) can be replaced by (16) or (17),

depending on the value of ª.

Remark 3. The present study applies to the controlled multitype branching processes

proposed by Sevast’yanov and Zubkov (1974), which have as yet not been investigated. Also,

the results extend those of Klebaner (1989; 1991) relating to the extinction problem for a

population-size-dependent multitype branching process.
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