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We consider stationary infinite moving average processes of the form

o0
Y, = Z CiZn+i) ne Za
i=—00
where (Z;)icz is a sequence of independent and identically distributed (i.i.d.) random variables with
light tails and (c;);ez is a sequence of positive and summable coefficients. By ‘light tails’ we mean that
Zy has a bounded density f(¢) ~ v(f)exp(—y(t)), where v(¢) behaves roughly like a constant as ¢ — oo
and v is strictly convex satisfying certain asymptotic regularity conditions. We show that the i.i.d.
sequence associated with Y is in the maximum domain of attraction of the Gumbel distribution. Under
additional regular variation conditions on ¥, it is shown that the stationary sequence (Y,),en has the
same extremal behaviour as its associated i.i.d. sequence. This generalizes Rootzen’s results where
f(t) ~ ct*exp(—t?) for c >0, a € R and p > 1.

Keywords: domain of attraction; extreme value theory; generalized linear model; light-tailed
innovations; moving average process

1. Introduction

The goal of this paper is to study extreme value theory of strictly stationary moving average
processes of the form

o.¢]
Y, = Z CiZntis nel, (1.1)

i=—00

where (Z;)icz is a sequence of independent and identically distributed (i.i.d.) random
variables with E|Zy| < oo and (c¢;);cz is a sequence of non-negative real coefficients
satisfying > - _¢; < oo. The extremal behaviour of such processes can be classified
according to the tail behaviour of the innovation sequence (Z;);cz and the manner in which
the coefficient sequence (c;);cz decreases. Davis and Resnick (1985) investigated the
extremes of such moving average processes for innovations whose distributions have regularly
varying tails. In that case Y belongs to the maximum domain of attraction of the Fréchet
distribution and the point processes of exceedances of (Y),).cz converge to a compound
Poisson process; that is, extremes appear in clusters. Davis and Resnick (1988) also
considered innovations in the domain of attraction of the Gumbel distribution, which are
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convolution equivalent. Here only the multiplicity of the maximum of the coefficients (c¢;);cz
determines the cluster size of the limiting compound Poisson process. A summary of results
for innovations with subexponential tails can be found in Embrechts et al. (1997, Section
5.5). All such innovations have tails which are heavier than exponential.

A different regime was considered in Rootzén (1986; 1987), who investigated innovations
whose tails are lighter than exponential. More precisely, he considered innovations with
densities of the form f(¢) ~ Kt*exp(—t?) as t — oo, with p > 1. Here a(t) ~ b(t) as
t — oo means that the quotient of the left-hand side and right-hand side converges to 1 as
t — oo. The present paper can be seen as a generalization of Rootzén’s results.

We work under the following conditions on the innovations. Let Z be a generic random
variable with the same distribution as Z;. We assume that Z has a bounded probability
density and that it satisfies

J(@0) ~v(Dexp(=yp(1)  t— oo. (1.2)

Here 1 is convex, C2, with ” > 0 and ’(c0) = oo, and the function ¢ = 1/+/y" is self-
neglecting, that is,

LB xp(n)

The function v is measurable and is flat for ¢, that is,

V(1 + xp(0) _

D)

1, uniformly on bounded x-intervals. (1.3)

1, uniformly on bounded x-intervals, (1.4)

which guarantees that it is more or less flat on intervals of the appropriate length determined
by ¢. Such densities are closed with respect to finite convolutions, which applies to a finite
moving average process; see Balkema er al. (1993). This is a basic property needed to
analyse such light-tailed linear models. As the assumptions in Balkema et al. (1993) are
minimal, our framework is to our knowledge the most general framework possible.

Our paper is organized as follows. In Section 2 we introduce the necessary assumptions,
state the main results and conclude with some examples. Assumption 2.1 redefines any
density (1.2) satisfying (1.3) and (1.4) such that it satisfies certain conditions which do not
constitute a restriction, but make calculations easier. Assumption 2.2 allows for a
generalization of results from the finite moving average to the general model (1.1).
Assumption 2.2 will suffice to determine the tail behaviour of Y, up to a certain order
(Theorem 2.1) and to show that Y, belongs to the domain of attraction of the Gumbel
distribution (Theorem 2.2). To investigate the extremal behaviour of the stationary sequence
(Y,)nez, we have to impose certain regularity conditions on the function 3. As is natural in
extreme value theory, we require regular variation or rapid variation of 1, as given in
Assumptions 2.3 and 2.4. Theorem 2.3 then shows that the extremal behaviour of the
moving average process (Y,),cz is exactly that of its associated i.i.d. sequence; that is,
(Yn)nez belongs to the domain of attraction of the Gumbel distribution with the same
norming constants as the associated i.i.d. sequence.

In Section 3 we state some auxiliary results and discuss our assumptions. Section 4 is
devoted to the proof of the tail behaviour and domain of attraction of Y, as stated in
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Theorems 2.1 and 2.2, while the extremal behaviour of the stationary sequence (Y,),c7z as
stated in Theorem 2.3 is proved in Section 5. Applications of the results to financial time
series such as stochastic volatility models and the exponential generalized autoregressive
conditional heteroscedastic model are considered in Section 6. Finally, in Section 7 we give
some extensions of our results, treating for example the case of positive and negative
coefficients.

2. Assumptions and main results

We make the general assumptions of the Introduction more precise, introduce the necessary
notation, state our main results and give some examples. Throughout the paper we shall
assume the following condition (such a representation can always be found for the class of
densities introduced in Section 1).

Assumption 2.1. The random variable Z has finite expectation and a bounded density f,
which satisfies

S (1) = v(Dexp(=9(1)), 1= 1, 2.0

for some ty € R and functions v, Y : [ty, 00) — R, where v is C?, 9'(ty) = 0, y'(c0) = o0,
" is strictly positive on [ty, 00) and 1/+/vy" is self-neglecting. The function v is measurable
and flat for 1/\/y".

The function ¥’ is continuous and strictly increasing on [fy, co) with range [0, co).
Therefore, for any 7 € [0, c0) and the non-negative summable sequence (c;)icz, we can
define

9(1) == 9" (0),
S (@) = q'(®) = 1/9"(q(@)),
qi(7) == ciq(cv),

03 (1) = qir) = ;S (cim),

where 1’ denotes the inverse of 1’. Note that ¢(0) = ¢, and that ¢ is C' on [y, co) and
strictly increasing with g(co) = co. Furthermore, on any compact interval of the form [z, 5]
for s € [ty, 00), S> = ¢’ is bounded above and bounded away from zero.

Then, by the previous considerations,

o] 8}

0 =Y qit) and o2 ()= ) 0}(r)

i=—00 i=—00
can be defined pointwise for any 7 = 0. The sum defining 02 converges uniformly on any

compact interval [0, s] (s > 0), which then implies that the sum defining QO converges
uniformly on compacts, and that Q is C! satisfying
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[o°]

0m=0l(m=> q@ =0 22)
Furthermore, Q is strictly increasing and maps [0, oc) onto [tozl_fooc,, 00). Set § := V/S2,
0;:=1/0%, 0= \/02.. To describe the tail behaviour of Y(], we will need further
conditions on the speed of convergence of the sum defining 02_. More precisely, we will
impose the following assumption:

Assumption 2.2. (c;)icz is a summable sequence of non-negative real numbers, not all zero,
and the following two conditions hold:

> > 03(7)

lim lim sup === —— = 23

= O e
2= m0 /(T

lim limsup =/=" — ~ — 2.4

m— 00 ‘L'—><>Cp O'oo(‘[j) ( )

Clearly, Assumption 2.2 is satisfied if all but finitely many of the ¢; are zero.
Assumptions 2.1 and 2.2 allow us to obtain the tail behaviour of Y,. Denote by ® the
moment generating function of Yy, which in Lemma 4.1 will be shown to exist under
Assumptions 2.1 and 2.2. Then with the aid of ® we can express the exact tail behaviour of
Yy, and without using @ we obtain the tail behaviour of Y, up to a certain order:

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Then

- 1
P(Z s Qm) ~ Voo’ 2@ T 2.5)

Furthermore, there is a function p(t) = o(1/0(7)), T — o0, such that

& 1/V/2n !
P(Z i Z; > f) m (J . (O () +p(Q (U)))dU) t— o0,

2.6)

and 1/0 (1) = o(7), T — 00, so the first term in the integral is the leading term.

As Yy is light-tailed, it is no surprise that Y, belongs to the domain of attraction of the
Gumbel distribution; we write Yy € MDA(A). We also say that the associated i.i.d. sequence
to (Y,)ez belongs to MDA(A); this is a sequence (Y,),cz of i.i.d. random variables all with
the stationary distribution. Then Y, € MDA(A) means that there exist norming constants
(an)nen and (b,)nen such that a, >0, b, € R, and

limP<an < [max f/j — b,,) < x) = A(x) = exp(—e™), xeR.

neoo
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For more details on classical extreme value theory we refer to Embrechts et al. (1997),
Leadbetter ef al. (1983) or Resnick (1987).

Theorem 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Then

i P> 04 5/07(0)
1—00 P(Yy > 1)

xeR. 2.7)

The i.i.d. sequence associated with (Y,),cz belongs to MDA(A), with norming constants a,
and b, given by the equations

1iem nP(Yo>b,)=1 and a,:= Q" (b,). (2.8)

It does not seem to be too restrictive to impose further regular variation conditions on .
We shall denote the class of functions regularly varying in infinity with index 8 by RVp; for
definitions and results we refer to the monograph by Bingham et al. (1987).

Assumption 2.3. Suppose that y" € RVg for € [—1, oo]. For 8 = oq, which corresponds to
the class of rapidly varying functions, we require additionally that V" is ultimately absolutely
continuous on compacts (i.e. there exists T such that " is absolutely continuous on
[T, T + x] for any x > 0) and that

d '
A TIITI

Define B' such that 1+ ' = 1/(1 + ) with the convention that the left-hand side is
equal to 0 for f = oo and equal to oo if f = —1.
Furthermore, suppose there exists 6 € [0,2) such that 0+p >0 and
1-6/2 ; )
c; < 00, where (c;)icz is a sequence of non-negative real numbers, not all zero.

00
i=—00

In Proposition 3.2 it will be shown that Assumptions 2.3 and 2.1 together imply
Assumption 2.2. Under the following slightly stronger assumption we will show that the
extremal behaviour of the moving average process (Y,),cz is the same as the extremal
behaviour of its associated i.i.d. sequence: the dependence vanishes in the extremes.

Assumption 2.4. Suppose that v, 5 and B' are as in Assumption 2.3. Furthermore, suppose
there is some constant § > max{1, 2/(2 + B")} such that c; = O(|i|™"), i — oo, where (¢;)icz
is a sequence of non-negative real numbers, not all zero. Finally, suppose that Z has finite
variance.

Assumption 2.4 implies Assumption 2.3: if we choose 6 € [0,2—2/9) such that
6 + B’ > 0, then Assumption 2.3 follows, since (1 — 6/2)3 > 1. The extremal behaviour of

the stationary (Y,),cz can now be described as follows:

Theorem 2.3. Suppose that Assumptions 2.1 and 2.4 hold. Let (a,),en and (b,)nen, as given
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in (2.8), be norming constants of the i.i.d. sequence associated with Y. Then (Y,)en belongs
to MDA(A) with the same norming constants, that is,

liEmP<a,, < {r}ax Y, — bn) < x> = exp(—e™), xR

=l

In the course of proving our results, we will use the following notation. For any
summable sequence (c;)icz of non-negative real numbers let iy be an index such that
ci, =max{c; : i € Z}. Let ¢ and d be strictly positive real numbers, and let 0 < 6 < 2.
Denote by G.u.p the set of all non-negative sequences (c;)icz such that Z?ifooc,- <d,
Y o l=d, Z?ifoocl!fg/z <d, and ¢/2<¢;,, <c. If in the following limits of
summation are missing, then it ails understood that summation is over PZ. Convergence in
distribution will be denoted by —, and convergence in probability by —.

We conclude this section with some examples.

Example 2.1. (a) Let y(f) := (B +2)"'t#*2, where € (—1, o0). Then y" € RVyg and o
satisfies Assumption 2.1 with 70 = 0. An example for a flat function v for 1/ \/W would be
any function behaving asymptotically like a rational function, or also v(¢) = e’ if > 0. Put
B':= (14 pB)~" — 1 and suppose that ¢; = O(|i|™") for some 9 > max(1, 2/(2 + B")). If Z is
then such that it has finite variance and bounded density f as in (2.1), then Assumptions 2.1
and 2.4 hold and Theorems 2.1-2.3 can be applied. In particular, since Q7 (¢) =
(t/ Zc?+ﬁ )+ and Q'(Q (1)) = ct~F for some constant c, (2.6) gives

00 —1-p
P(Z iz > f) =exp| -2+ P! (Z Cf“g') 2P p oY ) oo,

i=—00

This agrees with Theorem 6.1 in Rootzén (1987); however, focusing on this example and
under an additional smoothness condition, Rootzén obtains the estimate O(#'+//%) for the
remaining term (as ¢ — oo), which can be seen to be slightly better than our estimate, since
3 >2/Q2+p') implies (1 +5)/3 <1+ /2.

(b) Let 9: [1, co) — R be given by y(#) = tlogt — t. Then y"(f) =1/t € RV_; and ¢
satisfies Assumption 2.1 with #yp = 1. Any rational function would then be flat for 1 /\/W
Let ¢; = O(|i|™) for some § > 1. For simplicity, assume that c; =1, and that this
maximum ¢;, is taken with multiplicity N. Let ¢’ := max{c; : i € Z, ¢; # 1} < 1. Assume
that Z also satisfies all other properties of Assumptions 2.1 and 2.4. Then Theorems 2.1—
2.3 are applicable. For the tail, note that ¢(r) =e’, O(r) = Ne’ + O(e°?), 7 — oo, and
approximate inversion shows

O~ (1) =logt—1log N + O(t<™"), f — 00.
Since Q'(1) ~ Ne¥, T — oo, it follows that 0 (O (7)) ~ t~'/2, so that (2.6) gives

P( Z ciZi > t> = exp(—tlog 4 1(1 + log N) 4+ O(£™*{¢"1/2}y), t — o0.

i=—00
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(c) Examples where 3" is in RV, and satisfies the additional condition in Assumption
2.3 are (7)) = e’ or (f) = exp(e’) for large ¢. If then ¢; = O(|i|™") for some 3 > 2 and
the additional conditions in Assumptions 2.1 and 2.4 are satisfied (a flat function could be a
rational function, or also v(f) =e’), then Theorems 2.1-2.3 can be applied. We consider
one example in more detail. Let 1 : [0, co) — [0, c0) be given by w(t)—et2/2 for
t€[0,1] and y(r)=e¢"—¢/2 for t+>1. Let O € (1,2) such that Zc 072 < 5. For
simplicity, assume that » ¢; = 1. Then ¢(7) = 7/e for 0 < 7 < ¢ and ¢(7) = logt for 7 =e.
This shows that

00 2
o) = Z ciloge; +logt + Z (%f —c log(cir)),

i=—o0 icr<e
where

> (cz — e;log(e; r)) SRR D <(C LREIE log(cm) = o),

ier<e \ © ic<e
as T — oo. Approximate inversion yields

O () = e 2cle e 4 pe102) e,
Furthermore,
, 1
0'(r)= = (i:;e ci + C;e(c iT) ) T — 00,

so that o (O~ (1) = O(e'’?), t — co. An application of (2.6) then shows that

P( > czi> f) — exp(—e' 28 L O, 1 — o0,

i=—00

3. Auxiliary results

3.1. Exponential families

A basic role in our proofs will be played by exponential families. Let X be a random
variable whose moment generating function Ee™ exists for all 7 € [0, co). Then the
exponential family (X;);=o is defined to be a family of random variables such that

™ Fy(dz)

=
X 7= 0,

Fyz (dz2) =
where Fy and Fy denote the distribution function of X and X, respectively. Exponential
families have the followmg useful properties, which follow by standard calculations (see, for
example, Rootzén 1987, Section 3):
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P(X € A) = E(e ™13 _Ee™,  7=0, 4 a Borel set, 3.1
(X)L X, c,7=0. (3.2)

We will consider the exponential families of the random variables X; := ¢;Z;. Denote by
®; the moment generating function of X;, which by Assumption 2.1 exists and is finite for
all 7 = 0, as shown in Balkema et al. (1993, Proposition 5.11). Denote the density of X; by
fi, and the exponential family associated with X; by (X ir)r=0. Assume throughout that the
exponential families are taken such that (X;;);cz are mutually independent for any 7 = 0.
The exponential family associated with the generic random variable Z will be denoted by
(Z:)r=0. In Lemma 4.1 it will be shown that the moment generating function ® of > X,
exists and is finite for every argument 7 = 0, and that > ;° _X,, converges almost surely
for any 7= 0. In particular, the exponential family of Y X; exists, and since taking
exponential families commutes with taking convolution (see, for example, Rootzén 1987,
equation (3.4)), this exponential family is given by (3.0 _ X;7)r=o.

i=—00

3.2. ANET convergence

A family (W;);=9 of random variables with densities w; is called asymptotically normal
with exponential tails (ANET) if wy(x) converges locally uniformly in x to the density
o(x) = e x/2 / V27 of the standard normal distribution as 7 — oo, and if for any & > 0
there exist 7, and a constant M, > 1 such that

we(x) < e /e, Vx| = M, T = 7.

If a sequence is ANET, it is known that the moment generating functions and the (absolute)
moments of all orders converge to the corresponding moment generating function and
(absolute) moments of the standard normal distribution, and that W, converges in distribution
to N(0, 1); see Balkema et al. (1993, Proposition 6.3).

In Balkema et al. (1993, Theorem 6.6) it is shown that under Assumption 2.1 a suitable
centring and normalization transforms the exponential family associated with Z into an
ANET sequence. More precisely, the sequence ((Z; — ¢(7))/ S()).=0 is ANET. Since the
set of random variables satisfying Assumption 2.1 is closed under finite convolution, as
shown in Balkema et al. (1993, Theorem 1.1), it follows that for any m € Ny such that at
least one of the ¢; for |i| < m is non-zero, the exponential family associated with >_/* X,
can be transformed into an ANET sequence. More precisely, the sequence (Y.
Xiz — qi(0)// D 03(7))e=0 is ANET; see Balkema et al. (1993, p. 586). See also

i=—m~ i

Barndorff-Nielsen and Kliippelberg (1992) for further calculations.

3.3. Discussion of the assumptions

Recall that a function g : [0, co) — R is in RVy (8 € R) if and only if there are constants
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a, ¢ > 0, a measurable function ¢(-) and a locally Lebesgue integrable function & on [a, oo)
such that lim,_ . c(x) = ¢, lim,_.&(x) =0, and

g(x) = P e(xexp (j

&) 4
a U

>, X =a. 3.3)

If the function ¢(-) in (3.3) can be taken as a constant, then g is said to be normalized
regularly varying with index f; we write g € NRVg.
The following lemma clarifies Assumption 2.3. In particular,
d !
i L@
i—oo dt 9" (1)

means nothing more than ¢’ € NRV_;, which already implies that " € RV,.

Lemma 3.1. Suppose that v : [ty, 00) — R is C?, 1'(c0) = oo, and " > 0. Let ¢ = ',
and for B € [—1, o] define ' through 1 + ' = (1 +B)~".

(@) For all f €[—1, 00], we have y' € RV, 4 if and only if q € RV p.

(b) If " € RVg where B € R, then = —1, y' € RV g, 1/\/y" is self-neglecting, and
q' € RVg. If B € (=1, c0), then y" € RVg if and only if q' € RVy.

(c) Let ' €[—1,00). Then v" is ultimately absolutely continuous on compacts and
satisfies

1m Ew—(t) —
P dryp'()
if and only if q¢' € NRVy.
(d) If ¢" € RV_y, then 1/\/y" is self-neglecting and " € RV .
(e) 1/\/y" is self-neglecting if and only if 1/\/q" is self-neglecting.

1+p

Proof. (a) This follows from Proposition 1.5.15 and Theorem 2.4.7 of Bingham et al. (1987).

(b) Since 1'(c0) = 0o and y” € RVp, it follows from I’Hopital’s rule that 1’ € RV g
and further that 1+ = 0. Since ¢'(v) = 1/9"(¢q(7)), it follows by composition that
q' € RVg if B # —1, and the converse follows similarly. If 8 = —1, then 3’ € RV,, hence
q € RV,. By the monotone equivalence theorem (Bingham et al. 1987, Theorem 1.5.3), "
is asymptotically equivalent to a decreasing function 4, say. Then if ¢ € (0, 1), for any
& > 0 there exists 7, such that g(ct) < egq(t) for v = 7., since ¢ € RV. This then implies

q'(ct)  hq@) _ hg@)
q'(t)  h(g(cr))  h(eq(7))
showing that ¢’ € RV.,. To show that 1/4/9" is self-neglecting, note that

im x/ \t/ P"(1)

T — 00,

X
=14+ 1lim ——=1
SN0

uniformly in x € R, since ¢ #1/9"(?) is in RV g),.
(c) Note that 1" is ultimately absolutely continuous on compacts and satisfies the relation

—00
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dy'(n)
o diy(t)

1+p

if and only if ¢’ is ultimately absolutely continuous on compacts and satisfies
fim LDy VAN 000 g,
oo g'(T)  Toe Y"(q(0)) i=oo (1)
But this is equivalent to ¢' being ultimately absolutely continuous on compacts and satisfying
B
m Td(r ,q (v))/dz _ 0,
G

which is equivalent to ¢’ € NRV_;; see Bingham et al. (1987, p. 15).

The proof of (d) is similar to the proof of (b), using (e) to show that 1/ \/W is self-
neglecting.

The proof of (e) itself is given in Balkema et al. (1993, Theorem 5.3). U]

Next we show that Assumptions 2.1 and 2.3 imply Assumption 2.2.

Proposition 3.2. Suppose that Assumptions 2.1 and 2.3 are satisfied. Then Assumption 2.2
holds. Furthermore, there exists a positive constant D, depending only on v and on 0, such
that for every constant ¢ bounding (c;)icz from above,

ol (1) < Dii (%)z_eczq’(cr), 7= 0. (3.4)

Proof. Note that ¢’ € RVg by Lemma 3.1. Define p;(z) := 1%¢'() for 7= 0. Then there
exists an increasing function p, : [0, o0) — R such that p;(r) < p,(r) for any 7 =0, and
p1(7) ~ pa(1) as T — oo. For B’ # oo, this follows from the monotone equivalence theorem
(Bingham ef al. 1987, Theorem 1.5.3), and for ' = oo from ¢'(7) = 1/9"(q(7)), the
monotonicity of ¢ and an application of the monotone equivalence theorem to 1/9"” € RV;.
We conclude that there exists a positive constant d; such that p,(7) < d; pi(7) for all T = 1.
Let ¢ = max{c; : i € Z}. Then if ¢t = 1, we have

pi(cit) < pa(cit) < pa(cer) < dy pi(cr).

Since ¢’ is continuous and strictly positive on [0, 1], there exists some d, > 0 such that
q'(x) =< dyq'(y) for every x, y € [0, 1]. In particular, for ct < 1, ¢'(c;T) < dq'(ct). Then,
with D := max(d,, d»), it follows that

?q'(¢sr) < D' (cn), =0, (3.5)

giving (3.4). Since Ec,lfe/ ? < o0, it follows from (3.5), the dominated convergence theorem
and the fact that p; € RVp_4, that

Toee ¢ q/(CT) i=—00 ¢ e c'Tq (C'L') i=—00 ¢
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where the right-hand side has to be interpreted as card{i : ¢; = ¢} if B’ = co. Similarly, for
any m > 0,

i 2li=mCiV/ 4 () -y )'+ﬁ/2
T—00 /q(c'[ H>m

and (2.4) follows. The limit relation (2.3) follows similarly. O

Remark 3.1. The proof shows that the condition

d !
Ay
i—se d 9"(1)
(for the case 1" € RV,,), which by Lemma 3.1 is equivalent to ¢’ € NRV_y, can be slightly
relaxed to ¢’ € RV_;, and Assumption 2.2 still follows.

There are also many examples where Assumptions 2.1 and 2.2 hold, but 2.3 does not:

Example 3.1. Let 1y : [0, c0) — (0, 0o) such that 1’(0) =0 and y"(f) = (2 + cos(m\/1)) 2.
Then the derivative of 1/4/1"(#) tends to 0 as t — oo, and the mean value theorem 1mplles
that 1/ \/_7 is self-neglecting. A flat function v would be any rational function or
v(t) = exp(t*) for a € [0, 1). If then Z has finite expectation and bounded density f
satisfying (2.1), then Assumption 2.1 holds. If, furthermore, (¢;);c7 is a summable sequence
of non-negative numbers, then it is easy to see that Assumption 2.2 holds, too. Note,
however, that Assumption 2.3 is not satisfied for this example.

4. Proof of Theorems 2.1 and 2.2

In this section we shall prove the tail behaviour of Y, as stated in Theorem 2.1 and then
use this result to prove Theorem 2.2, that is, that the associated i.i.d. sequence is in
MDA(A). The proofs will be split up into several lemmas, and exponential families will
play an important role. We will also give some uniform estimates under the extra condition
of Assumption 2.3 and for coefficient sequences in G, 4. These will be used in Section 5
when proving Theorem 2.3. Recall the notation of Section 3.1.

Lemma 4.1. Under Assumptions 2.1 and 2.2, the moment generating function ® of
S X, = ciZ; exists and is finite for all T = 0, and we have

d(7) = H (1), =0,

i=—00

as well as

o0

d d o _
o, log (1) = > 5 log (1) = > EXi, =0, 4.1)

i=—00 i=—00
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where the sum and the product converge uniformly on compact subsets of [0, c0). The
exponential family associated with Y X; is (3o Xit)e=0, where the sum converges
absolutely almost surely.

i=—00

Proof. By the definition of the exponential family,

_ EXe™  [Z funeedr  d®i(r)/dr d
EX.; = == = =— log ®(7),
= o) 1) o) dr PO

where we have used the differentiation lemma for the third equality. Furthermore, we see
(since E|X;| < o) that [0, co) — R, 7 +— E|X;,| is continuous. Since (Z; — ¢(7))/S(7))s=0 is
ANET as noted in Section 3.2, it follows that the absolute moment E|(Z; — ¢(1))/S(7)|
converges to the absolute moment of N(0, 1) as 7 — oo. Furthermore, ¢(7), 1/S(t) and E|Z,|
are bounded on compact subintervals of [0, oc). This shows that there is a constant C such
that E|Z; — q(t)] < CS(7) for all 7 = 0. Using (3.2), this implies that

E|X:; — qi(7)| < Co(7), Vr=0,VieZ. 4.2)
In particular, it follows that for any s > 0,

sup E|X;:| < C sup 0(7) + sup |gi(7)],

O=t=<s 0=r=<s O=7=<s
implying absolute and uniform convergence on compacts of > .= _ EX,,. The convergence
of Y _E|X:z| gives almost sure convergence of > _X,, Note that uniform
convergence on compacts of Y dlog ®;(7)/dr implies uniform convergence on compacts
of Y log ®;(r) and hence of [[2 . ®(r). That the limit is in fact ®(7) follows from the
dominated convergence theorem. For application of the latter, construct a random variable Z
such that Z= Z if Z=0, and Z € [0, 1] if Z < 0, and such that Z has a bounded density.
Then if (Z;);cz is an i.i.d. sequence with distribution Z, the same calculations as before show
that []2_ e Zi is an integrable majorant. That the exponential family associated with > X;
is indeed (> ,-,,)120 has already been noted in Section 3.1. O

i=—00

Lemma 4.2. Under Assumptions 2.1 and 2.2,

- (T) Z(X” 4:(0) % N, 1), T — oo. 4.3)

Proof. For T =0 and m € N such that not all of the (¢;)jj<, are zero, define
m o 1 1

Awe = Y K =0 | =5

i=—m (Z]-—m ](T)>

Z\i\>m()_(i,t - CIz(T)) .

0 5o(T)

B, =

Then
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Yoo Xir = qi(®) Y, (Xiz — i)
(X o) (o ,0im)”
By the ANET property,
Z\i\sm()_(i,r qi(7)) 4
(Zh\smg?(f))l/z

Then (4.3) follows from a variant of Slutsky’s theorem (see Billingsley 1999, Theorem 3.2),
provided that for any & > 0,

lim limsup P(|4,:| > ¢€)=0= l1m hm sup P(|Buz| > €). (4.4)

—X 1>00

= Apr + By

SNO, D), T— .

To show (4.4), write
A — Zlffm(XlT - Q(T)) Zj—fm J(T) 1
i) 0%

Since lim, o E|>."  (Xiz — qi()/O."_, 0(1)/?| = \/2/m, it follows from (2.3) that

2 — 05T
lim sup lim sup E(| 4 ¢|) < \/;lim sup limsup | 1 — (M) =0,

2
m—00 T—00 m—o00 T—00 UOC(T)

implying the left-hand equality of (4.4) by Markov’s inequality. The right-hand side of (4.4)
follows similarly from (2.4), noting that

Z\i|>mE|)_(i,T - ('Il(r)| - CE‘,‘P,,,O‘,’(T)
0(7) T 0.0

by (4.2). O

E|By| <

Lemma 4.3. (a) Suppose that Assumptions 2.1 and 2.2 hold. Then 0+ (7) !> (Xiz — qi(7))
has a density, denoted by r (x), which converges locally uniformly to the density ¢(x) of the
standard normal distribution, as v — oo. Furthermore, the densities r; are uniformly
bounded by the same constant for sufficiently large .

(b) Suppose that Assumption 2.1 holds and that v and 0 are as in Assumption 2.3. Let c,
d be positive constants. Then there are positive constants Ty, Dy, such that for any
coefficient sequence in G, q¢ the density r; is bounded by Dy for any T = 1.

Proof. (a) By (2.3), there is some m € N such that

% OOO(T) /‘;na (r) =<1 for large 7. (4.5)

Denote by g, the density of > j<u(Xir — i(7))//>|i=m0?(r). By the ANET property,
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g+(x) converges locally uniformly to ¢(x) as 7 — oo, and |g.(x)| < e Il for large x and 7.
This implies that for any ¢ > 0 there exist d;, > 0 and 7, such that

|g(¥) — g <&, Vi1, Vx5, yER:|x—y <01,
The density of Y |;j<m(Xir — qi(7))/0(7) is given by

Yo g 050(T) . Oo(®) . 7 ().

\/E\qsmolz‘(f) \/ngma%(f)
By (4.5) there exist 0, > 0 and 7, such that
[he(x) — he(p)] < &, VT =10, VX, yER 1 |x — ¥ < 0.

Denote by H, the distribution function of Y ;= (X iz — ¢i(7))/0 (7). Then
Z?i,x()_(i,t - qi(T)) o Z\i\gm(yi,t - Qi(T)) Z\i|>m(yi,r - %‘(T))
= +
0oo(T) Ooo(T) 000(7)

has a density, say r(x) (since the first summand has a density), which satisfies

o0

|rr(x) - rr()’)| = H (he(x — ) — he(y — 1)dH(7)

—00

< JOO edH ()=¢  (4.6)

—00

for all 7= 1, and x, y € R such that |x — y| < 0,,. Similarly, one obtains that the r, are
uniformly bounded for large 7. Now assume that r;(x) does not converge to ¢(x) as T — oo
for all x € R. Without loss of generality assume that
@(xp) + 3& < lim sup r¢(xp)
T—00

in some xp and for sufficiently small € > 0. Then there is a subsequence (7,),cn tending to
oo such that lim,coorr,(X0) = limsup;_o77(x9). By (4.6) this implies that there is some
0 > 0 such that for sufficiently large n,

r,(¥) = o(y) + &, Yy € [xo — 8, xo + 0].
It follows that

Xo+0 Xo+0
tim [ o= [ 00+
_ Yo
contradicting Lemma 4.2. This shows that r;(x) converges to ¢(x) in any x € R as 7 — oo,
and by (4.6) we see that this convergence is locally uniform.

(b) By Proposition 3.2, there is a constant D; > 0 such that for any (c;)icz € Ge.a0,
D) < Zi“(—T) Jo(t)y<1 for 7=0. Denote by g, the density of (X;.— ¢,(1))/
0 (D) =(Ze, r — q(ciy7))/S(c;yT). Since ¢/2 < ¢;y, it follows from the ANET property of
((Z; — q(1))/S(7))+=0 that there exist 7y, D,, depending only on f, 3 and ¢, such that g; is
bounded by D, for 7 = 7. The density h, of (X, — qi,(1))/0x(T) is then bounded by
Dy := D,/ Dy for T = 7,. Similarly to (4.6), this then implies that 7; is bounded by D, for
T = 1. O
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We are now able to prove the first part of Theorem 2.1.

Proof of (2.5) in Theorem 2.1. Using (3.1), it follows that

P( i ¢z > Q(T)>

_ E(efrthf 1 E}i.r >Q(r))¢)(f)

= B(e ORI OOl g0 mm0)e IR

o0
= e—fQ<T><1>(r)J e D% (x)dx.
0
Noting that
1'2 1/"(02
lim 7%¢'(7) = lim ————— = lim ",
%0 o0 YY)~ (7)) e (1)

where the last limit was shown to equal oo in Balkema et al. (1993, Proposition 5.8), it
follows that

lim 70 (7) = oco. 4.7
T—00
Then using dominated convergence and Lemma 4.3(a) gives

rOOO(T)J:Ce_wx(’)XrT(x)dx = J:Oe_zr,(z/(rooo(t))dz

o 1 1
— | ef—dz=—, T — 00,
Jo V27 V21
implying (2.5). O

With exactly the same proof, but now using part (b) of Lemma 4.3 instead of part (a),
we obtain the following uniform estimate, which will be used in Lemma 4.6:

Lemma 4.4. Suppose that Assumption 2.1 holds and that Y and 0 are as in Assumption 2.3.
Let ¢, d be positive constants. Then there exist positive constants ty, Dy, such that for any
coefficient sequence (c;)icz in G 40,

P( i ciZi > Q(t)) < wL‘)(T)e*fQ“)cb(r), T =1, (4.8)

i=—00

In order to derive the approximation for the tail behaviour of Y; as stated in the second part
of Theorem 2.1, we need estimates for ®, which are derived in the following lemma:

Lemma 4.5. (a) Suppose that Assumptions 2.1 and 2.2 hold. Then, for t =0,
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d <
& log(e 20 D(7)) = —102 (1) + Y (EX;r — qi(1)) = —T0 (1) + 0(00c(T)), T — o0.

i=—00

(b) Suppose that Assumption 2.1 holds and that ¢ and 0 are as in Assumption 2.3. Let c,
d be positive constants. Then there exists a positive constant D, such that, for any
coefficient sequence (ci)icz in Ge.ap,

00

> [EXir — qiD)| < Do(n), =0 4.9)

Proof. (a) From Lemma 4.1 and (2.2) follows that, for any 7 = 0,

—( 100 + log (1) = —10'0) — 00 + 3 EXyr = 1020+ 3 (EXsr — (1))

I=—00 i=—00

Let € > 0. By (4.2) and (2.4), there exists an m, € N such that

limsup E Z

T—00 | |>m

Xiz — qi(7) (T)
Ooo(f)

tffmg(XlT qi (T))/ szfm 2(7) it follows

Furthermore, from the ANET property of > "
that

EYT,, (Xir — qi(0)
2,0

< lim sup

T—00

. EY ", (Xiz — qi(7) ‘
lim sup
T—00 GOO(T)

Since & > 0 was arbitrary, the assertion follows.

(b) From (4.2) it follows that there is a positive constant C, depending only on the
density f and 1, such that |EX,, — ¢,(7)| < Co(r) for 7= 0. By (3.5), there exists a
constant Cj, depending only on 3 and 6, such that for any coefficient sequence in G, 40,

Y @ =Va Y P = G/ @, T2,

i=—00 i=—00

giving (4.9). O
We are now able to complete the proof of Theorem 2.1.

Proof of (2.6) in Theorem 2.1. By (2.5) and Lemma 4.5(a), there is a function
&(r) = 0(0 (7)), T — 00, such that

e} 1 T
P ( > azi> Q(r)) ~ Smro @ exp(—JO(uQ’(u)Jr c(u»du), o0 (410)

i=—00

Setting ¢ = Q(7) and p(7) := §(7)/02, (1) = 0(1 /0 (7)), T — 00, (2.6) follows from
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J o (uQ’(u) L Q’(u)) au=[ 0 ©+p0 @
0 Q' (u) 0 e

That 1/0 () = o(t), T — oo, follows from (4.7). U

In Section 5 we will need uniform estimates for the tail behaviour, which are derived in
the following lemma:

Lemma 4.6. Suppose that Assumption 2.1 holds and that Y and 6 are as in Assumption 2.3.
Let ¢, d be positive constants. Then there are positive constants Dy, D,, t| such that for any
coefficient sequence (c;)icz in Ge.a.6,

P( > eizi> t) < Dy exp (—JIOZCi(Q‘_(v) - ﬁ) dv), t=1. (4.11)

i=—00

Furthermore, for any fixed sequence (c;)icz in Geqp, there exist positive constants D3, Dy, t
such that

P(z‘ioo ¢l > t) = Djexp (J;Z@ (Q“(u) + 000(84_(0))> du), t=1n. (4.12)

Proof. Similarly to (4.10), but now using Lemma 4.4 and Lemma 4.5(b), there exist 7y,
Dy > 0 such that

P( i ciZ; > Q(r)) < Do exp (—J;(uQ'(u) + C(u))du), (4.13)

A T0 5o(T)
for 7 = 1y and any coefficient sequence (¢;);cz in G a49. Further, |{(7)| < Do« (7) for T = 0,
with D from Lemma 4.5. Choosing 7; = 7 such that g(ct;) = 0 and using the monotonicity
of ¢, it follows that for ¢t = ¢, := dg(c1)),

t=dg(cti) = Y agler) = Y | aglem) = Q). (4.14)
This shows that (4.13) holds for any ¢ = QO(r) = ¢;, and ¢, is independent of the specific
coefficient sequence in G.49. Since 72072 (1) = 7°¢; ¢'(c;,7), it follows as in the proof of
(2.5) that (4.7) holds uniformly for the sequences in G. 49, hence Dy/(t0 (7)) in (4.13) can
be replaced by some D;. Then (4.11) follows as in the proof of (2.6).
For the proof of (4.12), for a fixed coefficient sequence, note that (4.10) implies that the
inequality in (4.13) can be reversed, by replacing Dy by 1/3 < 1/4/2m Once it is shown
that for large 7,

TO 5o (T) < exp (Jraw(u)dv) (4.15)
0

relation (4.12) follows similarly to (4.11). From (3.4) and the dominated convergence
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theorem it follows that there is a C > 0 such that 0.,(7) ~ C\/q'(¢;,7), T — co. Now if
B € (—1, oc], that is, ¢’ € RVg with ' € [—1, 00), then 10,(7)/ [; Ooc(u)du — 1+ /2,
T — 00, by Karamata’s theorem (see, for example, Bingham et al. 1987, Theorem 1.5.11),
clearly implying (4.15) for large 7. If y"” € RV_y, then ¢’ € RV, and by Proposition 3.2,
105(7) < (¢'(c;,7))?/> for large 7. For simplicity, assume that c; = 1. With s:= g(7) it
follows for large s that ¢~ (s)oo(q(s)) < (¢'(¢"(5)))*> = (1/9"(s))*?, and the latter
function is in RV;/3. On the other hand,

g7 (s) =) 1 s
o(v)dv = Viwdv=| ———=du=| Vy"(u)du,
Jo Teol0)O Jo 7()dv Jzo q'(q—(w)) ! Jro Vi) du

which (as a function in s) is in RV;,. But this then clearly implies (4.15) for large
s = q(7). U]

We can now show that the i.i.d. sequence associated with Y is in MDA(A).

Proof of Theorem 2.2. Once (2.7) has been shown, it follows readily that

P(Yy > b, (b, B
lim nP( ¥y > b, + ) = 1im 20 x0T () _

oo ap n—00 P(Yo > bn)
showing that the associated i.i.d. sequence is in MDA(A) with norming constants @, and b,

(see, for example, Embrechts et al. 1997, Proposition 3.3.2). Thus, it only remains to show
(2.7). Let

xR,

T:=0 () and = Q“<t+Qj(t)>.

Then by (2.5),

g P00 > t+x/07(1) o P00 > o@*) L) e 7 2T)P(r%)
PR PMo >0 o P(Ye > 0() | ok Tro(TF) e 00d(7)

Thus (2.7) will follow once we have shown that
o ()

. 0'(0~ (1)
l —
% O~ (t+x/0 (1)

;
% Q0 (t+x/0 (1))

1= (4.16)

and

*

T
d
lim J W log(e "™ ®(y))du = —x.

t—00 T
By (2.3), for any € > 0 there exist m = m, in N and u, € R such that
Pu(w) < Q' (u) < (14 &)Pp(u), Yu = u,,

where P, (u) := ) jj<mciq(c;u). But in Balkema ef al. (1993, Theorem 1.1) it is shown that
/ Pn(P;)) is self-neglecting. By Lemma 3.1(e) this implies that 1/+/P}, is self-neglecting. In
particular,
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i Fm + X/ Pu(w) _ |

e Py(u) ’

uniformly on bounded x-intervals. But

L Pu(utx//O'(w) _ O'(u+x//O'(w) Phu(u+x/1/Q'(w))
l+e Pu(u) Q'(w) Piu(u)
uniformly in bounded x for large u by (4.18) and (4.7). Since P,, < Q' and 1// P}, is self-
neglecting, we estimate

Uiy Q@O sup x/\/Q'(w)

I+e umoo Q' (u) U0 O'(u)
uniformly in bounded x-intervals, showing that 1/4/Q" is self-neglecting and hence so is
050(Q7) by Lemma 3.1(e). But this then implies the right-hand side of (4.16), since 1/Q(¢)
is smaller than o,,(Q~(#)) for large ¢ by (4.7). The left-hand side of (4.16) follows from
Resnick (1987, Lemma 1.3), noting that

L S -
7o (07 (1) "0 (0 (1) — 0, t — oo,

by (4.7). For the proof of (4.17), note that by Lemma 4.5 and (4.7),

s(1+e¢)

<1+e¢

di log(e Y d(u)) = —uo? (u) + o(uo? . (u)), U — 0.
u

Now
7" 0 (14x/07(1) 1+x/Q7 (1) x
|| w0t | W= [0 = 0@
T ot ' O (9
with some & between ¢ and 7+ x/Q“ (). As t — oo, the last expression converges to x since
7 /T — 1 and by monotonicity of Q. This implies (4.17), completing the proof. O

5. Proof of Theorem 2.3

In this section we prove that the extremal behaviour of the moving average process is the
same as the behaviour of the associated i.i.d. sequence. This will be achieved by verifying
Leadbetter’s D(u,) and D’(u,) conditions. For definitions and results we refer to Embrechts
et al. (1997, Section 4.4) or Leadbetter e al. (1983, Chapter 3). D(u,) is a mixing
condition, and D’(u,) can be interpreted as an anti-clustering condition. We shall show that
both conditions hold for (Y,),cn, Which implies then that its extremal behaviour is exactly
as for the associated i.i.d. sequence. We need the following result of Rootzén (1986,
Lemmas 3.1 and 3.2):

Proposition 5.1. Suppose that the i.i.d. sequence associated with (Y,)nen, given by (1.1), is
in MDA(A) with norming constants a, and b,, and that u, := x/a, + b,.
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(@) If EZ? < oo, |ci| = O(|i|™") for some 9> 1 as |i| — oo, and a, = O((log n)*) for
some a >0 as n — oo, then D(uy) holds.
(b) If, in addition to the conditions of (a), for some constant yy € (0, 1] for n' := |n"]
as n— oo,
2n'
n P(Yy+ Y, > 2u,) — 0, (5.1)

m=1

00 —n'—1
n2P<an > eizi> 1) -0, n2P<an > azi> 1) -0, (5.2)

i=n'+1
> P P
an Y ciZi—0, an | ciZi—0, (5.3)

then D'(u,) holds.

In order to verify (5.1) under Assumption 2.1 and 2.4 we shall need Lemma 5.3. We
shall see that we have to consider two different regimes, one corresponding to the case
B = oo, that is, 1" € RV, which implies 1 € RV, the other case being f € [—1, o0),
that is, ¥ € RV, for some a € [1, c0). We split up the proof into the cases f € [—1, c0)
and 8 = oo, and for the latter case we need some preparation:

Lemma 5.2. Suppose that Assumption 2.1 holds, that " is ultimately absolutely continuous
on compacts and that

dyn
M dryn

Then there exist a constant T, = 0 and a C' function p : [0, 0o) — (0, co) which is (almost
everywhere) twice differentiable, satisfies

p(T) = q(7), T=71,

p'(®)>0 for all t=0, p"(r) <0 for T =0 (almost everywhere), and, for any constants
c=c =0,

+ 3(er — ¢1)? 3
c1p(e1t) + ¢y p(eat) — (¢ —l—cz)p(Cl > @ r) = (0232 e rp’((%—i—%)r) = (),

t=0. (54

Proof- From Lemma 3.1(c) and its proof it follows that ¢’ is in NRV_; and that
q"(t) ~ —q'(r)/t as T — oo (where ¢” exists almost everywhere). In particular, there exists
71 such that ¢"(r)) exists and that

—2¢'(v) = 1q"(1) = —3¢'(v), 7 = 1(almost everywhere).

Set u := —719"(11)/q'(r1). Then % < u <2. Define the function p through
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q(7), for =14,

p(7) = ' (Tl —utT

q(t1) — q'(z)e" [T e /M dt, for0<7<71.

Then p is C' and (almost everywhere) twice differentiable, and for 0 < 7 < 1y,
P@)=q'@)ee ™, p'(t)=—up' @)/,

hence for 0 <7 < 14,

” T ! ! !

(0 =~ p'(0) = —pup'(n) = —30'(0).

Thus p satisfies p'(r) > 0 for 7 = 0, and p"(r) <0 as well as Tp"(7) = —%p’(r) fort=0
(almost everywhere). For the positivity of p, note that p(0) = ¢(t;) — e“71¢'(t1), which is
positive for large enough 7y, since lim;...7¢'(7)/q(t) =0 by Karamata’s theorem (see,
Bingham et al. 1987, p. 26).

Now let 0 <c¢; <y, set ¢c:=c; + ¢ and ¢y := %cl +£cz. For fixed 7 > 0, define the
function

ko0, ] =R, a— k(a):= ap(at) + (c — a)p((c — a)T).
Then
k'(a) = atp'(ar) + p(at) — p((c — a)7) — (¢ — A)1p'((c — @)7),
k"(a) = tlatp”(at) + 2p'(at) + (¢ — a)tp”"((c — a)r) + 2p'((c — a)7)]
= 31[p'(at) + p'((c — a))] > 0 almost everywhere.

This shows that k' is strictly increasing on [0, c]. Since £'(c/2) = 0, it follows that k has an
absolute minimum at a =94 To estimate k(c;)— k(c/2), mnote that ¢} <co<
%c < %cl +%cz < c¢. Using the mean value theorem, we see that

k(c1) — k(5) = k(cr) — k(co) = (co — )|k (§)] = —— |k (co)l,

where & is between ¢; and ¢y. Using k'(c/2) = 0, we obtain

c/2

Muwzjkwwa

<o

c/2
aﬂ(mm+mwwwm

co
; ¢ c
=3(p(37) — ptem = p(57) + plc = com)
Using the mean value theorem and the fact that p’ decreases, it then follows that

Y
ke~ k(5) = X2 D pe — co) - plem) = 22T

which proves the assertion. ]

p'((¢ = co)v),
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We now come to the crucial step in showing (5.1). If in the following m, can be chosen
to be equal to 1, then (5.6) is redundant and the stronger assertion (5.5) holds for all
positive m:

Lemma 5.3. Suppose that Assumptions 2.1 and 2.4 hold. Then there exist a constant
vo € (0, 1], a positive integer my, a constant t3 = ty and a family (B;);=;, of non-negative
real numbers, tending to zero as t — oo, such that

PO e+ cim)Zi > 1)
i=—00 < B,, Vi = t;, Ym = my, 55
(P(E(i)i—oocizi > f))l+n t 3, VI = my (5.5)

. P(Z?ifoc%(c,- +Ciim)Zi > 1)
lim = =
(=00 P(Zi:ﬂocizi > 1)

0, Vme{l,...,m—1} (5.6)

Proof. Define ¢ := c¢;, = max{c; : i € Z}. Choose 6 € [0,2 —2/9) such that 6+ ' > 0.
For any m € N, define the sequence (¢;m)icz by ¢im = (¢i + ¢i—m)/2. Then ¢;y = ¢; for all
i. The corresponding quantities associated with the sequence (c; ,)icz Will be denoted by O,
and 0, respectively. In particular,

- Cit+ Ciem Ci+ci7m
0u() = Y T g ().

1=—00

If the index m = 0 we usually omit it, so that Oy = O and 0 = 0.

By assumption, it follows that there exists d > 0 such that (c;m)icz € Geap for all
m € Nyg. Then it follows from (4.11) and (4.12) that there are positive constants fs,
Dy, ..., Dy such that, for every m € Ny, y =0 and ¢ = t3,

PSS cimZi > 1)
(POoE_ociZi > )ty

- D, _ ! - _ . - D, . D4(1 + )/)
= D;_H/ exp( J[O . (Qm (U) (1 + V)Q (U) Oioo,m(QmH(U)) O‘OO(QH(U))> dv> '

The assertion will then follow once we have shown that there exist my € N and y( € (0, 1]
such that



Extreme value theory for moving average processes 403

lim lgfj (Qu” @ = (14 y0)Q" (0))dv = o, (5.7)

b Oem(@n” @) o Q @)
0% e 0 (0) — (1 + 70)0 (1) ’

(5.8)

lim Jl (On~ @) — 0~ (W)Ndv=0, Vme{l,...,mo—1}, (5.9

t—00 to ¢

L 000 0) £ 007 )

e O () - 0-()
For the purpose of showing (5.7)—(5.10), we will distinguish between the cases where 3 = oo
and 8 € [—1, c0). Note that (5.9) and (5.10) are redundant if m, can be chosen to be 1.

Suppose, firstly, that § = oo, that is, 8’ = —1. Set mg := 1. Since modifications of g on

bounded intervals can be compensated by the function v appearing in Assumption 2.1, we
can assume that ¢ already has the properties of p as stated in Lemma 5.2. In particular, ¢
is strictly positive on [0, c0), and from the definitions of Q and Q, we see that
0(1) < 0(27) for T =0 and m € N. Furthermore, it is easy to see that for any m € N
there exists j = j(m) € Z such that inf ,,en(Cjim) — Cjimy—m) > 0. It then follows from (5.4)
that there are positive constants b, by, such that

O() — Ouw(z) = b17q'(b27), V7 =0,VmeN.

0, Vme{l,...,my—1}. (5.10)

Thus we have
0 (0<0,(=<207(1), Vi=1> c,¥VmeN. (5.11)

Using the mean value theorem, for fixed ¢ we find some &,, € [1, O(Q;,(1))] such that
0, (1) — 0 (1) =0 (AQ,, () — 0 (1)
_ 9@ (D) = Ou(@n™ (1)) _ 510,,(Dq' (D20, (1))
0'(0~(Em) 00 Ew)

Since O (§) € [0 (¢), O;,(1)], it follows from (3.4) and the fact that ¢’ is decreasing that
there exist b3, by > 0 such that

0'(Q" (Em) < b3q"(b4Q" (Em)) < b3q' (b4 O™ (1))
Since ¢' € RV_y it follows from (5.11) that there exist di, d», t4 > 0 such that

_ q(0:0, (1)
q' (b4 0 (1))
Then it follows from the previous estimates and (5.11) that there exists d3 > 0 such that
0, ()— 0 (1) =d;0 (1), vVt = ty, Vm € N.
This then clearly implies (5.7) with y¢ := min{d3/2, 1}. For the proof of (5.8), observe that

1 < d,, Vt=ty, Vm € N.
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with the same arguments as above, there exist constants 75 > 0, bs > 0 such that for any
me Ny and v = 15,

(7 (W02 (O™ (V) = €], (O ()4 (CionOn™ (1) = b5(Q™ (V)Y q'(Q™ (V)),

and the latter tends to co by (4.7).

Now suppose that € [—1, oc0), that is, B’ € (—1, co]. Again, modifying ¢ such that
q(0) = tp > 0 does not constitute a restriction. Firstly, we show that there are constants
0 < A4, < A4, and 7, > 0 such that

On(t) = A19(ciy7) < A29(c;,T) < O(7), Vi=1,Vm =1, (5.12)

and, if B’ = oo, that additionally there exist my = 1, 73 = 0 and a constant ¢’ < ¢ = ¢;, such
that

0,(7) < A19(c'7), V1T = 13, Vim = my. (5.13)
To show (5.12), note that
00 00 c: 2+p'
0 = > ciglem) ~ Y (C) ciq(ciT), T — 00,

I=—00 i=—00 1o

by dominated convergence. Here, 3 (ci/c;,)**” has to be interpreted as card
{ieZ:c;i=cy} if f’ = co. Similarly,

00 c: 2+p'
On(® ~ Y (C’ ) coq(c,m, T — 00,

io

i=—00

if B’ # o0, or if B’ =00 and ¢;, » = c;, Where i, is defined to be an index such that
¢i,.om =max{c;, : i € Z}. It is easy to check (e.g. with methods similar to those used in the
proof of Lemma 5.2) that

N2 N
= e (%) e () =
io

meN ez iz \“l

Let MCZ be a finite subset such that  uyc; < (44— 43)/4, and put M, :=
M U(M + m). Then iy, Cimq(cimT) < (A4 — A3)q(c;,T)/4. Furthermore, since M is
finite, it follows from the uniform convergence theorem for RV functions (see Bingham et al.
1987, Theorems 1.5.2 and 2.4.1) that

2 g
lim Z Ci,m‘](ci,ml—) _ (Cl_,m> o -0
00 Lot ciyq(ciyT) Ci ’
uniformly in m € N. Thus there exists 7,, such that for any m € N and any 7 = 15,

Aq — A3 Ay + A3
) Q(Cior) = 2 (’I(ciof)'

As — A
On(7) < %CI(%T) + (A3 +

Inequality (5.12) then follows with A4 := (44 + A3)/2 and A, := 43 + 3A44. The proof of
(5.13) is similar, choosing m( and ¢’ such that
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sup ci,.m < c' <cj. (5.14)
m=mg
Since O(7) < ) ciq(c;,v) for any =0, we have Q, (¢) = 1/c;,q" (¢/> ci), which as
t — oo converges uniformly in m to oo. Thus we can invert (5.12) uniformly in m and obtain
a constant ¢ > 0 such that

1 t 1 t
o (n=s—q"~ () <—q~ <> < 0, (), Vt=tg, Vm = 1.
Ciy A Ciy Ai

If B’ # oo, that is, f# —1, set my:=1 and choose yy € (0, 1] such that there exists
As € (A1, Az) such that (1 + yo)y'(t/A2) < '(t/As) for t = t5. Then for t = tc and m € N,

1 1 /1 1
On ()= +7)0 ()= - (1// <Atl> -y <A:)> = (Al - As> "), (5.15)

where & € [t/As, t/4;]). If B’ = o0, set my as in (5.14), and As := A,. Then there is a
constant 7 such that

1 /1 1
Q,,f(t)—Q&(t)20‘<Al—AS> (&), Vi=t;,Vme{l,...,my—1}, (5.16)

with & € [t/4s, t/A]; choosing 0 < yy < min{c, /¢ — 1, 1}, it follows by inversion of
(5.13) that there is a constant 73 such that for ¢t = #g and m = my,

1 1 1 1 1
0, -+ =5y () - F () = LR (- e,

Ci, Ci,

(5.17)

& e [t/A4s, t/4,]. Since " € RVg where = —1, we have lim,_o 29 "(f) = oo, and (5.7)

and (5.9) are then implied by (5.15)—(5.17). To show (5.8) and (5.10), note that for m = 0,
On(On™ (1) = ¢ 4" (i mOn™ (1)), 1= 1.

Since

[o.°]

..
S, n®) < On(D) < D cigles, ), T=0,

I=—00
1 t 1 2t

q- =0 ()= q- (—) t= .
Cim (Zc,) o Ciom Ciy

Thus, there exists #,, € [¢/> ci, (2/ci,)t] such that ¢;, ,On™ (1) = ¢~ (), implying

Ci Ci)?__1

010~ = (3) ¢ ) = (3) 7.

it follows that

Then (5.15)—(5.17) imply (5.8) and (5.10), since lim, ., 2(%"(£))* /" (nm) = oo uniformly
in m, using regular variation of y". O
Now we can use Proposition 5.1 to show Theorem 2.3.
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Proof of Theorem 2.3. Set u, :=x/a, + b,. By (4.7), (4.11) and (4.12),

P( i cil; > t> = exp (JI O (v)ydv+o <Jt Q“(v)dv) ) t — 00.
i=—00 !och toZCi

Since b, is such that P(> ¢;Z; > b,) ~ n~! as n — oo, this implies

b/l bfl

logn = J O (v)dv+o J O (v)dv |, n— oQ.
to ¢ toch

Dividing by J"fz O~ (v)dv gives ( L”Z O~ (v)dv)/(logn) — 1 as n— oco. Since

a, = 0 (by), that is, b, = Q(a,), there exist 7, > 0 and C; > 0 such that for large n,

a

Jh" 0 v = J Q' (u)du

1‘02 0

dap
232 -1/2
BJ cpu / q'(ci,u)u 2 du
0

= CIJ w2 du = 2C,(Va, — V1),
72
since lim,, . u>/?¢'(c;,u) = oo since B’ = —1. But this shows that a,/(log n)? is bounded as
n — oo, showing that D(u,) holds by Proposition 5.1.
For the proof of D'(u,), we will verify conditions (5.1)—(5.3). Let vy, mo and (B,)=,, be

as in Lemma 5.3 and set n' := |n”]. Since lim,ccnP(Yy > u,) =¢ %, it follows from
(5.6) that
mo—1 my—1
P(Yo+ Yy, > 2u,) _
n P(Yy+ Y, > 2u,) ~ e " —0, n— o0.
; ,,; P(Yy > uy)

On the other hand, (5.5) gives, for large n,

2n’ - 1+ 2n’
(e + 1)+n0 P(Yo+ Y >2u,) _ o i
D ot Lo 2200 < (e 102
m=my m=m

and the latter converges to 0 as n — oo, showing (5.1).

Consider the exponential families (Z;)r=0 and (X;;)r=0 as defined in Section 3.1. By
(3.2), EX;; = ¢;EZ,.. Since |¢;| < Cy|i|™ for i # 0, for some constant C,, it follows that
for any n € N,

leit| < Gy, for 7 < n” and |i| = n.
Since [0, C,] — R, s — EZ, is a continuous function, it follows that there is some constant
C3 > 0 such that

|[EX .| < ¢;Cs, for all 7 < n? and li| = n.
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This implies, for any 7 < n’,

> IEXi < GG Y il = Can'? (5.18)

i=n+1 i=n+1

for some constant C4 > 0. Let @, be the moment generating function of Yo, 41CiZi. As in
the proof of Lemma 4.1, it follows that

d . — <
a1ogc1>n(r): Z EX,.,, =0,

i=n+1

implying

®,(1) = exp iy EX;,dv |,
(32 o)

0 j=n+1
since ®,(0) = 1. Using (5.18), we have
®@,(1) < exp(Csn' 1), for 7 < n’.

Using Markov’s inequality, replacing n by »n’ and setting 7 := (n')”, we obtain
> —
P( > cizi>1/a, | < @u((n))exp(—(n)’[ay)
i=n'+1

< exp(Can’ — (') Jay) = o(n %), n— o,

since a, = O((log n)?). This is the left-hand side of (5.2). A similar procedure leads to the
right-hand side of (5.2), as well as to (5.3). Thus it follows that D’(u,) holds, giving the
assertion; see Embrechts er al. (1997, Theorem 4.4.6) or Leadbetter et al. (1983, Theorem
3.5.2). O

6. Applications to financial time series

Financial variables such as stock returns are often modelled using a stochastic volatility
process. Prominent models are autoregressive conditional heteroscedastic (ARCH) and
generalized ARCH (GARCH) models as introduced by Engle (1982) and Bollerslev (1986),
stochastic volatility models as in Taylor (1986) and the exponential GARCH (EGARCH)
model of Nelson (1991). GARCH models have generally heavy tails, so we shall
concentrate on stochastic volatility and EGARCH models.

An example of a (discrete time) stochastic volatility model (&,),cz with volatility process
(0 n)nez is given by
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gn = 0nNp, nec Zn (61)
logo? =Y aiZy i, nel. 6.2)
i=1

Here, (Z;)ic7z is a sequence of i.i.d. random variables, the coefficient sequence (a;);en is such
that the sum in (6.2) converges absolutely almost surely, and (#,),cz is independent of
(Z))icz, hence of (0,),cz. Typically, 779 is Gaussian and Z; has light left and right tails, or is
assumed to be Gaussian. Extreme value theory for such stochastic volatility models (&,),cz
with Gaussian noise has been provided by Breidt and Davis (1998). Much information is
already contained in the volatility process (0,),c7z, and Theorems 2.1-2.3 provide extreme
value theory for the process (logo?2),ez under mild conditions on Z, and non-negative
coefficient sequences. A simple monotone transformation then yields extremal results for the
volatility process (0,)nez. In particular, from Theorem 2.2 it follows that log o and hence
oo are in MDA(A), and Theorem 2.3 shows that extremes of the log-volatility process and
hence of the volatility process do not cluster. The restriction of the coefficients being non-
negative can be relaxed to a great extent, as follows from Theorems 7.1 and 7.2 and their
discussion in the next section.
The EGARCH model (§,),cz has a similar structure, given by

En =042y, ne Z, (63)

e8]
log ai =u-+ Zaig(Z,,_i), nel.
i—1

1

Here, u is a real constant, the coefficient sequence (a;);cn is as before, g is typically a
deterministic piecewise affine linear function (allowing for asymmetry in negative and
positive innovations), and (Z,),cz is an i.i.d. innovation sequence, typically Gaussian. The
main difference from the stochastic volatility model considered before is that &, is defined in
terms of the innovation sequence (Z,),cz only, while the stochastic volatility model is
defined in terms of a second independent driving noise sequence (77,),cz. For the extreme
value theory of (log ai)ngz and hence (0,),cz, however, this is irrelevant, and Theorems
2.1-2.3 can be applied for fairly general light-noise terms, similar to the stochastic volatility
model discussed before. The extreme value behaviour of the price process (&,),cz itself for
Gaussian innovations and a finite coefficient sequence («;);—1.. y has been investigated in
Lindner and Meyer (2002).

,,,,,

7. Extensions

The proofs of Theorems 2.1 and 2.2 can easily be generalized to cover independent finite
sums of infinite moving average processes. Let K € N. For k=1, ..., K, let Z® be a
generic random variable which satisfies Assumption 2.1 with v®, »® and . Suppose
that for each k, (Z"),c7 is i.i.d. with the distribution of Z®, and that (Z);cz 1. x is

,,,,,
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,,,,,

define

o0

K
=3 AR (7.1)

k=1 i=—o00

Set
g @) = ") (0,

(O’E_k))2(1,') = (cgk))z(q(k)),(cgk)f)’

K 00
0w =3 Y 4",

k=1 i=—o00

o (1) := Q'(0).
Instead of Asumption 2.2, suppose that

Yk (0@

lim limsu =0,
i RSP o%(0)
K k
. . Zk:lz|j\>maj( )(T)
lim lim sup =0.
Mm—00 o 050(T)

Denote by @ the moment generating function of Y. Then we have the following extension of
Theorems 2.1 and 2.2:

Theorem 7.1. Under the assumptions and with the notation above, the assertions of
Theorems 2.1 and 2.2 hold, with Y, as in (7.1) replacing > ;> ¢;Z; in (2.5) and (2.6), and
S 1t(k)zszoo (lk) replacing the lower integration limit 1, c; in (2.6).

Theorem 7.1 can be used to cover infinite moving average processes with negative and
positive coefficients. This can be achieved by splitting the sum in (1.1) into
Yi=> c=0CiZnti+ Y c;c0(—Ci)(—Zpnii). If Assumptions 2.1 and 2.2 are then valid for
each of the two sums (posing conditions on the left- as well on the right-tail behaviour of
the density f of Z), then Theorems 2.1 and 2.2 hold.

Theorem 7.1 can also be used to derive further results for the stochastic volatility model
and EGARCH model of the previous section. Not only does it allow for positive and
negative terms in the coefﬁcient sequence but also it follows from (6.1) and (6 3) that
log§ =logo? +logn? and log§ =logo? +log Z2, respectively. Then log 50 has the
general form (7.1), and Theorem 7.1 allows us to derlve the tail behaviour of log §0 (and
hence of |&y|) and to show that 10g§0 € MDA(A), under mild conditions on the light-tail
behaviour of the noise sequences.

There is also an extension of Theorem 2.3 to moving average processes with negative and
positive coefficients; its proof follows by slight modifications of the proof of Theorem 2.3.
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Theorem 7.2. Suppose that Z as well as —Z satisfy Assumptions 2.1 and 2.4 with functions
Yy and Y_ and regular (rapid) variation indices B, and B_, respectively. Define 'y and [’
as in Assumption 2.3, and suppose that the real coefficient sequence (c;)icz satisfies
leil = O(i]™%) as |i| — oo, for some & >max{l,2/2+B%),2/Q2+B.)}. Suppose that
By # B, or that v, = y_. Then the assertion of Theorem 2.3 holds for (Y,)ncz as defined
in (1.1).
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