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In classification problems arising in genomics research it is common to study populations for which a

broad class assignment is known (say, normal versus diseased) and one seeks undiscovered subclasses

within one or both of the known classes. Formally, this problem can be thought of as an unsupervised

analysis nested within a supervised one. Here we take the view that the nested unsupervised analysis

can successfully utilize information from the entire data set for constructing and/or selecting useful

predictors. Specifically, we propose a mixture model approach to the nested unsupervised problem,

where the supervised information is used to develop latent classes which are in turn used for data

mining and robust unsupervised analysis. Our solution is illustrated using data on molecular

classification of lung adenocarcinoma.

Keywords: Bayesian model; class discovery; gene expression; lung cancer

1. Introduction

The wide availability of high-throughput assays in biological research is generating many

high-dimensional data sets that pose novel analysis questions. For example, in genomics and

proteomics, a single experiment can provide information on thousands of genes or proteins

from a single biological sample. One of the most challenging uses of such information is

the identification of novel molecular subclasses. This task has been approached using a

combination of unsupervised clustering and visualization. While these methods have led to

important progress in understanding biological phenomena, especially in the area of cancer

classification (Mohr et al. 2002), there remain at least two important limiations: first,

approaches using observed RNA or protein expression levels can be overly sensitive to

noise and outliers; second, approaches using constructs that depend on a large number of

genetic dimensions tend to generate molecular subclasses whose interpretation is tied to a

specific technological platform and is likely to be obscured from a biological standpoint.

To address these issues, we recently proposed analysis and visualization approaches for

gene expression based on three-component latent classes, representing over-, under- and

typical expression (Parmigiani et al. 2002). The goals of the three-component latent class

analysis are: to identify variables which show variation across the sample population which

is not likely to be the result of measurement error; to choose subsets of variables which
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show similar patterns across observations; and to define population subclasses using a small

number of non-redundant variables. Class indicators replace observed expression by a scale

that is both more robust and more easily interpretable across technologies, and can facilitate

expert-based dimension reduction. Classes are identified using a Bayesian hierarchical

mixture model approach that searches for evidence of clustering of expression levels across

biological samples.

In this paper we present a generalization of this approach where we take advantage of the

knowledge that some of the biological samples are known to be normal, whereas the

remaining samples are diseased. This approach differs from that previously mentioned

which ignores all phenotype information for both model fit and gene selection. Here we

focus on using the information from normal samples to more accurately and efficiently

define what ‘typical’ gene expression is for each gene and on ways to assess which genes

are informative by comparing their expression tendencies in normal versus cancer samples.

The motivating application area is molecular classification of cancer using genomic data.

Even though the focus of these analyses is the search for yet undiscovered subgroups within

broad morphological classes of cancer, studies often include both cancer and normal

samples (Bhattacharjee et al. 2001), and sometimes additional cancer types. The normal

samples are used for clustering of genes, to facilitate indentification and interpretation of

groups of coregulated genes. Here we pursue a more formal way of incorporating

information from normal samples in the discovery of subclasses of cancers. Specifically, we

use class membership on normals to improve the fit of the mixture model and the reliability

of the latent class assignment. The resulting three-component scale is then used in the

unsupervised analysis of the cancer, including visualization, gene mining, and profile

definition. More broadly, there are many situations arising in molecular biology research

where it is assumed that a population is comprised of known classes (say, normal and

disease) and that within the disease class there are undiscovered disease subtypes. Formally,

this problem can be thought of as an unsupervised analysis nested within a supervised one.

We term this, for brevity, the ‘nested unsupervised’ case. The class information is useful for

the nested unsupervised analysis because it allows, broadly speaking, for a better definition

of predictors.

In this paper we define a latent class model for the nested unsupervised case (Section 2),

discuss data reduction and data mining techniques that make use of the supervised

information in the unsupervised analysis (Section 3), and demonstrate the methodology in

the analysis of gene expresion data on lung adenocarcinomas (Section 4).

2. Nested unsupervised analysis via supervised latent classes

2.1. Mixture modelling of latent classes

Consider a sample of T individuals, for whom we have collected a vector of binary class

identifiers c and a G3 T matrix of predictors A with elements agt. In genomic

applications, the number of predictors G is in the tens of thousands and much larger than

T . We define the goal of a nested unsupervised analysis to be that of finding subgroups
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within each of the classes c ¼ 1 and c ¼ 0. For concreteness, we will refer to class c ¼ 0

as normal and class c ¼ 1 as cancer. For simplicity of exposition we will only focus on

identifying subclasses within the cancer class.

Our approach differs from the model presented by Parmigiani et al. (2002) in that we

consider the case where a limited amount of information is known about true classes of the

subjects. Because we take a nested unsupervised approach, we are able to define the normal

class by the normal observations. We use a mixture model to determine the criteria for

categorizing values as low, normal and high.

The basic underlying assumption from which our model arises is that the distribution of

each variable (e.g., gene expression or protein expression) across individuals follows a

three-component mixture model, with components indicators egt defined by:

egt

�1 variable g is abnormally low in subject t,

0 variable g is at a typical level in subject t,

1 variable g is abnormally high in subject t:

8<
:

These components provide a scale that has lower resolution than the absolute measurements,

but is more interpretable biologically, more likely to preserve its meaning across

technologies, and more amenable to defining class memberships that can be validated and

implemented clinically. Parmigiani et al. (2002) and the associated discussion provide

additional motivation and details.

In the unsupervised setting, all the component indicators egt are estimated using mixture

modelling techniques. In the nested unsupervised setting, we propose to consider the

following relationship between the egt and ct:

if ct ¼ 0 then egt ¼ 0 for g ¼ 1, . . . , G;
if ct ¼ 1 then egt is unknown for g ¼ 1, . . . , G:

This parametrization assumes that all of the normal samples are from the normal component

of the mixture, while the disease samples are from the overexpression uniform component

(egt ¼ 1), the underexpression uniform component (egt ¼ �1), or the normal component

(egt ¼ 0), implying that for model estimation egt can take values of 1 or �1 only in the

cancer samples. This is motivated by the desire to ensure that the typical level category,

e ¼ 0, is interpretable as the category that is expected in normal samples. In cancer samples,

because of the multiplicity of mechanisms leading to cancer and the fact that many genes are

not involved in carcinogenesis, we do not preclude the case where egt ¼ 0 for samples where

c ¼ 1. This assumption generates an asymmetry in the way the unsupervised classification is

nested in the supervised analysis, but also allows us to borrow strength from the class

information in defining novel subtypes. The efficiency of this approach will improve with the

homogeneity of a predictor within the normal samples.

For each variable g, the distributions of measurements in the low, normal and high class

are f�1, g, f0, g, f1, g, respectively. That is,

agtj(egt ¼ e) � f e, g(�), e 2 f�1, 0, 1g: (1)

We define �þ
g to be the population proportion of subjects who have a high value for variable
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g and ��
g to be the population proportion of subjects who have a low value for variable g.

The model assumes that the egt are independent conditional on the �s and f s.

This approach is similar to a latent class or latent profile model (Bartholomew and Knott

1999; McCutcheon 1987; Arminger et al. 1995) where the classes and subtypes are defined

by patterns of the observed variables. However, in the standard latent class and latent profile

models, the variables that define the latent classes are predetermined. In our case, one of

the challenges is to facilitate gene mining and expert selection of a small number of

relevant genes from a set of thousands.

2.2. Distributional assumptions

In our software implementation, we have used uniform (U) distributions for f�1, g and f 1, g
and a Gaussian distribution for f 0, g (Garrett and Parmigiani 2003). The parametrization is

as follows:

f�1, g(�) ¼ U(�k�g þ Æ t þ � g, Æ t þ � g),

f 0, g(�) ¼ N (Æ t þ � g, � g),

f 1, g(�) ¼ U(Æ t þ � g, Æ t þ � g þ kþg ):

In practice, these distributions have proven successful in capturing the categorical nature of

gene expression data in both simulated and real data sets.

In the Gaussian distribution, Æ t þ � g represents the mean of the typical expression

distribution for gene g in sample t, with � g as the gene effect and Æ t as a subject-specific

effect. We include Æ t to adjust for the possibility that the values in sample t might be

higher or lower on average than other samples. In pre-normalized gene expression data, the

main function of the Æ t is to readjust the normalization so that it only applies to the normal

and not the regulated observations. � g is the standard deviation of the normal category in

gene g. The upper and lower limits of the high and low distributions are Æ t þ � g þ kþg and

Æ t þ � g � k�g , respectively.
There are many choices for the distributions which would likely achieve the same goals.

Our reasons for choosing the above distributions are partly mathematical convenience and

partly due to to the nature of genetic and proteomic data. For example, it can be assumed

in many cases that the error associated with measuring gene expression follows a Gaussian

distribution, justifying our use of the the Gaussian distribution for normal expression. In our

applied setting, the uniform distribution naturally lends itself to the case of differential gene

expression. In cancer applications, differential expressions are thought to be caused by the

failure of biological mechanisms. As a result, the observed expression levels may take a

broad range of values. Although we advocate the use of the priors that we have chosen, it

should be stressed that other prior distribution may be used if desired.

For estimation, choosing the uniform distributions is efficient because it requires the

estimation of relatively few additional parameters. One of the limits of each of the uniform

components is defined by � g þ Æ t, and so only one additional parameter is required.
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Consider the analogous case of a mixture of three Gaussian distributions: the Gaussian

mixture model would require six gene-specific parameters, whereas our model only requires

four (this does not include the estimates of �þ
g and ��

g ). This property is convenient in that

stable estimates are provided even when the majority of the genes tend to fall into the

normal expression case. Additionally, because of the flat shape of the uniform, no values are

assigned very low densities. We have imposed an additional constraint that kþg . r� g and

k�g . r� g to ensure that the uniforms truly represent high and low values and do not have a

large portion of their range overlapping with the Gaussian component. In our

implementation, we generally choose a value of r . 3, which ensures relatively little

overlap between the Gaussian and the uniform components.

Examples of normal/uniform mixtures for finding outliers and sparse clusters are

discussed by Fraley and Raftery (1998). For other examples of mixture modelling applied to

microarray data, see Lee et al. (2000), McLachlan et al. (2002) and Yeung et al. (2001).

As in Parmigiani et al. (2002), a Bayesian hierarchical model is used to estimate the

mixture model proposed above. The estimation approach yields posterior distributions for

each of the parameters of interest. We borrow strength across genes by assuming that the

gene-specific parameters (e.g., � g, �þ
g ) follow additional probability distributions. This is

motivated by two factors: first, due to the high gene-to-subject ratio, there is relatively little

information with which to estimate gene-specific parameters; and second, technological

aspects of the assays would affect many or all of the genes similarly.

Specifically, we use the following hierarchical distributions to describe the variation of

parameters across genes:

� gjŁ�, �� � N (Ł�, ��),

��2
g jª, º � G(ª, º),

kþg jŁþk � E(Łþk ),

k�g jŁ�k � E(Ł�k ),

logit(�þ
g )jŁþ� � N (Łþ� , �

þ
� ),

logit(��
g )jŁ�� � N (Ł�� , �

�
� ),

where G is the gammma distribution and E is the exponential distribution. We assume that gene-

specific parameters are independent conditional on the hyperparameters on the right-hand side of

the distributions above. Hyperparameters can be assigned dispersed, non-informative priors, as

the large number of genes allows for data-driven estimation. An advantage of the hierarchical

model is that for genes which show little or no evidence of high or low values (i.e.,

��
g � �þ

g � 0), there is essentially no information in the data with which to estimate the

parameters associated with the high and low distributions. The hierarchical model uses

information from the other genes with which to estimate parameters for these variables. Notice

that there is no hierarchical distribution for Æ t. The model could easily be generalized to include

this, but in practice it does not appear to be necessary or to affect model estimates.
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We fit this model using a Markov chain Monte Carlo estimation procedure, in which the

data are augmented with a trichotomous indicator, egt for each agt, with the additional

constraint that egt ¼ 0 if ct ¼ 0 (see also Diebolt and Robert 1994; West and Turner 1994).

The constraint has important implications in the interpretation of results. In the gene

expression data that we will examine in the next section, there are 139 cancer samples and

only 17 normal samples. If there are genes which clearly delineate the cancers from the

normals, we would expect that only the normal samples would have expression values

consistent with e ¼ 0, and the cancer samples would appear to have e ¼ �1 or e ¼ 1.

As in the unsupervised version, to facilitate sampling of the ks, we used the sampling

sequence [kjø�], [ejk, ø�], [ø�jk, e]. Symbols refer to parameter vectors or matrices,

brackets refer to posterior distributions. We use ø as shorthand for the full set of

parameters, and ø� for ø with k removed. Given the class indicators (egt), the full

conditional distribution of the � g is a Dirichlet distribution, and the full conditional

distribution of the parameters of the normal component is conjugate, with the additional

constraint that � r , min(kþg , k
�
g ).

For each point in the predictor matrix, the probability of latent class membership is

pþgt ¼ P(egt ¼ 1jagt, ø) ¼
�þ

g f 1, g(agt)

�þ
g f 1, g(agt)þ ��

g f�1, g(agt)þ (1� �þ
g � ��

g ) f0, g(agt)
, (2)

p�gt ¼ P(egt ¼ �1jagt, ø) ¼
�þ

g f�1, g(agt)

�þ
g f 1, g(agt)þ ��

g f�1, g(agt)þ (1� �þ
g � ��

g ) f 0, g(agt)
: (3)

The quantities in equations (2) and (3) can be interpreted as measures of the distance between

observed measurements and measurements that would be expected in normal subjects. Values

of pþgt and p�gt that are close to 0 indicate similarity to normal subjects, while values close to

1 indicate levels that are either high or low as compared to what is seen in normal subjects.

A point gt can only have high positive probability of belonging to the high or to the low

category, but not both, as the two categories are not overlapping. Exploiting this fact, we

can combine pþgt and p�gt by pgt ¼ pþgt � p�gt . We refer to this new variable as the ‘poe

scale’, where poe is an acronym for ‘probability of expression’. The transformation from

agt to pgt is useful because we have essentially made the data independent of the method

with which the measurements were assayed. For example, the agt could be expression

values from oligonucleotide arrays, or from cDNA arrays, or from other means for

measuring genetic activity. Additionally, all genes are now measured on the same scale so

we can directly compare variables across subjects. We present some specific tools for data

reduction in the next section. However, the G3 T matrix of pgt values can now be used in

any clustering or other analytic method.

3. Data reduction approaches in nested unsupervised analyses

We now shift our focus to the application of the above model where the variables of interest

are genes, and the subjects are referred to as biologic samples.

956 E.S. Garrett and G. Parmigiani



3.1. Evaluating diagnostic characteristics of variables

The goals of the analyses that follow are to find a relatively small number of genes which

show variation across samples, show consistent values within normal samples, and possibly

show evidence of subtypes within the disease class. To do this, we assign each expression

value to one of the components of the mixture model, based on the estimated pgt values.

Specifically, we estimate the true category of gene g for subject t (egt) with êe gt, such that

êe gt ¼
�1 if pgt , �p0,

1 if pgt . p0,

0 otherwise,

8<
: (4)

where p0 is a fixed threshold. Because the high and low class probability are strongly

negatively correlated, a natural choice is a threshold of p0 ¼ 0:5, although other cut-offs can

be chosen, ranging from 0 to 1. Note that this is also done for the normal samples: in the

model estimation, we fixed the egt ¼ 0 for normal samples. However, to determine whether

or not the normal samples do tend to fall within the normal component of the mixture, we

assign their expression values to one of the three categories based on their fitted pþgt and p�gt
values. We then use the matrix of êe gt values to determine which genes accurately allocate

normal samples to the normal component and cancer samples to the uniform components.

The allocation of normal samples to the normal component can be assessed by examining

a variable’s ‘specificity’, and evidence of allocation of cancerous samples to the uniform

components can be assessed by ‘sensitivity’. We define specificity (spg), sensitivity (seg),

positive sensitivity (seþg ), and negative sensitivity (se�g ) for gene g as follows:

spg ¼ P (sample t is classified as normal by gene gjsample t is normal),

se g ¼ P (sample t is classified as high or low by gene gjsample t is diseased),

seþg ¼ P (sample t is classified as high by gene gjsample t is diseased),

se�g ¼ P (sample t is classified as low by gene gjsample t is diseased):

To calculate specificity (spg) and sensitivities (seg, se
þ
g , se

�
g ), we use the estimates of êe gt

found above where samples have been assigned to the high, normal and low categories.

Note that the specificity and sensitivities are calculable in this nested unsupervised approach

due to the use of the normal phenotype information. In the previous implementations of the

poe model where sample phenotype was not included in the model, sensitivity and

specificity could not be estimated.

The effect of choosing a cut-offs (i.e., p0) closer to 0 will tend to classify more samples

as normal, decreasing sensitivity and increasing specificity. Choosing a cut-off closer to 1

will have the opposite effect. After choosing a threshold and categorizing each expression

value for each sample, we can calculate spg, se g, se
þ
g , and se�g for each gene as follows:
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spg ¼

X
t:� t¼1

(1� jêe gtj)

XT
t¼1

(1� ct)

,

seg ¼

X
t:� t¼0

(jêe gtj)

XT
t¼1

ct

,

seþg ¼

X
t:� t¼0

I(êe gt ¼ 1)

XT
t¼1

ct

,

se�j ¼

X
t:�i¼0

I(êe gt ¼ �1)

XT
t¼1

ct

,

where ct ¼ 0 if the sample is normal and 1 if the sample is cancerous. Based on (4), we can

see that the pþgt and p�gt are reflected strongly in the sensitivities and specificities. But, what

the sensitivities and specificities provide is a summary of the pgt information in each of the

two groups (i.e., the normals and cancers) for each gene. Hence, they are statistics that

summarize how well the genes separate the cancers into the uniform components of the

mixture and the normal samples into the normal component of the mixture.

We are interested in genes which are consistent across normal samples. This corresponds

to choosing genes that show high specificity, spg . If we are also interested in genes which

show evidence of subtypes of disease, then we would choose genes that also had one of the

levels of sensitivity away from the extremes, which suggests that for individuals who have

disease only a fraction of them show high or low expression. If a variable has very low seþ

and relatively high se�, the diseased samples tend to have low values relative to normals. If

a variable has moderate levels of both seþ and se�, then there is a subtype of diseased

samples that show low levels and another subtype showing high levels.

We can now reduce our data set by choosing genes which show sufficient specificity.

Recall that the specificity of gene g refers to the probability that expression values gene for

g in a normal sample come from the normal component of the mixture distribution

described in Section 2. In general, we would expect the specificities to be high because the

model is estimated assuming egt ¼ 0 for all normal samples. However, for some genes,

some of the expression values in the normal samples may be more consistent with

expression values from the cancer samples. It is these genes that we are not interested in
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exploring further. Hence, setting a threshold for specificity will allow us to weed out genes

which will not be useful for distinguishing normals from cancers. This level of specificity

will depend to some extent on the data set under consideration, but as an example, setting a

specificity of 0.6 ensures that at least 60% of the normals are classified as normals by the

gene of interest. For sensitivity, we use the overall sensitivity value (se), where we choose a

much lower threshold due to the hypothesis that there are subtypes within the disease

categories. For example, a threshold of 0.10 for se will sufficiently eliminate variables that

show almost no evidence of association with disease versus normal status. Note that

although we are interested in genes with high specificity and low sensitivity, we tend to not

be interested in variables with low specificity and high sensitivity. These variables would

tend to categorize normal subjects into the disease class.

By setting thresholds for specificity and sensitivity, we can effectively eliminate genes

which show little evidence of being related to the disease process. A cautionary note is that

the precision of the sensitivities and specificities will depend on the number of samples. In

the example that is presented in the next section, the number of normal samples is

relatively small and so the threshold should be chosen conservatively.

3.2. Creating subsets of similar variables

Estimates of class assigment probabilities can be used to mine for genes that are likely to

provide interesting subgroups of the diseased category. The ‘mining’ method for creating

subsets is primarily exploratory in that figures are provided to give the user a sense of how

well combinations of genes are able to distinguish subclasses within the diseased subjects.

Before describing the approach for finding subsets, we define two statistics which are

critical for selecting genes: gene coherence and gene agreement. We calculate the G3 G

matrix

rgk ¼
XT
t¼1

( pþgt p
þ
kt þ p�gt p

�
kt þ (1� pgt)(1� pkt)),

where coherence is measured by the diagonal of the agreement matrix, and agreement by the

off-diagonal elements. Specifically, the coherence of gene g is represented by rgg, which

measures how ‘cleanly’ gene g is able to discriminate between over-, typically and

underexpressed genes. Genes with values of pþgt and p�gt close to 0 and 1 will have high

coherence, while those with values closer to 0.50 will have low coherence. Gene agreement

between two genes g and k is defined by rgk, which measures the expected proportion of

agreements in defining samples as over-, typically and underexpressed. After calculating the

gene coherence and gene agreement, some exploratory analysis of the values should be

performed to determine what are sufficient agreement and coherence values. For example, the

75th or 90th percentile of these distributions might be chosen. However, the choice should

depend on the values within the data set of interest: if overall coherence appears to be high,

then a threshold close to the 50th percentile might be warranted, whereas if coherence is

generally low, then setting a threshold closer to the 90th percentile might be more

appropriate. For defining sufficient gene agreement, we have used two types of measures: a
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fixed level of gene agreement, as just described; or agreement as a proportion of coherence of

the ‘seed’ variable, which will be discussed in more detail below.

The mining method is algorithmic, and user inputs guide the resulting profiles. In step 1,

the user defines a level of differential expression (both under and over, e.g. 15%

underexpressed and 0% overexpressed) which determines what types of genes will be

chosen. The differential expression pattern will have a strong influence on which genes are

selected, and, as such, it is expected that users will try a variety of patterns when searching

for subsets using our approach. We do not see the dependence of profiles on chosen pattern

of expression as a weakness: instead we see this approach as providing a flexible way of

looking at a variety of gene expression patterns. This approach was designed with the

expectation that users would indeed repeat the process multiple times with differing input

patterns in step 1. And, as the algorithm is computationally simple and fast, the repetition

of this exploratory approach is not time-consuming. While we note that the resulting genes

chosen will depend strongly on the ‘low–high’ pattern chosen, the algorithm is not overly

sensitive to the pattern. For example, the patterns f0:05, 0:20g and f0:10, 0:25g will

generally yield very similar results.

The mining algorithm for finding homogeneous subsets in the application of Section 4 is

shown below, and is described in more detail in Parmigiani et al. (2002) and Garrett and

Parmigiani (2003):

1. Choose an expression pattern of interest. The idea is to state a target for how many

samples are expected to show low expression and how many to show high expression

for a gene. For example, the pattern f0:05, 0:20g indicates that 5% of samples should

be low and 20% should be high for a gene. The remaining 75% would then be in the

‘typical’ component of the mixture.

2. Sort genes according to consistency with ‘low–high’ distribution defined in step 1.

Using the estimates of pþgt and p�gt, we can calculate, for each gene g, the probability

that the distribution of over- and underexpression among the samples is the same as in

the specified low–high distribution. We sort genes by this probability.

3. Choose as the ‘seed’ gene the one with the largest probability from step 2 which is

sufficiently coherent (i.e., rgg . rc, where rc is the cut-off for gene coherence).

4. Choose genes that show substantial agreement with the seed gene, either as a fixed

agreement cut-off, or as a proportion of coherence of the seed variable. Add these

genes to the ‘group’ which is seeded by gene chosen in step 3.

5. Remove the genes in the group defined in step 4 from further consideration. Repeat

steps 3 and 4 to identify remaining groups.

We apply this approach to a subset of genes which have sufficient specificity and

sensitivity. For each repetition of gene mining, we find homogeneous sets of genes and, for

the purpose of defining molecular profiles, generally need to choose just one gene to

represent the group. Some of the genes within a set may be more appealing to scientists or

clinicians in terms of describing classes among subjects. In the gene expression setting,

many of the rows of the gene expression matrix are truly known genes but many are

expressed sequence tags (ESTs), which are small portions of the active parts of genes and

usually of unknown biological function. If given a choice as to whether to define disease
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subtypes using known genes or ESTs, the known genes are generally preferable. As a result,

we can scan each gene group for the one that makes the most sense clinically or

biologically. In the settings where the idea of ‘preferred’ variables does not apply, it is most

logical to choose the seed variable from a group as the group’s representative.

After a subset of genes has been identified using this method (i.e., a set of

‘representative’ genes have been defined from several gene groups), we use the genes to

define pattern profiles. For example, if we have chosen only two variables, for each subject

we can calculate the probability that the subject belongs to one of nine possible profiles

((�1, �1), (0, �1), (1, �1), (�1, 0), (0, 0), (1, 0), (�1, 1), (0, 1), (1, 1)). Here the �1, 0

and 1 are the true egt and ekt values for the two chosen variables, g and k. We use the pgt

value for estimation of profile probabilities. For a set of m genes, there are 3m possible

patterns. Because the number of patterns grows very large even for moderate m, it is

generally preferred to choose relatively few genes.

Using the sample-specific profile probabilities, we can then create a ‘heatmap’ showing

which samples tend to cluster together and what their gene expression profiles look like.

Specifically, with profile on the y-axis and sample on the x-axis, we plot the profile

probabilities using a colour or grey scale. This provides a graphical tool to assess how

many subclassess appear and how well the disease subgroups are differentiated from the

normal samples. This will be clearer when an example is seen in the next section.

We use the above plot as an exploratory tool showing subtypes of samples based on gene

expression profiles of two or more genes. The question is whether what is seen in the plot

can be determined to be ‘real’ subtypes or not. The way to determine if the subtypes are

real subtypes, or perhaps have arisen due to chance, can be approached in two different

ways. The first is to use statistical validation, which could be done using either another

gene expression data set, or using some standard validation approaches within the data set

(for a discussion of cross-validation in gene expression analyses, see Simon et al. 2003).

The second approach is to use biological validation, where the identified profiles are

interpreted and make biological sense, and, further, using more sensitive assays, such as

reverse transcription polymerase-chain reaction (RT-PCR) which is known to be a very

accurate way of assessing gene expression, we can find out if these profiles truly exist in the

samples. However, even by using RT-PCR, we may find that the gene expressions are

validated, but it is still for further investigation to discern whether the identified subtype

behaves in a distinct and predictable way from the other cancer subtypes.

4. Identifying subclasses of lung adenocarcinoma

4.1. Data

We now illustrate the nested unsupervised methodology described so far using a gene expression

data set that includes normal and cancerous lung samples (Bhattacharjee et al. 2001). The

specimens in this data set include 139 lung adenocarcinomas (adeno), and 17 normal lung (NL)

specimens. Throughout, normal samples are indicated in figures with varying symbols. The

primary analytic goals are to indentify subgroups of adenos and compare the cancer samples to
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the normal samples. Affymetrix arrays were used to obtain gene expression data on the 156

samples for 5665 genes. This set of 5665 genes is a subset of the original data set and was chosen

based on its overlap with a comparable data set from another institution. We used all 5665 genes

instead of choosing a smaller set through filtering to show the useful properties of data reduction

based on our methods and software. More detailed information about the experimental processes

can be found in Bhattacharjee et al. (2001). Data were preprocessed to remove experimental

artefacts, and a cube root transformation was performed.

4.2. Sensitivity and specificity of genes

We used the R library POE (Garrett and Parmigiani 2003) to fit the mixture model

described in Section 2. POE can be obtained at http://astor.som.jhmi.edu/poe. Figure 1

illustrates the fit of the mixture model for gene 30. There is evidence of two subgroups in

the data. Most of the normal samples cluster in correspondence with the subgroup with

lower expression, although one belongs to the high-expression component. Because the

subgroups are of similar size, a completely unsupervised analysis may have identified either

class as the ‘typical’ class. The additional information from normal samples permits us to

attribute a more reliable interpretation to the classes.

Sensitivity and specificity of all genes can also be computed using tools in the POE

library. Results are shown in Figure 2. We can see that there are many genes with high

specificity, indicating that the normal samples do in fact tend to show similar expression

patterns in many of the genes. Sensitivity ranges from 0 to approximately 0.8, with 75% of

the genes having sensitivities less than 0.25. We filtered our 5665 genes by taking only

genes with specificities above 0.8 and sensitivities above 0.10. This left us with 1182 genes,

a reduction in the number of genes of about 80%.

A similarity image (i.e., ‘heatmap’) of samples is shown in Figure 3. Similarity entries

are Pearson’s correlation coefficient calculated using the pgt matrix of poe scores for the

1182 selected genes. The rows and columns of the matrix have been sorted using a divisive

hierarchical clustering algorithm to find groups of genes. The grey-scale intensity represents

the correlation: white is perfect positive correlation and black is perfect negative

correlation. We see that the subset of genes that we have chosen does a very good job

of separating the normal samples from the adenocarcinomas (note that the adenocarcinomas

are all very close to one another). While we could have estimated the correlation matrix

and performed the divisive clustering using the entire set of 5665 genes, including genes

that are not related to the phenotype of interest would have been likely to add more noise

than signal to our clustering. Generally, it can be more efficient to only include meaningful

variables in a cluster analysis, so that spurious clusters are not formed due to chance

associations in the data.

4.3. Gene mining

We then used the procedure described in Section 3.2 to find a small number of genes which

will provide molecular profiling information. The target pattern sizes used for mining genes
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were (0:1, 0:5), (0:5, 0:1), (0:1, 0:25), (0:25, 0:1), (0:2, 0:05), (0:05, 0:20), and (0:3, 0:3).
After successively grouping genes for these patterns of expression in the data, we selected

three genes that represented different partitions of the sample space and also had high

specificities (1:00, 0:88 and 0.94) and moderate sensitivities (0.15, 0.33 and 0.58),

Figure 1. Estimated mixture components for gene 30. Short vertical marks along the x-axis are the

estimated residuals agt � � g � Æ t, for the cancer samples. Tall vertical marks are the corresponding

residuals for normal samples. The dotted line is a kernel density estimate of the distribution of the

residuals. The solid lines correspond to the best-fitting uniform and normal components of the

mixture, multiplied by the corresponding mixture weights. The underexpression uniform ranges from

�10 to 0 and the overexpression uniform ranges from 0 to 5. The bottom panel displays the normal

quantile plot, with dark to lighter grey shades proportional to the probability 1� p̂pgt of being from

the normal component.
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respectively. The genes are: BRCA1 (breast cancer 1), a tumour suppressor gene that is

related to the famililal breast/ovarian cancer syndrome (Szabo and King 1997) as well as

other cancers; MEIS1 (myeloid ecotropic viral integration), which is a transcription factor

known to be related to oncogenesis (Moskow et al. 1995); and FGF7 (fibroblast growth

factor 7), which is related to lung development (Ware and Matthay 2002).

For each of the samples, we estimate the 33 profile probabilities and show this

graphically in Figure 4, with darker values representing higher probabilities. The four

profiles (0,0,1), (0,0,0), (0,�1,0), and (�1,�1,0) receive relatively high probablity in a large

number of samples. Profiles (0,1,1), (�1,0,0) and (0,�1,1) also receive high probability in

some of the samples. As expected, many normal samples belong to the normal profile

(0,0,0) with high probability, although some give high probability to other classes, as the

sensitivity and specificity of the classifier genes are not 100%.

The nonlinear transformation from the expression scale to the poe scale can be thought of as a

denoising transformation. The effects of denoising are illustrated in Figure 5. There tend to be

tighter clusters of points in the poe-scaled data and more scatter in the raw data. The poe scale

also carries information about the uncertainty with which the trichotomization can be applied.

In Table 1 we have assigned each sample to the most likely of the 27 possible profiles. We find

that there is good specificity of this classification, with 14 of the 17 normal samples belonging to

the normal profile (0,0,0). There is also strong evidence that other subclasses of adenocarcinoma
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Figure 2. Scatterplot of sensitivity and overall specificity of the genes analysed. Specificity can take

on only 18 values, as there are 17 normal samples. For the purpose of this scatterplot, vertical

coordinates have been slightly perturbed.
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exist: 63 samples very strongly show the pattern (0,0,1), and 17 adenocarcinoma samples are

classified into (0,�1,0) and another 12 into (�1,�1,0). There is some evidence that the profiles

(0,1,1), (0,�1,1), and (�1,0,0) might be meaningful, due to the high probability that several

adenocarcinomas (5, 7 and 4, respectively) exhibit these patterns.

5. Discussion

Genomic data analysis is posing novel challenges to high-dimensional classification. Among

the most critical is to develop methods for discovery of novel biological subtypes using

Figure 3. Pairwise Pearson’s correlation matrix of pgt ¼ pþgt � p�gt. White indicates perfect positive

correlation and black indicates perfect negative correlation. Normal samples are indicated by the

symbol ‘3’ on the axes. Rows and columns have been sorted based a divisive hierarchical clustering

algorithm.
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molecular profiles. This requires integration of complex modelling, to properly capture

sources of variation, with intuitive and interpretable visualization, to support dimension

reduction with reliably elicited biological knowledge.

One of the most promising directions for dimension reduction in unsupervised analysis in

genomics is to use known class assignment information involving the same predictors in a

similar context. In this paper we formally explore statistical modelling of this principle. We

define a nested unsupervised analysis to be the discovery of subclasses within a known

class, and we discuss a mixture-based approach that builds on earlier work on unsupervised

molecular profiling. We have extended the R library POE to handle this case and illustrated

its use.

In gene expression data analysis, a practical advantage of our approach is to help in the

screening of genes as predictors, using simple and interpretable measures such as sensitivity

and specificity. Presecreening of predictors is normally done based on overall expression

variability, which is prone to outliers and not sufficiently sensitive to clustering of samples.

A second advantage of incorporating the information from the normal is a more reliable

interpretation of the latent classes used in classification. Additional discussion of three-way

mixture models in molecular profiling can be found in Parmigiani et al. (2002).
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Figure 4. Molecular profiles probabilities. Probabilities are plotted in grey scale, where 0 corresponds

to white, 1 corresponds to black. Each row corresponds to one of the 27 molecular profiles defined by

the expression status of genes BRCA1, MEIS1, and FGF7. Each column corresponds to a sample. For

example, the point for row (1, �1, 0) for tumour 79 is the probability that the true expression

indicators for tumour 79 are (1, �1, 0) with regard to the genes in question. Marks on the horizontal

scale identify normal samples.
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Figure 5. Scatterplots of poe scale (top row) and continuous untransformed scale (bottom row) for the

three genes selected for profiling (BRCA1, FGF7 and MEIS1).

Table 1. Profile assignments for 156 lung tissue samples.

Profiles represent the overexpression (1), normal expression

(0) and underexpression (�1) of genes BRCA1, MEIS1 and

FGF7, respectively

Profile Adeno Normal

(�1,�1,0) 12 0

(0,�1,0) 17 1

(�1,0,0) 4 0

(0,0,0) 23 14

(�1,1,0) 1 0

(0,1,0) 2 1

(�1,�1,1) 2 0

(0,�1,1) 7 0

(�1,0,1) 3 0

(0,0,1) 63 1

(0,1,1) 5 0

Total 139 17
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