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The main result of this paper is a limit theorem which shows the convergence in law, on a Hölderian

space, of filtered Poisson processes (a class of processes which contains shot noise process) to filtered

Brownian motion (a class of processes which contains fractional Brownian motion) when the intensity

of the underlying Poisson process is increasing. We apply the theory of convergence of Hilbert space

valued semimartingales and use a radonification result.
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1. Introduction

There are already a number of articles, among them Pipiras and Taqqu (2000) and Taqqu

et al. (1997), in which the fractional Brownian motion is shown to be the weak limit of a

sequence of (simpler) processes. The present work was inspired by a paper by Szabados

(2001) in which a strong approximation of the fractional Brownian motion is obtained by

moving averages of a strong approximation of an ordinary Brownian motion. We retain here

the principle of moving averages, but we only have a weak convergence since we

approximate a Brownian motion by a sequence of renormalized Poisson processes.

More precisely, the Lévy fractional Brownian motion of Hurst index H 2 (0, 1), denoted

by BH, is defined by the following moving-average representation

BH
t ¼ 1

ˆ(H þ 1
2
)

ð t
0

(t � s)H�1=2 dBs,

where B is a one-dimensional standard Brownian motion. Since N̂Nº :¼ fº�1=2(Nº(s) � º:s),
s > 0g, where Nº is a Poisson process of intensity º, converges weakly to B, as º goes to

infinity, it is natural to hope that f(ˆ(H þ 1=2))�1
Ð t

0
(t � s)H�1=2 dN̂Nº

s , t > 0g will converge

to BH . Convergence is understood here as weak convergence in law on C([0, 1], R). We then

have to distinguish between two situations. When H is greater than 1
2
, the problem can be

treated by Kolmogorov’s tightness criterion and the answer is positive. On the other hand,

when H , 1
2
, the latter result is no longer usable and it is necessary to have another method.

Actually, we will prove, in a unified way, that in situations similar to the case H . 1
2
, the
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weak convergence mentioned above holds. We will also prove that we have weak convergence

in law on some Hölderian space, a result which cannot be proved with Kolmogorov’s

criterion. In situations similar to the case H , 1
2
, we have a similar but weaker result (see

Corollary 4) because of the potential singularity of the process
Ð t

0
(t � s)H�1=2 dN̂Nº

s (Remark

3). The techniques, which seem new and interesting in themselves, involve a fine result on

radonification (see Jakubowski et al. 2002; Badrikian and Üstünel 1996; Schwartz 1994), that

is, conditions under which a cylindric semimartingale on a space V1 is in fact a Hilbert-

valued semimartingale on a space V2.

Consider a kernel K satisfying some hypothesis developed below. We can define the

family of processes indexed by º 2 Rþ :

Y º
t ¼

ð t
0

K(t, s)dN̂N º
s , t > 0

	 

, (1)

where

N̂N º
s ¼

~NN n
sffiffiffi
º

p ¼ Nº
s � ºsffiffiffi
º

p ,

Nº being a Poisson process of constant intensity º.
Lane (1984) shows the convergence of finite-dimensional laws of Y º to a normal

distribution when º increases to infinity. Here, we aim to establish the convergence in law

in terms of processes. The usual techniques of martingale convergence seem at first glance

unusable since Y º is neither a martingale nor a semimartingale. However, if we freeze one

of the t, that is, if we consider X N̂N n

t (r) ¼
Ð t

0
K(r, s)dN̂Nº

s for r fixed, we obtain a process

which is a martingale with respect to t and yºt is nothing but X N̂N n

t (t). This remark (already

used in Coutin and Decreusefond 1999, eqn. (19)) is the basis of our strategy. We will

transform the original problem into a Hilbert-valued martingale convergence problem and

then derive the convergence of Y º
4 by a contraction property. A key problem is to prove that

X N̂Nº
is a cadlag semimartingale in a convenient Hilbert space, and that is achieved using a

radonification result.

This paper was in fact originally written with the above-mentioned application in mind.

During the refereeing process, one referee kindly pointed out to us that the radonification

result from Badrikian and Ustünel (1996) and Schwartz (1994) we were using, had been

just extended from martingales to semimartingales (see Jakubowski et al. 2002). We then

decided to modify our proofs to encompass a wider class of approximation schemes, but the

main motivation remains the same.

In Section 2, we introduce our notation and main tools. In Section 3, we show the

convergence of the Hilbert-valued semimartingales and then apply this result to our original

problem.

2. Preliminary results

For f 2 L1([0, 1]), the left and right fractional integrals of f are defined by
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(IÆ0þ f )(x) ¼ 1

ˆ(Æ)

ðx
0

f (t)(x� t)Æ�1 dt, x > 0,

(IÆbþ f )(x) ¼ 1

ˆ(Æ)

ðb
x

f (t)(t � x)Æ�1 dt, x < b,

where Æ . 0 and I0 ¼ Id. For any Æ > 0, any f 2 L p([0, 1]) and g 2 Lq([0, 1]) where

p�1 þ q�1 < Æ, we have ð1

0

f (s)(IÆ0þ g)(s)ds ¼
ð1

0

(IÆ1� f )(s)g(s)ds: (2)

The Besov space IÆ0þ(L p), which for convenience we write as IÆ, p, is usually equipped with

the norm

k f kIÆ, p
¼ kgkL p ,

where g is the unique element of L p such that f 	 IÆ0þ g. In particular, IÆ,2 is a (separable)

Hilbert space and we have the following results (see Feyel and de La Pradelle 1999; Samko

et al. 1993):

Proposition 1.

(a) If Æ� 1=p , 0, then IÆ, p is isomorphic to IÆ1� (L p).

(b) For any 0 , Æ and any p > 1, IÆ, p is continuously embedded in Hol(Æ� 1=p)

provided that Æ� 1=p . 0. For 0 , � < 1, Hol(�) denotes the space of Hölder-

continuous functions, null at time 0, equipped with the usual norm

k f kHol(�) ¼ sup
t 6¼s

j f (t) � f (s)j
jt � sj� :

Our main references for Hilbert-valued martingales are Métivier (1988) and Walsh

(1986). We quote here the main results we need. Let (�, F ¼ (F t) t>0, P) be a filtered

probability space. Let V be a separable Hilbert space; a V -valued process X is an F -

martingale if and only if E[kX tkV ] is finite for any t and if, for any s > t,

E[X tjF s] ¼ X s, P-almost surely:

The analogue of the square bracket is here defined as ,: X .:, the unique predictable process

with finite variation and with values in the space of positive symmetric nuclear operators

from V into V , such that, for u, v 2 V ,

fhX t, uiV hX t, viV � h,: X .: t u, viV , t > 0g,

is a martingale. Since ,: X .: t is also a Hilbert–Schmidt operator, we can take its square root,

denoted by ,: X .:
1=2
t , which is Hilbert–Schmidt because we are dealing with a non-negative

definite operator of trace class. We denote by L2(V ; V ), the space of Hilbert–Schmidt maps

from V into V . The most important result for us is Theorem 6.8 of Walsh (1986, p. 354)

which is as follows:
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Proposition 2. Let (X n) be a sequence of cadlag V-valued processes. Then the laws of the

processes (X n, n > 1) form a tight sequence of probalilities on D(Rþ, V ) if the following

hypotheses are satisfied:

(a) For each rational t 2 (0, 1) the family of random variables (X n
t ) is tight.

(b) There exist p . 0 and processes (An(�), 0 , � , 1) such that:

EkX n(t þ �) � X n(t)k p
V j F t] < E[An(�) j F t],

lim
�!0

lim sup
n!1

E[An(�)] ¼ 0:

Beyond the trivial examples of V -valued Brownian motion or diffusions, it is rather hard

to determine whether a V -valued process is a V -valued semimartingale. One the other hand,

it is very easy to see if it is a cylindrical semimartingale, that is, if fhX t, uiV , t > 0g is a

real-valued semimartingale for any u 2 V. The following ‘radonification’ result is thus of

paramount interest:

Theorem 1. Let E and F be two Hilbert spaces and consider u : E ! F a Hilbert–Schmidt

operator. Let M([0, 1], R) be the space of cadlag square-integrable real semimartingales

equipped with the norm

kMk2
M([0,1],R) ¼ E sup

t2[0,1]

jMsj2
" #

:

If L is in L(E�; M([0, 1], R)), the set of linear continuous maps from the dual of E, denoted

by E�, into M([0, 1], R)), then u � L is an F-valued cadlag semimartingale.

See Jakubowski et al. (2002) for this very statement, and Badrikian and Üstünel (1996) and

Schwartz (1994) for the original statement restricted to martingales.

Assume that we are given a Hilbert–Schmidt map from L2 into itself, denoted by K,

such that the following hypothesis is satisfied:

Hypothesis 1. There exists Æ . 0 such that K is a continuous one-to-one linear map from L2

into IÆþ1=2,2.

Remark 1. Since the embedding from IÆþ1=2,2 into L2 is Hilbert–Schmidt, it guarantees that

K is a Hilbert–Schmidt map from L2 into itself. Thus there is a kernel, still denoted by K,

such that the operator K takes the form

(Kf )(t) ¼
ð1

0

K(t, s) f (s)ds with

ð1

0

ð1

0

K(t, s)2 dt ds , 1:

Hypothesis 2.

(a) K is triangular, i.e., K(t, s) ¼ 0 for any s > t > 0.

(b) There exists ª . 0 such that for any (s, t) 2 [0, 1]2,
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ð t
s

ð t
s

K(u, r)2 du dr < cjt � sjª:

Remark 2. Note that these two hypotheses are satisfied for any Æ, by the kernel

K(t, s) ¼ 1

ˆ(Æþ 1=2)
(t � s)Æ�1=21[0, t)(s),

which corresponds to BÆ since in this case K, as a map, coincides with I
Æþ1=2

0þ . The process

usually called fractional Brownian motion admits the representation
Ð t

0
JÆ(t, s)dBs, with JÆ

an (H � 1
2
)-homogeneous function of the form

JÆ(t, s) ¼ LÆ(t, s)(t � s)Æ�1=2s�jÆ�1=2j,

where LÆ is a bicontinuous function (see Coutin and Decreusefond 1999). Moreover,

following Samko et al. (1993), we know that JÆ is an isomorphism from L2([0, 1]) onto

I
Æþ1=2

0þ (L2([0, 1])). It follows that JÆ satisfies the Hypotheses 1 and 2 for any Æ 2 (0, 1) with

ª ¼ 2Æþ 1.

We denote by K�, the adjoint of K in L2.

Lemma 1. Let X ¼ M þ A be a cadlag semimartingale: M denotes the martingale part and

A the finite-variation process. Assume that hMi t ¼
Ð t

0
V (s)ds and At ¼

Ð t
0

_AA(s)ds. Consider

the following hypotheses:

(a) V is bounded P-p.s. by a constant c . 0.

(b) E[sups< tj˜X sj] , 1.

(c) E[
Ð 1

0
j _AA(s)j2 ds] , 1.

Let K satisfy hypotheses 1 and 2. Then, for any � 2 (IÆþ1=2,2)�,

ZX
t (�) :¼

ð t
0

K��(s)dX s, t 2 [0, 1]

	 


is a cadlag semimartingale. Moreover, for any � 2 (0, Æ], there is a cadlag, IÆ��,2-valued

semimartingale X X , such that, for all � 2 (IÆ��,2)�, we have

Z X
t (�) ¼ h�, X X

t i(IÆ��,2)�,IÆ��,2
:

Proof. Fix � 2 (0, Æ]. Consider the linear map

L : (IÆþ1=2,2)� ! M([0, 1], R)

� ! fZ X
t (�), t 2 [0, 1]g:

According to Hypotheses 1 and 2, there exists a constant m such that
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L(�) ¼ E sup
t<1

jZX
t (�)j2


 �

<
1

2
E sup

t<1

����
ð t

0

K��(s)dMs

����2
" #

þ E sup
t<1

����
ð t

0

K��(s)dAs

����2
" # !

<
1

2
E

ð1

0

(K��(s))2jV (s)jds

 �

þ E

ð1

0

��K��(s)k _AAs

��ds� �2
" # !

<
1

2
ckK��k2

L2 þ kK��k2
L2E

ð1

0

j _AAsj2 ds)


 �� �

< mkK��k2
L2

< mk�k2
(IÆþ1:2,2)�

:

Thus L belongs to L((IÆþ1=2,2)�, M([0, 1], R)). Since the embedding of IÆþ1=2,2 into

I�þ1=2,2 is Hilbert–Schmidt for � , Æ� 1
2
, the result follows by Theorem 1. h

Remark 3. We denote by E t, the Dirac mass at time t. When Æ . 1
2
, for � sufficiently small,

Æ� 1
2
� � . 0, E t belongs to (IÆ��,2)� and a fortiori to (IÆþ1=2��,2)�. Hence, Z X

t (E t) is well

defined, is equal to
Ð t

0
K(t, s)dX s by definition and is equal to hE t, X X

t i by Lemma 1.

When Æ < 1
2
, E t does not belong to (IÆ��,2)� and we cannot give a sense to Z X

t (E t). By

the way, when K(t, s) ¼ (t � s)Æ�1=2 and X is a Poisson process, when Æ , 1
2
,
Ð :

0
K(:, s)dX s

is a process which is positively infinite after each jump time and then takes finite values

everywhere else. On the other hand, ��1
Ð tþ�
t�� Z

X
t (s)ds is well defined and may serve, for

small �, as a substitute for
Ð t

0
K(t, s)dX s.

3. Convergence

Consider a sequence of semimartingales X n ¼ Mn þ An with

hMni t ¼
ð t

0

V n(s)ds and An
t ¼

ð t
0

_AAn(s)ds:

Hypothesis 3.

(a) supn>1 V
n is bounded P-p.s. by a constant c . 0;

(b) supn>1 E[sups< t j˜X n
s j] , 1;

(c) supn>1 E[
Ð 1

0
j _AAn(s)j2 ds] , 1.

Suppose that X n converges to X ¼ M þ A in D([0, 1]; R). From Lemma 1, we define

two IÆ��,2-valued processes X X n

and X X with respect to the semimartingales X n and X .

Our key result is the following.
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Theorem 2. For any � . 0 sufficiently small, as n goes to infinity, the laws of X X n

in

D([0, 1]; IÆ��,2) converge to the law of X X .

Proof. K is supposed to be continuous from L2 into IÆþ1=2,2, thus K� is continuous from

(IÆþ1=2,2)� into L2. Denote by kK�k the corresponding operator norm. Since the embedding

of IÆþ1=2,2 into IÆ��,2 is Hilbert–Schmidt and thus radonifying, it follows from Schwartz

(1994, Theorem I) and Hypothesis 3 that

E kX X n

t k2
IÆ��,2

h i
< c sup

k f k(IÆþ1=2,2)�¼1

E

ð1

0

K� f (s)dX n
s

� �2
" #

< ckK�k2:

It then follows that, for any 
 . 0, there exists M such that

sup
n

P kX X n

t kÆ��,2
. M

� �
< 


and that, for any N . 0,

lim
r!þ1

sup
n

X1
k¼r

E hX X n

t , f ki21kX X n

t kIÆ��,2
<N

h i
¼ 0,

where ( f k , k > 1) is a complete orthonormal basis of (IÆ��,2)�. According to Gihman and

Skorohod (1980, Theorem 2, p. 377), this implies that, for each t 2 [0, 1], (X X n

t , n > 1) is a

tight sequence in IÆ��,2.

On the other hand, we have,

kX X n

tþs �X X n

t k2
IÆ��,2

¼
X1
k¼1

jhX X n

tþs � X X n

t , f kij2

¼
X1
k¼1

����
ð tþs

t

K� f k(r)dX n
r

����2:
According to Hypothesis 2, we have:

E
X1
k¼1

����
ð tþs

t

K� f k(r)dX n
r

����2
" #

< m
X1
k¼1

ð tþs

t

jK� f k(r)j2 dr

< mkI[ t, tþs]K
�k2

HS

< mjt � sjª:

This relation obviously implies hypothesis (b) of Proposition 2 and the sequence

fX X n

: n > 1g is thus tight in D([0, 1], IÆ��,2).

Let fX X n k : k > 1g be a subsequence which converges to a limit denoted by L. We have,

for any u 2 (IÆ��,2)�, hu, Li ¼ hu, X X i. That is to say, all convergent subsequences
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converge to the same limit. It follows that the laws of X X n

in D([0, 1]; IÆ��,2) converge to

the law of X X . h

Corollary 1. Under Hypotheses 1 and 2 with Æ . 1
2
, the laws of the processes

f
Ð t

0
K(t, s)dX n

s , t 2 [0, 1]g in Hol(Æ� 1=2 � �), converge to the law of f
Ð t

0
K(t, s)dX s,

t 2 [0, 1]g.

Proof. For � sufficiently small, Æ� 1
2
� E . 0 and for any f 2 IÆ��,2, j f (s) � f (t)j

< ck f kIÆ��,2
jt � sjÆ�1=2��. Thus, the map

B : IÆ��,2 ! Hol(Æ� 1
2
� �)

f ! (s 7! f (s) ¼ hEs, f i(IÆ��,2)� ,IÆ��,2),

is well defined and continuous. Hence for F bounded and continuous from Hol(Æ� 1
2
� �)

into R, F � B is continuous from IÆ��,2 into R. By Theorem 2, we have

E[F � B(X X n

)] �!
n!1

E[F � B(X X )],

which amounts to saying that

E F

ð
0

K(t, s)dX n
s

� �
 �
�!
n!1

E F

ð
0

K(t, s)dX s

� �
 �
:

The proof is thus complete. h

4. Application

The space of simple, integer-valued measures, locally finite on [0, 1], is denoted �. We

define the probability P as the unique measure on � such that the canonical measure ø is a

Poisson random measure of compensator º ds. The canonical filtration F is defined by:

F0 ¼ f˘, �g,

F t ¼ �

ð s
0

ø(ds), s < t

	 

, for all t 2 [0, 1]:

We set Nº
s ¼ ø([0, 1]). Our basic object is the process Y º, defined by

Y º
t ¼ º�1=2

ð t
0

K(t, s)(dNº
s � º ds)

¼ 1ffiffiffi
º

p
X
n>1

K(t, Tn)I[Tn< t] �
ð t

0

K(t, s)
ffiffiffi
º

p
ds,

where K satisfies Hyptheses 1 and 2.

From Lemma 1, we define two IÆ��,2-valued processes X N̂N n

and X B defined with respect

to the martingales N̂N n and B, a standard Brownian motion. It is clear that Hypothesis 3 is
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satisfied by X N̂N n

. We now have to distinguish two cases according to the position of Æ with

respect to 1
2
. Actually, when Æ . 1

2
, IÆ��,2 is a subset of the set of continuous functions and

thus its dual contains Dirac measures. On the other hand, when Æ , 1
2
, the map

s 7! f (s) ¼ hEs, f i(IÆ��,2)�,IÆ��,2
is not defined for f 2 IÆ��,2.

Proposition 3. Under Hypotheses 1 and 2 with Æ . 1
2
, the laws of the processes fY n

t ¼Ð t
0
K(t, s)dN̂N n

s , t 2 [0, 1]g in Hol(Æ� 1
2
� �) converge to the law of fYt ¼

Ð t
0
K(t, s)dBs,

t 2 [0, 1]g.

Remark 4. As a consequence, we have the convergence in law on C([0, 1], R). We now show

how Hypothesis 1 and Kolmogorov’s criterion are sufficient prove this result. Since

K(t, s) ¼ K�(E t), we have

E[jY n
t � Y n

s j2] ¼
ð1

0

jK(t, r) � K(s, r)j2 dr

< ckK�(E t � Es)k2
L2

< ckE t � Esk2
(IÆþ1=2,2)9

¼ cjt � sj2Æ:

It is sufficient, according to Kolmogorov’s criterion, to show that Y n converges in law to Y ,

on C([0, 1], R).

Following the same lines, we have:

Proposition 4. Let Æ 2 (0, 1
2
) and let 
 be continuous from [0, 1] into T�Æ��,2. Assume that the

Hypotheses 1 and 2 hold. Then the laws of the processes fh
 t, X n
t i(IÆ��,2)� ,IÆ��,2

, t 2 [0, 1]g in

C([0, 1]; R) converge to the law of fh
 t, X ti(IÆ��,2)�,IÆ��,2
, t 2 [0, 1]g.

For instance, we can choose 
 as

h
 t, f i(IÆ��,2)�,IÆ��,2
¼ ��1

ð( tþ�)^1

( t)�)_0

f (s)ds

¼ E�1(I1
0þ f ((t þ �) ^ 1) � 11

0þ f ((t � �) _ 0)):

Since f 2 IÆ��,2. I1
0� f belongs to I 1þÆ�E which is a subset of Hol(1

2
þ Æþ E). It is then

clear that 
 is continuous from [0, 1] into I�Æ��,2. As a consequence, the law of the process

f��1
Ð tþ�
t�� X

n
t (s)ds, t 2 [0, 1]g in C([0, 1]; R) converges to the law of the process

f��1
Ð tþ�
t�� X t(s)ds, t 2 [0, 1]g.
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