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A very well-known traditional approach in discriminant analysis is to use some linear (or nonlinear)

combination of measurement variables which can enhance class separability. For instance, a linear (or

a quadratic) classifier finds the linear projection (or the quadratic function) of the measurement

variables that will maximize the separation between the classes. These techniques are very useful in

obtaining good lower dimensional view of class separability. Fisher’s discriminant analysis, which is

primarily motivated by the multivariate normal distribution, uses the first- and second-order moments

of the training sample to build such classifiers. These estimates, however, are highly sensitive to

outliers, and they are not reliable for heavy-tailed distributions. This paper investigates two

distribution-free methods for linear classification, which are based on the notions of statistical depth

functions. One of these classifiers is closely related to Tukey’s half-space depth, while the other is

based on the concept of regression depth. Both these methods can be generalized for constructing

nonlinear surfaces to discriminate among competing classes. These depth-based methods assume some

finite-dimensional parametric form of the discriminating surface and use the distributional geometry of

the data cloud to build the classifier. We use a few simulated and real data sets to examine the

performance of these discriminant analysis tools and study their asymptotic properties under

appropriate regularity conditions.
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1. Introduction

The aim of discriminant analysis is to find an appropriate function f (x) of the measurement

vector x ¼ (x1, x2, . . . , xd) that contains the maximum information about class separability.

In a two-class problem, this function f can be used to construct the separating surface

S ¼ fx : f (x) ¼ 0g between the two classes. For instance, in linear classification one tries

to determine a separating hyperplane S ¼ fx : ÆTxþ � ¼ 0g based on the training sample

observations. Several methods for choosing the projection vector Æ and the constant � from

the training sample are available in the literature (see, for example, Fukunaga 1990;

McLachlan 1992; Duda et al. 2000; Hastie et al. 2001). Similarly, in quadratic
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classification, one uses a quadratic separating surface S ¼ fx : xTˆxþ ÆTxþ � ¼ 0g, where
ˆ is a symmetric matrix to be chosen from the training sample in addition to Æ and �.
Fisher’s original approach in linear and quadratic discriminant analysis (LDA and QDA)

(see Fisher 1936) was primarily motivated by multivariate normal distribution of the

measurement vector x, and his estimates of Æ, � and ˆ were constructed using the mean

vectors and the dispersion matrices of the training samples. Under the assumption of

multivariate normally distributed data, LDA and QDA turn out to be the optimal Bayes

classifiers. However, since such methods require the estimation of Æ, � and ˆ using the

first- and second-order moments of the training samples, these procedures are not very

robust and happen to be highly sensitive to extreme values and outliers if they are present

in the training sample. When the assumption of normally distributed data is violated, LDA

and QDA may lead to a rather poor classification, especially if the observations follow

some distribution with heavy tails.

In this paper, we will study some linear and nonlinear classification methods that are based on

the notions of half-space depth (Tukey 1975) and regression depth (Rousseeuw and Hubert

1999). Over the last decade, various notions of data depth have emerged as powerful exploratory

and inferential tools for nonparametric multivariate analysis (see, for example, Liu 1990; Liu et

al. 1999; Vardi and Zhang 2000; Zuo and Serfling 2000a; Serfling 2002; Mosler 2002). Recently,

Christmann et al. (2002) used regression depth to construct linear classifiers in two-class

problems and investigated their statistical performance. They also carried out some comparative

studies of such linear classifiers with the classifiers built using support vector machines (see, for

example, Vapnik 1998; Hastie et al. 2001). Since the discriminant analysis tools investigated in

this paper are based on half-space and regression-depth functions, they are completely

distribution-free in nature. These classifiers use the distributional geometry of the multivariate

data cloud formed by the training sample to minimize the empirical misclassification rates, and

they are not dependent on any specific model for the underlying population distributions.

2. Description of the methodology

The half-space depth of a point in multidimensional space measures the centrality of that point

with respect to a multivariate distribution or a given multivariate data cloud. Regression depth,

on the other hand, is a concept of depth of a regression fit (i.e., a line or a hyperplane).

Hyperplanes are the simplest form of separating surface, which lead to linear discrimination

among the classes. We now describe how these two different depth-based linear classification

tools are built using a given training sample with two classes. Subsequently, we will generalize

these techniques to nonlinear classification as well as to multiclass discrimination problems.

2.1. Linear classification using half-space depth

The half-space depth (see, for example, Tukey 1975; Donoho and Gasko 1992) of a d-

dimensional observation x with respect to a multivariate distribution F is defined as the

minimum probability of a closed half-space containing x:
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HD(x, F) ¼ inf
H

PFfH : H is a closed half-space and x 2 Hg:

The sample version of this depth function is obtained by replacing F with the empirical

distribution function Fn. The half-space depth is affine invariant, and its sample version

uniformly converges to the population depth function when F is continuous. Different

properties of this depth function have been studied extensively in the literature (see, for

example, Nolan 1992; Donoho and Gasko 1992; He and Wang 1997; Zuo and Serfling

2000b).

Suppose that we have a two-class problem with univariate data. If the classes are well

separated, we would expect that most of the observed differences x1i � x2 j (x1i and x2 j
belong to two different classes for 1 < i < n1, 1 < j < n2) will have the same sign

(positive or negative). This idea can be easily extended to multivariate situations, where if

the two classes can be well discriminated by a linear discriminant function, we would

expect to have a linear projection ÆTx for which most of the differences ÆTx1i � ÆTx2 j have

the same sign. We propose to estimate Æ by maximizing

Un(Æ) ¼
I

n1n2

Xn1
i¼1

Xn2
j¼1

IfÆT(x1i � x2 j) . 0g,

where n ¼ (n1, n2) is the vector of sample sizes for the two classes, and I(:) is the usual

indicator function. Clearly, this maximization problem can be restricted to the set

fÆ : kÆk ¼ 1g. It can also be shown that this is actually a maximization problem over a

finite set (see, for example, Chaudhuri and Sengupta 1993), and the estimated linear

projection is orthogonal to the hyperplane, which defines the half-space depth of the origin

with respect to the data cloud formed by the differences x1i � x2 j in the d-dimensional space.

This generalized U-statistic Un(Æ) is a measure of linear separability between the two classes

along the direction Æ, and its maximum value over different possible choices of Æ can be

viewed as a multivariate analogue of the well-known Mann–Whitney U-statistic (or

Wilcoxon’s two-sample rank statistic). The maximizer of Un(Æ), denoted by bÆÆH, can be used

to construct a linear classifier of the form bÆÆT
Hxþ � ¼ 0 for some suitably chosen constant �.

The classification rule and, consequently, the corresponding misclassification probabilities

depend on the choice of this constant. After obtaining the estimate bÆÆH , �̂�H can be found by

minimizing with respect to � the average training set misclassification error ˜n(bÆÆH , �) given
by the expression

˜n(bÆÆH, �) ¼
�1

n1

Xn1
i¼1

IfbÆÆT
Hx1i þ � , 0g þ �2

n2

Xn2
i¼1

IfbÆÆT
Hx2i þ � . 0g,

where �1 and �2 are the prior probabilities for the two classes.

2.2. Linear classification using regression depth

Regression depth (see, for example, Rousseeuw and Hubert 1999; Bai and He 1999) gives

the depth of a ‘fit’ determined by a vector �þ ¼ (�1, . . . , �d , �0) 2 Rdþ1 of coefficients in a

linear regression framework. Given a data cloud �n ¼ [fxi ¼ (xi1, xi2, . . . , xid), yig;
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i ¼ 1, 2, . . . , n], �þ is called a ‘non-fit’ to �n if and only if there exists an affine

hyperplane V in the x-space such that no xi belongs to V , and the residuals

ri(�þ) ¼ yi � �T
þ(xi, 1) are all positive in one open half-space (i.e., one side of V ) in

the x-space and all negative in the complementary open half-space (i.e., the other side of

V ). The regression depth of a ‘fit’ �þ is defined as the minimum number of observations

that need to be removed to make it a ‘non-fit’.

Recently, Christmann and Rousseeuw (2001) and Christmann et al. (2002) used this

notion of regression depth in a binary regression context to construct linear classifiers for

two-class problems. If we take the class labels (‘0’ or ‘1’) as the values of the response

variable y, and consider a ‘fit’ �þ ¼ (0, 0, . . . , 0, 0:5), �þ will be a non-fit to �n if and

only if there exists in the x-space a hyperplane V , which completely separates the data

points from the two classes. Hence, the regression depth of the ‘fit’ �þ can be viewed as

the minimum number of misclassifications that can be achieved by a separating the

hyperplane V in the x-space.

Since Christmann et al. (2002) considered only the problem of determining the separating

hyperplane by minimizing the total count of misclassified observations, their linear classifier

is empirically optimal when the two competing classes have prior probabilities proportional to

their training sample sizes. In the general case, one can properly adjust the weights for the

different observations and define the weighted regression depth of a ‘fit’ Æþ as the minimum

amount of weights that need to be removed to make it a ‘non-fit’. If the separating

hyperplane V is of the form V ¼ fx : ÆT x þ � ¼ 0g, the weighted regression depth of �þ
eventually turns out to be the average training sample misclassification probability

˜n(Æ, �) ¼
�1

n1

Xn1
i¼1

IfÆTx1i þ � , 0g þ �2

n2

Xn2
i¼1

IfÆTx2i þ � . 0g:

Here, the minimization of ˜n(Æ, �) with respect to Æ and � gives the estimates bÆÆR and �̂�R

defining the separating hyperplane to be used for classification. Once again, it is clear that the

above minimization problem can be restricted to f(Æ, �) : k(Æ, �)k ¼ 1g. It is also

straightforward to verify that the minimization of ˜n(Æ, �) actually turns out to be an

optimization problem over a finite set (see, for example, Rousseeuw and Struyf 1998).

Christmann et al. (2002) discussed the fact that the maximum likelihood estimate in a

logistic regression problem exists only when there is some overlap in the covariate space

(the x-space) between the data points from the two classes corresponding to the values 0

and 1 of the response variable (see, for example, Albert and Anderson 1984; Santner and

Duffy, 1986). In completely separable cases, there exists no finite maximum likelihood

estimate for the regression coefficient vector. If the observations from the two classes are

completely separable, it is fairly easy to see that (bÆÆR, �̂�R) is a minimizer of ˜n(Æ, �) if and

only if bÆÆR maximizes Un(Æ), and hence this bÆÆR is also an bÆÆH .

2.3. Depth-based classification using nonlinear surfaces

In practice, linear classifiers may be inadequate when the class boundaries are more

complex in nature. In such situations, one has to depend on nonlinear separating surfaces
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for discriminating among the classes. To construct such surfaces, we can project the

observations xi ¼ (xi1, xi2, . . . , xid) into a higher-dimensional space to have the new vector

of measurement variables zi ¼ f1(xi), f 2(xi), . . . , f m(xi)ð Þ, and perform a linear classifica-

tion on that m-dimensional space. For instance, if we project the observations to the space

of quadratic functions, it can be viewed as a linear classification with m ¼ d þ d
2

� �
measurement variables, which eventually give rise to a quadratic separation in the original

d-dimensional space. The quantities Un(Æ) and ˜n(Æ, �) can be optimized as before to give

appropriate estimates of Æ (Æ 2 Rm) and �, which are to be used to form the discriminating

surface in a two-class problem.

As we have already mentioned, traditional methods of LDA and QDA are primarily

motivated by multivariate normal distributions. As a matter of fact, in a two-population

problem, the moment-based linear discriminant function is closely related to Hotelling’s T 2

or the Mahalanobis distance, which are well known to be sensitive to possible outliers

present in the data. On the other hand, the distribution-free depth-based classifiers discussed

above are quite robust against such outliers, and we will now illustrate this using a small

example. We consider a binary classification problem where both the population

distributions are bivariate normal with mean vectors �1 ¼ (0, 0) and �2 ¼ (2, 2), and they

have a common dispersion matrix � ¼ I2. A random sample of size 50 is generated from

each of the classes to form the training sample. As the optimal Bayes rule is linear for this

problem, a good linear classifier is expected to give a good separation of the data from the

two populations. Here the traditional (shown as LDA) and the two depth-based linear

classifiers (shown as H-depth and R-depth) performed quite well in discriminating between

the two populations (see Figure 2.1(a)). But the scenario changes completely when five of

the class-1 observations are replaced by outliers generated from N2(10, 10, 1, 1, 0). In the

presence of this contamination, the performance of the traditional moment-based linear

discriminant function deteriorates drastically (see Figure 2.1(b)) but the two depth-based

Figure 2.1. Different linear classifiers for (a) normal and (b) perturbed normal distributions.
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distribution-free classifiers remain more or less unaffected. For such a bivariate example, the

outliers are clearly visible in the scatter-plot, but for multivariate data in higher dimensions

that may not be the case. So, it is important to have classifiers that have some automatic

safeguards against such outliers which may or may not be easily identified using any

avaialable diagnostic tool.

3. Large-sample properties of depth-based classifiers

We will now discuss the asymptotic behaviour of the classifiers based on half-space and

regression depths as the size of the training sample grows to infinity. As before, suppose

that we have a two class problem, and x11, x12, . . . , x1n1 and x21, x22, . . . , x2n2 are two

independent sets of d-dimensional independent and identically distributed observations from

two d-dimensional competing populations. Let z11, z12, . . . , z1n1 and z21, z22, . . . , z2n2 be

their transformations into the m-dimensional space as described in Section 2.3; bÆÆH is a

maximizer of Un(Æ) while bÆÆR, �̂�R are minimizers of ˜n(Æ, �) as before.

Theorem 3.1. Assume that as N ¼ n1 þ n2 ! 1, n1=N ! º(0 , º , 1). Define U (Æ) ¼
PrfÆT(z1i � z2 j) . 0g and ˜(Æ, �) ¼ �1PrfÆTz1i þ � , 0g þ �2PrfÆTz2 j þ � . 0g. Then,

as N ! 1, we have

(i) jUn(bÆÆH )�maxÆ U (Æ)j!a:s: 0 as well as jU (bÆÆH )�maxÆ U (Æ)j!a:s: 0, and
(ii) j˜n(bÆÆR, �̂�R)�minÆ,� ˜(Æ, �)j!

a:s:
0 as well as j˜(bÆÆR, �̂�R)�minÆ, � ˜(Æ, �)j!

a:s:
0:

Further, when there exist unique optimizers Æ�H and (Æ�R, ��R) for U (Æ) and ˜(Æ, �)
respectively, and U and ˜ are continuous functions of their arguments, bÆÆH converges to

Æ�H and (bÆÆR, �̂�R) converges to (Æ�R, ��R) almost surely as N ! 1.

Here, U (Æ) is a measure of linear/nonlinear separability between two competing

multivariate distributions along the direction Æ, and maxÆ U (Æ) measures the maximum

linear/nonlinear separability between two multivariate populations. Note also that ˜(Æ, �) is
the average misclassification probability when the surface ÆTzþ � ¼ 0 is used to

discriminate between the two competing populations, and minÆ,� ˜(Æ, �) is the best average

misclassification probability achievable using such linear/non-linear classifiers. It will be

appropriate to point out here that ˜(bÆÆR, b��R) can be viewed as the conditional average

misclassification probability given the training sample, when the surface bÆÆT
Rzþ b��R ¼ 0 is

used to classify a future observation coming from one of the two competing populations. A

proof of this theorem will be given in the Appendix. We state below some interesting and

useful results for depth-based linear and nonlinear classifiers that follow from this theorem.

Corollary 3.1. The average misclassification probability of the regression depth-based linear

(or nonlinear) classifier asymptotically converges to the best possible average

misclassification rate that can be obtained using a linear (or nonlinear) classifier as the

training sample size tends to infinity. Further, when the best linear (or nonlinear) classifier is
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unique, the regression depth-based linear (or nonlinear) classifier itself converges to that

optimal discriminating hyperplane (or nonlinear surface) almost surely.

Corollary 3.2. Suppose that the population densities f 1 and f2 of the two competing classes

are elliptically symmetric with a common scatter matrix �. Also assume that

f i(x) ¼ g(x� �i)(i ¼ 1, 2) for some location parameters �1 and �2 and a common

elliptically symmetric density function g satisfying g(kx) > g(x) for every x and 0 , k , 1.

Then, under the conditions assumed in Theorem 3.1, the average misclassification probability

for the regression depth-based linear classifier converges to the optimal Bayes error as the

training sample size tends to infinity, provided that the prior probabilities of the two classes

are equal. Further, in the equal prior case, if the Bayes classifier is unique and U (Æ) has a

unique maximizer, the same holds for the half-space depth-based classifier, and in this case

both of these depth-based classifiers themselves converge almost surely to that Bayes

classifier. When the prior probabilities are unequal, the above convergence results for depth-

based linear classifiers remain true for normally distributed populations with a common

dispersion matrix but different mean vectors.

Corollary 3.3. Suppose that the population distributions f 1 and f2 both belong to the class

of elliptically symmetric multivariate normal or Pearson type VII distributions, and they are

of the same form, except possibly for their location and scatter parameters. Then the average

misclassification rate of the quadratic classifier constructed using regression depth converges

to the optimal Bayes error, and the quadratic classifier itself converges almost surely to the

optimal Bayes classifier as the training sample size grows to infinity.

Recall that the probability density function of a d-dimensional elliptically symmetric

Pearson type VII distribution is given by

f (x) ¼ (��)�d=2 ˆ(Ł)

ˆ(Ł� d=2)
j�j�1=2f1þ ��1(x� �)T��1(x� �)g�Ł,

where � and � are location and scatter parameters, � . 0 and Ł . d=2 (see, for example,

Fang et al. 1989). When Ł ¼ (�þ d)=2 and � is an integer, the corresponding distribution is

known as the multivariate t distribution with � degrees of freedom. In the special case � ¼ 1,

we obtain the multivariate Cauchy distribution. Because of the heavy tails of such

multivariate distributions, the traditional LDA and QDA would not perform satisfactorily in

discriminating among such distributions. However, the above theorem and corollaries imply

that the depth-based linear and quadratic classifiers can achieve good misclassification rates

for distributions with exponential tails such as the multivariate normal as well as for

multivariate Cauchy and other distributions with heavy polynomial tails.

We conclude this section by pointing out an important fact related to the asymptotic

convergence results stated in this section. All of these results have been stated for the case

where the dimension m of the projection space does not vary with the sample size N . On

the other hand, in some nonparametric discriminant analysis methods, such as those based

on support vector machines (Vapnik 1998) or neural nets (Ripley 1996), the dimension of

the projection space usually grows with the sample size. For the depth-based method also
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one may allow this kind of flexibility with respect to the choice of the discriminating

surface. It will be clear from the proofs given in the Appendix that if m grows with N in

such a way that, for all positive values of c, we have
P

N>1N
2me�cN , 1, the convergence

results in (i) and (ii) in Theorem 3.1 hold good. For instance, if m grows at the rate of Nr

for any 0 , r , 1, these convergence results remain valid.

4. Data-analytic implementation

As we have already observed in Section 2, maximization of Un(Æ) with respect to Æ
requires the computation of the half-space depth of the origin with respect to the data cloud

formed by the m-dimensional vectors of differences z1i � z2 j(i ¼ 1, 2, . . . , n1; j ¼ 1,

2, . . . , n2). It is a finite maximization problem (see, for example, Chaudhuri and Sengupta

1993); however, maximization by complete enumeration would lead to computational

complexity of order O(n2m
s
) where ns ¼ maxfn1, n2g. An algorithm due to Rousseeuw and

Ruts (1996) can reduce the computational complexity to order O(n
2(m�1)
s log ns). Similarly,

maximization of ˜n(Æ, �) with respect to Æ and � has computational complexity

O(nm
s
log ns). Rousseeuw and Struyf (1998) provided some algorithms for computing

location depth and regression depth. Other optimization algorithms for regression depth are

also available in Rousseeuw and Hubert (1999) and in Christmann et al. (2002).

4.1. Optimization of Un(Æ) and ˜n(Æ, �)

Recall from Sections 2.1 and 2.2 that the maximization of Un(Æ) can be restricted to Æ with

kÆk ¼ 1 and the minimization of ˜(Æ, �) can be restricted to (Æ, �) with k(Æ, �)k ¼ 1.

However, since the order of the computational complexity increases rapidly with the

dimension m, exact optimization of Un(Æ) and ˜n(Æ, �) is not feasible for high-dimensional

problems, and all one can do is resort to some approximate optimization. In this paper, we

have used a procedure in which the indicator functions appearing in the expressions for Un

and ˜n are approximated by suitably chosen smooth functions. This approximation allows

us to use the derivatives to find out the direction of steepest ascent/descent of the objective

function to be optimized. A very simple approximation for the indicator function I(x . 0) is

the logistic function 1=(1þ e� tx) with large positive t. Clearly, an insufficiently large value

of t will render the approximation inaccurate. On the other hand, a very large value of t

will make the approximation quite accurate but will make the numerical optimization using

steepest ascent/descent numerically rather unstable. We have observed that a greater degree

of numerical stability in the optimization algorithm can be achieved even for fairly large

values of t if all measurement variables are standardized before the approximations are

done. In all our numerical studies reported in the next two sections, we have found that if

we use 5 < t < 10 after standardizing the measurement variables, the average misclassifica-

tion errors for the resulting procedures remain more or less the same, and they are fairly

low. Consequently, we have reported the best values obtained in that range. For linear

classification in the bivariate case, where exact computation of Un(Æ) and ˜n(Æ, �) is easy,
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we have compared the performance of the exact and the approximate versions of these

depth-based classification methods and found them to achieve fairly similar average

misclassification rates. In order to cope with the problem of possible presence of several

local minima, we have always run our approximate versions of the optimization algorithms

a few times starting from different random initial points.

In the case of classifiers based on half-space depth, after estimating Æ, we need to

estimate � from the training sample. This is done by enumerating the order statistics of the

projected data points bÆÆT
Hz1i and bÆÆT

Hz2 j (1 < i < n1, 1 < j < n2) along the estimated

direction bÆÆH . Fortunately, since we use linear projections, the computational complexity in

obtaining the estimate b��H does not increase with the dimension m.

4.2. Generalization of the procedure for multiclass problems

In a k-class (k . 2) problem, to arrive at the final decision, one can use the method of

majority voting (see, for example, Friedman 1996), where binary classification is performed

for each of the k
2

� �
pairs of classes, and then an observation is assigned to the population

which has the maximum number of votes. However, this voting method may lead to some

regions of uncertainty where more than one population can have the maximum number of

votes. For instance, in a three-class problem we may have a circular situation where each of

the classes can have exactly one vote. When such situations occur, we can use the method

of pairwise coupling as given in Hastie and Tibshirani (1998). Pairwise coupling is a

method for combining the posterior weights of different populations obtained in different

pairwise classifications. Recall that in our case, for any pairwise classification, an

observation x is classified depending on the sign of ÆTzþ �. So, if g is some

monotonically increasing function on the real line satisfying 0 < g(x) < 1, g(0) ¼ 0:5 and

g(�x) ¼ 1� g(x) for every x 2 R, we can use g(ÆTzþ �) as a measure of the strength in

favour of the class determined by the inequality ÆTzþ � . 0. This can be taken as some

kind of estimate for the posterior weight in favour of that class in our pairwise comparison.

Similarly, 1� g(ÆTzþ �) can be used as an estimate for the posterior weight for the class

determined by the inequality ÆTzþ � , 0. Having obtained these posterior weights from

pairwise comparisons, coupling can be conveniently used to obtain the combined weights

for each of the k populations, and the observation can be classified to the population having

highest combined posterior weight. However, we have applied pairwise coupling only for

those rare observations which were not classified uniquely by the method of majority

voting. In all our numerical studies reported in the following two sections, for coupling we

have taken g to be the simple logistic function, g(x) ¼ 1=(1þ e�x). This choice is

subjective and many other choices may possibly lead to similar results. Note that the

logistic function used in approximate computation of depth as described in Section 4.1 has

nothing to do with the choice of g(x) here.
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5. Results on simulated examples

In this section, we report our findings from some simulation studies that illustrate the

performance of depth-based classifiers as compared with traditional LDA and QDA. In all

our simulated examples, we have restricted ourselves to two-class problems in which the

priors for both populations are taken to be equal.

We first consider spherically symmetric multivariate normal and Cauchy distributions

(with � ¼ I), which differ only in their location parameters. To make our examples simpler,

we choose the location parameters �1 ¼ (0, 0, . . . , 0) and �2 ¼ ( �, �, . . . , �), where �
takes the values 1 and 2 in our experiments. For each of these examples, we generated 100

sets of training samples, taking equal numbers of observations (either 50 or 100) from both

the classes, and we used 2000 observations (1000 from each class) to form each test-set.

Average test-set misclassification probabilities and their standard errors over these 100

simulation runs are reported in Tables 5.1 and 5.2. Optimal Bayes errors are also given to

facilitate the comparison. For two-dimensional problems, we present the results for the

depth-based classifiers based on the exact and the approximate computation of the linear

classifiers, and they do not seem to have significantly different performance. This is very

encouraging as the approximate algorithms run very fast even for fairly high-dimensional

problems. Henceforth we will write H-depth to denote the half-space depth and R-depth to

denote the regression depth in all the tables and subsequent discussion.

As the optimal Bayes rules are linear in the case of the above-mentioned spherically

symmetric populations, good linear classifiers are expected to have error rates very close to

the optimal Bayes risk. When the underlying distributions are multivariate normal, the

traditional LDA performed very well, as one would expect. However, the depth-based

methods also had a decent and comparable performance. But, in the case of the multivariate

Cauchy distribution, the depth-based classifiers clearly outperformed LDA, and their

performance was far closer to the optimal Bayes classifier than that of LDA.

Further, the performance of LDA was observed to deteriorate drastically when we added

a small perturbation to the normally distributed data. We tried examples in which data in

class 2 were taken to be normally distributed as before, and 10% of the observations in

class 1 were replaced by observations having N (10�2, I) distributions. LDA in this case

performed very poorly compared to both of the depth-based classification techniques. Notice

that the optimal Bayes rule is not linear in this case. Hence, none of the linear classifiers

could achieve the accuracy of the optimal Bayes classifier.

The results obtained in the case of quadratic discrimination are reported in Table 5.3, and here

too we found similar behaviour of the competing classifiers as in the case of linear classification.

We used the same mean vectors as before but took two different scatter matrices for the two

competing populations (with distributions normal or Cauchy), namely �1¼ I and �2 ¼ 4I. The

traditional QDA performed well in discriminating multivariate normal populations, but its

performance turned out to be very poor in the case of multivariate Cauchy populations as well as

multivariate perturbed normal populations. The two depth-based quadratic classifiers, on the

other hand, showed decent performance in the case of normally distributed data, and had

average misclassification rates much closer to the optimal Bayes risks than the error rates of

QDA in the case of multivariate Cauchy and perturbed normal distributions.
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Table 5.1 Results on linear discrimination: average misclassification rates (percentages) with standard errors (dimension 2)

H-depth R-depth

Bayes

risk n LDA Exact Approx. Exact Approx.

Normal � ¼ 1 23.98 50 24.40 (0.10) 25.21 (0.14) 25.19 (0.15) 25.44 (0.15) 25.42 (0.13)

100 24.21 (0.10) 24.80 (0.10) 24.72 (0.13) 25.11 (0.12) 24.88 (0.13)

� ¼ 2 7.87 50 8.23 (0.07) 8.96 (0.11) 8.91 (0.11) 9.15 (0.15) 8.99 (0.11)

100 8.11 (0.07) 8.56 (0.11) 8.48 (0.11) 8.62 (0.09) 8.57 (0.09)

Cauchy � ¼ 1 30.40 50 43.81 (0.95) 32.45 (0.26) 32.51 (0.24) 32.45 (0.25) 32.50 (0.27)

100 41.95 (0.98) 31.78 (0.15) 31.80 (0.15) 31.77 (0.15) 31.59 (0.14)

� ¼ 2 19.58 50 32.02 (1.34) 21.11 (0.19) 21.22 (0.19) 21.01 (0.16) 20.92 (0.15)

100 33.19 (1.31) 20.83 (0.15) 20.77 (0.14) 20.60 (0.13) 20.43 (0.11)

Perturbed � ¼ 1 22.71 50 50.75 (0.53) 29.15 (0.15) 28.96 (0.15) 29.21 (0.16) 29.20 (0.16)

normal 100 50.28 (0.53) 28.55 (0.12) 28.65 (0.13) 28.66 (0.13) 28.70 (0.12)

� ¼ 2 7.46 50 49.69 (0.25) 13.39 (0.10) 13.33 (0.11) 13.52 (0.11) 13.29 (0.09)

100 50.41 (0.36) 12.98 (0.09) 12.97 (0.09) 13.02 (0.09) 12.87 (0.08)
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In all these simulated examples, the two depth-based classifiers performed fairly similarly

except for quadratic classification in the perturbed normal distribution case, where the H-

depth based classifier had a small edge over the R-depth based classifier for all sample sizes

and all dimensions.

6. Results from the analysis of benchmark data sets

We will now investigate the performance of the depth-based classifiers on six well-known data

sets, all but the first of which are available from http://www.statlib.cmu.edu. In the case of the

first two data sets (the vowel data and the synthetic data), there are well-defined training and test-

sets. For them, we have reported the performance of different competing classifiers on those test-

sets. In each of the remaining four cases, we have divided the data randomly into two parts to

form training and test samples. This random division is carried out 1000 times to generate 1000

different partitions for each data set. Average test-set misclassification errors over these 1000

Table 5.2. Results on linear discrimination: average misclassification rates (percentages) with standard

errors (dimensions 3 and 4)

d ¼ 3 d ¼ 4

� ¼ 1 � ¼ 2 � ¼ 1 � ¼ 2

Normal Bayes risk 19.32 4.16 15.87 2.28

LDA 20.65 (0.16) 4.76 (0.07) 17.32 (0.15) 2.72 (0.06)

n ¼ 50 H-depth 21.00 (0.15) 5.09 (0.10) 17.57 (0.15) 3.59 (0.10)

R-depth 21.22 (0.16) 5.18 (0.10) 18.04 (0.18) 3.31 (0.08)

LDA 19.64 (0.09) 4.28 (0.05) 16.33 (0.09) 2.42 (0.03)

n ¼ 100 H-depth 20.05 (0.12) 4.75 (0.07) 16.78 (0.12) 3.06 (0.07)

R-depth 20.37 (0.12) 4.73 (0.07) 17.14 (0.13) 2.90 (0.06)

Cauchy Bayes risk 27.29 16.67 24.98 14.73

LDA 40.15 (0.87) 26.96 (1.14) 37.36 (0.81) 23.85 (0.79)

n ¼ 50 H-depth 30.03 (0.26) 18.79 (0.19) 28.50 (0.25) 17.43 (0.19)

R-depth 29.68 (0.23) 18.38 (0.19) 27.59 (0.23) 16.87 (0.18)

LDA 39.21 (0.90) 27.67 (0.98) 37.21 (0.87) 26.98 (1.19)

n ¼ 100 H-depth 29.22 (0.18) 18.03 (0.14) 27.35 (0.22) 16.65 (0.13)

R-depth 28.87 (0.15) 17.61 (0.12) 26.93 (0.16) 16.25 (0.11)

Perturbed Bayes risk 18.32 3.95 15.04 2.15

normal LDA 50.28 (0.23) 50.14 (0.15) 49.99 (0.15) 50.00 (0.12)

n ¼ 50 H-depth 24.60 (0.13) 10.08 (0.11) 21.87 (0.15) 8.52 (0.12)

R-depth 24.89 (0.17) 9.99 (0.09) 22.28 (0.17) 8.46 (0.11)

LDA 49.71 (0.27) 50.04 (0.15) 49.98 (0.13) 49.96 (0.11)

n ¼ 100 H-depth 24.23 (0.11) 9.65 (0.08) 21.02 (0.11) 8.00 (0.06)

R-depth 24.52 (0.12) 9.48 (0.06) 21.26 (0.12) 7.85 (0.07)
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Table 5.3. Results on quadratic discrimination: average misclassification rates (percentages) with standard errors

d ¼ 2 d ¼ 3 d ¼ 4

� ¼ 1 � ¼ 2 � ¼ 1 � ¼ 2 � ¼ 1 � ¼ 2

Bayes risk 22.03 13.31 16.62 8.34 12.89 5.37

QDA 23.07 (0.10) 13.75 (0.09) 17.97 (0.10) 9.13 (0.07) 14.80 (0.13) 6.41 (0.08)

Normal n ¼ 50 H-depth 25.08 (0.21) 14.99 (0.28) 20.40 (0.22) 11.18 (0.19) 17.13 (0.25) 8.65 (0.20)

R-depth 25.09 (0.20) 15.35 (0.18) 20.31 (0.20) 10.99 (0.18) 16.99 (0.21) 8.30 (0.17)

QDA 22.55 (0.10) 13.53 (0.07) 17.36 (0.09) 8.67 (0.06) 13.86 (0.09) 5.80 (0.06)

n ¼ 100 H-depth 23.61 (0.14) 14.24 (0.11) 18.69 (0.15) 10.05 (0.13) 15.22(0.13) 7.32 (0.13)

R-depth 23.85 (0.14) 14.58 (0.11) 18.73 (0.14) 9.94 (0.12) 15.18 (0.13) 7.17 (0.11)

Bayes risk 30.92 22.97 28.36 19.84 26.49 17.76

QDA 46.63 (0.39) 45.86 (0.55) 46.13 (0.43) 43.59 (0.58) 45.08 (0.44) 43.47 (0.65)

Cauchy n ¼ 50 H-depth 34.70 (0.24) 26.12 (0.19) 32.58 (0.22) 23.43 (0.21) 31.17 (0.23) 21.36 (0.24)

R-depth 34.29 (0.26) 26.11 (0.20) 33.48 (0.27) 23.45 (0.20) 31.05 (0.23) 22.12 (0.25)

QDA 48.08 (0.32) 46.90 (0.34) 47.50 (0.32) 46.89 (0.39) 46.29 (0.30) 44.84 (0.41)

n ¼ 100 H-depth 33.24 (0.16) 25.02 (0.14) 31.10 (0.18) 22.22 (0.16) 29.36 (0.19) 20.49 (0.14)

R-depth 33.30 (0.19) 24.96 (0.17) 31.35 (0.19) 22.47 (0.17) 29.52 (0.20) 20.55 (0.14)

Bayes risk 21.36 12.90 16.10 8.06 12.46 5.20

QDA 38.42 (0.49) 28.62 (0.57) 28.95 (0.31) 17.80 (0.35) 23.61 (0.23) 13.50 (0.26)

Perturbed n ¼ 50 H-depth 25.85 (0.24) 15.01 (0.16) 22.75 (0.30) 12.71 (0.26) 20.88 (0.28) 11.77 (0.24)

normal R-depth 28.23 (0.28) 16.81 (0.26) 24.70 (0.24) 14.58 (0.19) 21.26 (0.20) 12.34 (0.20)

QDA 39.08 (0.33) 29.71 (0.42) 28.32 (0.19) 17.70 (0.22) 22.78 (0.16) 12.73 (0.21)

n ¼ 100 H-depth 24.85 (0.19) 14.43 (0.15) 20.76 (0.23) 10.69 (0.19) 18.73 (0.21) 9.49 (0.23)

R-depth 26.88 (0.22) 15.66 (0.23) 22.61 (0.18) 12.33 (0.23) 19.82 (0.18) 11.02 (0.16)
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Table 6.1. Results on benchmark data sets: average misclassification rates (percentages) with standard errors

Linear classification Quadratic classification

LDA H-depth R-depth QDA H-depth R-depth

Vowel data 25.26 (2.38) 20.72 (2.22) 19.83 (2.18) 19.83 (2.18) 19.22 (2.16) 19.53 (2.17)

Synthetic data 10.80 (0.98) 10.70 (0.98) 10.30 (0.96) 10.20 (0.96) 10.70 (0.98) 11.00 (0.99)

Diabetes data 11.12 (0.07) 5.49 (0.06) 6.12 (0.06) 9.32 (0.06) 6.57 (0.06) 7.09 (0.06)

Biomedical data 15.96 (0.07) 10.87 (0.07) 11.03 (0.07) 12.68 (0.06) 11.61 (0.07) 11.76 (0.06)

Crab data 5.20 (0.06) 4.85 (0.06) 4.47 (0.06) 5.89 (0.06) 4.37 (0.06) 4.26 (0.06)

Iris data 2.18 (0.07) 3.92 (0.10) 3.56 (0.10) 2.75 (0.09) 3.99 (0.11) 3.43 (0.10)
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random partitions and their corresponding standard errors have been reported in Table 6.1. In all

the examples, sample proportions for different classes have been used as their prior probabilities.

6.1. Vowel data

We begin with a fairly well-known data set related to a vowel recognition problem, in which

there are two measurement variables for each observation from one of ten classes. This data

set was created by Peterson and Barney (1952) by a spectrographic analysis of vowels in

words formed by ‘h’ followed by a vowel and then followed by ‘d’. Sixty-seven persons

spoke these words, and the first two format frequencies (the two lowest frequencies of a

speaker’s vocal tract) for 10 vowels were split into a training set consisting of 338 cases and

a test set consisting of 333 observations. A scatter-plot of this data set is given in Figure

6.1. This figure shows some significant overlaps among the competing classes, and this

makes the data set a challenging one for any classification procedure.

For this data set, traditional LDA gave a test-set error rate of 25.26% (with a standard

error (S.E.) of 2.38%), but using depth-based linear classifiers we were able to achieve

significantly better results. The linear classifiers based on H-depth and R-depth reduced the

average misclassification probability to 20.72% (with S:E: ¼ 2:22%) and 19.83% (with

S:E: ¼ 2:18%) respectively. Interestingly, as reported in Table 6.1, in the case of quadratic

classifiers, the performance of the two depth-based classification rules and that of the

traditional QDA applied to the test set turned out to be fairly similar for this data set.

Figure 6.1. Scatter–plots for vowel data.
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6.2. Synthetic data

This bivariate data set was used by Ripley (1994). It consists of bivariate observations from

two competing populations. Both the populations are bimodal in nature, being equal

mixtures of bivariate normal populations which differ only in their location parameters. In
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Figure 6.2. Different linear and quadratic classifiers for synthetic data.
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this data set, the sizes of the training and test sets are 250 and 1000, respectively. We report

in Table 6.1 the average misclassification rates obtained by different methods applied to the

test set. We found that in linear as well as quadratic classification, the error rates of the

traditional and the depth-based methods were fairly similar. Figure 6.2 shows the

performance of these linear and quadratic classifiers on the training and test sets. For

both of the linear and the quadratic classification, the estimated class boundaries for the

traditional and the depth-based classifiers were found to be almost identical.

6.3. Diabetes data

This data set contains measurements on five variables (fasting plasma glucose level, steady-

state plasma glucose level, glucose area, insulin area and relative weight) and three classes

(‘overt diabetic’, ‘chemical diabetic’ and ‘normal’) as reported in Reaven and Miller (1979).

There are 145 individuals, with 33, 36 and 76 in these three classes according to some

clinical classification. Unlike the vowel data and the synthetic data, this data set does not

have separate training and test sets; we formed these sets by randomly partitioning the data.

We formed training samples of size 100, taking 25 observations from each of the first two

populations and 50 observations from the third. The rest of the observations were used to

form the corresponding test sets.

In this data set, the depth-based classification methods clearly outperformed traditional

LDA and QDA. While LDA had an average misclassification rat of 11.12% (S:E: ¼ 0:07%),

those for the H-depth and the R-depth based linear classifiers were 5.49% (S:E: ¼ 0:06%)

and 6.12% (S.E. ¼ 0.06%), respectively. It is quite transparent from the figures reported in

Table 6.1 that depth-based quadratic classifiers performed significantly better than traditional

QDA.

6.4. Biomedical data

This data set was generated by Larry Cox and used by Cox et al. (1982). This data set

contains information on four different measurements on each of 209 blood samples (134 for

‘normals’ and 75 for ‘carriers’). Out of the 209 observations, 15 have missing values, and

we have removed these observations and applied the classification methods on the

remaining 194 cases (127 for ‘normals’ and 67 for ‘carriers’). One hundred observations

from the first group and 50 from the second were chosen randomly to form each training

sample, while the remaining observations were used as the corresponding test cases.

Here also the depth-based linear classifiers outperformed traditional LDA. As shown in

Table 6.1, LDA had an error rate of 15.96% (S.E.¼ 0.07%), while the H-depth and the R-

depth based classifiers reduced it to 10.87% (S.E.¼ 0.07%) and 11.03% (S.E.¼ 0.07%)

respectively. Figures reported in Table 6.1 indicate that depth-based quadratic classifiers also

have a slight edge over traditional QDA for this data set.
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6.5. Crab data

Campbell and Mahon (1974) used this data set for morphological study of rock crabs of the

genus Leptograpsus. One species had been split into two new species, which were

previously marked by colours ‘orange’ and ‘blue’. As the preserved specimens had lost their

colour, it was hoped that the morphological study would help in their classification. This

data set contains information on 50 specimens of each sex of each of the species. For each

specimen there are measurements on five different variables (body depth and four other

carapace measurements). We randomly took 40 observations from each of the four classes

to form a training set, using the remaining observations as the corresponding test sample.

For this data set, the results reported in Table 6.1 show that the depth-based classifiers and

traditional LDA and QDA have comparable performance, with depth-based methods having

a slight edge over the traditional techniques.

6.6. Iris data

As the last example of this section, we consider the famous iris data (Fisher 1936), which

contains measurements on four different features (sepal length, sepal width, petal length and

petal width) on each of 150 observations from three different types of iris plant: I. setosa,

I. virginica and I. versicolor. We randomly chose 40 observations from each class to

construct a training sample, and used the remaining 30 observations to form the test set. It

is quite well known that traditional LDA and QDA perform very well for this data set, and

depth-based classifiers are not expected to beat them in this case. However, the error rates

reported in Table 6.1 show that both the linear and the quadratic versions of the depth-

based methods produced a decent and comparable performance.

7. Concluding remarks

The use of data depth in discriminant analysis was first proposed by Liu (1990), who

suggested classifying an observation using its relative centre-outward rank with respect to

different populations obtained using some depth function. Jornsten et al. (2002) and

Jornsten (2004) used this idea to develop nonparametric methods for clustering and

classification based on an L1 depth (also known as spatial depth) function (see, for example,

Vardi and Zhang 2000; Serfling 2002). Along with L1 depth, Ghosh and Chaudhuri (2004)

used other depth functions to construct their maximum depth classifiers. However, to

classify a new observation, these classifiers need to calculate its depth with respect to

different competing populations, and for that the full training sample has to be stored.

Moreover, it is difficult to generalize these classifiers for unequal prior cases (see Ghosh

and Chaudhuri 2004). On the other hand, the depth-based classifiers proposed in this paper

require less storage and computing time to classify future observations, and at the same

time they provide a good, lower-dimensional view of class separabiltiy.

Traditional LDA and QDA are both motivated by the assumption of normality of the
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data, and, as we have amply demonstrated in preceding sections, violations in this

assumption may lead to rather poor performance of these traditional methods. More recent

methods such as regularized discriminant analysis (due to Friedman 1989) and logistic

discriminant analysis (see, for example, Hand 1981; Hastie et al. 2001) are also motivated

by specific distributional models for the data. The depth-based classifiers, on the other hand,

are totally distribution-free in nature, and they use only the empirical geometry of the data

cloud to estimate the optimal separating surface for the competing classes. Traditional LDA

and QDA, as well as regularized discriminant analysis, use the first- and second-order

moments of the training sample to construct the discrimination rule. This makes these

methods highly sensitive to outliers and extreme values. On the other hand, use of half-

space and regression depths in the construction of the classifiers makes the discriminant

functions more robust to the presence of possible outliers in the case of heavy-tailed

distributions.

For nonlinear classification, the depth-based methods project the observations into a

higher dimensional space of functions in order to find a separating hyperplane. Well-known

nonparametric methods like those based on neural nets (Ripley 1996) and support vector

machines (Vapnik 1998) also adopt a similar strategy for nonlinear classification. However,

instead of minimizing the empirical misclassification rates, as is done in the case of depth-

based methods, these classifiers are formed by minimizing some smooth penalty functions.

Other techniques such as flexible discriminant analysis due to Hastie et al. (1994) and the

classifier recently proposed by Zhu and Hastie (2003) also optimize some smooth cost or

likelihood type functions to determine the discriminant function.

We conclude this section with an illustrative example taken from Christmann (2002). This

is a simulated example on a four-class problem where the classes are completely separated

(see Figure 7.1). An observation (x1, x2) in the square [�1, 1]3 [�1, 1] is assigned to class

1 if x2 � x1 . 0:75 and to class 2 if x21 þ x22 < 0:15. An observation (x1, x2) satisfying

x2 � x1 < 0:75 and x21 þ x22 . 0:15 is assigned to class 3 or class 4 depending on whether

x21 þ x22 < 0:60 or . 0:60, respectively.

Christmann (2002) generated 250 different training samples each of size 700 and test

Figure 7.1. A four-class problem for comparing different classifiers.
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samples each of size 300 to compare the performance of support vector machines with that

of traditional QDA. In this example, support vector machines (with radial basis function)

produced a much higher average error rate of 36% than QDA, with its average

misclassification rate of 20.9%. We generated 250 samples of the same sizes as used by

Christmann (2002) to compare the performance of the depth-based classifiers. In our

experiment, QDA produced similar performance (error rate ¼ 20:72%) to that reported by

Christmann (2002) but the quadratic versions of both of the depth-based classifiers

performed quite well. H-depth and R-depth based classifiers on this example led to an

average test-set error rate of 1.58% (S.E. ¼ 0.03%) and 2.81% (S.E. ¼ 0.17%),

respectively.

Appendix. Proofs

In order to prove Theorem 3.1, we will need the following result, which follows directly

from the proof of Lemma A of Serfling (1980, p. 200).

Result A.1. If Y is a bounded random variable with E(Y ) ¼ � and P(0 < Y < 1) ¼ 1, then

Efes(Y��)g < es
2=8 for any s . 0:

Proof of Theorem 3.1. (i) Un(Æ) is a generalized U-statistic (see, Serfling 1980) with

bounded kernel function h(ÆTz1, ÆTz2) ¼ IfÆTz1 . ÆTz2g (0 < h < 1). Without loss of

generality, let us assume that n1 < n2 and define

W (i1, i2, . . . , in1 ) ¼ n�1
1

Xn1
j¼1

h(ÆTz1 j, Æ
Tz2i j )

for some permutation (i1, i2, . . . , in1 ) of n1 objects from f1, 2, . . . , n2g. For this definition of

W , Un(Æ) can be expressed as

Un(Æ) ¼
(n2 � n1)!

n2!

X
(i1,i2,...,i n1 )2P

W (i1, i2, . . . , in1 ),

where P denotes the set of all possible permutations (i1, i2, . . . , in1 ) of the elements of the

set f1, 2, . . . , n2g.
Now, using Jensen’s inequality on the convex function ex, we obtain

esUn(Æ) <
(n2 � n1)!

n2!

X
(i1,i2,...,i n1 )2P

esW (i1,i2,..., in1 ) for every s . 0

) EfesUn(Æ)g < Efe sW (i1,i2,...,i n1 )g < Efesh(ÆTz11,ÆTz21)=n1g
h in1

(using the fact that the terms in the sum defining W are independent and identically

distributed)
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) E es[Un(Æ)�U(Æ)]
� �

< Efes[h(ÆTz11,ÆTz21)�U (Æ)]=n1g
h in1

< łh(s=n1)f gn1 ,

say. Now it is quite easy to see that

EfUn(Æ)g ¼ EfW (i1, i2, . . . , in1 )g ¼ Efh(ÆTz1, Æ
Tz2)g ¼ PfÆTz11 . ÆTz21g ¼ U (Æ),

and, using Result A.1, we obtain, for any t . 0,

PfUn(Æ)� U (Æ) > tg < Efes[Un(Æ)�U (Æ)� t]g < e�st łh(s=n1)f gn1< e�stþs2=8n1 :

Minimizing the above expression with respect to s, we obtain PfUn(Æ)�
U (Æ) > tg < e�2n1 t

2

. Using similar arguments, it can be shown that, for any positive t,

PfUn(Æ)� U (Æ) < �tg < e�2n1 t
2

. Combining these two results, we obtain

PfjUn(Æ)� U (Æ)j > tg < 2e�2n1 t
2

for every t . 0:

Now the set of hyperplanes in V ¼ fy : ÆTy ¼ 0g in Rm, which pass through the origin

has Vapnik–Chervonenkis dimension m (see, for example, Pollard 1984; Vapnik 1998). So

sets of the form fy : ÆTy . 0g have a polynomial discrimination with m being the degree

of the polynomial. Therefore, using the results on probability inequalities on such sets

(Vapnik and Chervonenkis 1971; Pollard 1984; Vapnik 1998), we obtain

P sup
Æ
jUn(Æ)� U (Æ)j . t

� �
, 2(n1n2)

me�2n1 t
2

for every t . 0:

Now, using the fact that n1=N ! º(0 , º , 1) as N ! 1, and
P

N>1N
2me�cN , 1 for

any c . 0, it follows from the Borel–Cantelli lemma that supÆjUn(Æ)� U(Æ)j ! 0 almost

surely as N ! 1.

Let bÆÆH be a maximizer of Un(Æ) and Æ�H be that of U (Æ) (not necessarily unique). Now

we have

jUn(bÆÆH )� U (bÆÆH )j!
a:s:

0 and jUn(Æ
�
H )� U (Æ�H )j!

a:s:
0 as N ! 1:

Again, from the definition of bÆÆH and Æ�H, U (Æ�H ) > U (bÆÆH ) and Un(bÆÆH) > Un(Æ�H ) for

every n. Hence, jUn(bÆÆH )�maxÆU (Æ)j ¼ jUn(bÆÆH )� U (Æ�H )j!
a:s:

0 as N ! 1. Consequently,

jU (bÆÆH )�maxÆU (Æ)j!a:s: 0 as N ! 1.

(ii) For some fixed Æ and �, n�1
1

Pn1
i¼1 IfÆTz1i þ � , 0g is an average of independent and

identically distributed bounded random variables. Therefore, from Hoeffding’s inequality

(see Hoeffding 1963), we have

P

���� 1n1 X
n1

i¼1

IfÆTz1i þ � , 0g � PfÆTz11 þ � , 0g
���� . E=2

( )
, 2e�n1E2=2 for every E . 0:
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) P j˜n(Æ, �)� ˜(Æ, �)j . Ef g , P

���� 1n1 X
n1

i¼1

IfÆTz1i þ � , 0g � PfÆTz11 þ � , 0g
���� . E=2

( )

þ P

���� 1n2 X
n2

i¼1

IfÆTz2i þ � . 0g � PfÆTz21 þ � . 0g
���� . E=2

( )

, 2(e�n1E2=2 þ e�n2E2=2):

Now, using similar arguments on the Vapnik–Chervonenkis dimension of hyperplanes in Rm

as before and using results (Pollard, 1984) on sets with polynomial discrimination, we obtain

P sup
Æ,�

j˜n(Æ, �)� ˜(Æ, �)j . E

( )
, 2(n1 þ n2)

mþ1(e�n1E2=2 þ e�n2E2=2):

Then, using the fact that
P

N>1N
mþ1e�cN , 1 for any c . 0, it follows from the Borel–

Cantelli lemma that supÆ,�j˜n(Æ, �)� ˜(Æ, �)j ! 0 almost surely as N ! 1. Following

similar arguments to those used at the end of the proof of (i), it is now easy to verify that

j˜(bÆÆR, �̂�R)�minÆ,� ˜(Æ, �)j ! 0 and j˜n(bÆÆR, �̂�R)�minÆ,� ˜(Æ, �)j ! 0 almost surely as

N ! 1.

Let us next assume that the maximizer Æ�H of U (Æ) is unique. We have already shown

that U (bÆÆH ) converges to U (Æ�H ) as N ! 1 on a set of probability one. Consequently, on

the same set, if bÆÆH converges, it has to converge to Æ�H in view of the uniqueness of Æ�H
and the continuity of the function U (Æ). Since bÆÆH always lies in the compact surface of the

unit ball in Rm (see Sections 2.1 and 4.1), any subsequence of the sequence of this estimate

will have a further convergent subsequence converging to Æ�H on that set of probability one.

Hence, bÆÆH must converge to Æ�H almost surely.

Next, let (Æ�R, ��R) be the unique minimizer of ˜(Æ, �). Since we have already shown that

˜(bÆÆR, �̂�R) converges to ˜(Æ�R, ��R) almost surely, using arguments which are virtually same

as those above, it follows that as N ! 1, (bÆÆR, �̂�R) !a:s: (Æ�R, ��R). h

Proof of Corollary 3.1. In Theorem 3.1, we proved that j˜(bÆÆR, �̂�R)�minÆ,� ˜(Æ, �)j ! 0

almost surely as N ! 1. Note that ˜(bÆÆR, �̂�R) is the conditional average misclassification

probability for a future observation given the current training sample. Taking the expectation

of ˜(bÆÆR, �̂�R) over the current training sample, the proof of this corollary follows by a simple

application of the dominated convergence theorem using the fact that ˜ is a function bounded

between 0 and 1. h

Lemma A.1. Suppose that the population densities f 1 and f 2 of the two competing classes

are elliptically symmetric with a common scatter matrix �. Also assume that

f i(x) ¼ g(x� �i)(i ¼ 1, 2) for some location parameters �i and a common elliptically

symmetric density function g satisfying g(kx) > g(x) for every x and 0 , k , 1. Further,

assume that the prior probabilities of the two competing classes are equal. Then,

(i) there exists an optimal Bayes classifier which is linear, and
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(ii) Æ ¼ ��1( �1 � �2) is a maximizer of U (Æ) as well as a minimizer of ˜(Æ, �) for a

proper choice of �.

Proof. (i) Because of elliptic symmetry with location shift, the density functions f 1 and f 2
can be expressed as

f 1(x) ¼ Cd j�j�1=2hf(x� �1)
T��1(x� �1)g and f 2(x) ¼ Cd j�j�1=2hf(x� �2)

T��1(x� �2)g,

where Cd is a constant (depending on dimension d) and h is a monotonically decreasing

function on [0, 1).

Now, in the equal prior case, an optimum Bayes rule assigns an observation to class 1 if

and only if

f 1(x) > f 2(x) , (x� �1)
T��1(x� �1) < (x� �2)

T��1(x� �2)

, ( �1 � �2)
T��1x > 1

2
�T
1�

�1�1 � �T
2�

�1�2

� 	
:

This proves that an optimal linear classifier is a Bayes classifier and Æ ¼ ��1( �1 � �2) is a

minimizer of ˜(Æ, �) with a proper choice of �.
(ii) As the distributions have a common elliptically symmetric form with location

parameters �1 and �2 and common scatter matrix �, their characteristic functions are of the

form

� f1 (t) ¼ eit
T�1ł(tT�t) and � f2 (t) ¼ eit

T�2ł(tT�t) for some common scalar function ł:

Now define Y ¼ ÆTf(X1 � X2)� ( �1 � �2)g=(ÆT�Æ)1=2, where X1 � f 1 and X2 � f 2. It

is easy to see that the characteristic function of Y is given by �Y (t) ¼ fł(t2)g2. Clearly,
the distribution of Y is symmetric about 0, and it is free of population parameters like the

�, �2 and �. Therefore, PfÆT(X1 � X2) . 0g can be expressed as

PfÆT(X1 � X2) . 0g ¼ FY [fÆT( �1 � �2)g2=ÆT�Æ]1=2

 �

,

where FY is the cdf of the distribution of Y . So PfÆT(X1 � X2) . 0g is maximized for some

Æ if that Æ maximizes fÆT( �1 � �2)g2=ÆT�Æ. This implies that Æ ¼ ��1( �1 � �2) is a

maximizer of U (Æ). h

Proof of Corollary 3.2. Lemma A.1 implies that, under the given conditions, the linear

classifier with Æ ¼ ��1( �1 � �2) and � ¼ ( �T
2�

�1�2 � �T
1�

�1�1)=2 is a Bayes classifier.

Consequently, it follows from Corollary 3.1 that the average misclassification error of the

regression depth-based linear classifier converges to the optimal Bayes risk. Further, when

this Bayes classifier is unique, it follows from the second half of Theorem 3.1 that the

regression depth-based linear classifier itself converges almost surely to that Bayes classifier.

When U (Æ) has a unique maximizer Æ�H ¼ ��1( �1 � �2) (e.g., when the distribution

function FY in the proof of Lemma A.1 is strictly increasing), it follows from Theorem 3.1

that bÆÆH converges almost surely to Æ� as n ! 1.

Let us now consider two independent random vectors X1 � f 1 and X2 � f 2, both of

which are completely independent of the current training sample (i.e., they are like future
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observations). Using these random vectors, define Y1,n ¼ bÆÆT
HX1, Y2,n ¼ bÆÆT

HX2, Y1 ¼ Æ
�TX1

and Y2 ¼ Æ
�TX2. Then, in view of almost sure convergence of bÆÆH to Æ�, we obtain

(Y1,n, Y2,n)!
L
(Y1, Y2) almost surely as N ! 1. Since both Y1 and Y2 are continuously

distributed, and weak convergence to a continuous distribution implies uniform convergence,

we have sup�j˜(bÆÆH , �)�˜(Æ�, �)j ! 0 almost surely as N ! 1.

On the other hand, from the proof of (ii) in Theorem 3.1, it is quite clear that

sup�j˜n(bÆÆH , �)� ˜(bÆÆH , �)j ! 0 almost surely as N ! 1. Hence, sup�j˜n(bÆÆH , �)
�˜(Æ

�
, �)j ! 0 almost surely as N ! 1.

It now follows from arguments similar to those used in the proof of Theorem 3.1 that

j˜n(bÆÆH , �̂�H )�min� ˜(Æ
�
, �)j ¼ j˜n(bÆÆH , �̂�H )�minÆ,� ˜(Æ, �)j ! 0 almost surely as

N ! 1. Also, we must have j˜n(bÆÆH , �̂�H )� ˜(bÆÆH , �̂�H )j ! 0 almost surely as N ! 1.

Hence, ˜(bÆÆH , �̂�H ) converges almost surely to minÆ, �˜(Æ, �), which is the Bayes risk in

this case.

Once again, note that ˜(bÆÆH , �̂�H ) is the conditional average misclassification probability

for a future observation given the current training sample. Taking the expectation of

˜(bÆÆH , �̂�H ) over the current training sample, we obtian the unconditional average

misclassification probability of the linear classifier based on half-space depth. The proof

of the convergence is now complete by a simple application of the dominated convergence

theorem, using the fact that ˜ is a function bounded between 0 and 1.

Now, to prove the almost sure convergence of the linear classifier based on half-space

depth, we only need to show that �̂�H converges almost surely to an appropriate constant. In

order to prove this, let us first recall a simple fact about the optimal Bayes classifier. In the

equal prior case with two competing populations, it is easy to verify that the optimal Bayes

risk is strictly smaller than 0:5 unless the two populations are statistically indistinguishable

in the sense that they have identical distributions. We have already shown that ˜(bÆÆH , �̂�H )

converges to the Bayes risk and bÆÆH converges to Æ� as N ! 1 on a set with probability

one. So on this set �̂�H must remain bounded, as otherwise, in view of the convergence

of bÆÆH to Æ�, ˜(bÆÆH , �̂�H ) will converge to 0.5 in a subsequence for which j�̂�H j ! 1 as

N ! 1. On the other hand, whenever �̂�H converges to a real number � (say), in view of

the continuity of ˜, ˜(bÆÆH , �̂�H ) must converge to ˜(Æ�, �) on that set of probability one.

Since any bounded sequence must have a convergent subsequence, it is now obvious that

�̂�H must converge to �
�
, where ˜(Æ�, ��) ¼ minÆ,� ˜(Æ, �), which is same as the Bayes

risk in this case.

For prior probabilities �1 and �2 (�1 not necessarily equal to �2), and for two competing

normally distributed populations with parameters ( �1, �) and ( �2, �),

�1 f1(x) . �2 f 2(x) , �1j�j�1=2e�(x��1)
T��1(x��1)=2 . �2j�j�1=2e�(x��2)

T��1(x��2)=2

, (x� �2)
T��1(x� �2)� (x� �1)

T��1(x� �1) . C, where C ¼ 2 log �2=�1ð Þ,

, 2xT��1( �1 � �2) . f�T
1�

�1�1 � �T
2�

�1�2g þ C:

Therefore, the optimum Bayes rule is indeed unique, and it is linear in nature. Finally, as U

and ˜ are both continuous functions in this case of multivariate normal distribution, the proof

of the corollary is complete. h
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Proof of Corollary 3.3. It suffices to show that under the given conditions, the optimum

quadratic classifier is the unique Bayes classifier. When the two competing population

distributions are multivariate normal with location and scatter parameters ( �1, �1) and

( �2, �2),

�1 f 1(x) . �2 f 2(x) , �1j�1j�1=2e�(x��1)
T��1

1 (x��1)=2 . �2j�2j�1=2e�(x��2)
T��1

2 (x��2)=2

, (x� �2)
T��1

2 (x� �2)� (x� �1)
T��1

1 (x� �1) . C,

where

C ¼ 2 log
�2j�1j1=2
�1j�2j1=2

� 

:

Therefore, the optimum Bayes rule is indeed unique and quadratic in nature.

The probability density function f (x) of a d-dimensional elliptically symmetric Pearson

type VII distribution is given by

f (x) ¼ Cd j�j�1=2f1þ ��1(x� �)T��1(x� �)g�Ł,

where � and � are the location and scatter parameters, � . 0, Ł . d=2 and Cd ¼
(��)�d=2ˆ(Ł)=ˆ(Ł� d=2). Now consider two Pearson type VII distributions, which are of the

same form except possibly for their location and scatter parameters. Let �i and �i be the

location parameter and the scatter matrix for the ith (i¼1,2) population, and �i be its prior

probability. Then

�1 f 1(x) . �2 f 2(x)

, �1j�1j�1=2f1þ ��1(x� �1)
T��1

1 (x� �1)g�Ł . �2j�2j�1=2f1þ ��1(x� �2)
T��1

2 (x� �2)g�Ł

, 1þ ��1(x� �1)
T��1

1 (x� �1)

1þ ��1(x� �2)T�
�1
2 (x� �2)

( )�Ł

. K for K ¼ �2j�2j�1=2

�1j�1j�1=2

, �þ (x� �1)
T��1

1 (x� �1)

�þ (x� �2)T�
�1
2 (x� �2)

( )
, C ¼ K�1=Ł

, (x� �1)
T��1

1 (x� �1)� C(x� �2)
T��1

2 (x� �2)� (C � 1)� , 0:

Clearly, the left-hand side of the last inequality above is a quadratic function of x. Therefore

once again the optimum Bayes rule is unique, and it turns out to be a quadratic classifier.
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