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We consider stationary infinite moving average processes of the form

Yn ¼
X1

i¼�1
ci Z nþi, n 2 Z,

where (Zi)i2Z is a sequence of independent and identically distributed (i.i.d.) random variables with

light tails and (ci)i2Z is a sequence of positive and summable coefficients. By ‘light tails’ we mean that

Z0 has a bounded density f (t) � �(t)exp(�ł(t)), where �(t) behaves roughly like a constant as t !1
and ł is strictly convex satisfying certain asymptotic regularity conditions. We show that the i.i.d.

sequence associated with Y0 is in the maximum domain of attraction of the Gumbel distribution. Under

additional regular variation conditions on ł, it is shown that the stationary sequence (Yn)n2N has the

same extremal behaviour as its associated i.i.d. sequence. This generalizes Rootzen’s results where

f (t) � ctÆ exp(�t p) for c . 0, Æ 2 R and p . 1.

Keywords: domain of attraction; extreme value theory; generalized linear model; light-tailed

innovations; moving average process

1. Introduction

The goal of this paper is to study extreme value theory of strictly stationary moving average

processes of the form

Yn ¼
X1

i¼�1
ci Z nþi, n 2 Z, (1:1)

where (Zi)i2Z is a sequence of independent and identically distributed (i.i.d.) random

variables with EjZ0j ,1 and (ci)i2Z is a sequence of non-negative real coefficients

satisfying
P1

i¼�1ci ,1. The extremal behaviour of such processes can be classified

according to the tail behaviour of the innovation sequence (Zi)i2Z and the manner in which

the coefficient sequence (ci)i2Z decreases. Davis and Resnick (1985) investigated the

extremes of such moving average processes for innovations whose distributions have regularly

varying tails. In that case Y belongs to the maximum domain of attraction of the Fréchet

distribution and the point processes of exceedances of (Yn)n2Z converge to a compound

Poisson process; that is, extremes appear in clusters. Davis and Resnick (1988) also

considered innovations in the domain of attraction of the Gumbel distribution, which are
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convolution equivalent. Here only the multiplicity of the maximum of the coefficients (ci)i2Z
determines the cluster size of the limiting compound Poisson process. A summary of results

for innovations with subexponential tails can be found in Embrechts et al. (1997, Section

5.5). All such innovations have tails which are heavier than exponential.

A different regime was considered in Rootzén (1986; 1987), who investigated innovations

whose tails are lighter than exponential. More precisely, he considered innovations with

densities of the form f (t) � KtÆ exp(�t p) as t!1, with p . 1. Here a(t) � b(t) as

t!1 means that the quotient of the left-hand side and right-hand side converges to 1 as

t!1. The present paper can be seen as a generalization of Rootzén’s results.

We work under the following conditions on the innovations. Let Z be a generic random

variable with the same distribution as Z0. We assume that Z has a bounded probability

density and that it satisfies

f (t) � �(t)exp(�ł(t)) t!1: (1:2)

Here ł is convex, C2, with ł 0 . 0 and ł9(1) ¼ 1, and the function � ¼ 1=
ffiffiffiffiffiffi
ł 0

p
is self-

neglecting, that is,

lim
t!1

�(t þ x�(t))

�(t)
¼ 1, uniformly on bounded x-intervals: (1:3)

The function � is measurable and is flat for �, that is,

lim
t!1

�(t þ x�(t))

�(t)
¼ 1, uniformly on bounded x-intervals, (1:4)

which guarantees that it is more or less flat on intervals of the appropriate length determined

by �. Such densities are closed with respect to finite convolutions, which applies to a finite

moving average process; see Balkema et al. (1993). This is a basic property needed to

analyse such light-tailed linear models. As the assumptions in Balkema et al. (1993) are

minimal, our framework is to our knowledge the most general framework possible.

Our paper is organized as follows. In Section 2 we introduce the necessary assumptions,

state the main results and conclude with some examples. Assumption 2.1 redefines any

density (1.2) satisfying (1.3) and (1.4) such that it satisfies certain conditions which do not

constitute a restriction, but make calculations easier. Assumption 2.2 allows for a

generalization of results from the finite moving average to the general model (1.1).

Assumption 2.2 will suffice to determine the tail behaviour of Y0 up to a certain order

(Theorem 2.1) and to show that Y0 belongs to the domain of attraction of the Gumbel

distribution (Theorem 2.2). To investigate the extremal behaviour of the stationary sequence

(Yn)n2Z, we have to impose certain regularity conditions on the function ł. As is natural in

extreme value theory, we require regular variation or rapid variation of ł, as given in

Assumptions 2.3 and 2.4. Theorem 2.3 then shows that the extremal behaviour of the

moving average process (Yn)n2Z is exactly that of its associated i.i.d. sequence; that is,

(Yn)n2Z belongs to the domain of attraction of the Gumbel distribution with the same

norming constants as the associated i.i.d. sequence.

In Section 3 we state some auxiliary results and discuss our assumptions. Section 4 is

devoted to the proof of the tail behaviour and domain of attraction of Y0 as stated in

382 C. Klüppelberg and A. Lindner



Theorems 2.1 and 2.2, while the extremal behaviour of the stationary sequence (Yn)n2Z as

stated in Theorem 2.3 is proved in Section 5. Applications of the results to financial time

series such as stochastic volatility models and the exponential generalized autoregressive

conditional heteroscedastic model are considered in Section 6. Finally, in Section 7 we give

some extensions of our results, treating for example the case of positive and negative

coefficients.

2. Assumptions and main results

We make the general assumptions of the Introduction more precise, introduce the necessary

notation, state our main results and give some examples. Throughout the paper we shall

assume the following condition (such a representation can always be found for the class of

densities introduced in Section 1).

Assumption 2.1. The random variable Z has finite expectation and a bounded density f ,

which satisfies

f (t) ¼ �(t)exp(�ł(t)), t > t0, (2:1)

for some t0 2 R and functions �, ł : [t0, 1)! R, where ł is C2, ł9(t0) ¼ 0, ł9(1) ¼ 1,

ł 0 is strictly positive on [t0, 1) and 1=
ffiffiffiffiffiffi
ł 0

p
is self-neglecting. The function � is measurable

and flat for 1=
ffiffiffiffiffiffi
ł 0

p
.

The function ł9 is continuous and strictly increasing on [t0, 1) with range [0, 1).

Therefore, for any � 2 [0, 1) and the non-negative summable sequence (ci)i2Z, we can

define

q(�) :¼ ł9 (�),

S2(�) :¼ q9(�) ¼ 1=ł 0(q(�)),

qi(�) :¼ ciq(ci�),

� 2
i (�) :¼ q9i(�) ¼ c2

i S2(ci�),

where ł9 denotes the inverse of ł9. Note that q(0) ¼ t0, and that q is C1 on [t0, 1) and

strictly increasing with q(1) ¼ 1. Furthermore, on any compact interval of the form [t0, s]

for s 2 [t0, 1), S2 ¼ q9 is bounded above and bounded away from zero.

Then, by the previous considerations,

Q(�) :¼
X1

i¼�1
qi(�) and � 2

1(�) :¼
X1

i¼�1
� 2

i (�)

can be defined pointwise for any � > 0. The sum defining � 2
1 converges uniformly on any

compact interval [0, s] (s . 0), which then implies that the sum defining Q converges

uniformly on compacts, and that Q is C1 satisfying
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Q9(�) ¼ � 2
1(�) ¼

X1
i¼�1

q9i(�), � > 0: (2:2)

Furthermore, Q is strictly increasing and maps [0, 1) onto [t0

P1
i¼�1ci, 1). Set S :¼

ffiffiffiffiffi
S2
p

,

� i :¼
ffiffiffiffiffiffi
� 2

i

p
, �1 :¼

ffiffiffiffiffiffiffi
� 2
1

p
. To describe the tail behaviour of Y0, we will need further

conditions on the speed of convergence of the sum defining � 2
1. More precisely, we will

impose the following assumption:

Assumption 2.2. (ci)i2Z is a summable sequence of non-negative real numbers, not all zero,

and the following two conditions hold:

lim
m!1

lim sup
�!1

P
j jj.m�

2
j(�)

� 2
1(�)

¼ 0, (2:3)

lim
m!1

lim sup
�!1

P
j jj.m� j(�)

�1(�)
¼ 0: (2:4)

Clearly, Assumption 2.2 is satisfied if all but finitely many of the ci are zero.

Assumptions 2.1 and 2.2 allow us to obtain the tail behaviour of Y0. Denote by � the

moment generating function of Y0, which in Lemma 4.1 will be shown to exist under

Assumptions 2.1 and 2.2. Then with the aid of � we can express the exact tail behaviour of

Y0, and without using � we obtain the tail behaviour of Y0 up to a certain order:

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Then

P
X1

i¼�1
ci Zi . Q(�)

 !
� 1ffiffiffiffiffiffi

2�
p

��1(�)
e��Q(�)�(�), �!1: (2:5)

Furthermore, there is a function r(�) ¼ o(1=�1(�)), �!1, such that

P
X1

i¼�1
ci Zi . t

 !
� 1=

ffiffiffiffiffiffi
2�
p

Q (t)�1(Q (t))
exp

ð t

t
P

ci

(Q (v)þ r(Q (v)))dv

 !
, t!1,

(2:6)

and 1=�1(�) ¼ o(�), �!1, so the first term in the integral is the leading term.

As Y0 is light-tailed, it is no surprise that Y0 belongs to the domain of attraction of the

Gumbel distribution; we write Y0 2 MDA(¸). We also say that the associated i.i.d. sequence

to (Yn)2Z belongs to MDA(¸); this is a sequence ( ~YYn)n2Z of i.i.d. random variables all with

the stationary distribution. Then Y0 2 MDA(¸) means that there exist norming constants

(an)n2N and (bn)n2N such that an . 0, bn 2 R, and

lim
n21

P an max
j¼1,...,n

~YY j � bn

� �
< x) ¼ ¸(x) ¼ exp(�e�x), x 2 R:

�
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For more details on classical extreme value theory we refer to Embrechts et al. (1997),

Leadbetter et al. (1983) or Resnick (1987).

Theorem 2.2. Suppose that Assumptions 2.1 and 2.2 hold. Then

lim
t!1

P(Y0 . t þ x=Q (t))

P(Y0 . t)
¼ e�x, x 2 R: (2:7)

The i.i.d. sequence associated with (Yn)n2Z belongs to MDA(¸), with norming constants an

and bn given by the equations

lim
n21

nP(Y0 . bn) ¼ 1 and an :¼ Q (bn): (2:8)

It does not seem to be too restrictive to impose further regular variation conditions on ł.

We shall denote the class of functions regularly varying in infinity with index � by RV�; for

definitions and results we refer to the monograph by Bingham et al. (1987).

Assumption 2.3. Suppose that ł 0 2 RV� for � 2 [�1, 1]. For � ¼ 1, which corresponds to

the class of rapidly varying functions, we require additionally that ł 0 is ultimately absolutely

continuous on compacts (i.e. there exists T such that ł 0 is absolutely continuous on

[T , T þ x] for any x . 0) and that

lim
t!1

d

dt

ł9(t)

ł 0(t)
¼ 0:

Define �9 such that 1þ �9 ¼ 1=(1þ �) with the convention that the left-hand side is

equal to 0 for � ¼ 1 and equal to 1 if � ¼ �1.

Furthermore, suppose there exists Ł 2 [0, 2) such that Łþ �9 . 0 and
P1

i¼�1
c

1�Ł=2
i ,1, where (ci)i2Z is a sequence of non-negative real numbers, not all zero.

In Proposition 3.2 it will be shown that Assumptions 2.3 and 2.1 together imply

Assumption 2.2. Under the following slightly stronger assumption we will show that the

extremal behaviour of the moving average process (Yn)n2Z is the same as the extremal

behaviour of its associated i.i.d. sequence: the dependence vanishes in the extremes.

Assumption 2.4. Suppose that ł, � and �9 are as in Assumption 2.3. Furthermore, suppose

there is some constant W . maxf1, 2=(2þ �9)g such that ci ¼ O(jij�W), i!1, where (ci)i2Z
is a sequence of non-negative real numbers, not all zero. Finally, suppose that Z has finite

variance.

Assumption 2.4 implies Assumption 2.3: if we choose Ł 2 [0, 2� 2=W) such that

Łþ �9 . 0, then Assumption 2.3 follows, since (1� Ł=2)W . 1. The extremal behaviour of

the stationary (Yn)n2Z can now be described as follows:

Theorem 2.3. Suppose that Assumptions 2.1 and 2.4 hold. Let (an)n2N and (bn)n2N, as given
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in (2.8), be norming constants of the i.i.d. sequence associated with Y0. Then (Yn)n2N belongs

to MDA(¸) with the same norming constants, that is,

lim
n21

P an max
j¼1,...,n

Y j � bn

� �
< x

� �
¼ exp(�e�x), x 2 R:

In the course of proving our results, we will use the following notation. For any

summable sequence (ci)i2Z of non-negative real numbers let i0 be an index such that

ci0 ¼ maxfci : i 2 Zg. Let c and d be strictly positive real numbers, and let 0 < Ł , 2.

Denote by Gc,d,Ł the set of all non-negative sequences (ci)i2Z such that
P1

i¼�1ci < d,P1
i¼�1c2�Ł

i < d,
P1

i¼�1c
1�Ł=2
i < d, and c=2 < ci0 < c. If in the following limits of

summation are missing, then it is understood that summation is over Z. Convergence in

distribution will be denoted by !d , and convergence in probability by !P .

We conclude this section with some examples.

Example 2.1. (a) Let ł(t) :¼ (�þ 2)�1 t�þ2, where � 2 (�1, 1). Then ł 0 2 RV� and ł
satisfies Assumption 2.1 with t0 ¼ 0. An example for a flat function � for 1=

ffiffiffiffiffiffi
ł 0

p
would be

any function behaving asymptotically like a rational function, or also �(t) ¼ e t if � . 0. Put

�9 :¼ (1þ �)�1 � 1 and suppose that ci ¼ O(jij�W) for some W . max(1, 2=(2þ �9)). If Z is

then such that it has finite variance and bounded density f as in (2.1), then Assumptions 2.1

and 2.4 hold and Theorems 2.1–2.3 can be applied. In particular, since Q (t) ¼
(t=
P

c
2þ�9
i )1þ� and Q9(Q (t)) ¼ ct�� for some constant c, (2.6) gives

P
X1

i¼�1
ci Zi . t

 !
¼ exp �(2þ �)�1

X
c

2þ�9
i

 !�1��

t2þ� þ o(t1þ�=2)

0
@

1
A, t!1:

This agrees with Theorem 6.1 in Rootzén (1987); however, focusing on this example and

under an additional smoothness condition, Rootzén obtains the estimate O(t(1þ�)=W) for the

remaining term (as t!1), which can be seen to be slightly better than our estimate, since

W . 2=(2þ �9) implies (1þ �)=W , 1þ �=2.

(b) Let ł: [1, 1)! R be given by ł(t) ¼ t log t � t. Then ł 0(t) ¼ 1=t 2 RV�1 and ł
satisfies Assumption 2.1 with t0 ¼ 1. Any rational function would then be flat for 1=

ffiffiffiffiffiffi
ł 0

p
.

Let ci ¼ O(jij�W) for some W . 1. For simplicity, assume that ci0 ¼ 1, and that this

maximum ci0 is taken with multiplicity N. Let c9 :¼ maxfci : i 2 Z, ci 6¼ 1g , 1. Assume

that Z also satisfies all other properties of Assumptions 2.1 and 2.4. Then Theorems 2.1–

2.3 are applicable. For the tail, note that q(�) ¼ e�, Q(�) ¼ N e� þ O(ec9�), �!1, and

approximate inversion shows

Q (t) ¼ log t � log N þ O(t c9�1), t!1:

Since Q9(�) � N e�, �!1, it follows that ��1
1 (Q (�)) � t�1=2, so that (2.6) gives

P
X1

i¼�1
ci Zi . t

 !
¼ exp(�t log t þ t(1þ log N )þ O(tmaxfc9,1=2g)), t!1:
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(c) Examples where ł 0 is in RV1 and satisfies the additional condition in Assumption

2.3 are ł(t) ¼ e t or ł(t) ¼ exp(e t) for large t. If then ci ¼ O(jij�W) for some W . 2 and

the additional conditions in Assumptions 2.1 and 2.4 are satisfied (a flat function could be a

rational function, or also �(t) ¼ e t), then Theorems 2.1–2.3 can be applied. We consider

one example in more detail. Let ł : [0, 1)! [0, 1) be given by ł(t) ¼ et2=2 for

t 2 [0, 1] and ł(t) ¼ e t � e=2 for t . 1. Let Ł 2 (1, 2) such that
P

c
1�Ł=2
i ,1. For

simplicity, assume that
P

ci ¼ 1. Then q(�) ¼ �=e for 0 < � < e and q(�) ¼ log � for � > e.

This shows that

Q(�) ¼
X1

i¼�1
ci log ci þ log �þ

X
i:ci�,e

c2
i �

e
� ci log(ci�)

� �
,

where

X
i:ci�,e

c2
i �

e
� ci log(ci�)

� �
¼ ��Ł=2

X
i:ci�,e

c
1�Ł=2
i

(ci�)1þŁ=2

e
� (ci�)Ł=2 log(ci�)

� �
¼ o(��Ł=2),

as �!1. Approximate inversion yields

Q (t) ¼ e t�
P

ci log ci þ o(e t(1�Ł=2), t!1:

Furthermore,

Q9(�) ¼ 1

�

X
i:ci�>e

ci þ
X
ci�,e

(ci�)
ci

e

 !
� 1

�
, �!1,

so that ��1
1 (Q (t)) ¼ O(e t=2), t!1. An application of (2.6) then shows that

P
X1

i¼�1
ci Zi . t

 !
¼ exp(�e t�

P
ci log ci þ O(e t=2)), t!1:

3. Auxiliary results

3.1. Exponential families

A basic role in our proofs will be played by exponential families. Let X be a random

variable whose moment generating function Ee�X exists for all � 2 [0, 1). Then the

exponential family (X �)�>0 is defined to be a family of random variables such that

FX �
(dz) ¼ e�z FX (dz)

Ee�X
, � > 0,

where FX and FX �
denote the distribution function of X and X �, respectively. Exponential

families have the following useful properties, which follow by standard calculations (see, for

example, Rootzén 1987, Section 3):
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P(X 2 A) ¼ E(e��X�1
X �2A

)Ee�X , � > 0, A a Borel set, (3:1)

(cX )�¼
d

cX c�, c, � > 0: (3:2)

We will consider the exponential families of the random variables X i :¼ ci Zi. Denote by

�i the moment generating function of X i, which by Assumption 2.1 exists and is finite for

all � > 0, as shown in Balkema et al. (1993, Proposition 5.11). Denote the density of X i by

f i, and the exponential family associated with X i by (X i,�)�>0. Assume throughout that the

exponential families are taken such that (X i,�)i2Z are mutually independent for any � > 0.

The exponential family associated with the generic random variable Z will be denoted by

(Z�)�>0. In Lemma 4.1 it will be shown that the moment generating function � of
P

X i

exists and is finite for every argument � > 0, and that
P1

i¼�1X i,� converges almost surely

for any � > 0. In particular, the exponential family of
P

X i exists, and since taking

exponential families commutes with taking convolution (see, for example, Rootzén 1987,

equation (3.4)), this exponential family is given by (
P1

i¼�1X i,�)�>0.

3.2. ANET convergence

A family (W�)�>0 of random variables with densities w� is called asymptotically normal

with exponential tails (ANET) if w�(x) converges locally uniformly in x to the density

j(x) ¼ e�x2=2=
ffiffiffiffiffiffi
2�
p

of the standard normal distribution as �!1, and if for any � . 0

there exist �� and a constant M� . 1 such that

w�(x) < e�jxj=�, 8jxj > M�, � > ��:

If a sequence is ANET, it is known that the moment generating functions and the (absolute)

moments of all orders converge to the corresponding moment generating function and

(absolute) moments of the standard normal distribution, and that W� converges in distribution

to N (0, 1); see Balkema et al. (1993, Proposition 6.3).

In Balkema et al. (1993, Theorem 6.6) it is shown that under Assumption 2.1 a suitable

centring and normalization transforms the exponential family associated with Z into an

ANET sequence. More precisely, the sequence ((Z� � q(�))= S(�))�>0 is ANET. Since the

set of random variables satisfying Assumption 2.1 is closed under finite convolution, as

shown in Balkema et al. (1993, Theorem 1.1), it follows that for any m 2 N0 such that at

least one of the ci for jij < m is non-zero, the exponential family associated with
Pm

i¼�m X i

can be transformed into an ANET sequence. More precisely, the sequence (
Pm

i¼�m

(X i,� � qi(�))=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼�m�
2
i (�)

p
)�>0 is ANET; see Balkema et al. (1993, p. 586). See also

Barndorff-Nielsen and Klüppelberg (1992) for further calculations.

3.3. Discussion of the assumptions

Recall that a function g : [0, 1)! R is in RV� (� 2 R) if and only if there are constants
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a, c . 0, a measurable function c(:) and a locally Lebesgue integrable function � on [a, 1)

such that limx!1c(x) ¼ c, limx!1�(x) ¼ 0, and

g(x) ¼ x�c(x)exp

ðx

a

�(u)

u
du

� �
, x > a: (3:3)

If the function c(:) in (3.3) can be taken as a constant, then g is said to be normalized

regularly varying with index �; we write g 2 NRV�.

The following lemma clarifies Assumption 2.3. In particular,

lim
t!1

d

dt

ł9(t)

ł 0(t)
¼ 0

means nothing more than q9 2 NRV�1, which already implies that ł 0 2 RV1.

Lemma 3.1. Suppose that ł : [t0, 1)! R is C2, ł9(1) ¼ 1, and ł 0 . 0. Let q ¼ ł9 ,

and for � 2 [�1, 1] define �9 through 1þ �9 ¼ (1þ �)�1.

(a) For all � 2 [�1, 1], we have ł9 2 RV1þ� if and only if q 2 RV1þ�9.
(b) If ł 0 2 RV� where � 2 R, then � > �1, ł9 2 RV1þ�, 1=

ffiffiffiffiffiffi
ł 0

p
is self-neglecting, and

q9 2 RV�9. If � 2 (�1, 1), then ł 0 2 RV� if and only if q9 2 RV�9.

(c) Let �9 2 [�1, 1). Then ł 0 is ultimately absolutely continuous on compacts and

satisfies

lim
t!1

d

dt

ł9(t)

ł 0(t)
¼ 1þ �9

if and only if q9 2 NRV�9.

(d) If q9 2 RV�1, then 1=
ffiffiffiffiffiffi
ł 0

p
is self-neglecting and ł 0 2 RV1.

(e) 1=
ffiffiffiffiffiffi
ł 0

p
is self-neglecting if and only if 1=

ffiffiffiffiffi
q9

p
is self-neglecting.

Proof. (a) This follows from Proposition 1.5.15 and Theorem 2.4.7 of Bingham et al. (1987).

(b) Since ł9(1) ¼ 1 and ł 0 2 RV�, it follows from l’Hôpital’s rule that ł9 2 RV1þ�
and further that 1þ � > 0. Since q9(�) ¼ 1=ł 0(q(�)), it follows by composition that

q9 2 RV�9 if � 6¼ �1, and the converse follows similarly. If � ¼ �1, then ł9 2 RV0, hence

q 2 RV1. By the monotone equivalence theorem (Bingham et al. 1987, Theorem 1.5.3), ł 0

is asymptotically equivalent to a decreasing function h, say. Then if c 2 (0, 1), for any

� . 0 there exists �� such that q(c�) , �q(�) for � > ��, since q 2 RV1. This then implies

q9(c�)

q9(�)
� h(q(�))

h(q(c�))
<

h(q(�))

h(�q(�))
! �, �!1,

showing that q9 2 RV1. To show that 1=
ffiffiffiffiffiffi
ł 0

p
is self-neglecting, note that

lim
t!1

t þ x=
ffiffiffiffiffiffiffiffiffiffiffi
ł 0(t)

p
t

¼ 1þ lim
t!1

x

t
ffiffiffiffiffiffiffiffiffiffiffi
ł 0(t)

p ¼ 1

uniformly in x 2 R, since t 7! t
ffiffiffiffiffiffiffiffiffiffiffi
ł 0(t)

p
is in RV1þ�=2.

(c) Note that ł 0 is ultimately absolutely continuous on compacts and satisfies the relation

Extreme value theory for moving average processes 389



lim
t!1

d

dt

ł9(t)

ł 0(t)
¼ 1þ �9

if and only if q9 is ultimately absolutely continuous on compacts and satisfies

lim
�!1

�q 0(�)

q9(�)
¼ lim

�!1

�ł9(q(�))ł-(q(�))

ł 0(q(�))2
¼ lim

t!1

�ł9(t)ł-(t)

ł 0(t)2
¼ �9:

But this is equivalent to q9 being ultimately absolutely continuous on compacts and satisfying

lim
�!1

� d(���9q9(�))=d�

���9q9(�)
¼ 0,

which is equivalent to q9 2 NRV�1; see Bingham et al. (1987, p. 15).

The proof of (d) is similar to the proof of (b), using (e) to show that 1=
ffiffiffiffiffiffi
ł 0

p
is self-

neglecting.

The proof of (e) itself is given in Balkema et al. (1993, Theorem 5.3). h

Next we show that Assumptions 2.1 and 2.3 imply Assumption 2.2.

Proposition 3.2. Suppose that Assumptions 2.1 and 2.3 are satisfied. Then Assumption 2.2

holds. Furthermore, there exists a positive constant D, depending only on ł and on Ł, such

that for every constant c bounding (ci)i2Z from above,

� 2
1(�) < D

X1
i¼�1

ci

c

� �2�Ł
c2q9(c�), � > 0: (3:4)

Proof. Note that q9 2 RV�9 by Lemma 3.1. Define p1(�) :¼ �Łq9(�) for � > 0. Then there

exists an increasing function p2 : [0, 1)! R such that p1(�) < p2(�) for any � > 0, and

p1(�) � p2(�) as �!1. For �9 6¼ 1, this follows from the monotone equivalence theorem

(Bingham et al. 1987, Theorem 1.5.3), and for �9 ¼ 1 from q9(�) ¼ 1=ł 0(q(�)), the

monotonicity of q and an application of the monotone equivalence theorem to 1=ł 0 2 RV1.

We conclude that there exists a positive constant d1 such that p2(�) < d1 p1(�) for all � > 1.

Let c > maxfci : i 2 Zg. Then if c� > 1, we have

p1(ci�) < p2(ci�) < p2(c�) < d1 p1(c�):

Since q9 is continuous and strictly positive on [0, 1], there exists some d2 . 0 such that

q9(x) < d2q9(y) for every x, y 2 [0, 1]. In particular, for c� < 1, q9(ci�) < d2q9(c�). Then,

with D :¼ max(d1, d2), it follows that

cŁi q9(ci�) < DcŁq9(c�), � > 0, (3:5)

giving (3.4). Since
P

c
1�Ł=2
i ,1, it follows from (3.5), the dominated convergence theorem

and the fact that p1 2 RV�9þŁ, that

lim
�!1

P1
i¼�1ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q9(ci�)

p
c
ffiffiffiffiffiffiffiffiffiffiffiffi
q9(c�)

p ¼
X1

i¼�1

ci

c

� �1�Ł=2

lim
�!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cŁi �

Łq9(ci�)

cŁ�Łq9(c�)

s
¼
X1

i¼�1

ci

c

� �1þ�9=2

,
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where the right-hand side has to be interpreted as cardfi : ci ¼ cg if �9 ¼ 1. Similarly, for

any m . 0,

lim
�!1

P
jij.mci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q9(ci�)

p
c
ffiffiffiffiffiffiffiffiffiffiffiffi
q9(c�)

p ¼
X
jij.m

ci

c

� �1þ�9=2

,

and (2.4) follows. The limit relation (2.3) follows similarly. h

Remark 3.1. The proof shows that the condition

lim
t!1

d

dt

ł9(t)

ł 0(t)
¼ 0

(for the case ł 0 2 RV1), which by Lemma 3.1 is equivalent to q9 2 NRV�1, can be slightly

relaxed to q9 2 RV�1, and Assumption 2.2 still follows.

There are also many examples where Assumptions 2.1 and 2.2 hold, but 2.3 does not:

Example 3.1. Let ł : [0, 1)! (0, 1) such that ł9(0) ¼ 0 and ł 0(t) ¼ (2þ cos(�
ffiffi
t
p

))�2.

Then the derivative of 1=
ffiffiffiffiffiffiffiffiffiffiffi
ł 0(t)

p
tends to 0 as t!1, and the mean value theorem implies

that 1=
ffiffiffiffiffiffi
ł 0

p
is self-neglecting. A flat function � would be any rational function or

�(t) ¼ exp(tÆ) for Æ 2 [0, 1). If then Z has finite expectation and bounded density f

satisfying (2.1), then Assumption 2.1 holds. If, furthermore, (ci)i2Z is a summable sequence

of non-negative numbers, then it is easy to see that Assumption 2.2 holds, too. Note,

however, that Assumption 2.3 is not satisfied for this example.

4. Proof of Theorems 2.1 and 2.2

In this section we shall prove the tail behaviour of Y0 as stated in Theorem 2.1 and then

use this result to prove Theorem 2.2, that is, that the associated i.i.d. sequence is in

MDA(¸). The proofs will be split up into several lemmas, and exponential families will

play an important role. We will also give some uniform estimates under the extra condition

of Assumption 2.3 and for coefficient sequences in Gc,d,Ł. These will be used in Section 5

when proving Theorem 2.3. Recall the notation of Section 3.1.

Lemma 4.1. Under Assumptions 2.1 and 2.2, the moment generating function � ofP
X i ¼

P
ci Zi exists and is finite for all � > 0, and we have

�(�) ¼
Y1

i¼�1
�i(�), � > 0,

as well as

d

d�
log�(�) ¼

X1
i¼�1

d

d�
log�i(�) ¼

X1
i¼�1

EX i,�, � > 0, (4:1)
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where the sum and the product converge uniformly on compact subsets of [0, 1). The

exponential family associated with
P

X i is (
P1

i¼�1X i,�)�>0, where the sum converges

absolutely almost surely.

Proof. By the definition of the exponential family,

EX i,� ¼
EX ie

�X i

�i(�)
¼
Ð1
�1 f i(t)te� t dt

�i(�)
¼ d�i(�)=d�

�i(�)
¼ d

d�
log�i(�),

where we have used the differentiation lemma for the third equality. Furthermore, we see

(since EjX ij ,1) that [0, 1)! R, � 7! EjX i,�j is continuous. Since (Z� � q(�))=S(�))�>0 is

ANET as noted in Section 3.2, it follows that the absolute moment Ej(Z� � q(�))=S(�)j
converges to the absolute moment of N (0, 1) as �!1. Furthermore, q(�), 1=S(�) and EjZ�j
are bounded on compact subintervals of [0, 1). This shows that there is a constant C such

that EjZ� � q(�)j < CS(�) for all � > 0. Using (3.2), this implies that

EjX i,� � qi(�)j < C� i(�), 8� > 0, 8i 2 Z: (4:2)

In particular, it follows that for any s . 0,

sup
0<�<s

EjX i,�j < C sup
0<�<s

� i(�)þ sup
0<�<s

jqi(�)j,

implying absolute and uniform convergence on compacts of
P1

i¼�1EX i,�. The convergence

of
P1

i¼�1EjX i,�j gives almost sure convergence of
P1

i¼�1X i,�. Note that uniform

convergence on compacts of
P

d log�i(�)=d� implies uniform convergence on compacts

of
P

log�i(�) and hence of
Q1

i¼�1�i(�). That the limit is in fact �(�) follows from the

dominated convergence theorem. For application of the latter, construct a random variable ~ZZ
such that ~ZZ ¼ Z if Z > 0, and ~ZZ 2 [0, 1] if Z , 0, and such that ~ZZ has a bounded density.

Then if ( ~ZZi)i2Z is an i.i.d. sequence with distribution ~ZZ, the same calculations as before show

that
Q1

i¼�1 eci
~ZZi is an integrable majorant. That the exponential family associated with

P
X i

is indeed (
P1

i¼�1X i,�)�>0 has already been noted in Section 3.1. h

Lemma 4.2. Under Assumptions 2.1 and 2.2,

1

�1(�)

X1
i¼�1

(X i,� � qi(�))!d N (0, 1), �!1: (4:3)

Proof. For � > 0 and m 2 N such that not all of the (ci)jij<m are zero, define

Am� :¼
Xm

i¼�m

(X i,� � qi(�))
1

�1(�)
� 1Pm

j¼�m�
2
j(�)

� �1=2

0
B@

1
CA,

Bm� :¼
P
jij.m(X i,� � qi(�))

�1(�)
:

Then
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P1
i¼�1(X i,� � qi(�))P1

i¼�1�
2
i (�)

� �1=2
�
Pm

i¼�m(X i,� � qi(�))Pm
i¼�m�

2
i (�)

� �1=2
¼ Am� þ Bm�:

By the ANET property,P
jij<m(X i,� � qi(�))P
jij<m� 2

i (�)
� �1=2

!d N (0, 1), �!1:

Then (4.3) follows from a variant of Slutsky’s theorem (see Billingsley 1999, Theorem 3.2),

provided that for any � . 0,

lim
m!1

lim sup
�!1

P(jAm�j . �) ¼ 0 ¼ lim
m!1

lim sup
�!1

P(jBm�j . �): (4:4)

To show (4.4), write

Am� ¼
Pm

i¼�m(X i,� � qi(�))Pm
i¼�m�

2
i (�)

� �1=2

Pm
j¼�m�

2
j(�)

� 2
1(�)

 !1=2

�1

0
@

1
A:

Since lim�!1Ej
Pm

i¼�m(X i,� � qi(�))=(
Pm

i¼�m�
2
i (�))1=2j ¼

ffiffiffiffiffiffiffiffi
2=�

p
, it follows from (2.3) that

lim sup
m!1

lim sup
�!1

E(jAm�j) <
ffiffiffi
2

�

r
lim sup

m!1
lim sup
�!1

1�
Pm

j¼�m�
2
j(�)

� 2
1(�)

 !1=2
0
@

1
A ¼ 0,

implying the left-hand equality of (4.4) by Markov’s inequality. The right-hand side of (4.4)

follows similarly from (2.4), noting that

EjBm�j <
P
jij.mEjX i,� � qi(�)j

�1(�)
<

C
P
jij.m� i(�)

�1(�)

by (4.2). h

Lemma 4.3. (a) Suppose that Assumptions 2.1 and 2.2 hold. Then �1(�)�1
P

(X i,� � qi(�))

has a density, denoted by r�(x), which converges locally uniformly to the density j(x) of the

standard normal distribution, as �!1. Furthermore, the densities r� are uniformly

bounded by the same constant for sufficiently large �.

(b) Suppose that Assumption 2.1 holds and that ł and Ł are as in Assumption 2.3. Let c,

d be positive constants. Then there are positive constants �0, D0, such that for any

coefficient sequence in Gc,d,Ł the density r� is bounded by D0 for any � > �0.

Proof. (a) By (2.3), there is some m 2 N0 such that

1

2
<

1

�1(�)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
jij<m

� 2
i (�)

s
< 1 for large �: (4:5)

Denote by g� the density of
P
jij<m(X i,� � qi(�))=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jij<m� 2

i (�)
q

. By the ANET property,
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g�(x) converges locally uniformly to j(x) as �!1, and jg�(x)j < e�jxj for large x and �.

This implies that for any � . 0 there exist �1,� . 0 and �1,� such that

jg�(x)� g�(y)j < �, 8� > �1,�, 8x, y 2 R : jx� yj < �1,�:

The density of
P
jij<m(X i,� � qi(�))=�1(�) is given by

x 7! g�
�1(�)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jij<m� 2

i (�)
q x

0
B@

1
CA �1(�)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jij<m� 2
i (�)

q ¼: h�(x):

By (4.5) there exist �2,� . 0 and �2,� such that

jh�(x)� h�(y)j < �, 8� > �2,�, 8x, y 2 R : jx� yj < �2,�:

Denote by H� the distribution function of
P
jij.m(X i,� � qi(�))=�1(�). ThenP1

i¼�1(X i,� � qi(�))

�1(�)
¼
P
jij<m(X i,� � qi(�))

�1(�)
þ
P
jij.m(X i,� � qi(�))

�1(�)

has a density, say r�(x) (since the first summand has a density), which satisfies

jr�(x)� r�(y)j ¼
����
ð1
�1

(h�(x� t)� h�(y� t))dH�(t)

���� <
ð1
�1

� dH�(t) ¼ � (4:6)

for all � > �2,� and x, y 2 R such that jx� yj < �2,�. Similarly, one obtains that the r� are

uniformly bounded for large �. Now assume that r�(x) does not converge to j(x) as �!1
for all x 2 R. Without loss of generality assume that

j(x0)þ 3� < lim sup
�!1

r�(x0)

in some x0 and for sufficiently small � . 0. Then there is a subsequence (�n)n2N tending to

1 such that limn21 r�n
(x0) ¼ lim sup�!1 r�(x0). By (4.6) this implies that there is some

� . 0 such that for sufficiently large n,

r� n
(y) > j(y)þ �, 8y 2 [x0 � �, x0 þ �]:

It follows that

lim
n!1

ðx0þ�

x0��
r�n

(y)dy >

ðx0þ�

x0��
(j(y)þ �)dy,

contradicting Lemma 4.2. This shows that r�(x) converges to j(x) in any x 2 R as �!1,

and by (4.6) we see that this convergence is locally uniform.

(b) By Proposition 3.2, there is a constant D1 . 0 such that for any (ci)i2Z 2 Gc,d,Ł,

D1 < � i0 (�)=�1(�) < 1 for � > 0. Denote by g� the density of (X i0,� � qi0 (�))=
� i0 (�)¼d (Zci0

� � q(ci0�))=S(ci0�). Since c=2 < ci0 , it follows from the ANET property of

((Z� � q(�))=S(�))�>0 that there exist �0, D2, depending only on f , ł and c, such that g� is

bounded by D2 for � > �0. The density h� of (X i0,� � qi0 (�))=�1(�) is then bounded by

D0 :¼ D2=D1 for � > �0. Similarly to (4.6), this then implies that r� is bounded by D0 for

� > �0. h
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We are now able to prove the first part of Theorem 2.1.

Proof of (2.5) in Theorem 2.1. Using (3.1), it follows that

P
X1

i¼�1
ci Zi . Q(�)

 !

¼ E(e��
P

X i,�1P
X

i,�
.Q(�))�(�)

¼ E(e���1(�)
P

(X i,��qi(�))=�1(�)1P
(X i,�

�q
i (�))=�1 (�).0)e��Q(�)�(�)

¼ e��Q(�)�(�)

ð1
0

e���1(�)x r�(x)dx:

Noting that

lim
�!1

�2q9(�) ¼ lim
�!1

�2

ł 0((ł9) (�))
¼ lim

t!1

ł9(t)2

ł 0(t)
,

where the last limit was shown to equal 1 in Balkema et al. (1993, Proposition 5.8), it

follows that

lim
�!1

��1(�) ¼ 1: (4:7)

Then using dominated convergence and Lemma 4.3(a) gives

��1(�)

ð1
0

e���1(�)x r�(x)dx ¼
ð1

0

e�z r�(z=(��1(�))dz

!
ð1

0

e�z 1ffiffiffiffiffiffi
2�
p dz ¼ 1ffiffiffiffiffiffi

2�
p , �!1,

implying (2.5). h

With exactly the same proof, but now using part (b) of Lemma 4.3 instead of part (a),

we obtain the following uniform estimate, which will be used in Lemma 4.6:

Lemma 4.4. Suppose that Assumption 2.1 holds and that ł and Ł are as in Assumption 2.3.

Let c, d be positive constants. Then there exist positive constants �0, D0, such that for any

coefficient sequence (ci)i2Z in Gc,d,Ł,

P
X1

i¼�1
ci Zi . Q(�)

 !
<

D0

��1(�)
e��Q(�)�(�), � > �0: (4:8)

In order to derive the approximation for the tail behaviour of Y0 as stated in the second part

of Theorem 2.1, we need estimates for �, which are derived in the following lemma:

Lemma 4.5. (a) Suppose that Assumptions 2.1 and 2.2 hold. Then, for � > 0,
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d

d�
log(e��Q(�)�(�)) ¼ ��� 2

1(�)þ
X1

i¼�1
(EX i,� � qi(�)) ¼ ��� 2

1(�)þ o(�1(�)), �!1:

(b) Suppose that Assumption 2.1 holds and that ł and Ł are as in Assumption 2.3. Let c,

d be positive constants. Then there exists a positive constant D, such that, for any

coefficient sequence (ci)i2Z in Gc,d,Ł,

X1
i¼�1

jEX i,� � qi(�)j < D�1(�), � > 0: (4:9)

Proof. (a) From Lemma 4.1 and (2.2) follows that, for any � > 0,

d

d�
(��Q(�)þ log�(�)) ¼ ��Q9(�)� Q(�)þ

X1
i¼�1

EX i,� ¼ ��� 2
1(�)þ

X1
i¼�1

(EX i,� � qi(�)):

Let � . 0. By (4.2) and (2.4), there exists an m� 2 N such that

lim sup
�!1

E
X
jij.m�

���� X i,� � qi(�)

�1(�)

���� < �:

Furthermore, from the ANET property of
Pm�

i¼�m�
(X i,� � qi(�))=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm�
i¼�m�

� 2
i (�)

q
it follows

that

lim sup
�!1

����E
Pm�

i¼�m�
(X i,� � qi(�))

�1(�)

���� < lim sup
�!1

����E
Pm�

i¼�m�
(X i,� � qi(�))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm�

i¼�m�
� 2

i (�)
q ���� ¼ 0:

Since � . 0 was arbitrary, the assertion follows.

(b) From (4.2) it follows that there is a positive constant C, depending only on the

density f and ł, such that jEX i,� � qi(�)j < C� i(�) for � > 0. By (3.5), there exists a

constant C1, depending only on ł and Ł, such that for any coefficient sequence in Gc,d,Ł,

X1
i¼�1

� i(�) <
ffiffiffiffiffiffi
C1

p X1
i¼�1

c
1�Ł=2
i c

Ł=2�1
i0

ci0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q9(ci0�)

p
<

ffiffiffiffiffiffi
C1

p
d(c=2)Ł=2�1� i0 (�), � > 0,

giving (4.9). h

We are now able to complete the proof of Theorem 2.1.

Proof of (2.6) in Theorem 2.1. By (2.5) and Lemma 4.5(a), there is a function

�(�) ¼ o(�1(�)), �!1, such that

P
X1

i¼�1
ci Zi . Q(�)

 !
� 1

2���1(�)
exp �

ð�
0

(uQ9(u)þ �(u))du

� �
, �!1: (4:10)

Setting t ¼ Q(�) and r(�) :¼ �(�)=� 2
1(�) ¼ o(1=�1(�)), �!1, (2.6) follows from
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ðQ ( t)

0

uQ9(u)þ �(u)

Q9(u)
Q9(u)

� �
du ¼

ð t

t0

P
ci

(Q (v)þ r(Q (v)))dv:

That 1=�1(�) ¼ o(�), �!1, follows from (4.7). h

In Section 5 we will need uniform estimates for the tail behaviour, which are derived in

the following lemma:

Lemma 4.6. Suppose that Assumption 2.1 holds and that ł and Ł are as in Assumption 2.3.

Let c, d be positive constants. Then there are positive constants D1, D2, t1 such that for any

coefficient sequence (ci)i2Z in Gc,d,Ł,

P
X1

i¼�1
ci Zi . t

 !
< D1 exp �

ð t

t0

P
ci

Q (v)� D2

�1(Q (v))

� �
dv

 !
, t > t1: (4:11)

Furthermore, for any fixed sequence (ci)i2Z in Gc,d,Ł, there exist positive constants D3, D4, t2

such that

P
X1

i¼�1
ci Zi . t

 !
> D3 exp �

ð t

t0

P
ci

Q (v)þ D4

�1(Q (v))

� �
dv

 !
, t > t2: (4:12)

Proof. Similarly to (4.10), but now using Lemma 4.4 and Lemma 4.5(b), there exist �0,

D0 . 0 such that

P
X1

i¼�1
ci Zi . Q(�)

 !
<

D0

��1(�)
exp �

ð�
0

(uQ9(u)þ �(u))du

� �
, (4:13)

for � > �0 and any coefficient sequence (ci)i2Z in Gc,d,Ł. Further, j�(�)j < D�1(�) for � > 0,

with D from Lemma 4.5. Choosing �1 > �0 such that q(c�1) > 0 and using the monotonicity

of q, it follows that for t > t1 :¼ dq(c�1),

t > dq(c�1) >
X1

i¼�1
ciq(c�1) >

X1
i¼�1

ciq(ci�1) ¼ Q(�1): (4:14)

This shows that (4.13) holds for any t ¼ Q(�) > t1, and t1 is independent of the specific

coefficient sequence in Gc,d,Ł. Since �2� 2
1(�) > �2c2

i0
q9(ci0�), it follows as in the proof of

(2.5) that (4.7) holds uniformly for the sequences in Gc,d,Ł, hence D0=(��1(�)) in (4.13) can

be replaced by some D1. Then (4.11) follows as in the proof of (2.6).

For the proof of (4.12), for a fixed coefficient sequence, note that (4.10) implies that the

inequality in (4.13) can be reversed, by replacing D0 by 1=3 , 1=
ffiffiffiffiffiffi
2�
p

. Once it is shown

that for large �,

��1(�) < exp

ð�
0

�1(v)dv

� �
, (4:15)

relation (4.12) follows similarly to (4.11). From (3.4) and the dominated convergence
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theorem it follows that there is a C . 0 such that �1(�) � C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q9(ci0�)

p
, �!1. Now if

� 2 (�1, 1], that is, q9 2 RV�9 with �9 2 [�1, 1), then ��1(�)=
Ð �

0
�1(u)du! 1þ �9=2,

�!1, by Karamata’s theorem (see, for example, Bingham et al. 1987, Theorem 1.5.11),

clearly implying (4.15) for large �. If ł 0 2 RV�1, then q9 2 RV1, and by Proposition 3.2,

��1(�) < (q9(ci0�))2=3 for large �. For simplicity, assume that ci0 ¼ 1. With s :¼ q(�) it

follows for large s that q (s)�1(q (s)) < (q9(q (s)))2=3 ¼ (1=ł 0(s))2=3, and the latter

function is in RV2=3. On the other hand,ðq (s)

0

�1(v)dv >

ðq (s)

0

ffiffiffiffiffiffiffiffiffiffi
q9(v)

p
dv ¼

ð s

t0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q9(q (u))

p du ¼
ð s

t0

ffiffiffiffiffiffiffiffiffiffiffiffi
ł 0(u)

p
du,

which (as a function in s) is in RV1=2. But this then clearly implies (4.15) for large

s ¼ q(�). h

We can now show that the i.i.d. sequence associated with Y0 is in MDA(^).

Proof of Theorem 2.2. Once (2.7) has been shown, it follows readily that

lim
n!1

nP Y0 . bn þ
x

an

� �
¼ lim

n!1

P(Y0 . bn þ x=Q (bn))

P(Y0 . bn)
¼ e�x, x 2 R,

showing that the associated i.i.d. sequence is in MDA(^) with norming constants an and bn,

(see, for example, Embrechts et al. 1997, Proposition 3.3.2). Thus, it only remains to show

(2.7). Let

� :¼ Q (t) and �� :¼ Q t þ x

Q (t)

� �
:

Then by (2.5),

lim
t!1

P(Y0 . t þ x=Q (t))

P(Y0 . t)
¼ lim

t!1

P(Y0 . Q(��))
P(Y0 . Q(�))

¼ lim
t!1

��1(�)

���1(��)
e��
�Q(��)�(��)

e��Q(�)�(�)
:

Thus (2.7) will follow once we have shown that

lim
t!1

Q (t)

Q (t þ x=Q (t))
¼ 1 ¼ lim

t!1

Q9(Q (t))

Q9(Q (t þ x=Q (t)))
(4:16)

and

lim
t!1

ð��
�

d

du
log(e�uQ(u)�(u))du ¼ �x:

By (2.3), for any � . 0 there exist m ¼ m� in N and u� 2 R such that

P9m(u) < Q9(u) < (1þ �)P9m(u), 8u > u�,

where Pm(u) :¼
P
jij<mciq(ciu). But in Balkema et al. (1993, Theorem 1.1) it is shown thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P9m(P m )
p

is self-neglecting. By Lemma 3.1(e) this implies that 1=
ffiffiffiffiffiffiffi
P9m
p

is self-neglecting. In

particular,
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lim
u!1

P9m(uþ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P9m(u)

p
)

P9m(u)
¼ 1,

uniformly on bounded x-intervals. But

1

1þ �

P9m(uþ x=
ffiffiffiffiffiffiffiffiffiffiffi
Q9(u)

p
)

P9m(u)
<

Q9(uþ x=
ffiffiffiffiffiffiffiffiffiffiffi
Q9(u)

p
)

Q9(u)
< (1þ �)

P9m(uþ x=
ffiffiffiffiffiffiffiffiffiffiffi
Q9(u)

p
)

P9m(u)

uniformly in bounded x for large u by (4.18) and (4.7). Since P9m < Q9 and 1=
ffiffiffiffiffiffiffi
P9m
p

is self-

neglecting, we estimate

1

1þ �
< lim inf

u!1

Q9(uþ x=
ffiffiffiffiffiffiffiffiffiffiffi
Q9(u)

p
)

Q9(u)
< lim sup

u!1

Q9(uþ x=
ffiffiffiffiffiffiffiffiffiffiffi
Q9(u)

p
)

Q9(u)
< 1þ �

uniformly in bounded x-intervals, showing that 1=
ffiffiffiffiffiffi
Q9

p
is self-neglecting and hence so is

�1(Q ) by Lemma 3.1(e). But this then implies the right-hand side of (4.16), since 1=Q (t)

is smaller than �1(Q (t)) for large t by (4.7). The left-hand side of (4.16) follows from

Resnick (1987, Lemma 1.3), noting that

d

dt

1

Q (t)
¼ �(Q (t))�2��2

1 (Q (t))! 0, t!1,

by (4.7). For the proof of (4.17), note that by Lemma 4.5 and (4.7),

d

du
log(e�uQ(u)�(u)) ¼ �u� 2

1(u)þ o(u� 2
1(u)), u!1:

Now ð��
�

u� 2
1(u)du ¼

ðQ ( tþx=Q ( t))

Q ( t

uQ9(u)du ¼
ð tþx=Q ( t)

t

Q (v)dv ¼ x

Q (t)
Q (	)

with some 	 between t and t þ x=Q (t). As t!1, the last expression converges to x since

��=�! 1 and by monotonicity of Q. This implies (4.17), completing the proof. h

5. Proof of Theorem 2.3

In this section we prove that the extremal behaviour of the moving average process is the

same as the behaviour of the associated i.i.d. sequence. This will be achieved by verifying

Leadbetter’s D(un) and D9(un) conditions. For definitions and results we refer to Embrechts

et al. (1997, Section 4.4) or Leadbetter et al. (1983, Chapter 3). D(un) is a mixing

condition, and D9(un) can be interpreted as an anti-clustering condition. We shall show that

both conditions hold for (Yn)n2N, which implies then that its extremal behaviour is exactly

as for the associated i.i.d. sequence. We need the following result of Rootzén (1986,

Lemmas 3.1 and 3.2):

Proposition 5.1. Suppose that the i.i.d. sequence associated with (Yn)n2N, given by (1.1), is

in MDA(¸) with norming constants an and bn, and that un :¼ x=an þ bn.
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(a) If EZ2 ,1, jcij ¼ O(jij�W) for some W . 1 as jij ! 1, and an ¼ O((log n)Æ) for

some Æ . 0 as n!1, then D(un) holds.

(b) If, in addition to the conditions of (a), for some constant ª0 2 (0, 1] for n9 :¼ bnª0c
as n!1,

n
X2n9

m¼1

P(Y0 þ Ym . 2un)! 0, (5:1)

n2 P an

X1
i¼n9þ1

ci Zi . 1

 !
! 0, n2 P an

X�n9�1

i¼�1
ci Zi . 1

 !
! 0, (5:2)

an

X1
i¼n9þ1

ci Zi!
P

0, an

X�n9�1

i¼�1
ci Zi!

P
0, (5:3)

then D9(un) holds.

In order to verify (5.1) under Assumption 2.1 and 2.4 we shall need Lemma 5.3. We

shall see that we have to consider two different regimes, one corresponding to the case

� ¼ 1, that is, ł 0 2 RV1, which implies ł 2 RV1, the other case being � 2 [�1, 1),

that is, ł 2 RVÆ for some Æ 2 [1, 1). We split up the proof into the cases � 2 [�1, 1)

and � ¼ 1, and for the latter case we need some preparation:

Lemma 5.2. Suppose that Assumption 2.1 holds, that ł 0 is ultimately absolutely continuous

on compacts and that

lim
t!1

d

dt

ł9(t)

ł 0(t)
¼ 0:

Then there exist a constant �1 > 0 and a C1 function p : [0, 1)! (0, 1) which is (almost

everywhere) twice differentiable, satisfies

p(�) ¼ q(�), � > �1,

p9(�) . 0 for all � > 0, p 0(�) < 0 for � > 0 (almost everywhere), and, for any constants

c2 > c1 > 0,

c1 p(c1�)þ c2 p(c2�)� (c1 þ c2) p
c1 þ c2

2
�

� �
>

3(c2 � c1)2

32
�p9

c1

4
þ 3c2

4

� �
�

� �
> 0,

� > 0: (5:4)

Proof. From Lemma 3.1(c) and its proof it follows that q9 is in NRV�1 and that

q 0(�) � �q9(�)=� as �!1 (where q 0 exists almost everywhere). In particular, there exists

�1 such that q 0(�1) exists and that

�3
4
q9(�) > �q 0(�) > �5

4
q9(�), � > �1(almost everywhere):

Set 
 :¼ ��1q 0(�1)=q9(�1). Then 3
4
< 
 < 5

4
. Define the function p through
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p(�) :¼
q(�), for � > �1,

q(�1)� q9(�1)e

Ð �1

� e�
 t=�1 dt, for 0 < � , �1:

	

Then p is C1 and (almost everywhere) twice differentiable, and for 0 < � < �1,

p0(�) ¼ q9(�1)e
e�
�=�1 , p 0(�) ¼ �
p9(�)=�1,

hence for 0 < � < �1,

� p 0(�) ¼ �
 �

�1

p9(�) > �
p9(�) > �5
4

p9(�):

Thus p satisfies p9(�) . 0 for � > 0, and p 0(�) , 0 as well as � p 0(�) > �5
4
p9(�) for � > 0

(almost everywhere). For the positivity of p, note that p(0) > q(�1)� e
�1q9(�1), which is

positive for large enough �1, since lim�!1�q9(�)=q(�) ¼ 0 by Karamata’s theorem (see,

Bingham et al. 1987, p. 26).

Now let 0 < c1 , c2, set c :¼ c1 þ c2 and c0 :¼ 3
4
c1 þ 1

4
c2. For fixed � . 0, define the

function

k : [0, c]! R, a 7! k(a) :¼ ap(a�)þ (c� a) p((c� a)�):

Then

k9(a) ¼ a� p9(a�)þ p(a�)� p((c� a)�)� (c� a)� p9((c� a)�),

k 0(a) ¼ �[a� p 0(a�)þ 2 p9(a�)þ (c� a)� p 0((c� a)�)þ 2 p9((c� a)�)]

> 3
4
�[ p9(a�)þ p9((c� a)�)] . 0 almost everywhere:

This shows that k9 is strictly increasing on [0, c]. Since k9(c=2) ¼ 0, it follows that k has an

absolute minimum at a ¼ c
2
. To estimate k(c1)� k(c=2), note that c1 , c0 ,

1
2
c , 1

4
c1 þ 3

4
c2 , c. Using the mean value theorem, we see that

k(c1)� k c
2

� �
> k(c1)� k(c0) ¼ (c0 � c1)jk9(	)j > c2 � c1

4
jk9(c0)j,

where 	 is between c1 and c0. Using k9(c=2) ¼ 0, we obtain

jk9(c0)j ¼
ðc=2

c0

k 0(a)da

> 3
4
�

ðc=2

c0

( p9(a�)þ p9((c� a)�))da

¼ 3
4

p
c

2
�

� �
� p(c0�)� p

c

2
�

� �
þ p((c� c0)�)

� �
:

Using the mean value theorem and the fact that p9 decreases, it then follows that

k(c1)� k
c

2

� �
>

3(c2 � c1)

16
[ p((c� c0)�)� p(c0�)] >

3(c2 � c1)2�

32
p9((c� c0)�),

which proves the assertion. h
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We now come to the crucial step in showing (5.1). If in the following m0 can be chosen

to be equal to 1, then (5.6) is redundant and the stronger assertion (5.5) holds for all

positive m:

Lemma 5.3. Suppose that Assumptions 2.1 and 2.4 hold. Then there exist a constant

ª0 2 (0, 1], a positive integer m0, a constant t3 > t0 and a family (Bt) t> t3
of non-negative

real numbers, tending to zero as t!1, such that

P(
P1

i¼�1
1
2
(ci þ ci�m)Zi . t)

(P(
P1

i¼�1ci Zi . t))1þª0
< Bt, 8t > t3, 8m > m0, (5:5)

lim
t!1

P(
P1

i¼�1
1
2
(ci þ ci�m)Zi . t)

P(
P1

i¼�1ci Zi . t)
¼ 0, 8m 2 f1, . . . , m0 � 1g: (5:6)

Proof. Define c :¼ ci0 ¼ maxfci : i 2 Zg. Choose Ł 2 [0, 2� 2=W) such that Łþ �9 . 0.

For any m 2 N0, define the sequence (ci,m)i2Z by ci,m :¼ (ci þ ci�m)=2. Then ci,0 ¼ ci for all

i. The corresponding quantities associated with the sequence (ci,m)i2Z will be denoted by Qm

and �1,m, respectively. In particular,

Qm(�) ¼
X1

i¼�1

ci þ ci�m

2
q

ci þ ci�m

2
�

� �
:

If the index m ¼ 0 we usually omit it, so that Q0 ¼ Q and �1,0 ¼ �1.

By assumption, it follows that there exists d . 0 such that (ci,m)i2Z 2 Gc,d,Ł for all

m 2 N0. Then it follows from (4.11) and (4.12) that there are positive constants t3,

D1, . . . , D4 such that, for every m 2 N0, ª > 0 and t > t3,

P(
P1

i¼�1ci,m Zi . t)

(P(
P1

i¼�1ci Zi . t))1þª

<
D1

D
1þª
3

exp �
ð t

t0

P
ci

Qm
 (v)� (1þ ª)Q (v)� D2

�1,m(Qm
 (v))

� D4(1þ ª)

�1(Q (v))

� �
dv

 !
:

The assertion will then follow once we have shown that there exist m0 2 N and ª0 2 (0, 1]

such that
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lim
t!1

inf
m>m0

ð t

t0

P
ci

(Qm
 (v)� (1þ ª0)Q (v))dv ¼ 1, (5:7)

lim
v!1

sup
m>m0

��1
1,m(Qm

 (v))þ ��1
1 (Q (v))

Qm
 (v)� (1þ ª0)Q (v)

¼ 0, (5:8)

lim
t!1

ð t

t0

P
ci

(Qm
 (v)� Q (v))dv ¼ 0, 8m 2 f1, . . . , m0 � 1g, (5:9)

lim
v!1

��1
1,m(Qm

 (v))þ ��1
1 (Q (v))

Qm
 (v)� Q (v)

¼ 0, 8m 2 f1, . . . , m0 � 1g: (5:10)

For the purpose of showing (5.7)–(5.10), we will distinguish between the cases where � ¼ 1
and � 2 [�1, 1). Note that (5.9) and (5.10) are redundant if m0 can be chosen to be 1.

Suppose, firstly, that � ¼ 1, that is, �9 ¼ �1. Set m0 :¼ 1. Since modifications of q on

bounded intervals can be compensated by the function � appearing in Assumption 2.1, we

can assume that q already has the properties of p as stated in Lemma 5.2. In particular, q

is strictly positive on [0, 1), and from the definitions of Q and Qm we see that

Q(�) < Qm(2�) for � > 0 and m 2 N. Furthermore, it is easy to see that for any m 2 N

there exists j ¼ j(m) 2 Z such that inf m2N(c j(m) � c j(m)�m) . 0. It then follows from (5.4)

that there are positive constants b1, b2, such that

Q(�)� Qm(�) > b1�q9(b2�), 8� > 0, 8m 2 N:

Thus we have

Q (t) < Q m (t) < 2Q (t), 8t > t0

X
ci, 8m 2 N: (5:11)

Using the mean value theorem, for fixed t we find some 	m 2 [t, Q(Q m (t))] such that

Q m (t)� Q (t) ¼ Q (Q(Q m (t)))� Q (t)

¼ Q(Qm
 (t))� Qm(Qm

 (t))

Q9(Q (	m))
>

b1Q m (t)q9(b2Q m (t))

Q9(Q (	m))
:

Since Q (	) 2 [Q (t), Q m (t)], it follows from (3.4) and the fact that q9 is decreasing that

there exist b3, b4 . 0 such that

Q9(Q (	m)) < b3q9(b4Q (	m)) < b3q9(b4Q (t)):

Since q9 2 RV�1 it follows from (5.11) that there exist d1, d2, t4 . 0 such that

d1 <
q9(b2Q m (t))

q9(b4Q (t))
< d2, 8t > t4, 8m 2 N:

Then it follows from the previous estimates and (5.11) that there exists d3 . 0 such that

Q m (t)� Q (t) > d3Q (t), 8t > t4, 8m 2 N:

This then clearly implies (5.7) with ª0 :¼ minfd3=2, 1g. For the proof of (5.8), observe that
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with the same arguments as above, there exist constants t5 . 0, b5 . 0 such that for any

m 2 N0 and v > t5,

(Q (v))2� 2
1,m(Qm

 (v)) > c2
i0,m(Q (v))2q9(ci0,mQm

 (v)) > b5(Q (v))2q9(Q (v)),

and the latter tends to 1 by (4.7).

Now suppose that � 2 [�1, 1), that is, �9 2 (�1, 1]. Again, modifying q such that

q(0) ¼ t0 . 0 does not constitute a restriction. Firstly, we show that there are constants

0 , A1 , A2 and �2 . 0 such that

Qm(�) < A1q(ci0�) , A2q(ci0�) < Q(�), 8� > �2, 8m > 1, (5:12)

and, if �9 ¼ 1, that additionally there exist m0 > 1, �3 > 0 and a constant c9 , c ¼ ci0 such

that

Qm(�) < A1q(c9�), 8� > �3, 8m > m0: (5:13)

To show (5.12), note that

Q(�) ¼
X1

i¼�1
ciq(ci�) �

X1
i¼�1

ci

ci0

� �2þ�9
ci0 q(ci0�), �!1,

by dominated convergence. Here,
P

(ci=ci0 )2þ�9 has to be interpreted as card

fi 2 Z : ci ¼ ci0g if �9 ¼ 1. Similarly,

Qm(�) �
X1

i¼�1

ci,m

ci0

� �2þ�9
ci0 q(ci0�), �!1,

if �9 6¼ 1, or if �9 ¼ 1 and cim ,m ¼ ci0, where im is defined to be an index such that

cim ,m ¼ maxfci,m : i 2 Zg. It is easy to check (e.g. with methods similar to those used in the

proof of Lemma 5.2) that

A3 :¼ ci0 sup
m2N

X
i2Z

ci,m

ci0

� �2þ�9
, ci0

X
i2Z

ci

ci0

� �
2þ�9 ¼: A4:

Let M � Z be a finite subset such that
P

i=2M ci < (A4 � A3)=4, and put M m :¼
M [ (M þ m). Then

P
i=2M m

ci,mq(ci,m�) < (A4 � A3)q(ci0�)=4. Furthermore, since M is

finite, it follows from the uniform convergence theorem for RV functions (see Bingham et al.

1987, Theorems 1.5.2 and 2.4.1) that

lim
�!1

X
i2M m

ci,mq(ci,m�)

ci0 q(ci0�)
� ci,m

ci0

� �2þ�9
 !

¼ 0,

uniformly in m 2 N. Thus there exists �2, such that for any m 2 N and any � > �2,

Qm(�) <
A4 � A3

4
q(ci0�)þ A3 þ

A4 � A3

4

� �
q(ci0�) ¼ A4 þ A3

2
q(ci0�):

Inequality (5.12) then follows with A1 :¼ (A4 þ A3)=2 and A2 :¼ 1
4
A3 þ 3

4
A4. The proof of

(5.13) is similar, choosing m0 and c9 such that
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sup
m>m0

ci m,m , c9 , ci0 : (5:14)

Since Qm(�) <
P

ciq(ci0�) for any � > 0, we have Qm
 (t) > 1=ci0 q (t=

P
ci), which as

t!1 converges uniformly in m to 1. Thus we can invert (5.12) uniformly in m and obtain

a constant t6 . 0 such that

Q (t) <
1

ci0

q 
t

A2

� �
,

1

ci0

q 
t

A1

� �
< Qm

 (t), 8t > t6, 8m > 1:

If �9 6¼ 1, that is, � 6¼ �1, set m0 :¼ 1 and choose ª0 2 (0, 1] such that there exists

A5 2 (A1, A2) such that (1þ ª0)ł9(t=A2) < ł9(t=A5) for t > t6. Then for t > t6 and m 2 N,

Qm
 (t)� (1þ ª0)Q (t) >

1

ci0

ł9
t

A1

� �
� ł9

t

A5

� �� �
¼ 1

ci0

1

A1

� 1

A5

� �
tł 0(	), (5:15)

where 	 2 [t=A5, t=A1]. If �9 ¼ 1, set m0 as in (5.14), and A5 :¼ A2. Then there is a

constant t7 such that

Qm
 (t)� Q (t) >

1

ci0

1

A1

� 1

A5

� �
tł 0(	), 8t > t7, 8m 2 f1, . . . , m0 � 1g, (5:16)

with 	 2 [t=A5, t=A1]; choosing 0 , ª0 , minfci0=c9� 1, 1g, it follows by inversion of

(5.13) that there is a constant t8 such that for t > t8 and m > m0,

Qm
 (t)� (1þ ª0)Q (t) >

1

c9
ł9

t

A1

� �
� 1þ ª0

ci0

ł9
t

A5

� �
>

1þ ª0

ci0

1

A1

� 1

A5

� �
tł 0(	),

(5:17)

	 2 [t=A5, t=A1]. Since ł 0 2 RV� where � > �1, we have lim t!1 t2ł 0(t) ¼ 1, and (5.7)

and (5.9) are then implied by (5.15)–(5.17). To show (5.8) and (5.10), note that for m > 0,

Q9m(Qm
 (t)) > c2

im,mq9(cim,mQm
 (t)), t > t0:

Since

ci0

2
q(ci m,m�) < Qm(�) <

X1
i¼�1

ciq(ci m,m�), � > 0,

it follows that

1

ci m,m

q 
tP
ci

� �
< Q m (t) <

1

cim ,m

q 
2t

ci0

� �
, t > t0:

Thus, there exists �m 2 [t=
P

ci, (2=ci0 )t] such that ci m,mQm
 (t) ¼ q (�m), implying

Q9m(Qm
 (t)) >

ci0

2

� �2

q9(q (�m)) ¼ ci0

2

� �2 1

ł 0(�m)
:

Then (5.15)–(5.17) imply (5.8) and (5.10), since lim t!1 t2(ł 0(	))2=ł 0(�m) ¼ 1 uniformly

in m, using regular variation of ł 0. h

Now we can use Proposition 5.1 to show Theorem 2.3.
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Proof of Theorem 2.3. Set un :¼ x=an þ bn. By (4.7), (4.11) and (4.12),

P
X1

i¼�1
ci Zi . t

 !
¼ exp �

ð t

t0

P
ci

Q (v)dvþ o

ð t

t0

P
ci

Q (v)dv

 ! !
, t!1:

Since bn is such that P(
P

ci Zi . bn) � n�1 as n!1, this implies

log n ¼
ðb n

t0

P
ci

Q (v)dvþ o

ðbn

t0

P
ci

Q (v)dv

 !
, n!1:

Dividing by
Ð b n

t0

P
ci

Q (v)dv gives (
Ð b n

t0

P
ci

Q (v)dv)=(log n)! 1 as n!1. Since

an ¼ Q (bn), that is, bn ¼ Q(an), there exist �2 . 0 and C1 . 0 such that for large n,ðb n

t0

P
ci

Q (v)dv ¼
ða n

0

uQ9(u)du

>

ðan

0

c2
i0

u3=2q9(ci0 u)u�1=2 du

> C1

ðan

�2

u�1=2 du ¼ 2C1(
ffiffiffiffiffi
an

p � ffiffiffiffiffi
�2

p
),

since limu!1u3=2q9(ci0 u) ¼ 1 since �9 > �1. But this shows that an=(log n)2 is bounded as

n!1, showing that D(un) holds by Proposition 5.1.

For the proof of D9(un), we will verify conditions (5.1)–(5.3). Let ª0, m0 and (Bt) t> t3
be

as in Lemma 5.3 and set n9 :¼ bnª0c. Since limn21nP(Y0 . un) ¼ e�x, it follows from

(5.6) that

n
Xm0�1

m¼1

P(Y0 þ Ym . 2un) �
Xm0�1

m¼1

P(Y0 þ Ym . 2un)

P(Y0 . un)
e�x ! 0, n!1:

On the other hand, (5.5) gives, for large n,

n
X2n9

m¼m0

P(Y0 þ Ym . 2un) <
(e�x þ 1)1þª0

nª0

X2n9

m¼m0

P(Y0 þ Ym . 2un)

P(Y0 . un)1þª0
< (e�x þ 1)1þª0 2Bun

,

and the latter converges to 0 as n!1, showing (5.1).

Consider the exponential families (Z�)�>0 and (X i,�)�>0 as defined in Section 3.1. By

(3.2), EX i,� ¼ ciEZci�. Since jcij < C2jij�W for i 6¼ 0, for some constant C2, it follows that

for any n 2 N,

jci�j < C2, for � < nW and jij > n:

Since [0, C2]! R, s 7! EZs is a continuous function, it follows that there is some constant

C3 . 0 such that

jEX i,�j < ciC3, for all � < nW and jij > n:

406 C. Klüppelberg and A. Lindner



This implies, for any � < nW,

X1
i¼nþ1

jEX i,�j < C2C3

X1
i¼nþ1

jij�W < C4n1�W (5:18)

for some constant C4 . 0. Let �n be the moment generating function of
P1

i¼nþ1ci Zi. As in

the proof of Lemma 4.1, it follows that

d

d�
log�n(�) ¼

X1
i¼nþ1

EX i,�, � > 0,

implying

�n(�) ¼ exp

ð�
0

X1
i¼nþ1

EX i,v dv

 !
,

since �n(0) ¼ 1. Using (5.18), we have

�n(�) < exp(C4 n1�W�), for � < nW:

Using Markov’s inequality, replacing n by n9 and setting � :¼ (n9)W, we obtain

P
X1

i¼n9þ1

ci Zi . 1=an

 !
< �n9((n9)W)exp(�(n9)W=an)

< exp(C4 n9� (n9)W=an) ¼ o(n�2), n!1,

since an ¼ O((log n)2). This is the left-hand side of (5.2). A similar procedure leads to the

right-hand side of (5.2), as well as to (5.3). Thus it follows that D9(un) holds, giving the

assertion; see Embrechts et al. (1997, Theorem 4.4.6) or Leadbetter et al. (1983, Theorem

3.5.2). h

6. Applications to financial time series

Financial variables such as stock returns are often modelled using a stochastic volatility

process. Prominent models are autoregressive conditional heteroscedastic (ARCH) and

generalized ARCH (GARCH) models as introduced by Engle (1982) and Bollerslev (1986),

stochastic volatility models as in Taylor (1986) and the exponential GARCH (EGARCH)

model of Nelson (1991). GARCH models have generally heavy tails, so we shall

concentrate on stochastic volatility and EGARCH models.

An example of a (discrete time) stochastic volatility model (	n)n2Z with volatility process

(� n)n2Z is given by
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	n ¼ � n�n, n 2 Z, (6:1)

log � 2
n ¼

X1
i¼1

ÆiZn�i, n 2 Z: (6:2)

Here, (Zi)i2Z is a sequence of i.i.d. random variables, the coefficient sequence (Æi)i2N is such

that the sum in (6.2) converges absolutely almost surely, and (�n)n2Z is independent of

(Zi)i2Z, hence of (� n)n2Z. Typically, �0 is Gaussian and Z0 has light left and right tails, or is

assumed to be Gaussian. Extreme value theory for such stochastic volatility models (	n)n2Z
with Gaussian noise has been provided by Breidt and Davis (1998). Much information is

already contained in the volatility process (� n)n2Z, and Theorems 2.1–2.3 provide extreme

value theory for the process (log � 2
n)n2Z under mild conditions on Z0 and non-negative

coefficient sequences. A simple monotone transformation then yields extremal results for the

volatility process (� n)n2Z. In particular, from Theorem 2.2 it follows that log � 2
0 and hence

�0 are in MDA(^), and Theorem 2.3 shows that extremes of the log-volatility process and

hence of the volatility process do not cluster. The restriction of the coefficients being non-

negative can be relaxed to a great extent, as follows from Theorems 7.1 and 7.2 and their

discussion in the next section.

The EGARCH model (	n)n2Z has a similar structure, given by

	n ¼ � nZn, n 2 Z, (6:3)

log � 2
n ¼ 
þ

X1
i¼1

Æi g(Zn�i), n 2 Z:

Here, 
 is a real constant, the coefficient sequence (ai)i2N is as before, g is typically a

deterministic piecewise affine linear function (allowing for asymmetry in negative and

positive innovations), and (Z n)n2Z is an i.i.d. innovation sequence, typically Gaussian. The

main difference from the stochastic volatility model considered before is that 	n is defined in

terms of the innovation sequence (Z n)n2Z only, while the stochastic volatility model is

defined in terms of a second independent driving noise sequence (�n)n2Z. For the extreme

value theory of (log � 2
n)n2Z and hence (� n)n2Z, however, this is irrelevant, and Theorems

2.1–2.3 can be applied for fairly general light-noise terms, similar to the stochastic volatility

model discussed before. The extreme value behaviour of the price process (	n)n2Z itself for

Gaussian innovations and a finite coefficient sequence (Æi)i¼1,...,N has been investigated in

Lindner and Meyer (2002).

7. Extensions

The proofs of Theorems 2.1 and 2.2 can easily be generalized to cover independent finite

sums of infinite moving average processes. Let K 2 N. For k ¼ 1, . . . , K, let Z (k) be a

generic random variable which satisfies Assumption 2.1 with �(k), ł(k) and t
(k)
0 . Suppose

that for each k, (Z
(k)
i )i2Z is i.i.d. with the distribution of Z (k), and that (Z

(k)
i )i2Z,k¼1,...,K is
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independent. Let (c
(k)
i )i2Z,k¼1,...,K be a summable sequence of non-negative coefficients and

define

Y0 :¼
XK

k¼1

X1
i¼�1

c
(k)
i Z

(k)
nþi: (7:1)

Set

q(k)(�) :¼ (ł(k))9 (�),

(� (k)
i )2(�) :¼ (c

(k)
i )2(q(k))9(c

(k)
i �),

Q(�) :¼
XK

k¼1

X1
i¼�1

c
(k)
i q(k)(c

(k)
i �),

� 2
1(�) :¼ Q9(�):

Instead of Asumption 2.2, suppose that

lim
m!1

lim sup
�!1

PK
k¼1

P
j jj.m(� j

(k))2(�)

� 2
1(�)

¼ 0,

lim
m!1

lim sup
�!1

PK
k¼1

P
j jj.m� j

(k)(�)

�1(�)
¼ 0:

Denote by � the moment generating function of Y0. Then we have the following extension of

Theorems 2.1 and 2.2:

Theorem 7.1. Under the assumptions and with the notation above, the assertions of

Theorems 2.1 and 2.2 hold, with Y0 as in (7.1) replacing
P1

i¼�1ci Zi in (2.5) and (2.6), andPK
k¼1 t

(k)
0

P1
i¼�1c

(k)
i replacing the lower integration limit t0

P
ci in (2.6).

Theorem 7.1 can be used to cover infinite moving average processes with negative and

positive coefficients. This can be achieved by splitting the sum in (1.1) into

Yn ¼
P

ci>0ci Z nþi þ
P

ci,0(�ci)(�Z nþi). If Assumptions 2.1 and 2.2 are then valid for

each of the two sums (posing conditions on the left- as well on the right-tail behaviour of

the density f of Z), then Theorems 2.1 and 2.2 hold.

Theorem 7.1 can also be used to derive further results for the stochastic volatility model

and EGARCH model of the previous section. Not only does it allow for positive and

negative terms in the coefficient sequence, but also it follows from (6.1) and (6.3) that

log 	2
n ¼ log � 2

n þ log �2
n and log 	2

n ¼ log � 2
n þ log Z2

n, respectively. Then log 	2
0 has the

general form (7.1), and Theorem 7.1 allows us to derive the tail behaviour of log 	2
0 (and

hence of j	0j) and to show that log	2
0 2 MDA(^), under mild conditions on the light-tail

behaviour of the noise sequences.

There is also an extension of Theorem 2.3 to moving average processes with negative and

positive coefficients; its proof follows by slight modifications of the proof of Theorem 2.3.

Extreme value theory for moving average processes 409



Theorem 7.2. Suppose that Z as well as �Z satisfy Assumptions 2.1 and 2.4 with functions

łþ and ł� and regular (rapid) variation indices �þ and ��, respectively. Define �9þ and �9�
as in Assumption 2.3, and suppose that the real coefficient sequence (ci)i2Z satisfies

jcij ¼ O(jij�W) as jij ! 1, for some W . maxf1, 2=(2þ �9þ), 2=(2þ �9�)g. Suppose that

�þ 6¼ ��, or that łþ ¼ ł�. Then the assertion of Theorem 2.3 holds for (Yn)n2Z as defined

in (1.1).
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