
Large-noise asymptotics for one-

dimensional diffusions

S Z Y M O N P E S Z AT 1 and FRANCESCO RUSSO2

1Institute of Mathematics, Polish Academy of Sciences, Św. Tomasza 30/7, 31-027 Kraków,
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1. Introduction

There is a vast literature on small-noise perturbation of dynamical systems. This includes

topics such as the Freidlin–Wentzell large-deviation estimates and the Varadhan estimates

on law densities with connections to the Malliavin calculus. On the other hand, dynamical

systems with large noise have been, to our knowledge, much less considered. It is worth

noting that the influence of small noise on solutions to stochastic differential equations can

be closely approached by the small-time asymptotic behaviour. However, the influence of

large noise generally cannot be reduced to the large-time behaviour.

We consider the one-dimensional stochastic differential equation

dX t ¼ (b(X t) þ vX t)dt þ 
 dBt, X 0 ¼ 0, (1:1)

where b is a real Borel bounded function, 
 is a large real constant, and B is a one-

dimensional Brownian motion. This equation has a unique strong solution; see, for example,

Le Gall (1983), Nakao (1972), Perkins (1982), Revuz and Yor (1999, Theorem 3.8, Chapter

IX) for v ¼ 0, and Flandoli and Russo (2002) for v 6¼ 0.

One can ask under what conditions on b the solution X ¼ X v,
 completely ignores at

macroscopic level the nonlinear part b(X ). In other words, denoting by 
Bv the Ornstein–

Uhlenbeck process being the solution to (1:1) with b ¼ 0, one would like to know whether

sup
t2[0,T ]

jX v,

t � 
Bv

t j !
(P)

0: (1:2)

If (1:2) holds, then one says that the triviality phenomenon occurs.

In examining the convergence of high-dimensional stochastic partial differential equations

driven by white noise, Russo and Oberguggenberger (1999) introduced the concept of a
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massless-at-zero Schwartz tempered distribution: a Borel real function b has a Fourier

transform massless at zero, or simply is Fourier massless at zero, if

lim
�!0

ð
R

b
y

�

� �
e� y2=2 dy ¼ 0: (1:3)

Notice that p-integrable functions with an arbitrary p 2 [1, 1) and bounded measurable

functions vanishing at 1 are Fourier massless at zero. Notice also that if jbj is Fourier

massless at zero, then the triviality phenomenon occurs. In fact we have

E

ðT
0

jb(
Bv
s )j ds

� � p

! 0, p > 1,

which yields (1:2) by means of the Girsanov transformation.

By analogy with the case of high-dimensional stochastic partial differential equations, one

might expect that the triviality phenomenon takes place for any Fourier massless-at-zero

function. This, however, does not happen in the present framework of large-noise analysis.

Taking for simplicity v ¼ 0, consider a Lipschitz bounded function satisfying

lim
x!þ1

b(x) ¼ ‘ ¼ � lim
x!�1

b(x),

for some ‘ . 0. Then (1.3) is fulfilled but the triviality phenomenon does not occur since

jX 0,

t � 
Btj ! l

����
ð t

0

sgn (Bs)ds

����,
which is not even a Gaussian process.

One objective of this paper is to study precise asymptotics for a class of functions for

which triviality occurs. This will include laws of large numbers and central limit theorems

of some kind. We focus on the class C of functions b having a bounded primitive.

Integrating by parts, it is easy to see that b 2 C satisfies (1:3), and so b is Fourier massless

at zero. Moreover, as illustrated by Proposition 2.1, the triviality phenomenon occurs by

means of the inverse Itô formula applied to

X
v,

t � 
Bv

t ¼
ð t

0

b(X v,

s )ds: (1:4)

The class C includes

(a) the class of integrable functions,

(b) trigonometric polynomials.

Clearly, if b 2 L1 then jbj is Fourier massless at zero. This, however, generally fails for a

trigonometric polynomial b: take b(x) ¼ cos (x), x 2 R.

In fact we consider (1:1) for any bounded measurable function b and study precise

asymptotics of additive functionals

A
v,

t (r) ¼

ð t
0

r(
Bv
s )ds and Av,


t (r) ¼
ð t

0

r(X v,

s )ds (1:5)
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for any Schwartz distribution r belonging to the union of

(a9) the class of finite signed measures,

(b9) the class of the Schwartz distribution r ¼ H 0 where H 2 W 1,1 and (H9)2 � cr has

a bounded primitive for a certain cr.

Note that the first class is a generalization of the space L1, whereas the second class contains

the space of trigonometric polynomials.

The triviality phenomenon (1:2) also occurs for b 2 L2, and for additive functionals (1:5)

driven by r 2 L2. We will return to this, however, in a future paper. We note that in the

case v ¼ 0, that is, for Brownian motion, Yamada (1986; 1996) proved that uniformly in t

on bounded intervals,

1

º

ðº t
0

r(Bs)ds !
(P) 1

�

ð
R

(H�1r)(x)dx C0
t , as º ! þ1, (1:6)

where C0 is a given process depending on the Brownian motion and H�1r is the inverse

Hilbert transform of r 2 L2. Clearly, through an obvious change of time variable 
 ¼
ffiffiffi
º

p
,

(1:6) can be formulated in terms of asymptotic behaviour of additive functionals, for which

we are interested in obtaining a non-zero limit, see Proposition 2.2 for pathwise convergence

when r is a finite measure and Theorem 2.2 for convergence in law when r belongs to class

(b9).

The next step in the analysis of large noise will be the study of large deviations. For this

purpose, natural tools will be Remillard (2000) and Takeda (1998; 2003). That investigation

will be the subject of a subsequent paper.

The paper is organized as follows. In Section 2, we state the basic limit results for


Av,
(r) and 
Av,
(r). Proposition 2.2 states a law of large numbers (pathwise convergence)

when r is a finite measure. If, moreover, r has finite first moment, then Theorem 2.1 gives

a central limit theorem. The class (b9) is treated in Theorem 2.2. Sections 3–5 are devoted

to the proof of the limit results.

2. Formulation of the results

Let (L1, k � k1) be the space of classes (with respect to Lebesgue measure) of bounded

measurable functions f : R ! R equipped with the essential supremum norm. Let W�1,1

be the space of all distributions F9 where F 2 L1. We equip W�1,1 with the norm

krkW �1,1 ¼ kFk1, where F 2 L1 is such that F9 ¼ r and F(0) ¼ 0. Let C0(R) be the

class of all continuous functions with a compact support. Clearly, C0(R) is dense in W�1,1.

In this paper, all the initial conditions are assumed to be equal to zero and all the

equations will be taken on a compact interval [0, T ].

Let X v,
 be the solution to the stochastic differential equation (1:1), where B is a one-

dimensional Brownian motion defined on a probability space A ¼ (�, F , P), b : R ! R

is a bounded measurable function, and the parameter v 2 R. Let Bv
t :¼

Ð t
0

ev( t�s) dBs be the
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Ornstein–Uhlenbeck process being the solution to the equation obtained from (1:1) by

putting b ¼ 0 and 
 ¼ 1.

Given r 2 C0(R) and 
 . 0, we define additive functionals Av,
(r) and Av,
(r) by (1:5). The

lemma below enables us to extend the functionals Av,
 and Av,
 from the space C0(R) to the

space W�1,1. In the paper we use k � kT to denote the supremum norm on C([0, T ]; R), that is,

kłkT ¼ sup
0< t<T

jł(t)j, ł 2 C([0, T ]; R):

Lemma 2.1. Let T 2 (0, 1) and p 2 [1, 1).

(i) The linear operators r ! Av,
(r) and r ! Av,
(r) are continuous from the space

C0(R), k � kW �1,1ð Þ into L p
T :¼ Lp �, F , P; C([0, T ]; R)ð Þ, and hence Av,
 and Av,


can be uniquely extended to the continuous linear operators (denoted also by Av,


and Av,
) acting from W�1,1 to L p
T .

(ii) For any r 2 W�1,1, the following inverse Itô formulae hold:

A
v,

t (r) ¼ 2H(
Bv

t ) � 2H(0)


2
� 2




ð t
0

F 
Bv
s

� �
dBv

s (2:1)

and

Av,

t (r) ¼ 2H(X

v,

t ) � 2H(0)


2
� 2


2

ð t
0

F X v,

s

� �
dX v,


s , (2:2)

where r ¼ F9, F 2 L1 and H is a primitive of F.

Proof. By Itô’s formula, (2:1) and (2:2) hold for r 2 C0(R). Since any primitive H of a

bounded function F has a linear growth one can obtain (i). Then by standard approximation

arguments one obtains (ii). h

As a consequence of Lemma 2.1(ii) and Girsanov’s theorem, we have the following

asymptotic result on Av,
 and Av,
.

Proposition 2.1. Let 0 , r , 1. For all r 2 W�1,1, T 2 (0, 1) and p 2 [1, 1),

lim

!1

Ek
r Av,
(r)k p
T ¼ 0 ¼ lim


!1
Ek
rAv,
(r)k p

T :

Let us denote by Mfin(R) the collection of all finite Radon signed measures on R. We

denote by krkVar the total variation of a r 2 Mfin(R). Let M1,fin(R) be the subspace of

Mfin(R) consisting of all measures r with finite first moment, that is,ð
R

jxj krkVar(dx) , 1:

Clearly, M1,fin(R) � Mfin(R) � W�1,1.

Let LB be the local time of B, let f 2 L1(R), and let
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M


t ( f ) :¼ 
A0,


t ( f ) �
ð
R

f (x)dx LB
t (0):

Then E kM
( f )k p
T ! 0, for all p 2 [1, 1) and T , 1 (see Revuz and Yor 1999, Proposition

2.1, Chapter XIII). The theorem below provides similar results on the asymptotic behavior of

Mv,
(r) :¼ 
Av,
(r) � r(R) LBv

(0) andMv,
(r) :¼ 
Av,
(r) � r(R) LBv

(0),

where r 2 Mfin(R) and LBv

is the local time of Bv.

Proposition 2.2. For all r 2 Mfin(R), T 2 (0, 1), and p 2 [1, 1),

lim

!1

EkMv,
(r)k p
T ¼ 0 ¼ lim


!1
EkMv,
(r)k p

T :

Remark 2.1. If r 2 L1(R), then, using Girsanov’s transformation, one can easily derive from

Revuz and Yor (1999, Proposition 2.1, Chapter XIII), that for any finite T , kMv,
(r)kT ! 0,

P-almost surely.

Our next result provides a weak convergence of
ffiffiffi



p
Mv,
(r) and

ffiffiffi



p Mv,
(r) under the

assumption r 2 M1,fin(R). Let Fr(x) ¼ r((�1, x)) and let

Ær ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
R

Fr � r(R) �(0,þ1)

� �2
(x)dx:

s

Clearly Fr 2 L1 and r ¼ F9r.

Remark 2.2. Note that if r 2 M1,fin(R), then Ær , 1. In fact

Æ2
r ¼

ð0

�1
r((�1, x))ð Þ2

dxþ
ð1

0

r([x, 1))ð Þ2
dx

< krkVar(R)

ð0

�1
krkVar((�1, x])dxþ

ð1
0

krkVar([x, 1))dx

� �

< krkVar(R)

ð
R

jxj krkVar(dx):

Remark 2.3. Note that Ær ¼ 0 if and only if r ¼ c�0 for some c 2 R. Then, obviously,

Mv,
(r) ¼ 0. This shows that next result is in some sense optimal and it is not possible to get

a non-trivial limit, renormalizing further by a bigger power of 
, when r 2 M1,fin(R).

Theorem 2.1. Assume that r 2 M1,fin(R). Then, uniformly in t on compact intervals,

(Bt,
ffiffiffi



p
M

v,

t (r)) ) � t, 2ÆrªL

�v

t (0)

� �
, as 
 ! 1, (2:3)

and
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(Bt,
ffiffiffi



p Mv,

t (r)) ) � t, 2ÆrªL

�v

t (0)

� �
, as 
 ! 1, (2:4)

where � and ª are independent standard Brownian motions, and L�
v

is the local time of the

Ornstein–Uhlenbeck process �v.

Let W 1,1(R) be the space of all bounded absolutely continuous functions H : R ! R

such that H9 2 L1, and let D�1
b (R) be the space of all Schwartz distributions r such that

r ¼ H 0 for some H 2 W 1,1(R). Clearly D�1
b (R) � W�1,1.

Note that for any r 2 D�1
b (R) there is a unique Hr 2 W 1,1(R) such that r ¼ H 0r. Let D

be the class of all r 2 D�1
b (R) for which there is a (unique) constant cr such that

(H9r)2 � cr 2 W�1,1. Note that cr > 0.

The last result of this section provides a generalized central limit theorem for additive

functionals Av,
(r) and Av,
(r), where r 2 Mfin þD. We note that the class D contains

trigonometrical polynomials (see Example 2.2).

Theorem 2.2. Assume that r ¼ rM þ rD, where rM 2 Mfin and rD 2 D. Then, uniformly in

t on compact intervals,

Bt, 
A
v,

t (r)

� �
) � t, rM(R)L

�v

t (0) þ 2
ffiffiffiffiffiffiffi
crD

p
ª t

� �
and

Bt, 
Av,

t (r)

� �
) � t, rM(R)L

�v

t (0) þ 2
ffiffiffiffiffiffiffi
crD

p
ª t

� �
,

where � and ª are independent standard Brownian motions.

Example 2.1. Suppose that r ¼ F9 where F(x) ¼
Ð
R

eixy�(dy) is the Fourier transform of a

complex measure � on R. To ensure that F takes real values we assume that �(A) ¼ �(�A) for

any Borel set A. Clearly, r 2 D�1
b (R) if � and x�1�(dx) are finite. Assuming this we obtain:

(i) If r 2 D, then cr ¼ � � �(f0g) ¼
Ð
R
� fxgð Þ�(dx). Thus, in particular, cr ¼ 0 if � is

atomless.

(ii) A sufficient condition for r 2 D isðð
fj y�xj6¼0g

k�kVar(dy) k�kVar(dx)

jy� xj , 1:

For F 2 ¼ FF is the Fourier transform of � � �, which again is a measure. Then we derive (i)

from the fact that any constant function C is the Fourier transform of C�0, and the following

observation: if a Fourier transform of a measure � has a bounded primitive, say h, then

�(f0g) ¼ 0, and h(x) ¼ �i
Ð
R

eixy y�1�(dy), x 2 R. Set

�(dy) ¼ �iy�1 � � �� � � �(f0g)�0ð Þ(dy):

We infer that if there is a bounded primitive H of F 2 � � � �(f0g), then H(x) ¼
Ð
R

eixy�(dy).

Finally, H given by the formula above is bounded if � is a finite measure, which is

guaranteed by (ii).
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Taking in the example above any purely atomic spectral measure � with a finite number

of atoms we obtain the following.

Example 2.2. Any trigonometrical polynomial r(x) ¼
Pm

j¼�ma je
ib j x, where 0 , m , 1,

a j ¼ a� j, and b j ¼ �b� j 2 Rnf0g, belongs to D with

cr ¼
Xm
j¼�m

ja jj2jb jj�2:

We can now formulate a result concerning the triviality phenomenon for X v,
. To do this,

note that X v,
 is the solution to

X
v,

t ¼

ð t
0

ev( t�s)b X v,

s

� �
dt þ 
Bv

t :

Thus

Dv,

t (b) :¼ X

v,

t � 
Bv

t ¼
ð t

0

ev( t�s)b X v,

s

� �
dt ¼

ð t
0

ev( t�s) d

ds
Av,


s (b)ds

¼ Av,

t (b) þ v

ð t
0

ev( t�s)Av,

s (b)ds ¼ J v Av,
(b)ð Þt,

(2:5)

where J v is a bounded linear operator on C([0, 1); R) given by

J v(ł) t ¼ ł t þ v

ðt

0

ev( t�s)łs ds, ł 2 C([0, 1); R): (2:6)

Consequently, we have the following Corollary to Propositions 2.1 and 2.2 and Theorems 2.1 and

2.2. Recall that in the present paper b is a bounded measurable function. If b 2 L1 then we set

Mv,

t :¼ 
Dv,


t (b) �
ð
R

b(x)dxJ v LBv

(0)
� �

t
:

Corollary 2.1. (i) If b 2 W�1,1 then, for all T 2 [0, 1), r 2 (0, 1) and p 2 [1, 1), one has

E k
rDv,
(b)k p
T ! 0 as 
 ! 1.

(ii) If b 2 L1 then, for all T 2 [0, 1) and p 2 [1, 1), one has EkMv,
k p
T ! 0 as


 ! 1.

(iii) If b and x ! xb(x) belong to L1 then, uniformly in t on compact intervals,

(Bt,
ffiffiffi



p
Mv,


t (b)) ) � t, 2Æb J v ªL�
v

(0)

� �
t

� �
, as 
 ! 1,

where � and ª are independent standard Brownian motions, and L�
v

is the local time of the

Ornstein–Uhlenbeck process �v.

(iv) If b ¼ bM þ bD, where bM 2 L1 and bD 2 D, then, uniformly in t on compact

intervals,
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Bt, 
Dv,

t (b)

� �
) � t,

ð
R

b(x)dxJ v L�
v

(0)
� �

t
þ 2

ffiffiffiffiffiffiffi
cbD

p J v(ª) t

� �
,

where � and ª are independent standard Brownian motions.

3. Proof of Proposition 2.2

Let us fix T , p, and r 2 Mfin(R). Let t 2 [0, T ]. By the occupation density times formula (see,

for example, Revuz and Yor 1999, Corollary 1.6, Chapter VI), for any f 2 L1(R) we have


Av,

t ( f ) ¼ 


ð
R

f 
xð ÞLBv

t (x)dx ¼
ð
R

LBv

t 
�1x
� �

f xð Þdx:

Thus by a standard approximation argument we obtain


Av,

t (r) ¼

ð
R

LBv

t 
�1x
� �

r(dx): (3:1)

Consequently,

M
v,

t (r) ¼

ð
R

LBv

t 
�1x
� �

� LBv

t (0)
� �

r(dx)

and by Jensen’s inequality,

EkMv,
(r)k p
T < krkVar(R)ð Þ p�1

ð
R

EkLBv


�1x
� �

� LBv

(0)k p
TkrkVar(dx):

Next, by Tanaka’s formula (see, for example, Revuz and Yor 1999, Theorem 1.2, Chapter VI),

we have

LBv

t 
�1x
� �

� LBv

t 0ð Þ ¼ I


t (x) þ J



t (x),

where

I


t (x) :¼ jBv

t � 
�1xj � j
�1xj � jBv
t j

and

J


t (x) :¼ �

ð t
0

sgn Bv
s � 
�1x

� �
� sgn Bv

s

� �� �
dBv

s :

Note that jI
t (x)j < 2jBv
t j. Hence, it is easy to see that

sup

.0

sup
x2R

EkLBv


�1x
� �

� LBv

(0)k p
T , 1:

Moreover, since P Bv
s ¼ 0

� �
¼ 0, s . 0, one has, for any x,

lim

!1

EkLBv


�1x
� �

� LBv

(0)k p
T ¼ 0:

Therefore one obtains EkMv,
(r)k p
T ! 0 by means of Lebesgue’s dominated convergence
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theorem. Clearly, to prove EkMv,
(r)k p
T ! 0 it is enough to show that

Ek
(Av,
(r) �Av,
(r)Þk p
T ! 0. To do this, note that Y v,
 :¼ 
�1X v,
 is a continuous

semimartingale and Y v,
 ¼ Bv þ 
�1Bv,
, where

Bv,

t ¼

ð t
0

ev( t�s)b X v,

s

� �
ds:

Let us denote by L
 the local time of Y v,
. Then using the arguments used in the proof of

(3.1) we obtain


 Av,

t (r) � A

v,

t (r)

� �
¼
ð
R

L


t 
�1x
� �

� LBv

t 
�1x
� �� �

r(dx):

Applying Tanaka’s formula again, we obtain

L


t 
�1x
� �

� LBv

t 
�1x
� �

¼ I


t (x) þ J



t (x),

where

I


t (x) :¼ jY v,


t � 
�1xj � jBv
t � 
�1xj � 
�1

ð t
0

sgn Y v,

s � 
�1x

� �
dBv,


s ,

and

J


t (x) :¼

ð t
0

sgn Bv
s � 
�1x

� �
� sgn Y v,


s � 
�1x
� �� �

dBv
s :

Since b is bounded it is easy to see that there is a constant c depending on v and T such that

kY v,
 � BvkT þ sup
x2R

kI
(x)kT < c
�1, 
 . 0: (3:2)

Thus the proof will be complete as soon as we show that

sup

.0

sup
x2R

EkJ
(x)k p
T , 1 and lim


!1
EkJ
(x)k p

T ¼ 0, 8x 2 R: (3:3)

Since

jBu
t j ¼ jBt þ u

ð t
0

eu( t�s)Bs dsj < 1 þ jujejuj t
� �

kBk t,

we have jJ
t (x)j < C1 J
,1(x) þ J

,2
t (x)

� �
, where

J
,1(x) :¼ kBkT
ðT

0

jsgn Bv
t � 
�1x

� �
� sgn Y

v,

t � 
�1x

� �
j dt

and

J

,2
t (x) :¼

����
ð t

0

sgn Bv
s � 
�1x

� �
� sgn Y v,


s � 
�1x
� �� �

dBs

����:
Then (3.3) follows easily from (3.2) and Burkholder’s inequality.

Large-noise asymptotics for one-dimensional diffusions 255



4. Proof of Theorem 2.1

Let us fix T , 1 and r 2 M1,fin(R). Recall that r ¼ F9r, where Fr(x) ¼ r((�1, x)). Let

g ¼ Fr � r(R)�(0,1). Then g is bounded and square integrable (see Remark 2.2). Clearly

kgkL2(R) ¼ Ær. Define

G


t :¼

ð t
0

g 
Bv
s

� �
dBv

s and G

t :¼ 
�1

ð t
0

g X v,

s

� �
dX v,


s :

We have

G


t ¼

ð t
0

Fr 
Bv
s

� �
dBv

s � r(R)

ð t
0

�(0,1) 
Bv
s

� �
dBv

s :

By Tanaka’s formula, ð t
0

�(0,1) 
Bv
s

� �
dBv

s ¼ (Bv
t )
þ � 1

2
LBv

t (0):

Thus

�2

ð t
0

Fr 
Bv
s

� �
dBv

s ¼ �2G


t � 2r(R)(Bv

t )
þ þ r(R)LBv

t (0):

Let H be a primitive of F. Then using the inverse Itô formula (2.1), we obtain

Mv,
(r) ¼ �2G
 þ I
, (4:1)

where

I


t ¼

2



H 
Bv

t

� �
� H(0)

� �
� 2r(R)(Bv

t )
þ:

First, we will show that, uniformly in t 2 [0, T ],

(Bt,
ffiffiffi



p
G



t ) ) � t, ÆrªL

�v

t (0)

� �
, (4:2)

where � and ª are independent Brownian motions. To do this, note that G
 ¼ vJ
,1 þ J
,2,

where

J

,1
t :¼

ð t
0

g 
Bv
s

� �
Bv
s ds and J


,2
t :¼

ð t
0

g 
Bv
s

� �
dBs:

Note that g 2 L1(R). In factð
R

jg(x)j dx <

ð0

�1
krkVar((�1, x])dxþ

ð1
0

krkVar([x, 1))dx

<

ð
R

jxj krkVar(dx) , 1:

We have
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kJ
,1kT < kBvkT
ðT

0

jg(
Bv
s )j ds:

Hence, by the Hölder inequality,


 p=2 EkJ
,1k p
T < E kBvk2 p

T

� �1=2


 p E

ðT
0

jg(
Bv
s )j ds

� �2 p
 !1=2

:

Since g 2 L1(R), it has a bounded primitive, and Proposition 2.1 yields

lim

!1


 p E

ðT
0

jg(
Bv
s )j ds

� �2 p

¼ 0:

Therefore 
 p=2 EkJ
,1k p
T ! 0, and it remains to show that, uniformly in t 2 [0, T ],

Bt,
ffiffiffi



p
J

,2
t

� �
) � t, ÆrªL

�v

t

� �
: (4:3)

Let W 
 be the Dambis–Dubins–Schwartz (DDS) Brownian motion of
ffiffiffi



p
J
,2 (see, for

example, Revuz and Yor 1999, Theorem 1.6, Chapter V). Then
ffiffiffi



p
J

,2
t ¼ W



ł
( t), where

ł
(t) ¼ 

Ð t

0
g2 
Bv

s

� �
ds. Since g has a bounded primitive, Proposition 2.1 yields

hB,
ffiffiffi



p
J
,2i t ¼

ffiffiffi



p ð t
0

g 
Bv
s

� �
ds ! 0,

and by Proposition 2.2, h ffiffiffi



p
J
,2,

ffiffiffi



p
J
,2i t ¼ ł


t ! Æ2
rL

Bv

t (0). Thus (4.2) follows from Revuz

and Yor (1999, Theorem 2.3, Chapter XIII); see also the proof of Theorem 2.6, Chapter XIII,

p. 526 from Revuz and Yor (1999).

Having shown (4.1) and (4.2), the proof of (2.3) will be complete as soon as we show

that ffiffiffi



p
I


t ! 0, P-a:s: uniformaly in t 2 [0:T ]: (4:4)

To see this, set

h
(x) ¼ ffiffiffi



p

�1H(
x) � r(R)(x)þ
� �

: (4:5)

Then, for x < 0,

jh
(x)j < 
�1=2jH(
x)j < 
�1=2 jH(0)j þ
ð0


x
jF(z)j dz

� �

< 
�1=2 jH(0)j þ
ð0

�1
krkVar((�1, y])dy

� �

< 
�1=2 jH(0)j þ
ð0

�1
jyjkrkVar(dy)

� �
:

Note that, by Fubini’s theorem,
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ð
x
0

F(z)dz ¼ 
xr((�1, 0]) þ
ð
x

0

r((0, z))dz ¼ 
xr(�1, 
x) �
ð

(0,
x)

yr(dy):

Hence, for x . 0,

jh
(x)j ¼ ffiffiffi



p
����
�1 H(0) þ

ð
x
0

F(z)dz

� �
� xr(R)

����
¼ ffiffiffi



p
����
�1H(0) � 
�1

ð
(0,
x)

yr(dy) � xr([
x, 1))

����
< 
�1=2jH(0)j þ 2
�1=2

ð
R

jyj krkVar(dy),

as

j
xr([
x, 1))j <
ð
R

jyj krkVar(dy):

Thus there is a constant C , 1 such that

jh
(x)j < C
�1=2 1 þ
ð
R

jyj krkVar(dy)

� �
for all 
 . 0, x 2 R, (4:6)

and (4:4) follows from the identity
ffiffiffi



p
I


t ¼ 2h
 Bv

t

� �
� 2

ffiffiffi



p� ��1
H(0).

We proceed to the proof of (2.4). Let L
 be the local time of Y v,
 :¼ 
�1X v,
. Sinceð t
0

�(0,1) X v,

s

� �
dY v,


s ¼ Y
v,

t

� �þ� 1

2
L


t (0),

the inverse Itô formula (2.2) yields Mv,
(r) ¼ �2G
 þ I 
, where

I

t ¼

2



H X

v,

t

� �
� H(0)

� �
� 2r(R) Y

v,

t

� �þ
:

Thus the proof will be complete, as soon as we show that

(Bt,
ffiffiffi



p G

t ) ) � t, ÆrªL

�v

t (0)

� �
(4:7)

and ffiffiffi



p I

l ! 0, P-a:s: uniformly in t 2 [0:T ]: (4:8)

To show (4.7) we will use the ideas from the proof of (4.2). That is, first we note that

G
 ¼ J 
,1 þ J 
,2 þ J 
,3, where
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J 
,1
t :¼ 
�1

ð t
0

g X v,

s

� �
b Xv,


s

� �
ds,

J 
,2
t :¼ 
�1

ð t
0

g X v,

s

� �
v X v,


s ds

J 
,3
t :¼

ð t
0

g X v,

s

� �
dBs:

Recall that the function g is integrable (see the proof of (4.2)). Hence, as b is bounded the

function gb is integrable, and Proposition 2.1 yields


 p=2EkJ 
,1k p
T ! 0:

As

sup

.0

E k
�1v X v,
k2 p
T , 1,

the Hölder inequality and Proposition 2.1 yield


 p=2EkJ 
,2k p
T ! 0:

To show that, uniformly in t 2 [0, T ],

Bt,
ffiffiffi



p J 
,3
t

� �
) � t, Æ f ªL

�v

t

� �
,

we note that
ffiffiffi



p J 
,3
t ¼ W



ł
( t), where ł
(t) ¼ 


Ð t
0
g2 X v,


s

� �
ds and W is the DDS Brownian

motion of
ffiffiffi



p J 
,3. By Proposition 2.1,

hB,
ffiffiffi



p J 
,3i t ¼
ffiffiffi



p ð t
0

g X v,

s

� �
ds ! 0,

and by Proposition 2.2,

h ffiffiffi



p J 
,3,
ffiffiffi



p J 
,2i t ¼ ł

t ! Æ2

rL
Bv

t (0):

Thus (4.7) follows from Revuz and Yor (1999, Theorem 2.3, Chapter XIII). To see (4.8), note

that
ffiffiffi



p I

t ¼ 2h
 Y

v,

t

� �
� 2

ffiffiffi



p� ��1
H(0), where h
 is given by (4.5), and consequently (4.8)

follows from (4.6).

5. Proof of Theorem 2.2

We will need the following lemma.

Lemma 5.1. Let (B
) be a family of two-sided Brownian motions, let ł : [0, 1) ! R be a

deterministic function, and let (ł
(t), t > 0) be a family of continuous processes such that,

for any 0 < T , 1, kł
 � łkT ! 0 in probability, as 
 ! 1. Then there is a Brownian

motion � such that B


ł
( t) ) �ł( t) uniformly in t on compact intervals.
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Proof. Clearly it is enough to show that for a fixed T , 1, ª
t :¼ B


ł
( t) � B



ł( t) converges in

probability to 0, uniformly with respect to t 2 [0, T ]. This follows from the convergence of ł
 to

ł, the uniform continuity of Brownian motion, and the fact that for all 
, and �, � . 0, one has

Pfkª
kT . �g < Pfkª
kT . �; kł
 � łkT < �g þ Pfkł
 � łkT . �g

< P sup
t,s: 0< t,s<T , j t�sj<�

jB

t � B


s j . �

( )
þ Pfkł
 � łkT . �g:

h

Let L
 be the local time of Y 
 :¼ 
�1X v,
. Write

V


t :¼

ð t
0

LBv

t 
�1x
� �

� LBv

t (0)
� �

rM(dx),

V

t :¼

ð t
0

L


t 
�1x
� �

� L


t (0)

� �
rM(dx):

Then (see the proof of Proposition 2.2) we have


Av,
(r) ¼ V


t þ rM(R)LBv

t (0) þ 
Av,
 rDð Þ

and


Av,
(r) ¼ V


t þ rM(R)L



t (0) þ 
Av,
 rDð Þ:

Moreover (again see the proof of Proposition 2.2), we have E kV 
kT þ kV
kTð Þ ! 0.

Let H 2 W 1,1(R) be such that rD ¼ H 0. Let F ¼ H9, and let

R


t ¼

ð t
0

F 
Bv
s

� �
dBs and R


t ¼
ð t

0

F X v,

s

� �
dBs: (5:1)

Let

N
v,

t :¼

ð t
0

F 
Bv
s

� �
Bv
s ds and N v,


t :¼ 
�1

ð t
0

F X v,

s

� �
X v,


s ds:

Finally, let I


t ¼ 2
�1 H(
Bv

t ) � H(0)
� �

, and let

I 
 ¼ 2



H(X

v,

t ) � H(0)

� �
� 2




ð t
0

F X v,

s

� �
b X v,


s

� �
ds:

By (2.1) and (2.2),


Av,

t (rD) ¼ I



t � 2vN

v,

t � 2R



t

and


Av,

t (rD) ¼ I


t � 2vN v,

t � 2R


t :

Obviously, as H , F and b are bounded, we have E kI
kT þ kI 
kTð Þ ! 0 for any T , 1.

Thus, as
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LBv

t (0) ¼ jBv
t j �

ð t
0

sgn Bv
s dBv

s

and

L


t (0) ¼ jY 
j �

ð t
0

sgn Y 

s dY 


s ,

the proof will be complete as soon as we show that

E kNv,
kT þ kN v,
kTð Þ ! 0, for any T , 1, (5:2)

and that uniformly with respect to t on compact intervals,

Bv
t ,

ð t
0

sgn Bv
s dBv

s , R


t

� �
) �vt ,

ð t
0

sgn �vs d�vs ,
ffiffiffiffiffiffiffi
crD

p
ª t

� �
(5:3)

and

Y


t ,

ð t
0

sgn Y 

s dY 


s , R


t

� �
) �vt ,

ð t
0

sgn �vs d�vs ,
ffiffiffiffiffiffiffi
crD

p
ª t

� �
, (5:4)

where � and ª are independent Brownian motions.

To see (5.2), note that

N
v,

t ¼ A

v,

t (F)Bv

t �
ð t

0

Av,

s (F)dBv

s

and

N v,

t ¼ 
�1Av,


t (F)X
v,

t � 
�1

ð t
0

Av,

s (F)dX v,


s :

Thus (5.2) follows easily from Proposition 2.1 as F has a bounded primitive.

It remains to check (5.3) and (5.4). Let W 
 and W
 be DDS Brownian motions of R


and R
, respectively. Then R


t ¼ W



ł
( t) and R


t ¼ W

j
( t), where

ł
(t) ¼
ð t

0

F 2 
Bv
s

� �
ds and j
(t) ¼

ð t
0

F 2 X v,

s

� �
ds:

Proposition 2.1 yields ł

t ¼ hR
i t ! crD t and j
 ¼ hR
it ! crD uniformly in t on bounded

intervals. Thus, by Lemma 5.1, R


t )

ffiffiffiffiffiffiffi
crD

p
ª t and R


t ) ffiffiffiffiffiffiffi
crD

p
ª t uniformly in t 2 [0, T ],

where ª is a Brownian motion. Finally, by Proposition 2.1, we have

hBv, R
i t ¼
ð t

0

F 
Bv
s

� �
ds ! 0 and hY 
, R
it ¼

ðt

0

F 
Xv,

s

� �
ds ! 0,

and, again by Proposition 2.1, for Z t ¼
Ð t

0
sgn Bv

s dBv
s and Z


t ¼
Ð t

0
sgn Y 


s dY 

s ,

hZ, R
i t ¼
ð t

0

F 
Bv
s

� �
sgn 
Bv

s ds ! 0

and
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hZ
, R
i t ¼
ð t

0

F 
X v,

s

� �
sgn 
X v,


s ds ! 0,

because the function ~FF(x) ¼ sgn x F(x), x 2 R, has a bounded primitive. Thus the desired

conclusion follows from Revuz and Yor (1999, Theorems 2.3 and 2.6, Chapter XIII).
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