
Asymptotics for L2 functionals of the

empirical quantile process, with

applications to tests of fit based on

weighted Wasserstein distances

EUSTAS IO DEL BARR IO1, EVARIST G IN É 2 and FREDERIC UTZET 3
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Weighted L2 functionals of the empirical quantile process appear as a component of many test

statistics, in particular in tests of fit to location–scale families of distributions based on weighted

Wasserstein distances. An essentially complete set of distributional limit theorems for the squared

empirical quantile process integrated with respect to general weights is presented. The results rely on

limit theorems for quadratic forms in exponential random variables, and the proofs use only simple

asymptotic theory for probability distributions in Rn. The limit theorems are then applied to determine

the asymptotic distribution of the test statistics on which weighted Wasserstein tests are based. In

particular, this paper contains an elementary derivation of the limit distribution of the Shapiro–Wilk

test statistic under normality.
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1. Introduction

Let X , X 1, . . . , X n, . . . be independent and identically distributed (i.i.d.) random variables

with cumulative distribution function F, density f and quantile function F�1(t) :¼
inffy : F(y) > tg, 0 , t , 1. For each n 2 N, let

Fn(t) ¼
1

n

Xn
i¼1

1(�1, t](X i), t 2 R,

F�1
n (t) ¼ inffy : F(y) > tg, t 2 (0, 1), (1:1)

denote respectively the empirical distribution and quantile functions. The empirical quantile

process (or quantile process for short), defined for each n 2 N as
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vn(t) ¼
ffiffiffi
n

p
F�1

n (t)� F�1(t)
� �

, t 2 (0, 1), (1:2)

is the basic component of many interesting statistics and a large body of literature is devoted

to it (see, for example, Shorack and Wellner 1986; Csörgő and Horváth 1993). A less general

statistic that is also the main component of many statistics is the second moment with respect

to Lebesgue measure, and in general with respect to any measure with density w(t) on (0, 1),

of the quantile process, kvnk22,w :¼
Ð 1
0
v2n(t)w(t)dt. This is the main component in statistics

used, for example, in tests of fit based on the correlation coefficient (see Lockhart and

Stephens 1998; and references therein), and in the related tests of fit based on Wasserstein

distances (del Barrio et al. 1999a). These classes of tests contain some very important

members, such as the Shapiro–Wilk test for normality.

One of the two goals of this paper is to give a complete description of convergence

distribution of kvnk22,w (and some variations). Although there are many important results in

the literature on this subject (for example, Csörgő and Horváth 1988, 1993; de Wet and

Venter 1972; Gregory 1977; Guttorp and Lockhart 1988; LaRiccia and Mason 1986; Mason

1984), these fall short of covering all the possibilities, and a comprehensive treatment is

lacking and could be useful. The general picture given here is suggested by a heuristic

description in Lockhart and Stephens (1998) together with an interesting example in del

Barrio et al. (1999a). The second object is to apply the results obtained to testing the fit of

empirical data to location–scale families of distributions by means of weighted Wasserstein

distances, as suggested by the work of del Barrio et al. (1999a; 2000), de Wet (2000; 2002)

and Csörgő (2002). Here we give an account of the content of this paper, together with a

succint digression on each of these two topics.

1.1. The L2 norm of the quantile process

It is well known that under certain standard conditions that allow to the general quantile

process to be compared with the uniform, the quantile process vn(t) converges in law to the

process B0(t) ¼ B(t)= f (F�1(t)) in ‘1[a, b] for any 0 , a , b , 1, where B(t) is a

Brownian bridge (Csörgő and Horváth 1993). The covariance of the limiting process is

�(s, t) ¼ s ^ t � st

f (F�1(t)) f (F�1(s))
: (1:3)

We will see that, assuming additional conditions needed to handle the integrals on shrinking

neighbourhoods of the end-points 0 and 1, we have the following four areas:

Case 1. If
Ð t
0
�(t, t)w(t)dt , 1 then vn(t) converges to B0(t) in law in L2(0, 1) and, in

particular, kvnk22,w ! dkB0k22,w; note that the limit has a generalized chi-square

distribution, namely, the distribution of
P

ºk Z
2
k , where the variables Zk are i.i.d.

normal and ºk are the eigenvalues of the covariance �.
Case 2. If

Ð 1
0

Ð 1
0
�2(s, t)w(s)w(t)ds dt , 1, but

Ð t
0
�(t, t)w(t)dt ¼ 1, then

kvnk22,w �
ð1�1=n

1=n

�(t, t)w(t)dt !
ð1
0

B2(t)� EB2(t)

f 2(F�1(t))
w(t)dt,
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where the last integral is defined in the natural limiting L2 sense, and equals, in

distribution, the probability law of
P

ºk(Z
2
k � 1):

Case 3. If
Ð 1
0

Ð 1
0
�2(s, t)w(s)w(t)ds dt ¼ 1 but we are in the borderline case where

f (F�1(t))=
ffiffiffiffiffiffiffiffiffi
w(t)

p
is regularly varying with unit exponent at 0 and at 1, or is

regularly varying at one of these two points and strictly of larger order at the

other, then we have a normal limit,

1

an

kvnk22,w � bn

� �
! d Z,

where Z is standard normal, a2n ¼
Ð 1�1=n
1=n

Ð 1�1=n
1=n �2(s, t)w(s)w(t)ds dt and bn

¼
R 1�1n

1=n �(t, t)w(t)dt.
Case 4. If f (F�1(t))=

ffiffiffiffiffiffiffiffiffi
w(t)

p
is regularly varying at 0 and at 1 with exponent larger than

one (or is regularly varying at one end and of strictly larger order of magnitude

at the other), then other limits may arise, which have to do with integrals of the

centred squared partial sum process of independent exponential random

variables. Here, in some subcases one must centre kvnk22,w and in all of them

one must divide by a sequence tending to infinity faster than in case 3.

These are all the possible limits for sufficiently regular densities. Case 1 was essentially

known although perhaps not in its present generality (it can be deduced, for example, from

Mason 1984); case 2 was known, at least implicitly, only for the normal distribution (de

Wet and Venter 1972), whereas case 3 was known explicitly for the exponential, logistic

and Gumbel distributions (McLaren and Lockhart 1987), and del Barrio et al. (2000)

contains an example of case 4 (this example motivated us to consider this case).

The value of cases 3 and 4 for testing fit is limited since the limiting distribution only

depends on the tails of the distribution (the middle part of the integral tends to zero when

normalized by denominators that tend to infinity), and we will only consider them in the

particular but important case w(t) � 1.

All this is proved in a unified way and under very weak hypotheses. At least two

methods of proof are available. A shorter, high-powered method would reduce the problem

to a Gaussian one by means of special constructions – such as those of Csörgő et al.

(1986) or Mason (1991) – and then work with the L2 norms of integrals of the square of

the Brownian bridge (for instance, by applying known results or using the method of

moments). However, the results can easily be obtained from scratch using only elementary

probability: one reduces the problem to the same problem for the uniform quantile process

(at least in the first three cases) and then observes that the second moment of the empirical

uniform quantile process is basically the square of the norm of a linear combination of

independent exponential random variables with values in L2, which can be treated using the

central limit theorem in Rd plus Hilbert space approximation, at least in cases 1 and 2; case

4 is easy (but involved) whereas case 3 requires a martingale central limit theorem. This

approach, which is the one we take, seems to have the advantage of requiring slightly less

integrability than the approach by means of Gaussian approximations (see, for example,

Csörgő 2002; Csörgő and Horváth 1988). Mason (1984) and Gregory (1977) pioneered

different versions of the approach taken here.
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In Section 2 we show how kvnk22,w (almost) equals in distribution the norm of an L2
linear combination of exponentials, in Section 3 we prove limit theorems for such linear

combinations, and in Section 4 we prove the main results on convergence in law for the

uniform and the general quantile process, as described, by just combining the results from

the previous two sections.

1.2. Tests of fit based on weighted Wasserstein distances

Wasserstein tests of fit, introduced in del Barrio et al. (1999a; 2000), provide a powerful

method for assessing fit of empirical data to a location–scale family of distributions. They

can be described as follows. Let H ¼ fG�,� : G�,� (x) ¼ G0((x� �)=� ); � 2 R, � . 0g be

a location–scale family and assume that the first two moments of G0 are 0 and 1,

respectively. Given two probability measures on the real line with finite second moments

and distribution functions F and G, respectively, W(F, G) ¼ (
Ð 1
0
(F�1(t)� G�1(t))2dt)1=2 is

the L2 Wasserstein distance between them (see, for example, Bickel and Freedman 1981).

Denote by �(F) and � 2(F) the mean and the variance, respectively, of F, that is,

�(F) ¼
Ð 1
0
F�1(t)dt and � 2(F) ¼

Ð 1
0
(F�1(t))2dt � (�(F))2. It can be shown (see del Barrio

et al. (1999a) that W2(F, H) :¼ inf H2H W2(F, H) ¼ � 2(F)� (
Ð 1
0
F�1G�1

0 )2 and, from this,

that

W2(F, H)

� 2(F)
¼ 1�

Ð 1
0
F�1(t)G�1

0 (t)dt
� �2

� 2(F)
, (1:4)

is a location- and scale-invariant measure of the discrepancy between F and H. Its empirical

version,

Rn :¼
W2(Fn, H)

� 2(Fn)
¼ 1�

Ð 1
0
F�1

n (t)G�1
0 (t)dt

� �2
� 2(Fn)

, (1:5),

is the Wasserstein test statistic for H0 : F 2 H, H0 being rejected for large observed values

of Rn.

The Wasserstein test of normality turns out to be equivalent to the well-known Shapiro–

Wilk test, sharing its good power properties. However, both are inefficient procedures for

testing fit to location–scale families that, like the exponential family, for instance, have

heavier tails (just as with tests of fit based on the correlation coefficient: see Lockhart and

Stephens 1998, Section 5). The null asymptotics of Rn provides a good insight into the

cause of this inefficiency. To study this asymptotic distribution under H0 we can assume

F ¼ G0 (by the location and scale invariance of Rn) and denote the empirical quantile

process as vn(t) ¼
ffiffiffi
n

p
(F�1

n (t)� F�1(t)), to obtain (see del Barrio et al. 1999a) that
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nRn ¼
1

� 2(Fn)

ð1
0

v2n(t)dt �
ð1
0

vn(t)dt

� �2

�
ð1
0

vn(t)F
�1(t)dt

� �2
" #

¼ 1

� 2(Fn)

ð1
0

(vn(t)� hvn, 1i1� hvn, F
�1iF�1(t))2dt

¼ 1

� 2(Fn)

ð1
0

v̂v2n(t)dt, (1:6)

where h f , gi ¼
Ð 1
0
f � g and v̂vn ¼ vn � hvn, 1i1� hvn, F

�1iF�1. It is shown in del Barrio et

al. (1999a) that under normality there exist constants an such that nRn � an converges in

law to a non-degenerate distribution. More precisely, if � (�) denote the standard normal

distribution (density) function and B is a Brownian bridge, then

nRn � an !
d

ð1
0

B2(t)� EB2(t)

�2(��1(t))
dt �

ð1
0

B(t)

�(��1(t))
dt

� �2

�
ð1
0

B(t)��1(t)

�(��1(t))
dt

� �2

: (1:7)

In the exponential case nRn is not shift tight, but it can be shown that, for some constants

an, (n=
ffiffiffiffiffiffiffiffiffiffi
log n

p
)Rn � an is asymptotically normal. However, if we fix � 2 (0, 1

2
) then

1ffiffiffiffiffiffiffiffiffiffi
log n

p
ð1��

�
(v̂vn(t))

2dt !
Pr

0,

hence the asymptotic distribution of Rn depends only on the tails of F: the Wasserstein

exponentiality test cannot detect alternatives that have approximately exponential tails.

As a possible remedy to this inefficiency, de Wet (2000; 2002) and Csörgő (2002)

proposed replacing the Wasserstein distance W by a weighted version Ww(F, G)

:¼ (
Ð 1
0
(F�1(t)� G�1(t))2w(t)dt)1=2, for some positive measurable function w, and the test

statistic Rn by

Rw
n ¼ W2

w(Fn, H)

� 2
w(Fn)

,

where, here and in what follows, we set

�w(F) ¼
ð1
0

F�1(t)w(t)dt, � 2
w(F) ¼

ð1
0

(F�1(t))2w(t)dt � �w(F)ð Þ2:

Rw
n is location- and scale-invariant, hence its null distribution can be studied assuming, as

above, that F ¼ G0. Under the assumptionsð1
0

w(t)dt ¼ 1, (1:8)

ð1
0

G�1
0 (t)w(t)dt ¼ 0 (1:9)

and
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ð1
0

(G�1
0 (t))2w(t)dt ¼ 1, (1:10)

we can mimic, step by step, the computations leading to (1.6) and obtain that

nRw
n ¼ 1

� 2
w(Fn)

ð1
0

v2n(t)w(t)dt �
ð1
0

vn(t)w(t)dt

� �2

�
ð1
0

vn(t)F
�1(t)w(t)dt

� �2
" #

¼ 1

� 2
w(Fn)

ð1
0

(vn(t)� hvn, 1iw1� hvn, F
�1iwF�1(t))2w(t)dt

¼ 1

� 2
w(Fn)

ð1
0

v̂v2n(t)w(t)dt, (1:11)

where now h f , giw ¼
Ð 1
0
( f � g)w and v̂vn ¼ vn � hvn, 1iw1� hvn, F

�1iwF�1. Thus, the

asymptotic distribution of nRw
n under the null hypothesis can be obtained through the

analysis of weighted L2 functionals of the quantile process vn. This is done in Section 5,

where some examples are also presented. When specialized to the normal case, one obtains

an elementary derivation of the asymptotic distribution of the Shapiro–Wilk test statistic

under the null hypothesis, in the spirit of del Barrio (2001), though of course the present

results apply to many more distributions.

2. Reduction of the L2-norm of the quantile process to the

norm of a linear combination of exonential variables with L2
non-random coefficients

Let Ui, i 2 N, be i.i.d. uniform (0,1) random variables; for each n, let Gn(t) be the

empirical cdf associated with U1, . . . , Un, let G
�1
n (t) be the quantile function and let un(t)

be the associated uniform quantile process, that is,

un(t) ¼
ffiffiffi
n

p
(G�1

n (t)� t), 0 , t , 1: (2:1)

If f�ng1n¼1 are i.i.d. random variables with common exponential distribution of mean 1 and

Sn ¼ �1 þ . . . þ �n, then the well-known distributional identity

(Un:1, . . . , Un:n) ¼d S1

Snþ1

, . . . ,
Sn

Snþ1

� �

allows us to rewrite G�1
n (t) as S j=Snþ1 if ( j� 1)=n , t < j=n and, consequently,

un(t) ¼d n

Snþ1

Xnþ1

j¼1

Zn, j(t), (2:2)
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where

Zn, j(t) ¼ n�1=2an, j(t)� j, an, j(t) ¼ (1� t)If j�1,ntg � t If j�1>ntg: (2:3)

So if

Ln :¼
ð1�1=n

1=n

un(t)

g(t)

� �2

dt (2:4)

for some weight function g non-vanishing on (0, 1), then, with k � k2 denoting the L2 norm

with respect to Lebesgue measure on the unit interval,

Ln ¼d n

Snþ1

� �2
�����
Xnþ1

i¼1

cn,i�i

�����
2

2

(2:49)

for certain functions cn,i(t) which we assume in L2(0, 1) (in the case of (2.49), but not always

below, cn,i ¼ n�1=2an,i(t)I [1=n,1�1=n](t)=g(t)). By the law of large numbers, weak convergence

of the statistic anLn � bn then reduces to weak convergence of

an

�����
Xnþ1

i¼1

cn,i�i

�����
2

2

� bn

Snþ1

n

� �2

,

and the second variable is almost a constant if bn does not grow too fast.

Since the an, j(t) have a relatively complicated expression, it is convenient to isolate here

as a lemma some estimates for an, j(t) to be used below. Let frac(.) denote the fractional

part of a number. It is also convenient to introduce the notation f � g for the function of

two variables f (x)g(y). We recall that the map ( f , g) 7! f � g is a continuous bilinear map

between L2(0, 1)3 L2(0, 1) and L2 (0, 1)3 (0, 1)ð Þ and that h f 1 � g1, f 2 � g2i ¼
h f 1, g1ih f 2, g2i.

Lemma 2.1. Set ~mmn ¼
Pnþ1

j¼1 an, j and ~KKn ¼
Pnþ1

j¼1 an, j � an, j. Then, for every 0 , s, t , 1,

(i) ~mmn(t) ¼ frac(n(1� t))� t; also, if 1=n < t < 1� 1=n then

j ~mmn(t)j < 1 <
n

n� 1
nt(1� t);

(ii) if s < t, then ~KKn(s, t) ¼ [n(1� t)]sþ frac(n(1� s))(1� t)þ st;

(iii) (1=n) ~KKn(s, t) ! s ^ t � st; further, if 1=n < s, t < 1� 1=n, then

1

2
(s ^ t � st) <

1

n
~KKn(s, t) <

1

n

Xnþ1

j¼1

jan, j(s)an, j(t)j < 3(s ^ t � st):

Proof (sketch). To prove (i), fix t and observe that each term in
Pnþ1

j¼1 an, j(t) equals either

1� t (the first n� [n(1� t)] terms) or �t (the remaining [n(1� t)]þ 1 terms). Hence

mn(t) ¼ (n� [n(1� t)])(1� t)� ([n(1� t)]þ 1)t ¼ frac(n(1� t))� t:
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The identity in (ii) can be proved in a similar way. Fix s < t. In the corresponding sum for
~KKn(s, t) there are three types of summands: the first n� [n(1� s)], each equal to

(1� s)(1� t); the next [n(1� s)]� [n(1� t)], each equal to �s(1� t); and the remaining

[n(1� t)]þ 1, each equal to st. This gives (ii) and the right-hand inequality in (iii). The left-

hand inequality in (iii) is a trivial consequence of (ii). h

Here is a simple but useful observation about linear combinations of exponential

variables with coefficients in L2:

Lemma 2.2. Let Y (t) ¼
Pn

k¼1ck(t)�k for some n 2 N and ck 2 L2(0, 1), and where the

variables �k are independantly exponentially distributed with parameter 1. Then there exists

an absolute constant C , 1 such that

EkYk42 < C EkYk22
� �2

: (2:5)

Proof. By convexity,

EkYk42 < 8E

�����
X
k

ck(t)(�k � 1)

�����
4

2

þ 8

�����
X
k

ck(t)

�����
4

2

,

where, letting ci, j :¼
Ð 1
0
ci(t)c j(t)dt, the last summand is just

�����
X
k

ck(t)

�����
4

2

¼
ð1
0

X
k

ck(t)

 !2

dt

0
@

1
A

2

¼
X
i, j

ci, j

 !2

:

To estimate the first summand, we use symmetrization, followed by randomization by an

independent Rademacher sequence f�ng (these variables are independent, independent of

f�ig, symmetric and take only the values 1 and �1), and Khinchine’s inequality (see, for

example, de la Peña and Giné 1999, p. 16), to obtain, letting E� denote integration only with

respect to the Rademacher variables,
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E

�����
X
k

ck(t)(�k � 1)

�����
4

2

< 24E

�����
X
k

ck(t)�k(�k � 1)

�����
4

2

< 9 � 24E E�

�����
X
k

ck(t)�k(�k � 1)

�����
2

2

0
@

1
A

2

¼ 9 � 24E
ð1
0

X
k

c2k(t)(�k � 1)2dt

 !2

¼ 9 � 24E
X
k

ck,k(�k � 1)2

 !2

¼ 9 � 24 9
X
k

c2k,k þ
X
i 6¼ j

ci,ic j, j

 !

< 64
X
k

ck,k

 !2

: (2:6)

Collecting the above estimates, we obtain inequality (2.5) with C ¼ 34 � 27. h

Next we consider the general quantile process. Let F be a twice differentiable

distribution function such that f :¼ F9 is non-vanishing on supp F :¼ fF 6¼ 0, 1gs :¼
(aF , bF) and

r :¼ sup
0, t,1

t(1� t)
		 f 9 F�1(t)ð Þ

		
f 2 F�1(t)ð Þ , 1, (2:7)

where F�1(t) is the corresponding quantile function. Condition (2.7), from Csörgő and

Révész (1978), is a natural condition to have if we wish to relate general and uniform

quantile processes: see their Lemma 1.1, Chapter 6, and comments after its proof. Since we

are considering only distributional results, there is no loss of generality in taking

X i ¼ F�1(Ui), where Ui are i.i.d. uniform on [0, 1]. In this case,

F�1
n (t) ¼ F�1 G�1

n (t)
� �

, (2:8)

where G�1
n is the quantile function corrresponding to the uniform variables U1, . . . , Un. We

continue denoting by vn the quantile processes associated with the sequence X i ¼ F�1(Ui),

vn(t) :¼
ffiffiffi
n

p
F�1

n (t)� F�1(t)
� �

¼
ffiffiffi
n

p
F�1(G�1

n (t))� F�1(t)
� �

, n 2 N: (2:9)

Our aim is to relate the (weighted) L2 norms of vn and un= f (F
�1). Let w be a non-negative

measurable function on (0, 1) and denote by k � k2,w,n and h�, �iw,n respectively the norm and

the inner product in the space L2((1=n, 1� 1=n), w(t)dt).
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Lemma 2.3 Let F be a distribution function which is twice differentiable on its open support

(aF , bF), with f (x) :¼ F9(x) . 0 for all aF , x , bF, and which satisfies condition (2.7).

Assume further that w is a non-negative measurable function such that

lim
n!1

1ffiffiffi
n

p
ð1�1=n

1=n

t1=2(1� t)1=2

f 2 F�1(t)ð Þ w(t)dt ¼ 0: (2:10)

Then, if un is the uniform quantile process and vn is the quantile process defined by (2.8) and

(2.9),

kvnk22,w,n �
����� un

f F�1ð Þ

�����
2

2,w,n

! 0 and

�����vn �
un

f F�1ð Þ

�����2,w,n ! 0 (2:11)

in probability.

Proof. vn and un are related by the limited Taylor expansion

vn(t) ¼
ffiffiffi
n

p
F�1 G�1

n (t)
� �

� F�1(t)
� �

¼
ffiffiffi
n

p
G�1

n (t)� t
� �
f F�1(t)ð Þ þ 1

2
ffiffiffi
n

p n G�1
n (t)� t

� �2 f 9 F�1(�)ð Þ
f 3 F�1(�)ð Þ

¼ un(t)

f F�1(t)ð Þ þ
1

2
ffiffiffi
n

p f 9 F�1(�)ð Þ
f 3 F�1(�)ð Þ u

2
n(t) (2:12)

for some � between t and G�1
n (t). The object is to estimate, using the Taylor development

(2.12), the terms in the difference

kvnk22,w,n �
����� un

f F�1ð Þ

�����
2

2,w,n

¼
�����vn �

un

f F�1ð Þ

�����
2

2,w,n

þ 2 vn �
un

f F�1ð Þ ,
un

f F�1ð Þ


 �
w,n: (2:13)

Since, by (2.12),

vn(t)�
un(t)

f F�1(t)ð Þ

� �2

(2:14)

¼ 1

4n
� u4n(t)

f 2 F�1(t)ð Þt2(1� t)2
� f 9 F�1(�)ð Þ�(1� �)

f 2 F�1(�)ð Þ � t(1� t)

�(1� �)
� f F�1(t)ð Þ
f F�1(�)ð Þ

� �2

and

vn(t)�
un(t)

f F�1(t)ð Þ

� �
un(t)

f F�1(t)ð Þ

¼ 1

2
ffiffiffi
n

p � u3n(t)

f 2 F�1(t)ð Þt(1� t)
� t(1� t)

�(1� �)
� f F�1(t)ð Þ
f F�1(�)ð Þ �

�(1� �) f 9 F�1(�)ð Þ
f 2 F�1(�)ð Þ , (2:15)
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the following bounds will be useful. First we observe that, as shown, for example, in Csörgő

and Horváth (1993, Lemma 6.1.1, p. 369), condition (2.7) implies that, for all t1, t2 2 (0, 1),

f F�1(t1)ð Þ
f F�1(t2)ð Þ <

t1 _ t2

t1 ^ t2
� 1� t1 ^ t2

1� t1 _ t2

� �r

,

so that, for � between t and G�1
n (t),

f F�1(t)ð Þ
f F�1(�)ð Þ <

t

G�1
n (t)

� 1� G�1
n (t)

1� t

 !r

_ G�1
n (t)

t
� 1� t

1� G�1
n (t)

 !r

:

Likewise,

t(1� t)

�(1� �)
<

t

G�1
n (t)

_ 1� t

1� G�1
n (t)

:

Moreover, using the representation of uniform quantiles as sums Sn of exponential random

variables (as above), we have

1� t

1� G�1
n (t)

¼d t

G�1
n (t)

�d

Snþ1

n
� nt

S[nt]
:

So, by the law of large numbers,

sup
n�1< t<1�n�1

t(1� t)

�(1� �)
¼ OP(1) (2:16)

and

sup
n�1< t<1�n�1

f F�1(t)ð Þ
f F�1(�)ð Þ ¼ OP(1): (2:17)

Finally, using first Lemma 2.2 and then parts (i) and (iii) of Lemma 2.1, we obtain that there

is a finite constant C independent of n such that

E
Snþ1

n
un(t)

� �4

¼ 1

n2
E
Xnþ1

j¼1

an, j(t)� j

 !4

< C
1

n2
E
Xnþ1

j¼1

an, j(t)� j

 !2
0
@

1
A

2

¼ C

n2

Xnþ1

j¼1

a2n, j(t)þ
Xnþ1

j¼1

an, j(t)

 !2
0
@

1
A

2

<
C

n2
~KKn(t, t)þ j ~mmn(t)j
� �2

< 25Ct2(1� t)2, (2:18)

and therefore also

E

				 Snþ1

n
un(t)

				
3

< ~CC[t(1� t)]3=2, (2:19)
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for some finite constant ~CC.
Combining the estimates (2.16)–(2.19) and the bound in (2.7) with the identities in (2.14)

and (2.15), we obtain�����vn �
un

f F�1ð Þ

�����
2

2,w,n

¼ OP(1)3
1

n

ð1�1=n

1=n

w(t)

f 2 F�1(t)ð Þ dt (2:20)

and

vn �
un

f F�1ð Þ ,
un

f F�1ð Þ


 �
w,n ¼ OP(1)3

1ffiffiffi
n

p
ð1�1=n

1=n

t1=2(1� t)1=2

f 2 F�1(t)ð Þ w(t)dt: (2:21)

Since, by dominated convergence, if the integral in (2.21) tends to zero (which it does by

hypothesis (2.10)), then so does the integral in (2.20), combining these estimates with the

identity (2.13), the lemma follows. h

The above lemma should be compared with Theorem 6.2.3 in Csörgő and Horváth (1993)

for p ¼ 2.

In fact, as mentioned in the Introduction, we are interested not in kvnk2,w,n but rather in

kvnk2,w, where k � k2,w denotes the L2 norm with respect to the measure w(t)dt over the

whole interval (0, 1). So, we must deal next with
Ð 1=n
0

v2n(t)w(t)dt and
Ð 1
1�1=n v

2
n(t)w(t)dt. To

do so we impose conditions which are related to but weaker than the usual von Mises

conditions on domains of attraction (see Parzen 1979; Schuster 1984).

Lemma 2.4. Let F be a distribution function which is twice differentiable on its open support

(aF , bF), with f (x) :¼ F9(x) . 0 for all aF , x , bF. Assume that F satisfies condition

(2.7), that

either aF . �1 or lim inf
x!0þ

j f 9(F�1(x))jx
f 2(F�1(x))

. 0, (2:22)

and that

either bF , 1 or lim inf
x!0þ

j f 9(F�1(1� x))jx
f 2(F�1(1� x))

. 0: (2:23)

Assume further that w is a bounded non-negative measurable function such that

lim
x!0þ

x
Ð x
0
w(t)dt

f 2 F�1(x)ð Þ ¼ 0, lim
x!0þ

x
Ð 1
1�x

w(t)dt

f 2 F�1(1� x)ð Þ ¼ 0: (2:24)

Then

kvnk22,w � kvnk22,w,n ! 0 (2:25)

in probability.

Proof. We will only consider the upper end of the difference in (2.25) since the lower end
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can be dealt with in the same way. Set U(n) :¼ maxi<n Ui, where the Ui are, as before, i.i.d.

random variables uniform on (0, 1). We haveð1
1�1=n

v2n(t)w(t)dt ¼ n

ð1
1�1=n

F�1(U(n))� F�1(t)
� �2

w(t)dt

< 2n

ð1
1�1=n

F�1(U(n))� F�1(1� 1=n)
� �2

w(t)dt

þ 2n

ð1
1�1=n

F�1(1� 1=n)� F�1(t)
� �2

w(t)dt: (2:26)

For some � between U(n) and 1� 1=n we have, by the mean value theorem,

n F�1(U(n))� F�1(t)
� �2¼ 1

nf 2 F�1(1� 1=n)ð Þ n
2(U(n) � 1þ 1=n)2

f F�1(1� 1=n)ð Þ
f F�1(�)ð Þ

� �2

:

By the well-known limit theorem for U(n) (see Leadbetter et al. 1983, p. 23),

n2(U(n) � 1þ 1=n)2 ¼ OP(1), and, by condition (2.7), as in the proof of Lemma 2.3,

f F�1(1� 1=n)ð Þ
f F�1(�)ð Þ <

1� 1=n

U(n)

� n(1� U(n))

� �r

_ U(n)

1� 1=n
� 1

n(1� U(n))

� �r

,

which is OP(1) because U(n) ! 1 in probablity and the limit in distribution of n(U(n) � 1) is

a non-vanishing random variable on (�1, 0]. This and condition (2.24) imply that

lim
n!1

2n

ð1
1�1=n

F�1(U(n))� F�1(1� 1=n)
� �2

w(t)dt ¼ 0

in probability. Regarding the second summand on the right-hand side of (2.26), it is obvious

that its limit is zero if bF , 1, since then F�1 is continuous at t ¼ 1 (recall w is bounded).

If bF ¼ 1 and (2.23) holds, we have, applying L’Hôpital’s rule twice and momentarily

assuming that w is continuous near 0 and 1 for the second application of the rule,

lim
x!0þ

1

x

ð1
1�x

(F�1(1� x)� F�1(t))2w(t)dt ¼ lim
x!0þ

�
2
Ð 1
1�x

F�1(1� x)� F�1(t)ð Þw(t)dt
f F�1(1� x)ð Þ

¼ lim
x!0þ

�
2
Ð 1
1�x

w(t)dt

f 9 F�1(1� x)ð Þ

¼
�2x

Ð 1
1�x

w(t)dt

f 2 F�1(1� x)ð Þ
xf 9 F�1(1� x)ð Þ
f 2 F�1(1� x)ð Þ

� ��1

! 0

by (2.23) and (2.24). If w is not continuous near 0 and 1, then this limit still holds by the

argument at the end of the proof of Proposition 4.3 in del Barrio et al. (1999b). Combining

these limits with inequality (2.26) proves the lemma. h

As a consequence of these two lemmas we have:
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Proposition 2.5. Let F be a distribution function which is twice differentiable on its open

support (aF , bF), with f (x) :¼ F9(x) . 0 for all aF , x , bF. Assume that F satisfies

conditions (2.7), (2.22) and (2.23). Let w be a bounded non-negative measurable function for

which the limits (2.24) hold. Assume further that (2.10) holds. Then

kvnk22,w �
����� un

f F�1ð Þ

�����
2

2,w,n

! 0 (2:27)

in probability. If, moreover, h 2 L2(w(t)dt) and the sequence hun= f F�1ð Þ, hiw,n
� 


is

stochastically bounded, then

hvn, hi2w � un

f F�1ð Þ , h

 �2

w,n

! 0 (2:28)

in probability.

Proof. The conclusion (2.27) is a direct consequence of Lemmas 2.3 and 2.4. The limit

(2.28) follows from the same two lemmas, stochastic boundedness of hun= f F�1ð Þ, hiw,n
� 


,

Hölder’s inequality and the identities

vn, hh i2w,n � h un

f F�1ð Þ , hi
2
w,n

¼ vn �
un

f F�1ð Þ , h

 �

w,n vn �
un

f F�1ð Þ , h

 �

w,n þ 2
un

f F�1ð Þ , h

 �

w,n

� �

and

hvn, hi2w � hvn, hi2w,n ¼
ð
(0,1=n][[1�1=n,1)

vnhw

 ! ð
(0,1=n][[1�1=n,1)

vn hwþ 2hvn, hiw,n

 !
:

(Note that, by the first identity, fhvn, hiw,ng is stochastically bounded.) h

Obviously, combining this proposition with (2.3) and (2.49) for g ¼ f (F�1), reduces

convergence in distribution of kvnk22,w and of kv̂vnk22,w to convergence in distribution of Ln,

which is a function of exponential random variables that will be relatively easy to handle.

The conditions under which this has been established here are weaker than those usually

found in the literature.

3. Convergence in law of L2 linear combinations of exponential
random variables and shift convergence of their norms

We should point out that the results that follow do not require the variables �i to be

exponential, but only to be integrable enough; however, we stay with exponential variables,

which is what we need. In this section, the functions cn,i in the expression (2.49) for Ln are
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allowed to be arbitrary functions in L2(0, 1). Given a triangular array cn,i, i < n, n 2 N, of

functions in L2(0, 1), we set

Yn(t) :¼
Xn
i¼1

cn,i�i, Zn(t) ¼
n� 1

Sn

� �
Yn(t), t 2 [0, 1]: (3:1)

Define cn,i, j ¼ ci, j as

cn,i, j ¼ ci, j ¼
ð1
0

cn,i(t)cn, j(t)dt :¼ hcn,i, cn, ji, i, j ¼ 1, . . . , n, n 2 N: (3:2)

It will also be convenient to introduce the functions

Kn(s, t) ¼
Xn
i¼1

cn,i(s)cn,i(t), mn(t) ¼
Xn
i¼1

cn,i(t), t 2 [0, 1], n 2 N, (3:3)

which are the covariance and the mean functions, respectively, of the random processes Yn(t).

With tensor notation Kn ¼
P

icn,i � cn,i, obviously

kKnk22 ¼
X
i, j

hcn,i, cn, ji2 ¼
X
i, j

c2n,i, j, kmnk22 ¼
X
i, j

hcn,i, cn, ji ¼
X
i, j

cn,i, j: (3:4)

Before turning to convergence, we examine some interesting integrability issues. The first

result of this subsection is based on the Paley–Zygmund argument – see, for example, de

la Peña and Giné (1999, pp. 119–124), in particular their Corollary 3.3.4 – which we

restate for ease of reference:

Lemma 3.1. Let V be a random variable such that

EV 4 < C(EV 2)2:

Then, for all t . 0,

IEV 2>2 t2 < 4C Pr fjV j . tg,

that is,

EV 2 , 2a2 whenever Pr fjV j . ag ,
1

4C
:

Proof. This follows immediately upon observing that

EV 2 < t2 þ E(V 2 I jV j. t) < t2 þ (EV 4)1=2(Pr fjV j . tg)1=2:

h

Proposition 3.2. The sequence fkYnk2g, with Yn as defined in (3.1), is stochastically

bounded if and only if both conditions
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sup
n

Xn
k¼1

kcn,kk22 , 1 (3:5)

and

sup
n

kmnk22 ¼ sup
n

X
1<i, j<n

hcn,i, cn, ji , 1 (3:6)

are satisfied, and the same is true for the sequence fkZnk2g. Moreover, limnkYnk2 ¼ 0 in

probability if and only if

lim
n

Xn
k¼1

kcn,kk22 ¼ lim
n

X
1<i, j<n

hcn,i, cn, ji ¼ 0, (3:7)

and the same is true for the sequence fkZnk2g.

Proof. We will use the abbreviated notation ci, j for cn,i, j. Since

EkYnk22 ¼
ð1
0

E
X
k

cn,k(t)�k

 !2

dt

¼
ð1
0

X
k

c2n,k(t)þ
X
i, j

cn,i(t)cn, j(t)

 !
dt

¼
X
k

ck,k þ
X
i, j

ci, j, (3:8)

it follows that conditions (3.5) and (3.6) are sufficient for tightness of the sequence fkYnk2g
and that (3.7) is sufficient for its convergence to zero in probability. Sufficiency for tightness

and convergence of fkZnk2g follows from this and the law of large numbers. Necessity in

both cases follows immediately from Lemmas 3.1 and 2.2. h

One can say a little more about the way Yn converges:

Proposition 3.3. If the sequence fkYnk2g is stochastically bounded, then

sup
n

EkYnkm
2 , 1

for all m , 1.

The proof is based on Hoffmann-Jørgensen’s inequality and the following lemma:

Lemma 3.4. Let � 2 (0, 1) and let x1, . . . , xn be real numbers such that xj 2 [0, 1),

j ¼ 1, . . . , n, and 1�
Qn

j¼1(1� xj) < �. Then
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1�
Yn
j¼1

(1� x2j) <
2�

1� �
1�

Yn
j¼1

(1� xj)

 !
: (3:9)

Proof. Set F(x1, . . . , xn) ¼ 1�
Qn

j¼1(1� x2j), G(x1, . . . , xn) ¼ 1�
Qn

j¼1(1� xj) and A ¼
f(x1, . . . , xn) 2 Rn : xi 2 [0, 1), i ¼ 1, . . . , n, 1�

Qn
j¼1(1� xj) < �g. Note that (x1, . . . , xn)

2 A implies xi < �, i ¼ 1, . . . , n. Since

@F

@xi
¼ 2xi

1� x2i
(1� F) and

@G

@xi
¼ 1

1� xi
(1� G),

it follows that

@F=@xi
@G=@xi

¼ 2xi

1þ xi

Yn
i¼1

(1þ xi): (3:10)

It is easy to see, using Lagrange multipliers for example, that

sup
(x1,...,xn)2A

Yn
i¼1

(1þ xi) ¼ (2� (1� �)1=n)n <
1

1� �
:

This, combined with (3.10) shows that

@F=@xi
@G=@xi

<
2�

1� �
for every (x1, . . . , xn) 2 A:

Therefore

F(x1, . . . , xn) ¼
ð1
0

Xn
i¼1

xi
@F

@xi

				
t(x1,...,xn)

dt <
2�

1� �

ð1
0

Xn
i¼1

xi
@G

@xi

				
t(x1,...,xn)

dt

¼ 2�

1� �
G(x1, . . . , xn):

h

Proof of Proposition 3.3. Let us assume fkYnk2g is stochastically bounded, and let m > 1.

By convexity, as in the proof of Proposition 3.2,

EkYnk2m2 < 22m�1E

�����
X
k

cn,k(t)(�k � 1)

�����
2m

2

þ 22m�1

�����
X
k

cn,k(t)

�����
2m

2

,

where the power of the norm in the last summand is just�����
X
k

cn,k(t)

�����
2m

2

¼
ð1
0

X
k

cn,k(t)

 !2

dt

0
@

1
A

m

¼
X
i, j

ci, j

 !m

,

which is uniformly bounded by Proposition 3.2. To bound the first summand we can proceed

as in (2.6) and obtain

Asymptotics for L2 functionals of the empirical quantile process 147



E

�����
X
k

cn,k(t)(�k � 1)

�����
2m

2

< (2m� 1)m � 22mE
X
k

ck,k(�k � 1)2

 !m

:

By Hoffmann-Jørgensen’s inequality for sums of non-negative independent random variables

(see, for example Theorem 1.2.5 and the comment below it in de la Peña and Giné 1999, p.

12), there is a universal constant K , 1 such that

E
X
k

ck,k(�k � 1)2

 !m

< K E
X
k

ck,k(�k � 1)2

 ! !m

þ E max
k

ck,k(�k � 1)2
� �m

" #
:

The first summand on the right-hand side of this inequality does not exceed (
P

ck,k)
m, which

is uniformly bounded by Proposition 3.2. So the proposition will be proved if we show

sup
n

E max
k

ck,k(�k � 1)2
� �m

, 1: (3:11)

Since Emaxk ck,k(�k � 1)2 <
P

k ck,k , it follows from Proposition 3.2 that this sequence of

maxima is tight. Thus, for every � . 0 there exists M(�) , 1 such that

sup
n

Pr max
k<n

cn,k,k(�k � 1)2 . M

� �
, �

for all M > M(�), and we can assume that M(�) . 2 for all � . 0. Also, since

supn

P
k cn,k,k , 1, we can assume without loss of generality that cn,k,k ¼ ck,k < 1 for all

k and n. Then, since

Pr fj�� 1j . tg ¼ e1� t for t > 1,

these probabilities are

Pr max
k<n

cn,k,k(�k � 1)2 . M

� �
¼ 1�

Yn
k¼1

1� e1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=cn, k, k

p� �
:¼ hn(M):

So, we have

sup
n

1�
Yn
k¼1

(1� e1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=cn, k, k )

p" #
:¼ sup

n

hn(M) , �

for all M > M(�), and we can apply Lemma 2.4 to hn(M). If we take � ¼ 1=(3 � 4m), then

this lemma gives hn(4R) , (3=4mþ1)h(R) for all R > M(1=(3 � 4m)). This inequality, together

with the fact that hn(M) is decreasing, shows that, for all n 2 N,
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E max
k<n

cn,k,k(�k � 1)2
� �m

¼ m

ð1
0

t m�1hn(t)dt

< Mm þ
X1
k¼0

m

ð4 kþ1M

4 k M

t m�1hn(t)dt

< Mm þ Mm
X1
k¼0

4(kþ1)mhn(4
kM)

< Mm 1þ 4mhn(M)
X1
k¼0

3

4

� �k
" #

, 3Mm,

proving (3.11) and the proposition. h

With these preliminaries on integrability out of the way, we now consider convergence in

law of the sequence fkYnk2g. We consider several cases, corresponding to the different

cases for convergence of the square integral of the quantile process described in the

Introduction.

3.1. Convergence of the processes Yn

Here we obtain necessary and sufficient conditions for weak convergence of Yn as L2-

valued random vectors; then convergence of kYnk22 will be an immediate consequence of

the continuous mapping theorem for weak convergence. Note that

Pr(kcn,i�ik2 . E) ¼ exp �E=kcn,ik2ð Þ

and therefore, the triangular array fcn,i� : i ¼ 1, . . . , n; n 2 Ng is infinitesimal if and only if

max
i
kcn,ik2 ! 0 (3:12)

as n ! 1. The next theorem gives necesary and sufficient conditions for the convergence in

law in L2(0, 1) of fYng under (3.12). Under infinitesimality, the only possible limits of fYng
are Gaussian, with a trace-class covariance operator. Kn and mn are defined as in (3.3).

Theorem 3.5. Assuming condition (3.12) holds, the sequence fYng converges in law in

L2(0, 1) if and only if the following conditions hold:

(i) There exists a symmetric, positive semi-definite, trace-class kernel K(s, t) 2
L2 (0, 1)3 (0, 1)ð Þ such that

Kn �!
L2

K: (3:13)

(ii) If ºi > 0 are the eigenvalues of K then
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Xn
i¼1

kcn,ik22 !
X1
i¼1

ºi: (3:14)

(iii) There exists m 2 L2(0, 1) such that

mn �!
L2

m: (3:15)

If (i), (ii) and (iii) hold, then Yn converges in law in L2(0, 1) to an L2(0, 1)-valued Gaussian

random variable Y with mean function m and covariance operator �K given by

�K ( f , g) ¼
ð1
0

ð1
0

K(s, t) f (s)g(t)ds dt

for f , g 2 L2(0, 1).

Proof. Necessity. Let us assume first that the L2-valued random vectors Yn converge in law.

Then fkYnk2g also converges in law and, moreover, by Proposition 3.3, its moments converge

as well (to the moments of the limit). This implies, in particular, that the sequence

EkYnk22 ¼
Xn
i¼1

kcn,ik22 þ
�����
Xn
i¼1

cn,i

�����
2

2

, n 2 N, (3:16)

converges. Note also that convergence in law of Yn to Y plus uniform integrability of

fkYnk2g, which is a consequence of moment convergence, ensure that EYn ! L2EY and,

therefore, that

Xn
i¼1

cn,i �!
L2

m :¼ EY : (3:17)

Now, (3.16) and (3.17) imply (3.15) and also that the left-hand side of (3.14) converges to a

finite limit. We have also proved that fYn � EYng converges in law:

Yn � EYn ¼
Xn
i¼1

cn,i(�i � 1)!
d
Y � EY : (3:18)

Also, (3.18) and uniform integrability imply

Xn
i¼1

kcn,ik22 ¼ EkYn � EYnk22 ! EkY � EYk22: (3:19)

Another consequence of (3.18) is that

(Yn � EYn)� (Yn � EYn) !
d

(Y � EY )� (Y � EY ) (3:20)

in L2 (0, 1)3 (0, 1)ð Þ ((3.20) follows from (3.18) and continuity of the map ( f , g) 7! f � g).

Now, since k f � gk2 ¼ k f k2kgk2, convergence of moments of kYnk2 also ensures uniform

integrability of (Yn � EYn)� (Yn � EYn) and, just as above, we obtain that

Kn ¼ E (Yn � EYn)� (Yn � EYn)ð Þ �!
L2

K :¼ E (Y � EY )� (Y � EY )ð Þ:
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Now let ºi, �i be, respectively, the eigenvalues and the corresponding eigenfunctions

associated with the kernel K. Then

ºi ¼
ð1
0

ð1
0

K(s, t)�i(s)�i(t)ds dt ¼ EhY � EY , �ii2:

Therefore,

EkY � EYk22 ¼ E
X1
i¼1

hY � EY , �ii2
 !

¼
X1
i¼1

ºi,

which, combined with (3.19), yields (3.13) and (3.14).

Sufficiency. Assume now that (3.12)–(3.15) hold. Let us denote �i,E ¼ �i Ifkcn,i�ik2<Eg and

� E
i ¼ �i Ifkcn,i�ik2.Eg for E . 0 and i 2 N. Since E�i If� i. tg ¼ (t þ 1)e� t < 1=t2 for large

enough t, condition (3.14) implies that, for large enough n,�����E
Xn
i¼1

cn,i�
E
i

�����2 ¼
�����
Xn
i¼1

cn,iE�
E
i

�����2

<
Xn
i¼1

kcn,ik2E� E
i <

1

E2
Xn
i¼1

kcn,ik22

 !
max

i
kcn,ik2 ! 0:

Hence, by the central limit theorem on Hilbert spaces (see Araujo and Giné 1980, Corollary

3.7.8), if fYng is shift convergent in law, we can take the shifts to be the expected values EYn

and therefore, by the same central limit theorem, the proof reduces to showing that:

(a)
Pn

j¼1Pr(kcn, j� jk2 . E) ! 0 as n ! 1, for every E . 0;

(b) for every E . 0 and every f 2 L2(0, 1),Xn
j¼1

var(hcn, j� j,E, f i) ! �K ( f , f );

(c) there exists a complete orthonormal system of functions f�igi>1 in L2(0, 1) such that

lim
k!1

lim sup
n!1

Xn
j¼1

Ekcn, j� j,E � Ecn, j� j,Ek2 �
Xk
i¼1

Ehcn, j� j,E � Ecn, j� j,E, �ii2
 !

¼ 0:

To check (a), we see that, as a consequence of (3.12) and (3.13),

Xn
j¼1

Pr(kcn, j� jk . E) <
1

E2
Xn
j¼1

Ekcn, j� E
jk

2
2 ¼

1

E2
Xn
j¼1

kcn, jk22E(� E
j)
2

<
1

E2
Xn
j¼1

kcn, jk22

 !
E�21 If�1.E=maxikcn,ik2g ! 0

as n ! 1. This calculation shows also that, for every f 2 L2(0, 1),
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Xn
j¼1

var(hcn, j� E
j, f i) <

Xn
j¼1

Ehcn, j� E
j, f i2

< k f k22
Xn
j¼1

Ekcn, j� E
jk

2
2 ! 0,

which implies that (b) is equivalent to

Xn
j¼1

var(hcn, j� j, f i) ! �K ( f , f ): (3:21)

In order to prove (3.21), we recall that cov(
Pn

j¼1cn, j(s)� j,
Pn

j¼1cn, j(t)� j) ¼ Kn(s, t), which,

combined with (3.13), implies that

Xn
j¼1

var(hcn, j� j, f i) ¼ var

ð1
0

Xn
j¼1

cn, j(t)� j

 !
f (t)dt

 !

¼
ð1
0

ð1
0

cov
Xn
j¼1

cn, j(s)� j,
Xn
j¼1

cn, j(t)� j

 !
f (s) f (t)ds dt

¼
ð1
0

ð1
0

Kn(s, t) f (s) f (t)ds dt !
ð1
0

ð1
0

K(s, t) f (s) f (t)ds dt

¼ �K ( f , f ),

proving (3.21). Finally, to show that (c) holds, let f�ig be a complete orthonormal system of

eigenfunctions of the covariance operator �K and let fºig be the associated eigenvalues.

Then, using (3.14) and the fact that, as shown above,
Pn

j¼1Ekcn, j� E
jk

2
2 ! 0, we have

lim
n!1

Xn
j¼1

Ekcn, j� j,E � Ecn, j� j,Ek2 ¼ lim
n!1

Xn
j¼1

Ekcn, j� j � Ecn, j� jk2

¼ lim
n!1

Xn
j¼1

kcn, jk2 ¼
X1
i¼1

ºi

and, by (3.21),

lim
n!1

Xn
j¼1

Xk
i¼1

Ehcn, j� j,E � Ecn, j� j,E, �ii2 ¼
Xk
i¼1

�K(�i, �i) ¼
Xk
i¼1

ºi,

which completes the proof. h

The above proof shows that the sufficiency part of Theorem 3.5 also holds if we only

assume that the random variables �i are i.i.d. and square integrable (with trivial adjustments

to account for mean and variance possibly different from 1).
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As an inmediate consequence of Theorem 3.5, we obtain sufficient conditions for

convergence in law of the L2 norms of linear combinations of independent exponential

random variables:

Corollary 3.6. Suppose that (3.12)–(3.15) hold. Let S be a metric space and let H :

L2(0, 1) 7! S be a continuous function. Then

H(Yn)!
d
H(Y ),

where Y is an L2(0, 1)-valued Gaussian random variable with mean function m and

covariance operator �K given by

�K ( f , g) ¼
ð1
0

ð1
0

K(s, t) f (s)g(t)ds dt

for f , g 2 L2(0, 1).

Below, we will apply this corollary to H( f ) ¼ k f k22 �
P2

k¼1h f , hki2 with hk 2 L2.

Remark 3.1. The limiting random process Y in Theorem 3.5 and Corollary 3.6 is centred if and

only if kmnk22 ¼
P

i, jcn,i, j ! 0: The type of argument employed in the proof of Theorem 3.5

shows that, under the infinitesimality condition (3.12), conditions (3.13) and (3.14) are

necessary and sufficient for convergence in law of the processes Yn � EYn and that the limiting

random process has then a centred Gaussian distribution with covariance operator �K.

3.2. Shift convergence of kYnk22: I

It can be proved that shift tightness of fkYnk22g implies tightness of the sequence centred at

expectations, and even tightness of the sequence fkZnk22 � EkYnk22g, but this is marginal to

our analysis here and will therefore be omitted (it would only add a comment on the

sharpness of the results that follow). In Section 3.1, we examined the case when the kernels

Kn associated with Yn converge in L2 to a trace-class kernel. In that case, Yn �
EYn !dY � m ¼

P
i

ffiffiffiffi
ºi

p
�i Zi and kY � mk22 ¼

P
iºi Z

2
i , where fZig is an ortho-Gaussian

sequence (a sequence of i.i.d. standard normal random variables). Of course, convergence of

this series requires
P

iºi , 1. However, if we allow centring, then

kYn � EYnk22 � EkYn � EYnk22 !
d

X
i

ºi(Z
2
i � 1)

and, clearly, in order to make sense of this limit it suffices (and is also necessary) thatP
iº

2
i , 1, a weaker condition. We deal here with this situation, that is, we relax the

assumptions on K in Theorem 3.5 by only assuming that K 2 L2 (0, 1)3 (0, 1)ð Þ. In this

case, the operator induced by K on L2(0, 1) is Hilbert–Schmidt, that is, its eigenvalues fºkg
satisfy

P
kº

2
k , 1 (Dunford and Schwartz 1963, XI.6 and XI.8.44). Then, with considerable

abuse of notation, we define
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kY � EYk22 � EkY � EYk22 :¼
X
k

ºk(Z
2
k � 1), (3:22)

where the variables Zk are independent standard normal (Y may not exist but the series does

converge almost surely). (Omission of the dependence of Y on K will not result in

confusion.)

We start with a useful lemma on the asymptotic normality of sums of independent

exponential random variables.

Lemma 3.7. If fan,i : i ¼ 1, . . . , n; n 2 Ng is a triangular array of real numbers thenPn
i¼1an,i(�i � 1) !d� Z, where Z is a standard normal random variable, if and only if

max
i
jan,ij ! 0 and

Xn
i¼1

a2n,i ! � 2: (3:23)

Morevover, if maxijan,ij ! 0 then the only possible limit laws of
Pn

i¼1an,i(�i � 1) are normal,

and convergence in law is equivalent to convergence of
Pn

i¼1a
2
n,i.

Proof (sketch). Arguing as in Proposition 3.2, we see that convergence in law implies

convergence of the second moments, showing that the second part of (3.23) is necessary. If

the first condition is not satisfied, then (after reordering the indices if necessary) we can find

a subsequence n9 such that an9,1 ! a . 0. In that subsequence the possible limits in

distribution would be laws of type � � �, � being the law of a(�1 � 1). But the Gaussian

family is factor closed, which implies that the first part of (3.23) is also necessary.

Conversely, if (3.23) holds then convergence follows in a straightforward way from the

classical central limit theorem for triangular arrays. h

The main argument of this section is contained in the proof of the following proposition.

Proposition 3.8. If maxikcn,ik2 ! 0 and Kn ! L2 K, so that K is necessarily in

L2((0, 1)3 (0, 1)), then

kYn � EYnk22 � EkYn � EYnk22 !
d
kY � EYk22 � EkY � EYk22,

where kY � EYk22 � EkY � EYk22 is as defined in (3.22).

Proof. Let f�kg be a complete orthonormal system of eigenfunctions of K, of eigenvalue ºk

for each k. Then

kYn � EYnk22 � EkYn � EYnk22 ¼
X1
k¼1

hYn � EYn, �ki2 � EhYn � EYn, �ki2
� �

,

where hYn � EYn, �ki ¼
Pn

i¼1hcn,i, �ki(�i � 1). By Lemma 3.7, if (3.23) holds for

an,i ¼ hcn,i, �ki then the only possible limit laws of hYn � EYn, �ki are normal, and there

is convergence if and only if f
Pn

i¼1hcn,i, �ki2g converges. Since Kn ! L2K, we have in

particular,
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E hYn � EYn, �kihYn � EYn, � lið Þ ¼
ð1
0

ð1
0

Kn(s, t)�k(s)� l(t)ds dt

!
ð1
0

ð1
0

K(s, t)�k(s)� l(t)ds dt

¼
ºk if k ¼ l

0 if k 6¼ l,

(

and therefore (hYn � EYn, �ki)Mk¼1 !d(ºk Z k)
M
k¼1. Then, by the continuous mapping theorem

for weak convergence,

XM
k¼1

hYn � EYn, �ki2 � EhYn � EYn, �ki2
� �

!
d
ªM :¼

XM
k¼1

ºk(Z
2
j � 1): (3:24)

Since
P1

k¼1º
2
k ¼ kKk22 , 1, ªM converges almost surely and in L2 and, with some abuse of

notation, as explained above, we denote this limit as kY � EYk22 � EkY � EYk22, that is, we
have,

ªM �!
L2

kY � EYk22 � EkY � EYk22: (3:25)

Set cMn,i ¼ cn,i �
PM

k¼1hcn,i, �ki�k , Y M
n ¼

Pn
i¼1c

M
n,i�i and KM

n ¼
Pn

i¼1c
M
n,i � cMn,i. Observe

that

X1
k¼Mþ1

hYn � EYn, �ki2 � EhYn � EYn, �ki2
� �

¼ kY M
n � EY M

n k
2
2 � EkY M

n � EY M
n k

2
2: (3:26)

We claim that, under (3.13),

lim
M!1

lim sup
n!1

var(kY M
n � EY M

n k
2
2) ¼ 0: (3:27)

We recall that K ¼
P1

k¼1ºk�k � �k and define KM ¼
P1

k¼Mþ1ºk�k � �k . We can easily

see that kKMk22 ¼
P1

k¼Mþ1º
2
k . Now, since

f�k � �kgk [ f 1ffiffi
2

p (�k � � l þ �k � � l)gk 6¼ l

is an orthonormal basis for L2((0, 1)3 (0, 1)), we have that

kKM
n � KMk22 ¼

X
k

hKM
n � KM , �k � �ki2 þ 2

X
k 6¼ l

hKM
n � KM , �k � � li2 (3:28)

(here we have used the fact that h f � f , g � hi ¼ h f � f , h� gi). Observe that

hKM , �k � � li ¼ hK, �k � �ki if k ¼ l . M and hKM , �k � � li ¼ 0 otherwise, and also

that hKM
n , �k � � li ¼ hKn, �k � � li if k, l . M and hKM

n , �k � � li ¼ 0 otherwise.

Combining this with (3.28), we obtain that
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kKM
n � KMk22 ¼

X
k.M

hKn � K, �k � �ki2 þ 2
X

k 6¼ l;k, l.M

hKn � K, �k � � li2

<
X
k

hKn � K, �k � �ki2 þ 2
X
k 6¼ l

hKn � K, �k � � li2

¼ kKn � Kk22:

The last inequality implies that KM
n ! L2K

M and also that kKM
n k2 ! kKMk2. Now this

convergence, combined with the fact that var(kY M
n � EY M

n k
2
2) < 8kKM

n k
2
2, proves claim

(3.27). The proposition now follows from (3.24), (3.25), (3.26) and (3.27) through a standard

3E argument. h

We should remark that this proposition also holds if we replace the sequence of

exponential random variables by an i.i.d. sequence of square-integrable random variables,

with only formal changes in the proof.

Both Theorem 3.5 and Proposition 3.8 are exercises on the central limit theorem in

Hilbert space; however, Proposition 3.8 can be seen as a limit theorem for quadratic forms,

and this subject has a long history, reviewed, for example, in Guttorp and Lockhart (1988).

Theorem 1 in de Wet and Venter (1973) and Theorem 5 in Guttorp and Lockhart (1988)

could seemingly apply to give Proposition 3.8; however, the conditions in either theorem are

quite difficult to verify and we have been unable to check them in the case of interest to us,

whereas the conditions in Proposition 3.8 are very easy to decide in general.

Our next result gives sufficient conditions for convergence in law of fkYnk22 � EkYnk22g.
Actually, in order to have a result directly applicable to Wasserstein distances, we must

sacrifice simplicity and consider a slightly more complicated functional. A warning on

notation: we write hY � EY , hi ¼
P ffiffiffiffiffi

ºk

p
h�k , hiZk for �k orthonormal, h 2 L2(0, 1) andP

º2 , 1 even though Y � EY may not make sense.

Theorem 3.9. Let h‘, ‘ ¼ 1, . . . , r, be functions in L2(0, 1). If maxikcn,ik2 ! 0, Kn ! L2 K

and mn ! L2m, then

kYnk22 � EkYnk22 �
Xr
‘¼1

hYn � EYn, h‘i2

!
d
kY � EYk22 � EkY � EYk22 þ 2hY � EY , mi �

Xr
‘¼1

hY � EY , h‘i2

:¼
X1
k¼1

ºk(Z
2
k � 1)þ 2

X1
k¼1

ffiffiffiffiffi
ºk

p
hm, �kiZk �

Xr
‘¼1

X1
k¼1

ffiffiffiffiffi
ºk

p
hh‘, �kiZk

 !2

where kY � Ek22 � EkY � EYk22 is defined as in (3.22) and fZkg is an ortho-Gaussian

sequence.
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Proof. We require the proof of Proposition 3.8 rather than its statement. First, we note that

kYnk22 � EkYnk22 ¼ (kYn � EYnk22 � EkYn � EYnk22)þ 2hYn � EYn, EYni: (3:29)

As in the previous proof,

EhYn � EYn, EYnihYn � EYn, �ki ¼ hKn, mn � �ki

! hK, m� �ki ¼ ºkhm, �ki

and also, similarly,

EhYn � EYn, EYnihYn � EYn, h‘i ¼ hKn, mn � h‘i ! hK, m� h‘i,
EhYn � EYn, �kihYn � EYn, h‘i ¼ hKn, �k � h‘i ! ºkh�k , h‘i:

This implies that for each M we have convergence in law of the vector

hYn � EYn, �1i, . . . , hYn � EYn, �M i, hYn � EYn, EYni, hYn � EYn, h1i, . . . hYn � EYn, h‘ið Þ

to the Gaussian vector

º1Z1, . . . , ºM ZM ,
X1
k¼1

ffiffiffiffiffi
ºk

p
hm, �kiZk ,

X1
k¼1

ffiffiffiffiffi
ºk

p
hh1, �kiZk , . . . ,

X1
k¼1

ffiffiffiffiffi
ºk

p
hh‘, �kiZk

 !
:

This gives weak convergence, for every M , 1, of the random variables

XM
k¼1

hYn � EYn, �ki2 � EhYn � EYn, �ki2
� �

þ 2hYn � EYn, EYni �
Xr
‘¼1

hY � EY , h‘i2,

by analogy with (3.24). By (3.29) these random varibles are ‘finite-dimensional’

approximations of the sequence of interest, and the result now follows by the approximation

argument in the previous proof, as a consequence of the limit (3.27). h

The hypotheses in this theorem are quite natural. We will not deal with the question of

whether they are necessary (given infinitesimality); however, note that the existence of K

and m are necessary in order to define the limit.

3.3. Shift convergence of kYnk22: II

There are some situations in which Kn is not convergent in L2 but, nevertheless,

fkYn � EYnk22 � EkYn � EYnk22g is weakly convergent. From the definitions we see that
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kYn � EYnk22 � EkYn � EYnk22 ¼
X

1<i 6¼ j<n

cn,i, j(�i � 1)(� j � 1)þ
Xn
i¼1

cn,i,i (�i � 1)2 � 1
� �

¼
Xn
i¼1

2
Xi�1

j¼1

cn,i, j(� j � 1)

 !
(�i � 1)þ cn,i,i (�i � 1)2 � 1

� �" #

¼
Xn
i¼1

xn,i,

where

xn,i ¼ 2
Xi�1

j¼1

cn,i, j(� j � 1)

 !
(�i � 1)þ cn,i,i (�i � 1)2 � 1

� �
(and we use the convention that

P0
j¼1a j ¼ 0). If f�9ig denotes an independent copy of the

sequence f�ig and we set

~xxn,i ¼ 2
Xi�1

j¼1

cn,i, j(� j � 1)

 !
(�9i � 1)þ cn,i,i (�9i � 1)2 � 1

� �
for i ¼ 1, . . . , n and Fn,i ¼ � (�1, . . . , �i), then, for each n 2 N, fxn,ig and f~xxn,ig are tangent

sequences with respect to fF ig, that is, L(xn,ijFn,i�1) ¼ L(~xxn,ijFn,i�1) and the random

variables ~xxn,i are conditionally independent given the sequence f�ig. Hence, f~xxn,ig is a

decoupled tangent sequence to fxn,ig (see, for example, de la Peña and Giné 1999, Chapter

6). Decoupling introduces enough independence among the summands in
Pn

i¼1 ~xxn,i to enable

us to use the central limit theorem in order to obtain their asymptotic distribution. The

principle of conditioning – Theorem 1.1 in Jakubowski (1986), reproduced in de la Peña and

Giné (1999, Theorem 7.1.4) – can then be used to conclude convergence in law of
Pn

i¼1xn,i
itself. The proof of our next result follows this approach.

Theorem 3.10. Let Z be a standard normal random variable. If

max
i
kcn,ik ! 0, (3:30)

2kKnk22 þ 6
Xn
i¼1

kcn,ik42 ! � 2 (3:31)

and

X
j6¼k

X
i:i. j_k

hcn,i, cn, jihcn,i, cn,ki
 !2

þ
X
j

X
i:i. j

hcn,i, cn, jihcn,i, cn,i þ cn, ji
 !2

! 0, (3:32)

then

kYn � EYnk22 � EkYn � EYnk22 !
d
� Z: (3:33)
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If, instead of conditions (3.30), (3.31) and (3.32), we have

max
i

kcn,ik22 þ jhcn,i, mnij
� �

! 0, (3:34)

2kKnk22 þ 2
Xn
i¼1

kcn,ik42 þ 4
X
i

hcn,i, cn,i þ mni2 ! � 2 (3:35)

and

X
j,k

X
i:i. j_k

hcn,i, cn, jihcn,i, cn,ki
 !2

þ
X
j

X
i:i. j

hcn,i, cn, jihcn,i, cn,i þ mn þ cn, ji
 !2

! 0,

(3:36)

then

kYnk22 � EkYnk22 !
d
� Z: (3:37)

Proof. We first prove the limit in (3.33). If we set ~UUn ¼
Pn

i¼1 ~xxn,i, with ~xxn,i defined as above,

the principle of conditioning (Jakubowski 1986) reduces the proof to showing that

L( ~UUnjf�ig)!
w
N (0, � 2)

in probability. Arguing as in the proof of Lemma 3.7, we can see that this is equivalent to

proving that

An :¼ max
i

E(~xx2n,ijf� jg) ¼ 4max
i

c2i,i þ ci,i þ
Xi�1

j¼1

ci, j(� j � 1)

 !2
0
@

1
A!

Pr
0 (3:38)

and

Bn :¼
X
i

E(~xx2n,ijf� jg) ¼ 4
X
i

c2i,i þ 4
X
i

ci,i þ
Xi�1

j¼1

ci, j(� j � 1)

 !2

!
Pr

� 2: (3:39)

After a straightforward but cumbersome computation that we omit, it is evident that

EBn ¼ 2kKnk22 þ 6
Xn
i¼1

kcn,ik42

and

var(Bn) ¼ 16
X
j6¼k

X
i:i. j_k

ci, jci,k

 !2

þ4
X
j

X
i:i. j

ci, j(ci,i þ ci, j)

 !2
0
@

1
A,

which, by (3.31) and (3.32), inmediately give (3.39). We now check (3.38), which is

equivalent to maxi ci,i ! 0 and maxij
Pi�1

j¼1ci, j(� j � 1)j !Pr 0. This last convergence follows
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from (3.32) and the use of a refined Octaviani maximal inequality (see, Proposition 1.1.2 in

de la Peña and Giné 1999):

P max
i

				Xi�1

j¼1

ci, j(� j � 1)

				 . t

 !
< 3max

i
P

				Xi�1

j¼1

ci, j(� j � 1)

				 . t=3

 !

<
27

t2
max

i

Xi�1

j¼1

c2i, j <
27

t2
max

i

Xn
j¼1

c2i, j

¼ 27

t2
max

i
hcn,i � cn,i, Kni

<
27

t2
kKnk2 max

i
kcn,ik22 ! 0:

This concludes the proof of the limit (3.33).

We now turn to the limit (3.37). The fact that

kYnk22 � EkYnk22 ¼
X

1<i 6¼ j<n

ci, j(�i � 1)(� j � 1)þ
Xn
i¼1

ci,i (�i � 1)2 � 1
� �

þ 2hcn,i, mni(�i � 1)
� �

¼
Xn
i¼1

yn,i,

where yn,i ¼ 2(
Pi�1

j¼1cn,i, j(� j � 1))(�i � 1)þ cn,i,i (�i � 1)2 � 1ð Þ þ 2hcn,i, mni(�i � 1), can be

used to conclude (3.37) by reproducing the proof of (3.33) almost verbatim. h

The principle of conditioning used in Theorem 3.10, which could be easily replaced by

the Brown–Eagleson central limit theorem for martingales, has been used before in

analogous situations. We will just mention Hall (1984), who uses it in density estimation, in

order to prove a limit theorem for degenerate U -statistics with varying kernels. His result is

different from ours and does not apply here, but there are similarities in the proofs.

The assumptions in the above theorem are quite tight (for instance, it can be shown that

they are necessary for the limits (3.38) and (3.39)), but we will give as a corollary a slicker

set of (stronger) sufficient conditions, more adapted to the quantile process case. We

introduce a convenient definition by setting

(Kn s Kn)(s, t) :¼
ð1
0

Kn(s, u)Kn(t, u)du ¼
X
i, j

hcn,i, cn, jicn,i � cn, j:

It can be easily checked that kKn s Knk22 ¼
P

j,k

P
icn,i, jcn,i,k

� �2
and also that

kKn s Knk22 ¼
ð1
0

ð1
0

ð1
0

ð1
0

Kn(s, t)Kn(u, v)Kn(s, u)Kn(t, v)ds dt du dv:
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Corollary 3.11. If

Xn
i¼1

hcn,i, mni2 ! 0,
Xn
i¼1

kcn,ik42 ! 0 and kKn s Knk2 ! 0, (3:40)

K�n (s, t) :¼
X
i

jcn,i(s)cn,i(t)j < CKn(s, t) (3:41)

for some absolute constant C , 1, and

kKnk22 ! � 2=2, (3:42)

then (3.37) holds.

Proof. Conditions (3.34) and (3.35) obviously hold and only (3.36) requires verification. First,

we note that

X
j

X
i:i. j

hcn,i, cn, jihcn,i, cn,i þ mn þ cn, ji
 !2

< 2
X
j

X
i:i. j

hcn,i, cn, ji2
 !2

þ2
X
j

X
i:i. j

hcn,i, cn, jihcn,i, cn,i þ mni
 !2

< 2
X
j,k

X
i:i. j_k

hcn,i, cn, jihcn,i, cn,ki
 !2

þ2
X
j

X
i:i. j

hcn,i, cn, ji2
 ! X

i:i. j

hcn,i, cn,i þ mni2
 !

< 2
X
j,k

X
i:i. j_k

hcn,i, cn, jihcn,i, cn,ki
 !2

þ2kKnk22
X
i

hcn,i, cn,i þ mni2,

and observe that the second term on the right of the last inequality tends to zero by (3.42)

and the first two limits in (3.40), whereas the first term tends to zero as a consequence of

(3.41) and the third limit in (3.40):

X
j,k

X
i:i. j_k

hcn,i, cn, jihcn,i, cn,ki
 !2

<
X
j,k

X
i

jhcn,i, cn, jihcn,i, cn,kij
 !2

<
X
j,k

hK�n , jcn, jj � jcn,k ji2 < hK�n � K�n ,
X
j,k

jcn, jj � jcn,k j
� �

� jcn, jj � jcn,k j
� �

i

¼
ðððð

K�n (s, t)K�n (u, v)K�n (s, u)K�n (t, v)ds dtdudv

< C 4kKn s Knk22 ! 0:

So, (3.36) holds and the corollary follows from Theorem 3.11. h
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Note that if kKn s Knk2 ! 0 we cannot have Kn ! K in L2 unless K ¼ 0.

Remark 3.2. The results on convergence or shift convergence in law of kYnk22 derived so far

in this paper assume infinitesimality on the coefficients cn,i (maxikcn,ik ! 0 in probability).

Of course, if conditions of this type are removed, other asymptotic distributions can be

obtained. It is straightforward to see, for instance, that ifX
1<i, j<n

(cn,i, j � ªi, j)
2 ! 0, (3:43)

for some real numbers fªi, jg satisfying
P

i, jª
2
i, j , 1, then

kYn � EYnk22 � EkYn � EYnk22 ¼
Xn
i, j¼1

cn,i, j (�i � 1)(� j � 1)� �i, j

� �

!
L2

X1
i, j¼1

ªi, j (�i � 1)(� j � 1)� �i, j

� �
:

Note that the limiting random variable is well defined because the condition
P

i, jª
2
i, j , 1

implies that the associated partial sums are L2 convergent. If, further,

Xn
i¼1

Xn
j¼1

cn,i, j � 	i

 !2

! 0, (3:44)

for some real numbers 	i such that
P1

i¼1	
2
i , 1, then we also have that

kYnk22 � EkYnk22 �!
L2

X1
i, j¼1

ªi, j (�i � 1)(� j � 1)� �i, j

� �
þ 2

X1
i¼1

	i(�i � 1): (3:45)

3.4 Shift convergence of kZnk22
Yn can be replaced by Zn in Theorem 3.5 as an immediate consequence of the law of large

numbers, while it can be replaced in Theorem 3.9 and Corollary 3.11 because of the

following proposition.

Proposition 3.12. Suppose kYnk22 � EkYnk22 converges in law. Then kZnk22 � EkYnk22
converges in law to the same limit if and only if

EkYnk22ffiffiffi
n

p ! 0: (3:46)

In particular, this condition is satisfied ifX
i

cn,i,iffiffiffi
n

p ! 0 and
X
i

hcn,i, mni2 ! 0: (3:47)

162 E. del Barrio, E. Giné and F. Utzet



If (3.46) holds, we also have hZn � EYn, hi � hYn � EYn, hi ! 0 in probability for any

h 2 L2(0, 1).

Proof. Since

kZnk22 � kYnk22 ¼
n� 1

Sn

� �2

1þ Sn

n� 1

� �
1� Sn

n� 1

� �
kYnk22 ¼ OP n�1=2

� �
kYnk22,

by the central limit theorem and the law of large numbers, the necessity and sufficiency of

condition (3.46) follow from Lemmas 2.2 and 3.1. Now, by (3.8) and Cauchy–Schwarz,

1ffiffiffi
n

p EkYnk22 ¼
1ffiffiffi
n

p
				X

i

ci,i þ
X
j

ci, j

 !				 < 1ffiffiffi
n

p
X
i

ci,i þ
X
i

cn,i,
X
j

cn, j

* +
2,

which gives the sufficiency of (3.47). The last statement follows because, by (3.46) and the

law of large numbers, kZn � Ynk22 ! 0 in probability. h

4. Convergence in law of weighted L2 functionals of the

quantile process

At the risk of overburdening the reader, we distinguish between the uniform and the general

quantile processes.

4.1. The uniform quantile process

Recall from the beginning of Section 2 that if un is the uniform quantile process, then

Ln :¼
ð1�1=n

1=n

un(t)

g(t)

� �2

dt ¼d n

Snþ1

� �2
�����
Xnþ1

i¼1

cn,i�i

�����
2

2

,

where cn,i ¼ n�1=2an,i(t)I [1=n,1�1=n](t)=g(t) and the an,i are as defined in (2.3). With the help

of Lemma 2.1, the results of Section 3 can easily be specialized to this situation.

(a) The infinitesimality condition (3.12). It follows from the definitions that

1

2n

ð1�1=n

1=n

t2 þ (1� t)2

g2(t)
dt < max

i
kcn,ik22 <

1

n

ð1�1=n

1=n

1

g2(t)
dt,

and from this we conclude that condition (3.12) is equivalent to

1

n

ð1�1=n

1=n

1

g2(t)
dt ! 0: (4:1)

(b) Convergence of Kn and definition of K. Also from the definitions (in (3.3) and

Lemma 2.1), we have
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Kn(s, t) ¼
1

n

~KKn(s, t)

g(s)g(t)
If1=n < s, t < 1� 1=ng,

so that, by Lemma 2.1 (iii),

Kn(s, t) ! K(s, t) :¼ (s ^ t � st)

g(s)g(t)
(4:2)

pointwise, hence, by Lemma 2.1 (iii) and dominated convergence, Kn ! L2K if and

only if K 2 L2((0, 1)3 (0, 1)), if and only ifð1
0

ð1
0

(s ^ t � st)2

g2(s)g2(t)
ds dt , 1: (4:3)

Next we see that the limiting kernel K is trace-class and the limit (3.14) holds if and

only if ð1
0

t(1� t)

g2(t)
dt , 1: (4:4)

In fact, by Lemma 2.1 (iii),

Xnþ1

i¼1

kcn,ik22 ¼
1

n

ð1�1=n

1=n

~KKn(t, t)

g2(t)
dt !

ð1
0

t(1� t)

g2(t)
dt

regardless of whether the limiting integral is finite or not. Thus (4.4) is necessary in

order to obtain a finite limit in (3.14). On the other hand, if (4.4) holds and

Bg(t) ¼ B(t)=g(t), where B(t), 0 , t , 1, is a Brownian bridge, then Bg is a

centred, L2(0, 1)-valued Gaussian process with covariance function K(s, t): Thus, if ºi
and �i denote the eigenvalues and eigenfunctions, respectively, of the kernel K, thenð1

0

t(1� t)

g2(t)
dt ¼

ð1
0

EBg(t)
2 dt ¼ E

ð1
0

B2(t)

g2(t)
dt ¼ E

X1
i¼1

ð1
0

B(t)

g(t)
�i(t)dt

� �2

¼
X1
i¼1

E

ð1
0

B(t)

g(t)
�i(t)dt

� �2

¼
X1
i¼1

ð1
0

ð1
0

s ^ t � st

g(s)g(t)
�i(s)�i(t)ds dt

¼
X1
i¼1

ºi , 1:

Hence, if (4.4) holds then K is trace-class and (3.14) holds.

(c) Convergence of mn to m ¼ 0 assuming infinitesimality. If the infinitesimality

condition (4.1) holds, then�����
Xnþ1

i¼1

cn,i

�����
2

2

¼ 1

n

ð1
0

~mmn(t)
2

g2(t)
dt <

1

n

ð1
0

1

g2(t)
dt ! 0,

showing that mn ! 0 in L2.
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Finally, note that condition (4.4) implies condition (4.1) by dominated convergence, and

condition (4.3) because, since (s ^ t � st)2 < s(1� s)t(1� t), we have

ð1
0

ð1
0

(s ^ t � st)2

g2(s)g2(t)
ds dt <

ð1
0

ð1
0

s(1� s)t(1� t)

g2(s)g2(t)
ds dt ¼

ð1
0

t(1� t)

g2(t)
dt

� �2

:

Summarizing, Theorem 3.5 and the law of large numbers for Sn=n give the following:

Theorem 4.1. Let un(g) denote the weighted uniform quantile process, that is, un(g)(t) ¼
(un(t)=g(t))If1=n < t < 1� 1=ngg, 0 , t , 1, where g is a non-zero measurable function.

Assume condition (4.1) . Then the sequence of processes fun(g)g is weakly convergent in

L2(0, 1) to a non-degenerate limit if and only ifð1
0

t(1� t)

g2(t)
dt , 1: (4:4)

In this case,

un(g)!
d
Bg

in L2(0, 1), where Bg(t) ¼ B(t)=g(t) and B is a Brownian bridge. In particular, if h‘,

‘ ¼ 1, . . . , r, are functions in L2(0, 1), then

ð1�1=n

1=n

u2n(t)

g2(t)
dt �

Xr
‘¼1

ð1�1=n

1=n

un(t)h‘(t)

g(t)
dt

 !2

!
d

ð1
0

B2(t)

g2(t)
dt �

Xr
‘¼1

ð1�1=n

1=n

B(t)h‘(t)

g(t)
dt

 !2

:

Only the necessity part of this theorem may be considered new; the sufficiency is well known

(see, Mason 1984; Csörgő and Horváth 1988; 1993, p. 354).

Since, under infinitesimality, mn ! 0 in L2, we have that the analogue of Theorem 3.9

for Yn ¼ (Snþ1=n)un holds under conditions (4.1) and (4.3). In order to get rid of the factor

Snþ1=n, according to Proposition 3.12 we must have EkYnk22=
ffiffiffi
n

p
! 0, which follows from

conditions (3.47). Now, if conditions (4.1) and (4.3) hold, then so do conditions (3.47): the

second condition in (3.47) is obvious because mn ! 0 in L2 and supnkKnk2 , 1 (as Kn

converges in L2), soX
i

hcn,i, mni2 ¼ hKn, mn � mni < kKnk2kmnk22 ! 0,

and the first folows because, by Lemma 2.1 (iii),

1ffiffiffi
n

p
X
i

hcn,k , cn,ki ¼
1ffiffiffi
n

p
ð1�1=n

1=n

~KKn(t, t)

ng2(t)
dt <

3ffiffiffi
n

p
ð1�1=n

1=n

t(1� t)

g2(t)
dt,

and it is easy to see that this last expression tends to zero as a consequence of (4.1) (divide

the domain of integration at the points 1=
ffiffiffi
n

p
, 1=2 and 1� 1=

ffiffiffi
n

p
). Hence, Theorem 3.9 and

Proposition 3.12 together give:
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Theorem 4.2. Let h‘, ‘ ¼ 1, . . . , r, be square-integrable functions on (0, 1). If conditions

(4.1) and (4.3) hold, then

ð1�1=n

1=n

u2n(t)

g(t)2
dt �

ð1�1=n

1=n

t(1� t)

g2(t)
dt �

Xr
‘¼1

ð1�1=n

1=n

un(t)h‘(t)

g(t)
dt

 !2

!
d

ð1
0

B2(t)� EB2(t)

g2(t)
dt �

Xr
‘¼1

ð1�1=n

1=n

B(t)h‘(t)

g(t)
dt

 !2

, (4:5)

where the integral of (B2 � EB2)=g2 is defined in a limiting L2 sense.

Proof. By Theorem 3.9 and the above observations, it only remains to show that we can

actually replace EkYnk22 by the centring constants in (4.5), and that
Ð 1�1=n
1=n EYn(t)h‘(t)dt ! 0

for all ‘. By (4.1) and Lemma 2.1, we have				EkYnk22 �
ð1�1=n

1=n

t(1� t)

g2(t)
dt

				 < 1

n

ð1�1=n

1=n

jnt(1� t)� ~KKn(t, t)� ~mm2
n(t, t)j

g2(t)
dt

<
4

n

ð1�1=n

1=n

1

g2(t)
dt ! 0:

And, since as shown above, kEYnk22=
ffiffiffi
n

p ! 0, and since h‘ 2 L2(0, 1), we obviously have

that
Ð 1�1=n
1=n EYn(t)h‘(t)dt ! 0. h

For g(t) ¼ �(��1(t)), where � and � denote the standard normal density and

distribution function respectively, this result goes back, in one form or other, to de Wet

and Venter (1972), but it seems to be new in the generality in which it is given here. See

also Gregory (1977) and del Barrio et al. (1999a).

Next we examine the normal convergence case (as a consequence of Corollary 3.11). We

will further relax integrability (so condition (4.3) will not hold), but, for convenience, will

impose regular variation of g at at least one of the end-points 0 and at 1. Standard use of

the basic properties of regular variation shows that, if g is regularly varying at 0 and at 1

with exponent Æ, then the hypotheses of Theorem 4.2, (4.1) and (4.3), both hold for Æ , 1

and fail if Æ . 1. We now study the borderline case in which Æ ¼ 1 and (4.3) fails, that is,

L(x) :¼ 2

ð1�x

x

ð1�x

x

(s ^ t � st)2

g2(s)g2(t)
ds dt ! 1 as x ! 0: (4:6)

This case will fall within the scope of Corollary 3.11 and we will obtain normal convergence.

Besides the function L(x) just defined, it is convenient to introduce two more functions,

M(x) ¼ 2

ð1�x

x

ð1�x

x

(s ^ t � st)

g2(s)g2(t)
ds dt

and
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R(x) ¼
ð1�x

x

ð1�x

x

ð1�x

x

ð1�x

x

(s ^ t � st)(s ^ u� su)(t ^ v� tv)(u ^ v� uv)

g2(s)g2(t)g2(u)g2(v)
ds dt du dv,

and establish their relationship with L. The next lemma is an exercise in regular variation and

L’Hôpital’s rule.

Lemma 4.3. Assume that g . 0 is regularly varying at 0 and limx!0 g(x)=g(1� x)

¼ c 2 [0, 1) , or that g . 0 is regularly varying at 1 and limx!0 g(1� x)=g(x) ¼ c 2
[0, 1). Assume also that L(x) ! 1 as x ! 0. Then

lim
x!0

xM(x)

L(x)
¼ 0 (4:7)

and

lim
x!0

R(x)

L2(x)
¼ 0: (4:8)

Proof. For notational convenience we prove this lemma only under the assumption that g is

symmetric about 1
2
(the general case can be proved in the same way). To prove (4.7), it

suffices to realize (using symmetry of g) that

L9(x) ¼ � 8x2

g2(x)

ð1�x

x

s2

g2(s)
ds and M9(x) ¼ � 8x

g2(x)

ð1�x

x

s

g2(s)
ds,

that, since L(x) ! 1 as x ! 0, we necessarily have that
Ð 1
0
t(1� t)=g2(t)dt ¼ 1 and that

this fact and regular variation imply the following asymptotic equivalences:ð1�x

x

s2

g2(s)
ds �

ð1�x

x

s

g2(s)
ds �

ð�
x

1

g2(s)
ds � x

g2(x)
: (4:9)

From (4.9) we obtain that

L9(x) � � 8x3

g4(x)
and M9(x) � � 8x2

g4(x)
(4:10)

as x ! 0. Regular variation and (4.9) also imply that

M(x) ¼ 8

ð1=2
x

t

g2(t)

ð1� t

t

s

g2(s)
ds dt � 8

ð�
x

t

g2(t)

ð�
t

1

g2(s)
ds dt

� 8

ð�
x

t2

g4(t)
dt � 8x3

g4(x)
: (4:11)

Now, (4.10), (4.11) and L’Hôpital’s rule show that

lim
x!0

xM(x)

L(x)
¼ lim

x!0

xM 9(x)

L9(x)
þ lim

x!0

M(x)

L9(x)
¼ 1� 1 ¼ 0,

which proves (4.7).
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Let us now consider (4.8). For any ordering of the variables s , t , u , v in the

multiple integral, the smallest, s, appears as s2, the largest, v, as (1� v)2 and the other two

as t(1� t) and u(1� u). Thus we have

R(x) ¼ 24

ð1�x

x

(1� v)2

g2(v)

ðv
x

u(1� u)

g2(u)

ðu
x

t(1� t)

g2(t)

ð t
x

s2

g2(s)
ds dt du dv

and

R9(x) ¼ �48
x2

g2(x)

ð1�x

x

u(1� u)

g2(u)

ðu
x

t(1� t)

g2(t)

ð t
x

s2

g2(s)
ds dt du ¼: �48

x2

g2(x)
R1(x):

We now see that

R91(x) ¼ � x(1� x)

g2(x)

ð1�x

x

t(1� t)

g2(t)

ð t
x

s2

g2(s)
ds dt � x2

g2(x)

ð1�x

x

t(1� t)

g2(t)

ð t
x

s(1� s)

g2(s)
ds dt

¼: � x(1� x)

g2(x)
R1,1(x)�

x2

g2(x)
R1,2(x):

By regular variation,

R91,1(x) ¼ � x(1� x)

g2(x)

ð1�x

x

s2

g2(s)
ds� x2

g2(x)

ð1�x

x

s(1� s)

g2(s)
ds � �x

g2(x)

ð�
x

1

g2(s)
ds � �x2

g4(x)
:

R91,2 can be estimated in a similar way, yielding

lim
x!0

R1,2(x)=R1,1(x) ¼ lim
x!0

R91,2(x)=R91,1(x) ¼ 0:

Thus,

R91(x) �
�x

g2(x)
R1,1(x) �

�x

g2(x)

ð�
x

R91,1(t)dt �
x

g2(x)

ð�
x

t2

g4(t)
dt � x4

g6(x)
(4:12)

(here the last equivalence is, again, a consequence of regular variation). Observe now that, by

(4.9) and (4.10),

R9(x)

(L2(x))9
¼ R9(x)

2L(x)L9(x)
� 3

R1(x)ð�
x

(1=g2(s))dsL(x)

and, therefore, L’Hôpital’s rule reduces the proof to showing that

L(x)(1=g2(x))�
Ð �
x
(1=g2(s))dsL9(x)

R91(x)
! 1:

Now (4.9), (4.10) and (4.12) show that (
Ð �
x
(1=g2(s))dsL9(x))=R91(x) ! 8 and further reduce

the proof to checking that (x2(
Ð �
x
g(u)�2du)2)=L(x) ! 0. But this follows from L’Hôpital’s

rule and the following chain of equivalences (where (4.9) is used twice):
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lim
x!0

x2
Ð �
x
(1=g(u)2)du

� �2
L(x)

¼ lim
x!0

2x
Ð �
x
(1=g2(u))du� 2x2=g2(x)

� �Ð �
x
(1=g2(u))du

L9(x)

¼ 1

4
lim
x!0

x=g2(x)�
Ð �
x
(1=g2(u))du

x=g2(x)

¼ 1

4
1� lim

x!0

Ð �
x
(1=g2(u))du

x=g2(x)

 !
¼ 0: (4:13)

h

Theorem 4.4. Assume that g . 0 is regularly varying at 0 and limx!0 g(x)=
g(1� x) ¼ c 2 [0, 1) , or that g . 0 is regularly varying at 1 and

limx!0 g(1� x)=g(x) ¼ c 2 [0, 1). Assume also that L(x) ! 1 as x ! 0. Let Z denote

a standard normal random variable. Then

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(1=n)

p ð1�1=n

1=n

u2n(t)

g2(t)
dt �

ð1�1=n

1=n

t(1� t)

g2(t)
dt

 !
!
d
Z:

Proof. As in the previous lemma, we only consider the case where g is symmetric about 1
2
.

We can apply Corollary 3.11 with

cn,i(t) ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nL1=2(1=n)
p an,i(t)

g(t)
If1=n < t < 1� 1=ng:

Now we have that

2kKnk22 ¼
2

n2L(1=n)

ð1�1=n

1=n

ð1�1=n

1=n

~KK2
n(s, t)

g2(s)g2(t)
ds dt

and

Xnþ1

i¼1

kcn,ik42 ¼
2

n2L(1=n)

ð1�1=n

1=n

ð1�1=n

1=n

X
nþ1
i¼1 a2n,i(s)a

2
n,i(t)

g2(s)g2(t)
ds dt:

We claim that

2kKnk22 ! 1,
Xnþ1

i¼1

kcn,ik42 ! 0 and
Xnþ1

i¼1

hcn,i, cn,i þ mni2 ! 0: (4:14)

In fact, from Lemma 2.1 we obtain that
Pnþ1

i¼1 a
2
n,i(s)a

2
n,i(t) < 3n(s ^ t � st), which, by

Lemma 4.3, implies that

Xnþ1

i¼1

kcn,ik42 < 6
(1=n)M(1=n)

L(1=n)
! 0
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and proves the second part of (4.14). The first part can be obtained using parts (ii) and (iii) of

Lemma 2.1 to see that

j ~KKn(s, t)
2 � n2(s ^ t � st)2j ¼ j ~KKn(s, t)þ n(s ^ t � st)k ~KKn(s, t)� n(s ^ t � st)j

< 8n(s ^ t � st)

and, consequently, that

j2kKnk22 � 1j ¼ 2

n2L(1=n)

				
ð1�1=n

1=n

ð1�1=n

1=n

~KK2
n(s, t)� n2(s ^ t � st)2

g2(s)g2(t)
ds dt

				
< 16

(1=n)M(1=n)

L(1=n)
! 0:

Finally, the third part of claim (4.14) is a consequence of

Xnþ1

i¼1

hcn,i, mni2 ¼ hKn, mn � mni

¼ 1

n2L(1=n)

ð1�1=n

1=n

ð1�1=n

1=n

~KKn(s, t) ~mmn(s) ~mmn(t)

g2(s)g2(t)
ds dt <

(1=n)M(1=n)

L(1=n)
! 0,

since (aþ b)2 < 2a2 þ 2b2. The limits (4.14) prove the first two limits in (3.40) and the limit

in (3.42) (with � 2 ¼ 1). Lemma 2.1(iii) gives that (3.41) is also satisfied (with C ¼ 6).

Finally, the third limit in (3.40) follows from Lemma 4.3 since

kKn s Knk22 <
81R(1=n)

n4L2(1=n)
! 0:

Corollary 3.11 now implies that kYnk22 � EkYnk22 ! wN (0, 1). Conditions (3.47) from

Proposition 3.12 are also satisfied because of the last two limits in (4.14) (see the argument

immediately before Theorem 4.2) and therefore we also have kZnk22 � EkYnk22 ! wN (0, 1).

Now all that is left to show is that we can replace EkYnk22 by L�1=2

(1=n)
Ð 1�1=n

1=n t(1� t)g�2(t)dt as centring constants. Arguing as in the proof of Theorem

4.2, we see that				EkYnk22 �
1

L1=2(1=n)

ð1�1=n

1=n

t(1� t)

g2(t)
dt

				 < 4

nL1=2(1=n)

ð1�1=n

1=n

1

g2(t)
dt ! 0,

where the last limit is a consequence of (3.44). h

This result is new in the present generality. For weights related to the exponential

distribution and to the Weibull distribution with exponent 0 , Æ < 4
3
, see respectively

Csörgő (2000) and Csörgő (2002). For results similar to those in the last two theorems, but

for the L1 norm of the empirical process instead, see del Barrio (1999b).

Finally, we consider smaller functions g, corresponding in some way to Remark 3.2. The

following result is only given for completeness and only symmetric weights are considered
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in the proof since the one-sided analogue is already contained in Csörgő and Horváth

(1988).

Proposition 4.5. Let g be a positive function on (0, 1), regularly varying at 0 and at 1 with

exponent Æ . 1 and with equal or smaller exponent at the other extreme, and such that

limx!0 g(x)=g(1� x) :¼ c 2 [0, 1]. Set

E(x) :¼
ð1�x

x

t(1� t)

g2(t)
dt:

Then

1

E(1=n)

ð1�1=n

1=n

u2n(t)

g2(t)
dt!

d

1

Æ� 1

c2

1þ c2

ð1
1

(S
(1)
[ y] � y)2

y2Æ
dyþ 1

1þ c2

ð1
1

(S
(2)
[ y] � y)2

y2Æ
dy

 !
,

(4:15)

where fS (1)
[ y] : y > 1g is the partial sum process associated with the sequence f� jg of

independent exponential random variables, that is, S
(1)
[ y] ¼

P[ y]
j¼1� j, and fS (2)

[ y]g is an

independent copy of fS (1)
[ y]g.

Proof. As above, we only consider the case where g is symmetric. Symmetry of g and the

fact that an, j(1� t) ¼ �an,nþ2� j(t) show that

1

E(1=n)

ð1�1=n

1=n

u2n(t)

g2(t)
dt ¼ n

Snþ1

� �2
1

nE(1=n)

ð1�1=n

1=n

Pnþ1
j¼1 an, j(t)� j

� �2
g2(t)

dt

¼ n

Snþ1

� �2

(V (1)
n þ V (2)

n ),

where

V (1)
n ¼ 1

nE(1=n)

ð1=2
1=n

Pnþ1
j¼1 an, j(t)� j

� �2
g2(t)

dt and V (2)
n ¼ 1

nE(1=n)

ð1=2
1=n

Pnþ1
j¼1 an, j(t)�nþ2� j

� �2
g2(t)

dt:

We set bn, j(t) ¼ If j� 1 , ntg and define

W (1)
n ¼ 1

nE(1=n)

ð1=2
1=n

Pnþ1
j¼1 bn, j(t)� j � nt

� �2
g2(t)

dt

and, similarly, W (2)
n , replacing � j with �nþ2� j. Now, since

j(V (1)
n )1=2 � (W (1)

n )1=2j2 <
ffiffiffi
n

p
1� Snþ1

n

� �� �2
1

E(1=n)

ð1=2
1=n

t2

g2(t)
dt ¼ OP(1)!

Pr
0

and V (1)
n ¼ OP(1), we see that V (1)

n � W (1)
n ¼ oP(1). Analogously, V (2)

n � W (2)
n ¼ oP(1),

showing that (4.15) is equivalent to convergence in law of W (1)
n þ W (2)

n to the right-hand side
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of (4.15). Obviously, W (1)
n ¼d W (2)

n and, moreover, W (1)
n and W (2)

n are asymptotically

independent: they are indeed independent if n is odd since bn, j(t) ¼ 0 if t < 1=2 and

j . (nþ 1)=2 and therefore W (1)
n depends only on �1, . . . , �(nþ1)=2 while W (2)

n depends only

on �(nþ3)=2, . . . , �nþ1; the overlapping that arises if n is even is negligible. Hence, in order to

prove (4.15) it suffices to show that

W (1)
n !

d

1

Æ� 1

ð1
1

(S
(1)
[ y] � y)2

y2Æ
dy: (4:16)

To see this, we note that

W (1)
n ¼

X
i, j

cn,i, j(�i � 1)(� j � 1)þ 2
X
i

d n,i(�i � 1)þ en

with

cn,i, j ¼
1

n2E(1=n)

ð n=2
i_ j�1

1

g2(y=n)
dy if i _ j . 1, cn,1,1 ¼ cn,2,2,

dn,i ¼
1

n2E(1=n)

ð n=2
i�1

([y]� y)

g2(y=n)
dy if i . 1, dn,1 ¼ dn,2

en ¼
1

n2E(1=n)

ð n=2
1

([y]� y)2

g2(y=n)
dy:

Similarly,

1

Æ� 1

ð1
1

(S
(1)
[ y] � y)2

y2Æ
dy ¼

X
i, j

ªi, j(�i � 1)(� j � 1)þ 2
X
i

�i(�i � 1)þ E,

where

ªi, j ¼
1

Æ� 1

ð1
i_ j�1

1

y2Æ
dy if i _ j . 1, ª1,1 ¼ ª2,2,

�i ¼
1

Æ� 1

ð1
i�1

([y]� y)

y2Æ
dy if i . 1, �1 ¼ �2,

E ¼ 1

Æ� 1

ð1
1

([y]� y)2

y2Æ
dy:

Standard regular variation techniques show that
P

i, j(cn,i, j � ªi, j)
2 ! 0,

P
i(dn,i � �i)

2 ! 0

and en ! E, yielding as in Remark 3.2 that

W (1)
n !

L2

1

Æ� 1

ð1
1

(S
(1)
[ y] � y)2

y2Æ
dy

and proving (4.16). h
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4.2. The general quantile process

By Proposition 2.5, we can transfer the results in the previous section corresponding to

Theorems 4.1, 4.2 and 4.4 to the general quantile process just by taking g(t) ¼
f (F�1(t))=

ffiffiffiffiffiffiffiffiffi
w(t)

p
: We will need the following conditions on the cdf F and the weight w:

F is twice differentiable on its open support (aF , bF), with f (x) ¼ F9(x) . 0,

and satisfies conditions (2:7), (2:22) and (2:23):w is a bounded non-negative

measurable function on (0, 1) and satisfies conditions (2:24):
(GH)

These, together with (2.10), are the conditions under which we can transfer results on un

to vn by Proposition 2.5. We exclude (2.10) because it will be subsumed by other

conditions – in fact because, by dominated convergence,ð1
0

t(1� t)

f 2(F�1(t))
w(t)dt , 1 ) (2:10) ) 1

n

ð1�1=n

1=n

w(t)dt

f 2(F�1(t))
! 0:

We then have:

Theorem 4.6. Let B be a Brownian bridge on (0, 1) and let Z be a standard normal random

variable.

(i) If F and w satisfy (GH) andð1
0

t(1� t)

f 2(F�1(t))
w(t)dt , 1, (4:17)

then

vn(t) !
B(t)

ffiffiffiffiffiffiffiffiffi
w(t)

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2(F�1(t))

p in law in L2(0, 1);

in particular,ð1
0

v2n(t)w(t)dt !
ð1
0

B2(t)

f 2(F�1(t))
w(t)dt in distribution:

(ii) If F and w satisfy (GH) and

1ffiffiffi
n

p
ð1�1=n

1=n

t1=2(1� t)1=2

f 2(F�1(t))
w(t)dt ! 0 (2:10)

and ð1
0

ð1
0

(s ^ t � st)2

f 2(F�1(s)) f 2(F�1(t))
w(s)w(t)ds dt , 1, (4:18)

thenð1
0

v2n(t)w(t)dt �
ð1�1=n

1=n

t(1� t)

f 2(F�1(t))
w(t)dt !

ð1
0

B2(t)� EB2(t)

f 2(F�1(t))
w(t)dt in distribution:
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(iii) Assume F is twice differentiable on its open support (aF , bF), with

f (x) ¼ F9(x) . 0, that F satisfies condition (2.7) and that the function

g :¼ f (F�1) is either regularly varying with exponent one at 0 and

limx!0 g(x)=g(1� x) ¼ c 2 [0, 1), or g is regularly varying with exponent one at

1 and limx!0 g(1� x)=g(x) ¼ c 2 [0, 1). Assume also that

L(x) :¼ 2

ð1�x

x

ð1�x

x

(s ^ t � st)2

f 2(F�1(s) f 2(F�1(t))
ds dt ! 1 (4:19)

as x ! 0. Then

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(1=n)

p ð1
0

v2n(t)dt �
ð1�1=n

1=n

t(1� t)

f 2(F�1(t))
dt

 !
! Z in distribution. (4:20)

As in the case of the uniform quantile process, we could also have added terms of the

form
Pr

‘¼1(
Ð 1
0
vn(t)h‘(t)w(t)dt)

2 to the limiting results above, with corresponding changes

in the limit. However, although we will need this in the next section, the statement is

cleaner as it is now.

Proof of Theorem 4.6. By Proposition 2.5 and the remark above on condition (2.10), the

statements (i) and (ii) do not require proof. But part (iii) does (Proposition 2.5) does not

apply in this case). As usual, we assume f (F�1) symmetric about 1
2
. If we can replace kvnk22

in (4.20) by kun= f (F
�1)k22,n ¼

Ð 1�1=n
1=n u2n(t)= f (F

�1(t))dt, the result will follow from

Theorem 4.4. By the proof of Lemma 2.4, we can replace kvnk22 by kvnk22,n if we show that

lim
x!0

x2

f 2 F�1(x)ð Þ
ffiffiffiffiffiffiffiffiffi
L(x)

p ¼ 0 and lim
x!0

1

x
ffiffiffiffiffiffiffiffiffi
L(x)

p
ðx
0

(F�1(x)� F�1(t))2dt ¼ 0,

and, by the proof of Lemma 2.3 (see (2.20) and (2.21)), we can replace kvnk22,n by

kun= f (F
�1)k22,n if

lim
n!1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nL(1=n)

p ð1�1=n

1=n

t1=2(1� t)1=2

f 2 F�1(t)ð Þ dt ¼ 0:

The first and third of these limits follows just like the limit (4.13) in the proof of Lemma 4.3,

using L’Hôpital and the equivalence (4.9). To show that the second limit also holds, let us set

h(x) ¼
Ð x
0
(F�1(x)� F�1(t))2dt and observe that

h9(x) ¼ 2

f (F�1(x))

ðx
0

(F�1(x)� F�1(t))dt ¼ 2

f (F�1(x))

ðx
0

ðx
t

1

f (F�1(u))
du dt

¼ 2

f (F�1(x))

ðx
0

u

f (F�1(u))
du ’ 2x2

f 2(F�1(x))
,

the last equivalence being a consequence of regular variation. This, (4.9) and regular

variation imply, in turn,
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h(x) ¼
ðx
0

h9(y)dy ’ 2

ðx
0

y2= f 2(F�1(y))dy ’ 2x3= f 2(F�1(x)) ’ 2x2
ð�
x

1= f 2(F�1(y))dy

and, consequently, that

lim
x!0

1

x
ffiffiffiffiffiffiffiffiffi
L(x)

p
ðx
0

(F�1(x)� F�1(t))2dt ¼ 2lim
x!0

x
Ð �
0
1= f 2(F�1(y))dyffiffiffiffiffiffiffiffiffi

L(x)
p ¼ 0

by (4.13). h

Example 4.1. Consider, for Æ . 0, the distribution functions

FÆ(x) ¼
1
2
e�jxjÆ if x < 0,

1� 1
2
e�xÆ if x > 0,

(

and take w � 1. Let fÆ be the corresponding densities, which are symmetric about zero. Then

it is easy but somewhat cumbersome to show that

fÆ F�1
Æ (x)

� �
� x(1� x)log (Æ�1)=Æ 1

x(1� x)
, f 9Æ F�1

Æ (x)
� �

� x(1� x)log (Æ�2)=Æ 1

x(1� x)
,

where a(x) � b(x) means that 0 , limx!0a(x)=b(x) , 1 and likewise for x ! 1, whereas

0 , inf t2 I a(t)=b(t) < supx2 I a(t)=b(t) , 1 for any closed interval I contained in (0, 1) (for

instance fÆ F�1
Æ (x)

� �
¼ Æxjlog 2xj(Æ�1)=Æ þ Æ(1� x)jlog 2(1� x)j(Æ�1)=Æ). So, fÆ F�1

Æ

� �
is

symmetric about 1
2
and of regular variation with unit exponent at 0 (and at 1). It then

follows easily that FÆ falls under part (i) of Theorem 4.6 if and only if Æ . 2, part (ii) if and

only if 4
3
, Æ < 2, hence for the normal distribution, and part (iii) if and only if 0 , Æ < 4

3
,

in particular for the symmetric exponential distribution. As mentioned above, if the tail

probabilities are of different order, the largest dominates and these theorems still hold, so that

the same conclusions apply to the one-sided families.

Example 4.2. Likewise, if

fÆ(x) ¼ ÆxÆ�1e�xÆ , x . 0, c . 0,

is the Weibull family of densities, then

f (F�1(u)) ¼ Æ(1� u)log(Æ�1)=Æ 1

1� u
,

and, as in Example 4.1, fÆ falls under part (i), (ii) or (iii) of Theorem 4.6 according as to

whether Æ . 3, 4
3
, Æ < 2 or 0 , Æ < 4

3
.

Example 4.3. The following example is due to McLaren and Lockhart (1987). For the logistic

distribution F(x) ¼ (1þ e�x)�1, x 2 R, and the exponential with parameter 1, both falling

under part (iii) of Theorem 4.6, computation of L and the centring gives

1

23=2
ffiffiffiffiffiffiffiffiffiffi
log n

p
ð1
0

v2n(t)dt � 2 log n

� �
! Z in distribution,
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and for the extreme value distribution H(x) ¼ exp(�e�x), also falling under part (iii),

1

2
ffiffiffiffiffiffiffiffiffiffi
log n

p
ð1
0

v2n(t)dt � log n

� �
! Z in distribution:

We cannot apply Proposition 2.5 when f (F�1(t)) is too small at 0 and 1 (regularly

varying of exponent 1 or more), as we saw in part (iii) of Theorem 4.6 (exponent 1). Here

is a situation where the exponent is larger than one.

Theorem 4.7. Assume F satisfies conditions (2.7), f (F�1) varies regularly at 0 or at 1 with

exponent ª 2 1, 3
2

� �
and with equal or smaller exponent at the other extreme, and

limx!0jF�1(x)j=F�1(1� x) ¼ c 2 [0, 1]. Then, denoting Æ ¼ 1� ª,

1

E(1=n)

ð1
0

v2n(t)dt !w

2

jÆj
c2

1þ c2

ð1
0

(S
(1)
[ y]þ1)

Æ � yÆ
� �2

dyþ 1

1þ c2

ð1
0

(S
(2)
[ y]þ1)

Æ � yÆ
� �2

dy

� �
:

If F satisfies conditions (2.7), f (F�1) varies regularly at 0 or at 1 with exponent ª ¼ 3
2
(i.e.,

Æ ¼ �1
2
) and with equal or smaller exponent at the other extreme, limx!0jF�1(x)j=

F�1(1� x) ¼ c 2 [0, 1] and
Ð 1
0
(F�1(t))2dt , 1, then

1

E(1=n)

ð1
0

v2n(t)dt � cn

� �
!w4

c2

1þ c2
1

S
(1)
1

� 4ffiffiffiffiffiffiffiffi
S
(1)
1

q þ
ð1
1

(S
(1)
[ y]þ1)

�1=2 � y�1=2
� �2

dy

0
B@

1
CA

2
64

þ 1

1þ c2
1

S
(2)
1

� 4ffiffiffiffiffiffiffiffi
S
(2)
1

q þ
ð1
1

(S
(2)
[ y]þ1)

�1=2 � y�1=2
� �2

dy

0
B@

1
CA
3
75,

where cn ¼
Ð 1=n
0

(F�1(t))2dt þ
Ð 1
1�1=n(F

�1(t))2dt. In both cases fS (1)
[ y]þ1 : y > 0g is the

partial sum process associated the sequence f� jg of independent exponential random

variables, that is, S
(1)
[ y]þ1 ¼

P[ y]þ1
j¼1 � j, and fS (2)

[ y]þ1 : y > 0g is an independent copy of

fS (1)
[ y]þ1g.

Remark 4.1. Regular variation of f (F�1) with exponent ª at 0, written f (F�1) 2 RVª(0), is

essentially equivalent to regular variation of F�1 with exponent Æ 2 (�1
2
, 0). In fact, if

f (F�1) 2 RVª(0), then F�1 2 RVÆ(0) and, provided f is monotone in a neighbourhood of

�1, if F�1 2 RVÆ(0) then f (F�1) 2 RVª(0) (see, for example, Resnick 1987, Propositions

0.6 and 0.7). With the assumption of regular variation, finiteness of
Ð 1
0
v2n(t)dt requires

Æ > �1
2
. Thus, Theorem 4.7 completes the picture of all the possible limiting distributions ofÐ 1

0
v2n(t)dt for distributions with regularly varying tails.

Remark 4.2. It follows easily from the law of the iterated logarithm that

lim sup
y!1

			(S (1)
[ y]þ1)

Æ � yÆ
			

yÆ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log log y

p ¼ 1

jÆj almost surely
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for all Æ , 0 (see, Samorodnitsky and Taqqu 1994, p. 31). This implies that the limiting

integrals in Theorem 4.7 are almost surely finite. Integrability of ((S
(1)
[ y]þ1)

Æ � yÆ)2 at 0

requires Æ . 1
2
. When Æ ¼ 1

2
the effect of the centring constants, cn, is to remove this lack of

integrability, still leading to a limiting distribution.

Next we collect some elementary properties of regularly varying functions that will be

useful in our proof of Theorem 4.7.

Lemma 4.8. (i)l 2 RV0(0) is positive and E . 0 then

limn!1(log n)�E l log n=nð Þ
l 1=nð Þ ¼ 0

(ii) If l 2 RVÆ(0) and Æ , 0 then

limn!1
l log n=nð Þ
l 1=nð Þ ¼ 0:

(iii) If l 2 RVÆ(0) and 	 . �Æ then x	 l(x) ! 0 as x ! 0.

Proof. (ii) is a trivial consequence of (i), and the proof of (iii) can be found in Resnick

(1987), so we only prove (i). By Karamata’s theorem (Resnick 1987, p. 17) l can be written

as l(x) ¼ c(x) exp(
Ð 1
x
(E(t)=t)dt) with c(x) ! c 2 (0, 1) and E(x) ! 0 as x ! 0. Therefore,

taking n0 large enough to ensure that jE(t)j , E=2 for t < log n0=n0 and n > n0 we have that

(log n)�E l log n=nð Þ
l 1=nð Þ < 2(log n)�E exp

E
2

ðlog n=n

1=n

1

t
dt

 !
¼ 2(log n)�E=2 ! 0:

h

Proof of Theorem 4.7. We will assume in this proof that 0 . Æ . �1
2
. The case Æ ¼ �1

2

can be handled with straightforward changes. We set, as in the proof of Proposition

4.5, bn, j ¼ If j� 1 , ntg and H�1(x) ¼ �F�1(1� x) and observe, using the fact that

bn, j(1� t) ¼ 1� bn,nþ2� j(t) except in a null set, that
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1

E(1=n)

ð1
0

v2n(t)dt ¼
n

E(1=n)

ðlog n=n

0

F�1 1

Snþ1

Xnþ1

j¼1

bn, j(t)� j

 !
� F�1(t)

 !2

dt

þ n

E(1=n)

ð1
1�log n=n

F�1 1

Snþ1

Xnþ1

j¼1

bn, j(t)� j

 !
� F�1(t)

 !2

dt

þ 1

E(1=n)

ð1�log n=n

log n=n

v2n(t)dt

¼ n

E(1=n)

ðlog n=n

0

F�1 1

Snþ1

Xnþ1

j¼1

bn, j(t)� j

 !
� F�1(t)

 !2

dt

þ n

E(1=n)

ðlog n=n

0

H�1 1

Snþ1

Xnþ1

j¼1

bn, j(t)�nþ2� j

 !
� H�1(t)

 !2

dt

þ 1

E(1=n)

ð1�log n=n

log n=n

v2n(t)dt

¼: V (1)
n þ V (2)

n þ V (3)
n :

We also set

W (1)
n :¼ n

E(1=n)

ðlog n=n

0

F�1 1

n

Xnþ1

j¼1

bn, j(t)� j

 !
� F�1(t)

 !2

dt,

W (2)
n :¼ n

E(1=n)

ðlog n=n

0

H�1 1

n

Xnþ1

j¼1

bn, j(t)�nþ2� j

 !
� H�1(t)

 !2

dt:

Observe that W (1)
n and W (2)

n are independent since they are functions of disjoint sets of

independent exponential random variables � j. We now proceed by showing that the central

part, V (3)
n , is negligible and that the upper and lower integrals are asymptotically independent

and weakly convergent to the above stated limits. This will be achieved by proving the

following three claims:
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Claim 1.

V (3)
n !

Pr
0:

Claim 2.

(V (i)
n )

1=2 � (W (i)
n )

1=2 !
Pr

0, i ¼ 1, 2:

Claim 3.

W (1)
n !w

2c2

jÆj(1þ c2)

ð1
0

(S
(1)
[ y]þ1)

Æ � yÆ
� �2

dy,

W (2)
n !w

2

jÆj(1þ c2)

ð1
0

(S
(2)
[ y]þ1)

Æ � yÆ
� �2

dy:

Proof of Claim 1. We first show that

V (3)
n � 1

E(1=n)

ð1�log n=n

log n=n

u2n(t)

f 2(F�1(t))
dt !

Pr
0:

As in the proof of Proposition 2.3, this reduces to showing that

1

nE(1=n)

ð1�log n=n

log n=n

1

f 2(F�1(t))
dt ! 0 and

1ffiffiffi
n

p
E(1=n)

ð1�log n=n

log n=n

t1=2(1� t)1=2

f 2(F�1(t))
dt ! 0:

For ease of computation we will assume in the remainder of the proof of this claim that c ¼ 1

and replace E(1=n) by F�1(1=n)2 in the last two denominators (the ratio of the two

sequences converges, by regular variation, to a positive constant). Extension to general c is

straightforward. Regular variation implies that

lim
x!0

x= f (F�1(x))

F�1(x)
¼ Æ and lim

x!0

x= f 2(F�1(x))Ð 1�x

x
1=( f 2(F�1(t)))dt

¼ 1

2
� Æ,

which implies, in turn, that

lim
n!1

1

nF�1(1=n)2

ð1�log n=n

log n=n

1

f 2(F�1(t))
dt ¼ Æ2

1=2� Æ
lim
n!1

l(1)(log n=n)

l(1)(1=n)
¼ 0,

where l(1)(x) ¼ x= f 2(F�1(x)) 2 RV2Æ�1(0) and 2Æ� 1 2 (�2, �1) and the last limit follows

from Lemma 4.8. Similarly,

lim
n!1

1ffiffiffi
n

p
F�1(1=n)2

ð1�log n=n

log n=n

t1=2(1� t)1=2

f 2(F�1(t))
dt ¼ Æ2

1=4� Æ
lim
n!1

l(2)(log n=n)

l(2)(1=n)
¼ 0,

since l(2)(x) ¼ x3=2= f 2(F�1(x)) 2 RV2Æ�1=2(0) and 2Æ� 1
2
2 (�3

2
, �1

2
). Now we can prove

Claim 1 by showing that
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1

F�1(1=n)2

ð1�log n=n

log n=n

u2n(t)

f 2(F�1(t))
dt!

Pr
0:

But taking expectations, we can see that it suffices to show that

lim
n!1

1

F�1(1=n)2
ð1�log n=n

log n=n

t(1� t)

f 2(F�1(t))
dt ¼ 0:

Using again regular variation properties and Lemma 4.8, we have that

lim
n!1

1

F�1(1=n)2

ð1�log n=n

log n=n

t(1� t)

f 2(F�1(t))
dt ¼ jÆj lim

n!1

l(3)(log n=n)

l(3)(1=n)
¼ 0,

now with l(3)(x) ¼ x2= f 2(F�1(x)) 2 RV�2Æ(0) and �2Æ 2 (�1, 0). This completes the proof

of Claim 1.

Proof of Claim 2. We will show that (V (1)
n )1=2 � (W (1)

n )1=2 !Pr 0. It suffices to show that

1

F�1(1=n)2

ðlog n

0

(F�1(S
(1)
[ y]þ1=Snþ1)� F�1(S

(1)
[ y]þ1=n))

2dy !Pr 0:

For ease of notation we will omit the superscript from S
(1)
[ y]þ1. Similarly as in (2.12), we

consider a Taylor expansion

F�1 S j

Snþ1

� �
� F�1 S j

n

� �
¼ 1� Snþ1

n

� �
S j

Snþ1

1

f F�1
S j

n

� �� �

þ 1

2
1� Snþ1

n

� �2
S j

Snþ1

� �2
f 9(F�1(�))

f 3(F�1(�))
,

for some � between S j=Snþ1 and S j=n, which enables us to write, using the obvious

analogues of (2.16) and (2.17), and the fact that supn>1nE 1� Snþ1=nð Þ2, 1, that				F�1 S j

Snþ1

� �
� F�1 S j

n

� �				 < OP(1)
1ffiffiffi
n

p S j=n

f (F�1(S j=n))
þ 1

n

S j=n

f (F�1(S j=n))

� �

< OP(1)
1ffiffiffi
n

p S j=n

f (F�1(S j=n))
,

where OP(1) stands for a stochastically bounded sequence which does not depend on

j 2 [1, log n]. We now take E . 0 such that 2ª� 3þ E , 0. From this bound and regular

variation (Lemma 4.8(iii)) we obtain that
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ðlog n

0

F�1 S[ y]þ1

Snþ1

� �
� F�1 S[ y]þ1

n

� �� �2

dy < OP(1)
1

n

ðlog n

0

S[ y]þ1=n
� �2

f 2(F�1(S[ y]þ1=n))
dy

< OP(1)
1

n

X[log nþ1]

j¼1

S j=n
� �2

f 2(F�1(S j=n))

< OP(1)
1

n

X[log nþ1]

j¼1

S j

n

� �2�2ª�E

< OP(1)n
2ª�3þE

X[log nþ1]

j¼1

j2�2ª�E ! 0:

This completes the proof of Claim 2 (note that we need not divide by F�1(1=n)2 to obtain

the equivalence of the two sequences if ª , 3
2
; if ª ¼ 3

2
that division still gives the result).

Proof of Claim 3. We set

W
(1)
n,k ¼

n

E(1=n)

ð k=n
0

F�1 1

n

Xnþ1

j¼1

bn, j(t)� j

 !
� F�1(t)

 !2

dt

and

Wk ¼
2c2

jÆj(1þ c2)

ð k
0

(S
(1)
[ y]þ1)

Æ � yÆ
� �2

dy:

With the change of variable t ¼ y=n we can rewrite W
(1)
n,k as

W
(1)
n,k ¼ bn

ð k
0

F�1(S
(1)
[ y]þ1=n)� F�1(y=n)

F�1(1=n)

 !2

dy,

where bn ¼ F�1(1=n)2=E(1=n) ! 2c2=jÆj(1þ c2), and we conclude that, by regular

variation, W
(1)
n,k !PrWk . To prove that

W (1)
n !w

2c2

jÆj(1þ c2)

ð1
0

((S
(1)
[ y]þ1)

Æ � yÆ)2dy

it suffices, using a 3E argument, to show that

lim
k!1

lim sup
n!1

P(jW (1)
n,k � W (1)

n j . E) ¼ 0 (4:21)

for all E . 0. As in the proof of Claim 2, we consider a Taylor expansion

F�1 S[ y]þ1

n

� �
� F�1 y

n

� �
¼ S[ y]þ1 � y

n f (F�1(y=n))
þ 1

2

(S[ y]þ1 � y)2

n2
f 9(F�1(�))

f 3(F�1(�))
,
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for some � between S[ y]þ1=n and y=n, which enables us to write, using the obvious

equivalents of (2.16) and (2.17), and the fact that sup y>1E (S[ y]þ1 � y)=y1=2
� �

2 , 1, that				F�1 S[ y]þ1

n

� �
� F�1 y

n

� �				 < OP(1)
1ffiffiffi
n

p
ffiffiffi
y

p
=
ffiffiffi
n

p

f (F�1(y=n))
þ 1

n

1

f (F�1(y=n))

� �
,

where OP(1) stands for a stochastically bounded sequence which does not depend on

y 2 [k, log n]. From this bound we obtain that

jW (1)
n,k � W (1)

n j ¼ bn

F�1(1=n)2

ðlog n

k

F�1(S
(1)
[ y]þ1=n)� F�1(y=n)

� �2
dy

< OP(1)
1

F�1(1=n)2
1

n

ðlog n

k

y=n

f 2(F�1(y=n))
dyþ 1

n2

ðlog n

k

1

f 2(F�1(y=n))
dy

� �

¼ OP(1)
1

F�1(1=n)2

ðlog n=n

k=n

t

f 2(F�1(t))
dt þ 1

n

ðlog n=n

k=n

1

f 2(F�1(t))
dt

 !
:

From regular variation we obtain that

1

F�1(1=n)2

ðlog n=n

k=n

t

f 2(F�1(t))
dt þ 1

n

ðlog n=n

k=n

1

f 2(F�1(t))
dt

 !
! C1k

2�2ª þ C2k
1�2ª

and this, combined with the last estimate and the fact that 2� 2ª , 0, completes the proof of

(4.21) and, consequently, of Claim 3. h

5. Weighted Wasserstein tests of fit to location–scale families of
distributions

Finally, we apply the foregoing to weighted Wasserstein tests. Recall that

Rw
n ¼ W2

w(Fn, H)=� 2
w(Fn) relates to the quantile process vn via (1.11) (assuming

conditions (1.8)–(1.10)).

Theorem 5.1. Let w be a bounded non-negative measurable function satisfying condition

(1.8). Let H be a location–scale family of distributions as defined in the Introduction, such

that
Ð 1
0
(F�1(t))2w(t)dt , 1 for any (hence for all) F 2 H, let G0 2 H be chosen so as to

satisfy conditions (1.9) and (1.10) and let g0 ¼ G90. Assume the distribution functions F 2 H
and the weight w satisfies conditions (GH) and that, moreover,ð1

0

t(1� t)

f 2 F�1(t)ð Þ w(t)dt , 1: (5:1)

Then, under the null hypothesis F 2 H, we have
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nRw
n !

d

ð1
0

B2(t)

g20(G
�1
0 (t))

w(t)dt �
ð1
0

B(t)

g0(G
�1
0 (t))

w(t)dt

 !2

�
ð1
0

B(t)G�1
0 (t)

g0(G
�1
0 (t))

w(t)dt

 !2

: (5:2)

Note that the hypotheses on F 2 H are either satisfied by all or by none of the functions

in H.

Proof. By equivariance we can assume F ¼ G0. The result follows directly from Theorem

4.6(i) once we show that � 2
w(Fn) ! 1 in probability. By Theorem 4.6(i) kvnk2,w ¼ OP(1),

and therefore (recall F ¼ G0 and (1.10))

j�w(Fn)� 1j ¼ jkF�1
n k2,w � kF�1k2,wj < kF�1

n � F�1k2,w ¼ 1ffiffiffi
n

p kvnk2,w !
Pr

0:

h

If H in Theorem 5.1 were only a location family or only a scale family then the limit

would exhibit the loss of only one degree of freedom, that is, one of the last two integrals

would be absent from the limit in (5.2): see Csörgő (2002), where a theorem of this sort for

scale families is proved.

Theorem 5.2. Under the hypotheses of Theorem 5.1, except that condition (5.1) is now

replaced by the weaker conditions (2.10) andð1
0

ð1
0

(s ^ t � st)2

g20 G�1
0 (t)

� �
g20 G�1

0 (s)
� � w(s)w(t)ds dt , 1, (5:3)

we have

nRw
n �

ð1�1=n

1=n

t(1� t)

g20(G
�1
0 (t))

w(t)dt (5:4)

!
d

ð1
0

B2(t)� EB2(t)

g20(G
�1
0 (t))

w(t)dt �
ð1
0

B(t)

g0(G
�1
0 (t))

w(t)dt

 !2

�
ð1
0

B(t)G�1
0 (t)

g0(G
�1
0 (t))

w(t)dt

 !2

:

Proof. As above, we can take F ¼ G0. By Theorem 4.6(ii) properly modified to account for

the weighted integrals of the Brownian bridge (as done in Theorem 4.2), it suffices to prove

that

�w(Fn)!
Pr

1 and
1

� 2
w(Fn)

� 1

� �ð1�1=n

1=n

t(1� t)

f 2(F�1(t))
w(t)dt!

Pr
0,

which, by condition (2.10), reduces to proving
ffiffiffi
n

p
(� 2

w(Fn)� 1) ¼ OP(1): We have

ffiffiffi
n

p
(� 2

w(Fn)� 1) ¼ 1ffiffiffi
n

p kvnk2,w þ 2hvn, F
�1iw:

By checking the proof of Theorem 4.2 (by way of Theorem 3.9), it is easy to see that
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hun= f (F
�1), F�1iw,n !dhB= f (F�1), F�1iw,n (note that (1.10) implies F�1 2 L2(w(t)dt)).

Hence Proposition 2.5 gives hvn, F
�1iw ¼ OP(1). Likewise, by Theorem 4.6(ii), kvnk2,w is

shift convergent in law with shifts
Ð 1�1=n
1=n t(1� t)= f 2(F�1(t))w(t)dt which, by (2.10), are

o(
ffiffiffi
n

p
), so that kvnk2,w=

ffiffiffi
n

p
!Pr0. h

A version of this theorem for scale families is proved in Csörgő (2002), however, the

hypotheses there are stronger by factors of order log n or (log n)2, the integrals at the end-

points are not treated analytically and the proof is different (it relies on strong

approximations, which account for the stronger assumptions).

Next we consider convergence to a normal distribution. This case is less interesting in

connection with testing since, as indicated in the Introduction,
Ð 1��
� v2n(t)w(t)dt

!d

Ð 1��
� B2(t)= f 2(F�1(t))w(t)dt if f does not vanish on supp F, and therefore, if we

divide by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(1=n)

p
! 1, as we must by Theorem 4.6(iii), this part of the statistic has no

influence on the limit. So, when a distribution satisfies the hypotheses of Theorem 4.6(iii)

(meaning that g ¼ f (F�1) is regularly varying with exponent 1, and L(x) with this g tends

to infinity), if one wishes to have a sensible test of fit, it is probably best to find a weight w

so that one can apply Theorem 5.1 or 5.2. Hence, we will only consider the normal

convergence case with weight w � 1.

Theorem 5.3. Let H be a location–scale family of distributions and assume for simplicity

that the distribution G0 2 H with mean 0 and variance 1 is the distribution function of a

symmetric random variable. Assume that the following conditions hold for some (hence for

all) F 2 H: F is twice differentiable on its open support (aF , bF), with f (x) ¼ F9(x) . 0; F

satisfies condition (2.7); and the function g :¼ f (F�1) is either regularly varying with unit

exponent at 0 and limx!0 g(x)=g(1� x) ¼ c 2 [0, 1), or is regularly varying with unit

exponent at 1 and limx!0 g(1� x)=g(x) ¼ c 2 [0, 1); and L(x) ! 1 as x ! 0. Then, under

the null hypothesis F 2 H,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(1=n)

p nRn �
ð1�1=n

1=n

t(1� t)

g20 G�1
0 (t)

� � dt
 !

!
d
Z, (5:5)

where Z is standard normal and nRn :¼ nRw
n is as defined in (1.11) for w � 1.

Proof. As in the previous two theorems, we can assume F ¼ G0. Since f (F�1) is regularly

varying of unit exponent at 0 and at 1, it follows that F�1(x) ¼
Ð x
1=2 dt= f (F

�1(t)) is slowly

varying at 0 and at 1. Hence,
Ð 1
0
jF�1(t)jrdt , 1 for all r 2 R and therefore, all the

moments
Ð1
0

jxjrdF(x), r . 0, are finite. In particular, if X i are i.i.d. with distribution F, then

ð1
0

vn(t)dt ¼
1ffiffiffi
n

p
Xn
i¼1

(X i � EX i) ¼ OP(1)

by the central limit theorem, and � 2(Fn) ! 1 almost surely by the law of large numbers. So

it suffices to show that
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(1=n)

p kvnk22 � hvn, F
�1i2 �

ð1�1=n

1=n

t(1� t)

f 2 F�1(t)ð Þ dt
" #

!
d
Z:

The arguments in the proof of Theorem 4.6(iii) not only show that here we can replace kvnk22
by kun= f (F

�1)k2,n, but also that hvn, F
�1i2 can be replaced by hun= f (F

�1), F�1in;
therefore, the theorem will follow from Theorem 4.6(iii) (hence from Theorem 4.4) if we

show that the sequence

un

f (F�1)
, F�1


 �
n

:¼
ð1�1=n

1=n

un(t)F
�1(t)

f (F�1(t))
dt, n 2 N, (5:6)

is stochastically bounded (as it will then tend to zero upon dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(1=n)

p
). For this

purpose, we show that the product of the nth variable in (5.6) by Snþ1=n has expected value

tending to zero and variance dominated by a constant independent of n. By (2.2), Lemma

2.1(ii) and slow variation of F�1 at 0 and 1, we have

				E Snþ1

n

un

f (F�1)
, F�1


 �
n

				 ¼
				E
ð1�1=n

1=n

F�1(t)
Pnþ1

i¼1 an,i�iffiffiffi
n

p
f F�1(t)ð Þ dt

				
<

1ffiffiffi
n

p
ð1�1=n

1=n

jF�1(t)j
f F�1(t)ð Þ dt

¼ 1ffiffiffi
n

p
ð F �1(1�1=n)

F �1(1=n)

jujdu

¼ (F�1(1=n))2 þ (F�1(1� 1=n))2

2
ffiffiffi
n

p ! 0:

Let X be a random variable with distribution F. By Lemma 2.1(iii) and finiteness of the

absolute moments of X , we have
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var
Snþ1

n

un

f (F�1)
, F�1


 �
n

� �
¼ E

1ffiffiffi
n

p
ð1�1=n

1=n

F�1(t)
Pnþ1

i¼1 an,i(�i � 1)

f F�1(t)ð Þ dt

 !2

¼ 1

n

ð1�1=n

1=n

ð1�1=n

1=n

~KKn(s, t)F
�1(s)kF�1(t)

f F�1(s)ð Þ f F�1(t)ð Þ ds dt

< 6

ð1�1=n

1=n

ð t
1=n

s(1� t)jF�1(s)kF�1(t)j
f F�1(s)ð Þ f F�1(t)ð Þ ds dt

¼ 6

ð F �1(1�1=n)

F �1(1=n)

ðv
F �1(1=n)

F(u)(1� F(v))jukvjdu dv

< 6

ð0
F �1(1=n)

ðv
F �1(1=n)

F(u)jukvjdu dv

þ
ðF �1(1�1=n)

0

ð0
F �1(1=n)

F(u)(1� F(v))jukvjdu dv

þ
ðF �1(1�1=n)

0

ðv
0

(1� F(v))jukvjdu dv

<
3

4
EX 4 þ (EX 2)2
� �

, 1,

where at the last step we use Fubini and integration by parts. h

As in Theorem 4.6(iii), symmetry of G0 is not necessary. Csörgő (2002) also proves a

result for correlation tests where the limit is normal, but only for the special case of

Weibull scale families.

Likewise, Theorem 4.7 can be used to obtain the limiting distribution of nRn when

f (F�1) is regularly varying at the end-points with exponent ª . 1, but we refrain from

doing so, to avoid too much repetition.

Example 5.1 Gauss–Laplace location–scale families. This is a modification of a result in

Csörgő (2002). Consider the distribution functions FÆ(x) from Example 4.1. In that example,

Theorem 5.1 with w � 1 holds for the location–scale family based on FÆ if and only if

Æ . 2, Theorem 5.2 with w � 1 holds if and only if 4=3 , Æ < 2, hence for the normal

distribution (which gives Shapiro–Wilk), and Theorem 5.3 with w � 1 holds for 0 , Æ < 4
3
,

in particular for the symmetric exponential distribution. As mentioned above, if the tail

probabilities are of different order, the largest dominates and the same conclusions apply to

the one-sided families.

Example 5.2 Testing fit to the Laplace location–scale family. It follows from Example 5.1

and the comments immediately before Theorem 5.3 that a weighted Wasserstein test would be
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convenient for the Gauss–Laplace location–scale family when the index Æ is between 0 and
4
3
. For any given Æ . 0, these families are (in terms of the densities):

HÆ ¼ F	,ª : f	,ª(x) :¼
Æ

2ªˆ(1=Æ)
e�j(x�	)=ªjÆ , x 2 R, 	 2 R, ª . 0

� �
:

The weight should approach zero near 0 and 1. For simplicity we will only present a test for

the Laplace family H1. Simple but tedious computations using the approximations in the

previous example show that a weight of order w(t) � 1=jlogt(1� t)j
 will allow us to apply

Theorem 5.1 if 
 . 1 and Theorem 5.2 if 1
2
, 
 < 1 (the determining conditions are (5.1),

which holds for all 
 . 1, and (5.5), which holds for 1
2
, 
 < 1). If w is too small near 0 and

1, we make the extreme part of the distribution count less, whereas possibly the limit has

more variability as the integral of B2 � EB2 is closer to being divergent. De Wet (2000)

convincingly suggests taking 
 ¼ 1 (see also Csörgő 2002). Specifically, we define

w(t) :¼ 1

log e=2t
I0, t<1=2 þ

1

log e=2(1� t)
I1=2, t<1

� �
=W

where

W :¼ e

ð1
1

u�1e�udu,

and set also

V ¼
ð1
0

u2

1þ u
e�udu:

Take G0 :¼ F
0,
ffiffiffiffiffiffiffiffi
W=V

p . Then w and G0 satisfy conditions (1.8)–(1.10), and the conditions

(GH) and (5.3) hold as well (but not (5.1)). Then, Theorem 5.2 gives that, under the null

hypothesis F 2 H1,

nRw
n �

2

V
log log

ne

2
�W

2

� �
!
d

1

V

ð1=2
0

B2(t)� EB2(t)

t2 log (e=2t)
dt þ

ð1
1=2

B2(t)� EB2(t)

(1� t)2log (e=2(1� t))
dt

 !

� 1

VW

ð1=2
0

B(t)

t log(e=2t)
dt þ

ð1
1=2

B(t)

(1� t)log(e=2(1� t))
dt

 !2

� 1

V 2

ð1=2
0

B(t)log 2t

t log(e=2t)
dt þ

ð1
1=2

B(t)log 2(1� t)

(1� t)log(e=2(1� t))
dt

 !2

:

Note added after submission

Written independently and submitted at about the same time, Csörgő (2003) also considers

weighted Wasserstein tests of fit to location–scale families. The methodology used is

different, and the assumptions are not exactly the same.
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0070382 (Giné) and CIRIT 2001SGR00174 and DGI MCYT BFM2003-00261 (Utzet).

References
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