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This paper is concerned with Gaussian regression with random design, where the observations are

independent and indentically distributed. It is known from work by Le Cam that the rate of

convergence of optimal estimators is closely connected to the metric structure of the parameter space

with respect to the Hellinger distance. In particular, this metric structure essentially determines the

risk when the loss function is a power of the Hellinger distance. For random design regression, one

typically uses as loss function the squared L2-distance between the estimator and the parameter. If the

parameter space is bounded with respect to the L1-norm, both distances are equivalent. Without this

assumption, it may happen that there is a large distortion between the two distances, resulting in some

unusual rates of convergence for the squared L2-risk, as noticed by Baraud. We explain this

phenomenon and then show that the use of the Hellinger distance instead of the L2-distance allows us

to recover the usual rates and to carry out model selection in great generality. An extension to the L2-

risk is given under a boundedness assumption similar to that given by Wegkamp and by Yang.
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1. Introduction

One classical method for estimating an unknown (density or regression) function s from n

observations is to construct a parametric model for s, i.e. a set S of functions described by

D parameters, and proceed with the estimation as if s actually belonged to the model,

which results in an estimator ŝs 2 S. The corresponding error is then the sum of a bias term,

which comes from the fact that, typically, s 62 S and a stochastic error corresponding to

estimation within the model S which is usually proportional to the number D of parameters.

Since s is unknown, we generally do not have enough information to construct a good

model leading to an estimator with a small risk. One way of solving this problem is to start

with a large family fSm, m 2 Mg of such models and the corresponding family of

estimators fŝsm, m 2 Mg, and then to use the data to select one model or equivalently one

estimator in the family. This is what is called model selection. It can often be viewed as a

variable selection procedure that selects a small number of functions (the variables) from a

large set of such functions with cardinality possibly much bigger than the number of

observations. The final estimator is then a combination of the selected functions. A simple

example, when s is defined on [0, 1], is as follows. One considers the points xj ¼ jn�2 with

j 2 N, j < n2, and all functions of the form 1[x j ,xk ) with j , k. There are of course many
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of them and one considers the models generated by linear combinations of a small number

of these functions. We therefore look for a sparse representation of s by combinations of

some functions taken in a possibly very large set.

Many papers have been devoted to model selection for various statistical problems and

we shall focus here on random design regression, i.e. a statistical framework in which we

observe n independent and identically distributed (i.i.d.) random pairs (X i, Yi) with Yi 2 R

and X i belonging to some measurable space X (typically a subset of Rk). We assume that

X i and Yi satisfy the relationship

Yi ¼ s(X i) þ �i, 1 < i < n, (1:1)

where the random variables �i are i.i.d., centred and independent of the X i, and s is an

unknown function (parameter) to be estimated. We denote by � the common distribution of

the X i and assume hereafter that the unknown parameter s belongs to some subset S of L2(�)

and that the distribution of �i is normal with known variance � 2. This is the precise

framework that we shall call Gaussian regression with random design, denoting by k � k and

k � k1 the norms in L2(�) and L1(�), respectively.

Although this problem is considered as a regression problem, it is technically closer to a

density estimation problem since we have at hand n i.i.d. observations with unknown

distribution Ps and density

dPs

d(�� º)
(x, y) ¼ 1

�
ffiffiffiffiffiffi
2�

p exp � (y � s(x))2

2� 2

� �
(1:2)

with respect to �� º, where º denotes the Lebesgue measure on the real line. The main

difference from classical density estimation is that the density depends in a complicated way

on the infinite-dimensional parameter s of interest. As we shall see, the difficulties connected

with this model are mainly due to the distortion between the natural distance for the density

problem, namely the Hellinger distance between distributions Ps for s 2 S, and the L2-

distance on the set S of parameters.

Despite the similarity of terminology, the previous framework appears to be technically

different from the Gaussian regression with fixed design framework, in which one observes

Yi ¼ s(xi) þ �i, �i � N 0, � 2
� �

, 1 < i < n, (1:3)

where the values xi 2 X are fixed and known and which merely corresponds to the estimation

of the mean s ¼ (s(x1), . . . , s(xn)) of the Gaussian vector (Y1, . . . , Yn) with distribution Qs.

In this problem, the natural parameter set is not the function space S but its image

T ¼ fs ¼ (s(x1), . . . , s(xn))js 2 Sg � Rn. Since the Hellinger distance between the distribu-

tions Qs, s 2 T , and the Euclidean distance on T associated with the norm

kskn ¼ n�1
Pn

i¼1s(xi)
2 are well connected, the estimation of s does not lead to special

difficulties, as shown in Birgé and Massart (2001) and Birgé (2003). If we wish to estimate

the function s itself, we have to reconstruct it from its values at the points xi which is clearly

not always possible and, in any case, is a problem in approximation theory. Illustrations can

be found in Baraud (2000).

Some specific problems connected with the random design framework (for the simplest

case where the X i belong to [0, 1]) were brought to our attention by a recent paper of
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Baraud (2002) and a conversation with the author. Classically, when estimating s, one uses

the squared L2-distance as the loss function, which results in a risk function Es ks � ŝsk2
� �

,

where Es denotes the expectation when s obtains. Most results about model selection in this

case require some boundedness assumption on both the parameter and the estimators, as in

Juditsky and Nemirovski (2000), Yang (2000; 2001; 2004) and Wegkamp (2003). In

principle, a precise bound on ksk1 need not be known in order to construct the selection

procedure, nevertheless, from a realistic point of view, the upper bound on the estimators

can only be chosen in a reasonable way by the statistician if a bound on ksk1 is known, at

least approximately. Otherwise, one could choose too small a bound, which would result in

high bias, or too large, which deteriorates the performance of the estimators. As we shall

see below, if we wish to handle arbitrary parameter spaces, such upper bounds are more or

less necessary when dealing with the squared L2-risk.

There are two noticeable exceptions to the use of upper bounds on the parameter space,

which are Brown et al. (2002) and Baraud (2002). The former paper deals with equivalence

of experiments between regression with random design and the white noise model, but

equivalence only holds for compact balls in Hölder or Sobolev spaces of smoothness

Æ . 1=2, while we shall show below that problems occur when Æ , 1=2. We recall here for

further reference that the white noise model on [0, 1] corresponds to observation of the

process Yz, z 2 [0, 1], where

Yz ¼
ð z

0

s(x)dx þ n�1=2W (z), z 2 [0, 1], (1:4)

W denotes the standard Brownian motion and s 2 L2([0, 1], dx) is the unknown parameter to

be estimated. The risk of an estimator ŝs is again given by Es ks � ŝsk2
� �

, with k � k the norm in

L2([0, 1], dx).

Among more general results on model selection, Baraud (2002) recovers the usual

n�2Æ=(2Æþ1) rate for estimation in Besov spaces BÆ
p,1 with index Æ larger than some limiting

value Æ l 2 (1=p � 1=2, 1=p) when 1 < p , 2, the precise value of Æ l being given in

Proposition 2 below. In the white noise model one derives this rate for Æ . 1=p � 1=2 as in

Donoho and Johnstone (1994). This limiting valve Æ l of Baraud appears to be rather

surprising and, in a private conversation, the author explained that, for Æ < Æ l, he was still

able to derive rates of convergence but which were ‘suboptimal’, i.e. slower than the usual

ones, although he suspected they were unimprovable, apart from some logarithmic factors.

According to Kerkyacharian (private conversation), it follows from Theorem 6.1 of

Kerkyacharian and Picard (2000) that a similar limitation in the range of Æ holds for

procedures based on thresholding of wavelet coefficients in density estimation.

We shall show below that this cut in the rates is actually unavoidable and due to the

distortion between the L2 and Hellinger distances. As a consequence, we derive a lower bound

for the rates of convergence over Besov balls with Æ < Æ l, which coincides, up to logarithmic

factors, with the upper bounds obtained by Baraud (personal communication). We then show

that, if we use the squared Hellinger loss instead of the L2-loss, we are able to recover the usual

rate in the range Æ . 1=p � 1=2, provided that the unknown parameter s belongs to L1(�),

although no information is required about ksk1. In this case, the estimator that we construct

belongs to L1(�) by construction but may also have an arbitrary L1-norm.
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The situation becomes quite different when we wish to carry out model selection using

the squared L2-loss since we can only handle this problem when our estimator ŝs is

constructed in such a way that it satisfies kŝsk1 < A almost surely, which means that it

should be constructed in order to belong to some given L1-ball of radius A chosen by the

statistician. In this case we have to know ksk1 approximately in order to make an adequate

choice of A.

2. The importance of boundedness assumptions

2.1. The relationships between Hellinger and L2-distances

We recall that if P and Q are two distributions, their Hellinger affinity r(P, Q) and

Hellinger distance h(P, Q) are given by

r(P, Q) ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dP dQ
p

¼ 1 � h2(P, Q) with h2(P, Q) ¼ 1

2

ð ffiffiffiffiffiffi
dP

p
�

ffiffiffiffiffiffiffi
dQ

p� 	2

:

If, in particular, Qs denotes the joint distribution of the variables Yi, 1 < i < n, in the

Gaussian regression with fixed design framework, as defined by (1.3), and Ps the distribution

of the process Yz in the white noise model (1.4), we obtain

r(Qt, Qu) ¼ exp �kt � uk2
n

8� 2

� �
and r(Pt, Pu) ¼ exp �kt � uk2

8� 2

� �
,

and in both cases, [�log r(Qt, Qu)]1=2 and [�log r(Pt, Pu)]1=2 are equivalent to the

corresponding L2-type distances. In Gaussian regression with random design, the distribution

Ps of (X i, Yi) has the density (1.2), which implies that

r(Pt, Pu) ¼ E exp � (t � u)2(X )

8� 2

� �
 �
¼

ð1

0

exp � (t � u)2(x)

8� 2

� �
d�(x) (2:1)

and

h2(Pt, Pu) ¼ 1 �
ð1

0

exp � (t � u)2(x)

8� 2

� �
d�(x): (2:2)

We then derive from Jensen’s inequality that

r(Pt, Pu) > exp �kt � uk2

8� 2

� �
and h2(Pt, Pu) <

kt � uk2

8� 2
: (2:3)

Unfortunately, the reverse inequalities do not hold in general and (�log r)1=2 is not a distance

as it is in either the Gaussian regression with fixed design framework (1.3) or the white noise

model (1.4). It does not even satisfy an inequality of the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Pt, Pu)]

p
< A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Pt, Ps)]

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Ps, Pu)]

p� 	
, (2:4)

for some (possibly large) positive constant A, uniformly with respect to s, t and u. To see
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this, let us assume that the X i are uniformly distributed on [0, 1] and consider the three

functions s, t ¼ s þ ª1[0,1=2) and u ¼ s � ª1[1=2,1] for some ª . 0. Then t � u ¼ ª1[0,1] and

r(Pt, Pu) ¼ exp �ª2= 8� 2ð Þ
� �

, while

r(Pt, Ps) ¼ r(Ps, Pu) ¼ 1

2
1 þ exp � ª2

8� 2

� �
 �
.

1

2
:

It follows that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Pt, Ps)]

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Ps, Pu)]

p
, 2

ffiffiffiffiffiffiffiffiffiffi
log 2

p
,

while ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Pt, Pu)]

p
¼ ª

2�
ffiffiffi
2

p :

Therefore ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Pt, Pu)]

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Pt, Ps)]

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log [r(Ps, Pu)]

p .
ª

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 2

p

tends to infinity with ª, proving that (�log r)1=2 cannot satisfy (2.4) whatever the value of A.

This phenomenon being due to the fact that kt � uk1 can be arbitrary large, the situation

changes if the parameters are restricted to belong to some L1(�)-ball.

Proposition 1. Let S be a subset of some L1(�)-ball with centre s0 and radius r� , i.e.

ks � s0k1 < r� for all s 2 S. Then, for any t and u in S,

r(Pt, Pu) < 1 � 1 � exp �r2=2
� �� �

kt � uk2

4r2� 2
: (2:5)

Consequently,

kt � uk , 2:03(r _ e)� h(t, u): (2:6)

Proof. The second inequality being an easy consequence of the first since h2 ¼ 1 � r, it

suffices to prove (2.5). We notice that (t � u)2(x)= 8� 2ð Þ < r2=2 � almost surely and use the

fact that, if Y is a random variable with values in [0, M] and distribution PY , then

1 �
ð

exp (�y)1dPY (y)

� �
> M�1 1 � e�Mð ÞE[Y ]:

This last inequality follows from the convexity of the function x 7! e�x by integration of

e�Y ¼ e�(Y=M)M < (Y=M)e�M þ (1 � Y=M)e0: h

As a consequence, if we restrict ourselves to a parameter space S contained in some L1-ball,

(2.4) is satisfied for a suitable value of A and h is equivalent to the L2-distance on S. This is

the case considered by most authors and the easiest one. Indeed, since this is an estimation

problem with n i.i.d. observations, it can be handled by the techniques of Birgé (1983; 2003),

resulting in control of the squared Hellinger risk for a suitable estimator ŝs. If this estimator
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belongs to the same L1-ball, ks � ŝsk can be bounded by h(s, ŝs) times a constant and the

squared L2-risk is also under control. We shall explain more precisely in Section 3.2 how to

make this work.

2.2. Some negative results

If kt � uk1 is not bounded, the ratio kt � uk=h(Pt, Pu) can be arbitrarily large and this

accounts for the difficulties of evaluating the L2-risk in this situation and the results

obtained by Baraud (2002) for the minimax risk over Besov balls of functions on [0, 1],

when � is the Lebesgue measure on [0, 1].

To understand what is going on, let us introduce the function t ¼ a1[0, l] with a . 0 and

l < 1=2 and the numbers Æ, p with 1 < p , 2 and Æ ¼ 1=p � b, 0 , b , 1=2. We can

then compute the L p-modulus of continuity ø(t, x) p of t. According to DeVore and Lorentz

(1993, p. 44),

ø(t, x) p ¼ sup
0<h<x

ð1�h

0

jt(y þ h) � t(y)j p dy

" #1= p

¼ a(x ^ l)1= p:

It follows that the Besov seminorm of t with respect to the Besov space BÆ
p,1 is

jtjÆp ¼ sup
x.0

x�Æø(t, x) p ¼ a sup
x.0

x1= p�Æ ^ x�Æ l1= pf g ¼ al1= p�Æ ¼ alb: (2:7)

Setting u ¼ �t, we see that kt � uk2 ¼ 4a2 l and, by (2.1),

r(Pt, Pu) ¼
ð l

0

exp
�4a2

8� 2

� �
dx þ (1 � l):

Then

h2(Pt, Pu) ¼ l 1 � exp
�a2

2� 2

� �
 �
¼ l 1 � exp

�kt � uk2

8l� 2

� �
 �
:

For moderate values of a=� this is of the order of kt � uk2=� 2, but for large values of a=� it

behaves like l, independently of a. In this case the ratio kt � uk=h(Pt, Pu) is of order a and

can be arbitrarily large.

Let us now set l ¼ (2n)�1, a ¼ R(2n)b with R . 0. Then

h2(Pt, Pu) , (2n)�1, r(Pn
t , Pn

u) . 1 � (2n)�1
� �n

> 1=2

and kt � uk2 ¼ 4R2(2n)2b�1. On the one hand, it follows from classical lower bounds on the

risk dating back to Le Cam (1973) – see, for instance, Donoho and Liu (1991) – that any

estimator ŝs based on n i.i.d. observations from (1.1) satisfies

max E t kt � ŝsk2
� �

, Eu ku � ŝsk2
� �� 

> cR2(2n)2b�1, (2:8)

for some positive universal constant c. On the other hand, by (2.7), the Besov seminorm of t

and u is R. Therefore, by (2.8), for any estimator ŝs,
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sup
fsj jsjÆp<Rg

Es ks � ŝsk2
� �

> cR2(2n)2b�1 ¼ c9R2 n�1þ2(1= p�Æ): (2:9)

We recall that the minimax risk over such Besov balls, in the white noise model (1.4), is

known to be bounded by CR2=(2Æþ1) n�2Æ=(2Æþ1). It follows that the minimax risk in the

regression model will be substantially larger, at least for large n, if 2(1=p � Æ) . 1=(2Æþ 1)

or equivalently (1=p � Æ)(2Æþ 1) . 1=2. Elementary computations show that this is

equivalent to

1

2

1

p
� 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p
þ 1

2

� �2

�1

s2
4

3
5 , Æ ,

1

2

1

p
� 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p
þ 1

2

� �2

�1

s2
4

3
5:

The left-hand side is smaller than 1=p � 1=2 and one can easily check that the right-hand

side is smaller than 1=p. We have thus proved the following proposition:

Proposition 2. For 1 < p , 2 and

1

p
� 1

2
, Æ , Æ l ¼

1

2

1

p
� 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p
þ 1

2

� �2

�1

s2
4

3
5,

the rate of convergence, with respect to n, of the minimax risk over Besov balls of the form

fsj jsjÆp < Rg cannot be better than n�1þ2(1= p�Æ).

For Æ . Æ l, Baraud (2002) recovers the usual n�2Æ=(2Æþ1) rate and his proof, when

applied to the case Æ < Æ l, gives an upper bound for the risk of order n�1þ2(1= p�Æ), up to

some extra logarithmic factors (Baraud, personal communication), which means that, up to

logarithmic factors, the rate n�1þ2(1= p�Æ) is minimax for Æ < Æ l.

It is also worth noticing that a similar distortion of the risk, as compared to the white

noise model, occurs when R goes to infinity, for any Æ , 1 and n, because of the R2 factor

in (2.9) instead of the usual R2=(2Æþ1).

3. Upper bounds for the risk

As we mentioned in the Introduction, the problem of random design regression is a problem

of estimation from an i.i.d. sample and the ‘natural’ loss function for such a problem is the

Hellinger distance, as shown by Le Cam (1973; 1975; 1986). The distortion that may exist

between L2 and Hellinger distances when dealing with unbounded functions leads to

difficulties, as indicated in the previous section. Nevertheless, if we consider the squared

Hellinger risk, instead of the squared L2-risk, we can essentially recover the usual rates of

convergence if we assume that the true parameter belongs to L1(�).

In order to prove this we need to recall some general results from the present author

about model selection for i.i.d. variables. The framework is as follows: we observe n i.i.d.

random variables Z1, . . . , Z n on the measurable space Z with some unknown distribution
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Ps, with s belonging to some parameter set M , assuming that the mapping s 7! Ps is one-

to-one, which allows us to identify M with a subset of the set of all distributions on Z.

Setting h(t, u) ¼ h(Pt, Pu) turns M into a metric space with the Hellinger metric, and we

shall denote by Bh(t, r) the open Hellinger ball with centre t and radius r in M . We also

introduce a finite or countable family fSm, m 2 Mg of discrete subsets of M . In what

follows, jSj denotes the cardinality of the set S. We proved in Birgé (2003) the following

result.

Theorem 1. Assume that, for each m 2 M, one can find numbers �m . 0 and Dm > 1=2

such that

jfSm \ Bh(t, x�m)gj < exp x2 Dm

� �
for all t 2 M and x > 2: (3:1)

Assume, moreover, that the numbers �m and Dm satisfy

�2
m > 16:8

Dm

n
for all m 2 M and

X
m2M

exp � n�2
m

84

� �
¼ � , þ1: (3:2)

Then one can construct an estimator ŝs 2
S

m2M Sm such that, for all s 2 M,

Es h2(s, ŝs)
� �

< 29 1 þ 10�8�½ � inf
m2M

h2(s, Sm) _ �2
m

� 
, (3:3)

where h(s, Sm) ¼ inf t2Sm
h(s, t).

3.1. Hellinger risk

Let us now return to our initial problem of estimating s 2 L1(�) with n observations from

(1.1). From now on, we shall denote by d the L2-distance (d(t, u) ¼ kt � uk) and by Bd the

corresponding open balls. We shall also introduce the following definition

Definition 1. Let S be a subset of some metric space (M , d). We say that it has a Euclidean

metric dimension bounded by D (for the metric d) if, for any � . 0, one can find an �-net S�

for S (i.e. a subset of M such that d(s, S�) < � for all s 2 S) and, for any t 2 M,

jS� \ Bd(t, x�)j < x D for all x > 2:

In particular, one can check that if S is a k-dimensional linear subspace of some Hilbert

space (M , d), its Euclidean dimension is bounded by log 3=log 2 if k ¼ 1 and by

(log 5=log 2)k if k . 1. We can now prove:

Theorem 2. Assume that we have at hand a finite or countable family fS9m9gm92M9 of subsets

of L2(�) with respective Euclidean metric dimensions bounded by Dm9 > 3=2 and let

f˜m9gm92M9 be a family of non-negative weights satisfyingX
m92M9

exp (�˜m9) ¼ �9 , þ1: (3:4)
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There exists an estimator ŝs and a universal constant C such that, for any s 2 L1(�),

Es h2(s, ŝs)
� �

< C 1 þ 10�7�9½ � inf
m92M9

d2(s, S9m9)

� 2
þ Dm9 _ ˜m9

n
log

ksk1
�

� �
_ 1


 �� �
:

Proof. We wish to apply Theorem 3 to our situation, taking for M the set of all distributions

Ps of (X i, Yi), as given by (1.1), when s 2 L1(�). In order to do this, we introduce a

stratification method, which involves replacing each initial model by several ones with

specific properties. This method is not new: it appears in Yang and Barron (1998) and was

used in Birgé (2003).

We first introduce a new index set M ¼ f(m9, j), m9 2 M9, j 2 N?g (N? ¼ Nnf0g) and

define, for each m ¼ (m9, j) 2 M, �m ¼ ffiffi
j

p
�m9 with �m9 ¼ [(16:8=n)(Dm9 _ 5˜m9)]

1=2.

Then

X
m2M

exp � n�2
m

84

� �
¼

X
m92M9

exp � n�2
m9

84

� �X
j>1

exp �( j � 1)
n�2

m9

84


 �

<
X

m92M9

exp �˜m9ð Þ
X
j>1

exp [�0:3( j � 1)],

where we have used the fact that n�2
m9=84 > Dm9=5 > 0:3. The second inequality in (3.2) is

therefore satisfied with � ¼ �9=(1 � e�0:3) , 4�9. We then define, for each j 2 N?, the

operator Ł j from L2(�) to L1(�) by Ł j(t) ¼ (t ^ �e j) _ (��e j), which implies that

kŁ j(t)k1 < �e j for all t and j. Given m ¼ (m9, j) 2 M, by assumption one can find a

��m-net Tm for S9m9 such that, for any t 2 L2(�),

jTm \ Bd(t, x��m)j < x Dm9 for all x > 2: (3:5)

We then set T 9m ¼ ft 2 Tmjd(t, Ł j(t)) < 4��mg and Sm ¼ fŁ j(t), t 2 T 9mg � L1(�). If Sm is

empty, we remove it from the collection. It follows from (2.6) with r ¼ e j that, if t and u

belong to Sm,

d(t, u) , 2:03�e j h(t, u): (3:6)

For x > 2 and u 2 L1(�) we consider B ¼ Bh(u, x�m) and wish to bound jB \ Smj in order

to check (3.1). Since there is nothing to prove if this is empty, we may assume that the

intersection contains at least one point u9 and therefore, by (3.6),

B \ Sm � Bh u9, 2x�mð Þ \ Sm � Bd u9, 4:06�e jx�m

� �
\ Sm: (3:7)

Since, for any t9 2 Sm, one can find some t 2 Tm with t9 ¼ Ł j(t) and d(t, t9) < 4��m,

log jBd u9, 4:06�e jx�m

� �
\ Smj < log jBd u9, 4:06�e jx�m þ 4��m

� �
\ Tmj

and, by (3.5) and (3.7),

log jB \ Smj < Dm9log 4:06e jx þ 4ð Þ , jDm9x
2 for x > 2:

It follows that we can take Dm ¼ jDm9 in (3.1) and that �2
m > 16:8Dm=n as required for

(3.2). Applying Theorem 1, we obtain for all s 2 L1(�),
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Es h2 s, ŝsð Þ
� �

< 29 1 þ 4 3 10�8�9ð Þ
� �

inf
m2M

h2(s, Sm) _ �2
m

� 
: (3:8)

Now let s and m9 be given and j be the smallest positive integer satisfying ksk1 < �e j and

d(s, S9m9) < �
ffiffi
j

p
�m9. If m ¼ (m9, j), then there exists t 2 Tm with d(s, t) < 2��m. Since

ksk1 < �e j, obviously d(s, Ł j(t)) < d(s, t), hence d(t, Ł j(t)) < 2d(s, t) < 4��m and

Ł j(t) 2 Sm. Finally, d(s, Sm) < 2��m and h2(s, Sm) < d2(s, Sm)= 8� 2ð Þ < �2
m=2 by (2.3).

The definition of j (distinguishing between the cases j ¼ 1 and j . 1) implies that

�2
m < 2 �2

m9 log ksk1=�ð Þ _ 1=2½ �
� �

_ d s, S9m9ð Þ=�
� �2

n o
:

Substitution in (3.8) leads, after some simplifications, to the desired bound for the Hellinger

risk. h

The important point, in this result, is that the estimator ŝs is universal in the sense that it

only depends on the family fS9m9gm92M9 and � and not on some prior upper bound on ksk1
as is the case in most papers on the subject dealing with the L2-risk, and it is the use of the

Hellinger distance that makes it possible. We are unable to obtain similar results for the L2-

risk.

Note that, given some arbitrary measurable function s0 on X , we could alternatively,

since all distances involved only depend on differences, base our construction on functions

t þ s0 with t 2 S9m9. This would not change anything apart from the fact that the final result

would involve d(s � s0, S9m9) and ks � s0k1. This can be useful if we suspect that the true s

is close to some known function s0.

A typical application. Of course, such a theorem has many applications and many model

selection procedures which have been considered in previous papers of the author, such as

Birgé and Massart (1997), Barron et al. (1999) and Birgé and Massart (2001), can be

extended to the present regression framework since they are based on approximations by

finite-dimensional linear spaces S9m9 which therefore satisfy the assumptions of Theorem 2. In

particular, all the strategies considered in Section 6 of Birgé and Massart (2001) can be

transfered to the framework we study here. We shall content ourselves with considering the

example of adaptation for arbitrary Besov balls, as discussed in Section 6 of Birgé and

Massart (2001), to which we refer for the details of the construction.

Here � is the Lebesgue measure on [0, 1], and the required family of approximating

linear spaces fS9m9gm92M9 has been defined in Birgé and Massart (2000): we start with a

suitable basis of L2([0, 1]), generated by orthogonal wavelets, splines or piecewise

polynomials, having some regularity Æ0 (which can be arbitrarily large) and, for each

D > D0 . 1 (D0 depending on the chosen basis), construct a family SD of D-dimensional

linear spaces with jSDj < exp (c1 D). We then prove that, if s belongs to some Besov space

BÆ
p,1 with p . 0 and 1=p � 1=2 , Æ , Æ0 with Besov seminorm jsjÆp, one can find some

sD belonging to some linear space in SD such that

ks � sDk < c2jsjÆp D�Æ, (3:9)

where c2 depends on the basis, Æ and p. To apply Theorem 2, we set
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fS9m9gm92M9 ¼ [D>D0
SD and if S9m9 2 SD we define Dm9 ¼ (log 5=log 2)D and

˜m9 ¼ (c1 þ 1)D. This allows us to construct an estimator ŝs according to Theorem 2 and

we finally obtain, after an optimization with respect to D, the following proposition:

Proposition 3. One can find an estimator ŝs based on a suitable wavelet, spline or piecewise

polynomial basis, but independent of Æ and p, such that, if p . 0, 1=p � 1=2 , Æ , Æ0 and

s 2 BÆ
p,1 \ L1([0, 1]), then

Es h2(s, ŝs)
� �

< C
jsjÆp
�

� �2=(1þ2Æ)
B

n

� �2Æ=(1þ2Æ)

_ B

n

" #
,

with B ¼ log � �1ksk1
� �

_ 1 and C depending only on the basis, Æ and p.

It is known that n�2Æ=(1þ2Æ) is a lower bound for the rate of convergence of estimators

over balls in BÆ
p,1 when one uses the squared L2-loss. The relevant lower-bounds arguments

rely on the construction of suitable systems of small perturbations around zero. These

functions belong to a ball of fixed radius in L1([0, 1]) and, on this ball, the Hellinger

distance and the L2-distance are equivalent by (2.3) and (2.6). It follows that the same

construction can be used to obtain analogous lower bounds for the squared Hellinger risk so

that the rate n�2Æ=(1þ2Æ) is actually also optimal in our case.

One can derive multidimensional analogues of Proposition 3.1 or consider more general

classes of functions. These are easy exercises using the family of models provided by Birgé

and Massart (2000; 2001).

Note that the previous results remain valid, using the same families fS9m9gm92M9 of

approximating spaces, if � has a bounded density with respect to the Lebesgue measure º.

In such a case, (3.9) still holds with c2 depending also on kd�=dºk1, and we can proceed

as before.

3.2. L2-risk

It is likely that, if we content ourself with bounding the Hellinger risk, some readers will

feel frustrated and ask what happens if we use the more familiar squared L2-loss.

Unfortunately, we are unable to obtain an analogue of Theorem 2 for the L2-risk and, in

order to bound it, we have to work with estimators ŝs that are bounded in L1(�) by a fixed

constant, as Wegkamp (2003) and Yang (2000; 2001; 2004) do.

Theorem 3. Assume that we have at hand a finite or countable family fS9m9gm92M9 of subsets

of, L2(�) with respective Euclidean metric dimensions bounded by Dm9 > 3=2, and let

f˜m9gm92M9 be a family of non-negative weights satisfying

X
m92M9

exp [�˜m9] < �9: (3:10)
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Given a positive integer J, one can construct an estimator ŝs satisfying supx2X jŝs(x)j < �eJ

and such that, for any s 2 L1(�),

Es ks � ŝsk2
� �

< CB2 1 þ 10�7�9½ � d2(s, sJ ) þ inf
m92M9

d2(sJ , S9m9) þ n�1 J� 2ð Þ(Dm9 _ ˜m9)
� h i

,

with B ¼ � �1ksk1
� �

_ eJ and sJ ¼ s ^ �eJð Þ _ ��eJð Þ.

Proof. Since we proceed more or less along the lines of the proof of Theorem 2, we

shall omit some details. We just proceed as in this proof, except that we restrict the defini-

tion of the m’s to j > J , we replace Ł j by Ł with Ł(t) ¼ (t ^ �eJ ) _ (��eJ ) and set

T 9m ¼ ft 2 Tmjd(t, Ł(t)) < 4��mg and Sm ¼ fŁ(t), t 2 T 9mg � L1(�). This implies that e j is

replaced by eJ in the subsequent formulae but the values of �m and Dm do not change and

we still conclude that (3.8) holds. Since both jsj and jŝsj are bounded by B�, it follows from

(2.6) that

Es ks � ŝsk2
� �

< C1 1 þ 10�7�9½ �� 2 B2 inf
m2M

h2(s, Sm) þ �2
m

� 
: (3:11)

Now, given m9 2 M9, choose j > J minimal such that
ffiffi
j

p
�m9 > d(sJ , S9m9)=� and set

m ¼ (m9, j). The definition of j (distinguishing between the cases j ¼ J and j . J ) implies

that

�2
m < 2� �2d2(sJ , S9m9)

� �
_ J�2

m9

� �
(3:12)

and the arguments used to conclude the proof of Theorem 2, with s replaced by sJ, show that

h2(sJ , Sm) < �2
m=2, which, together with (3.11) and (3.12), implies that

Es ks � ŝsk2
� �

< C2 1 þ 10�7�9½ �� 2 B2 h2(s, sJ ) þ inf
m92M9

� �2d2(sJ , S9m9)
� �

_ J�2
m9

� �n o
 �
:

The conclusion follows from our choice of �m9 and (2.3), which implies that

h2(s, sJ ) < d2(s, sJ )= 8� 2ð Þ. h

If J > log(ksk1=� ), then B ¼ eJ , sJ ¼ s and we obtain

Es ks � ŝsk2
� �

< CB2 1 þ 10�7�9½ � inf
m92M9

d2(s, S9m9) þ n�1� 2 log B
� �

(Dm9 _ ˜m9)
� 

: (3:13)

The optimal choice for J is the smallest one, but such a choice actually requires a prior

knowledge of ksk1. If it is unknown, the choice of J may be inadequate – either too large,

which leads to an unnecessarily large value of B in (3.13), or too small, which may imply a

large value of d(s, sJ ).
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Birgé, L. and Massart, P. (1997) From model selection to adaptive estimation. In D. Pollard,

E. Torgessen and G. Yang (eds), Festschrift for Lucien Le Cam: Research Papers in Probability

and Statistics, pp. 55–87. New York: Springer-Verlag.
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