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We examine the distribution of the global maximum of an independent superadditive process with

negative drift. We show that, under certain conditions, the distribution’s upper tail decays exponentially

at a rate that can be characterized as the unique positive zero of some limiting logarithmic moment

generating function. This result extends the corresponding one for random walks with a negative drift.

We apply our results to sequence alignments with gaps. Calculating p-values of optimal gapped

alignment scores is still one of the most challenging mathematical problems in bioinformatics. Our

results provide a better understanding of the tail of the optimal score’s distribution, especially at the

level of large deviations, and they are in accord with common practice of statistical evaluation of

optimal alignment results. However, a complete mathematical description of the optimal score’s

distribution remains far from reach.
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1. Introduction

Consider a random walk (Sn)n>0 with negative drift but a positive probability of having

positive steps. Much is known about the behaviour of the global maximum G :¼ maxn>0 Sn
of such a random walk – see such classic textbooks as Feller (1968; 1971) and Spitzer

(1976). One basic result from the world of large deviations says that the upper tail of the

distribution of G decays exponentially at a rate that can be characterized via the logarithmic

moment generating function ¸(Ł) :¼ log E[exp(ŁS1)] of the random walk’s increments: As

long as ¸ is not degenerate, it has a unique positive zero Ł� and

lim
t!1

� 1

t
logP(G > t) ¼ Ł�: (1)

We will extend this result from random walks to the class of independent superadditive

processes. These processes play a crucial role in describing the statistics of the scores of
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optimal local sequence alignments with gaps – a model that nowadays is widely applied in

bioinformatics.

Observe that the random walk result (1) has already been applied to gapless alignments.

Gapless alignments have a certain additivity property, and therefore random walks are the

right ‘building blocks’ for the model. For a complete description of the statistics of optimal

ungapped alignments, see Dembo et al. (1994a; 1994b).

In gapped alignments, this additivity is no longer present, but is weakened to

superadditivity combined with a certain independence structure. The basic building blocks

therefore are now independent superadditive processes, and this is why we deal with them.

The rest of the paper is organized as follows. In the next section we state our results for

independent superadditive processes and give the proofs. How the results apply to optimal

gapped alignments will be shown in Section 3. We discuss the practical implications of our

results in Section 4.

2. Global maxima of independent superadditive processes

Let (Ti, j)0<i< j be an independent superadditive process, i.e. we assume the following:

(i) For all i < j < k, we have Ti,k > Ti, j þ Tj,k .

(ii) (Ti, j)0<i< j has the same joint distribution as (Tiþ1, jþ1)0<i< j.

(iii) E[T�
0,1] , 1.

(iv) For any increasing sequence 0 ¼ i0 , i1 , i2 , . . . , ik , the random variables

(Ti j�1,i j)1< j<k are independent.

Of course, this is more than enough for a superadditive ergodic theorem to hold, i.e. we have

(see, for example, Durrett 1996, Section 6.6)

lim
n!1

T0,n

n
¼ ª almost surely, (2)

where ª is the growth constant

ª :¼ lim
n!1

E[T0,n]

n
¼ sup

n.0

E[T0,n]

n
2 (�1, 1]: (3)

An important large-deviations result for independent superadditive processes was proved

in Hammersley (1974):

Theorem 1. For each n, define the logarithmic moment generating function ¸n of T0,n on Rþ
by

¸n(º) :¼ log E[exp(ºT0,n)]:

Then the limits

¸(º) ¼ lim
n!1

1

n
¸n(º) ¼ sup

n.0

1

n
¸n(º) (4)
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and

r(q) ¼ lim
n!1

� 1

n
logP(T0,n . qn)

� �
¼ inf

n.0
� 1

n
logP(T0,n . qn)

� �
(5)

exist in R :¼ [�1, 1] for º > 0 and q 2 R. Moreover, ¸ and r are convex functions and

are related by

r(q) ¼ sup
º>0

fºq�¸(º)g (6)

and

¸(º) ¼ sup
q2R

fqº� r(q)g ¼: r�(º), (7)

for all q in the interior of Dr :¼ fq9 : r(q9) , 1g and º > 0 in the interior of

Dr� :¼ fº9 : r�(º9) , 1g.

Remark 1. In Hammersley (1974) the result was originally stated in the more general setting

of superconvolutive families of distribution functions, for which independent superadditive

processes provide natural examples. The statement of Theorem 1 is also given in Kingman

(1975, Theorem 3.4, p. 214). Although Kingman’s argument for proving (7) is only valid for

D¸ :¼ fº9 : ¸(º9) , 1g, which might in general be strictly smaller than Dr� , the result does

hold in the generality stated in Theorem 1. More details concerning the proofs of

Hammersley and Kingman and how they relate to the more modern Gärtner–Ellis theorem

can be found in Grossmann (2003).

Remark 2. A formulation equivalent to (6) and (7) is that cl(r) and ¸ are a pair of convex

conjugate functions, where cl(r) denotes the closure of the convex function r and

¸(º) :¼ cl(¸(º)), º > 0,

1, º , 0:

�
For more details on convex conjugacy, see Rockafellar (1979).

We now study the global maximum of an independent superadditive process. In the

following we assume the process (Ti, j)0<i< j to

(i) have a negative growth constant ª , 0;

(ii) have a positive probability of being positive, i.e.

P(T0,1 . 0) . 0;

(iii) be linearly bounded, i.e. there is a constant cu such that

T0,n < cun:

We define the global maximum of the process (T0,n)n>0 as

G :¼ max
n>0

T0,n: (8)
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Observe that (i), (iii) and (2) together imply that G , 1 a.s.

Our main result in the general setting of independent superadditive processes is the

following characterization of the large deviations of G.

Theorem 2. Assume that the equation ¸(º) ¼ 0 has a unique positive solution Ł�. Then

lim
t!1

� 1

t
logP(G . t) ¼ Ł�:

Remark 3. It is not the case that the simple assumption ª , 0 implies the existence of a

unique positive zero Ł� of ¸. In fact, it is only clear that ¸9(0þ) > ª (where ¸9(0þ) denotes

the right derivative of the convex function ¸ in 0). But observe that since we assume (ii) and

(iii), the existence of a unique positive zero Ł� of ¸ follows as soon as ¸9(0þ) , 0.

Before proving the theorem we need a couple of lemmas.

Lemma 1. Assume that ¸(º) ¼ 0 has a unique positive solution Ł�. Then

Ł� ¼ inf
q.0

r(q)

q
¼ r(q�)

q� ,

for any value q� such that r(q�) , 1 and

¸9(Ł��) < q� < ¸9(Ł�þ):

Proof. By convexity and since r(q) ¼ 0 for q < º , 0, it is clear that r is non-negative and

non-decreasing and that we can define

Ł :¼ maxfŁ > 0j8q . 0 : Łq < r(q)g, (9)

which is the slope of the unique increasing straight line that goes through the origin and is

tangential to r. With this definition of Ł we clearly have

Ł ¼ inf
q.0

r(q)

q
:

Next, observe that it follows from (7) and the definition of Ł� that, for all q . 0, we have

Ł�q < r(q), from which Ł > Ł� . 0 follows. By the assumptions on ¸, this implies

¸(Ł) > ¸(Ł�) ¼ 0. On the other hand, it follows from (7) and (9) that ¸(Ł) < 0 and

therefore Ł ¼ Ł�. The characterization of Ł� via q� follows directly from convex

conjugation. h

Lemma 2. Assume that ¸(º) ¼ 0 has a unique positive solution Ł�. For all n, all º such that

¸9n(º�) . 0 and all q with

¸9n(º�) < qn < ¸9n(ºþ),

we have
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Ł� < º� (1=n)¸n(º)

q
:

Proof. Clear from Figure 1. h

Lemma 3. Assume that ¸(º) ¼ 0 has a unique positive solution Ł�. Then

lim
t!1

min
n>0

� 1

t
logP(T0,n . t) ¼ Ł�:

Proof. We begin by showing that P0(T0,n . t) > e� tŁ� . To this end, for given t and n, define

qt,n ¼ t=n and º t,n as the unique value with

1

n
¸9n(º t,n�) < qt,n <

1

n
¸9n(º t,nþ): (10)

(Of course, if we denote 	 h :¼ supº>0 ¸9(ºþ) and chose t and n such that qt,n . 	 h, (10)

cannot be fulfilled, since we have, for all º > 0,

1

n
¸9n(ºþ) < 	 h:

But then 0 ¼ P(T0,n . t) < e� tŁ� is a trivial conclusion.)

The basic calculation is

P0(T0,n . t) ¼ E0[1; T0,n . t]

¼ exp �t º t,n �
1

n
¸n(º t,n)=qt,n

� �� �
Eº t,n n[exp(�º t,n(T0,n � t)); T0,n . t], (11)

λ

Λ

θ∗

Λn
1
n

Λn(λ)1
nλ − q

Figure 1. Proof of Lemma 2
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where the measure Pº,n is defined via

dPº,n

dP
(ø) :¼ exp(ºT0,n(ø) �¸n(º)):

Since the expectation in (11) is bounded from above by one, it follows for arbitrary n from

Lemma 2 that

P0(T0,n . t) < exp �t º t,n �
1

n
¸n(º t,n)=qt,n

� �� �
< e� tŁ� : (12)

Maximizing over n, taking logarithms and dividing by �1=t gives

lim
t!1

min
n>0

� 1

t
logP(T0,n . t) > Ł�:

For the reverse inequality choose q� such that

¸9(Ł��) < q� < ¸9(Ł�þ)

and define n�t :¼ dt=q�e. Then it is clear that

P(T0,n�t . t) > P(T0,n�t . n�t q�)

and

lim
t!1

min
n>0

� 1

t
logP(T0,n . t) < lim

t!1
� 1

t
logP(T0,n�t . t)

<
1

q� lim
n�t !1

n�t q�
t

� � 1

n�t
logP(T0,n�t . n�t q�)

� �� �

¼ r(q�)

q� ¼ Ł�:

h

Observe that from (12) we obtain the following:

Corollary 1.

max
n>0

P(T0,n . t) < e� tŁ� :

Proof of Theorem 2. The proof is based on the fact that

max
n>0

P(T0,n . t) < P max
n>0

T0,n . t

� �
<
X1
n¼0

P(T0,n . t): (13)

The first inequality directly gives that
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lim
t!1

� 1

t
logP max

n>0
T0,n . t

� �
< lim

t!1
min
n>0

� 1

t
logP(T0,n . t) ¼ Ł�,

whereas the second gives

lim
t!1

� 1

t
logP max

n>0
T0,n . t

� �
> lim

t!1
� 1

t
log

X1
n¼0

P(T0,n . t):

So all that it remains to show is that

lim
t!1

� 1

t
log

X1
n¼0

P(T0,n . t) > Ł�:

Choose the value q� such that

¸9(Ł��) < q� < ¸9(Ł�þ):

Observe that since we assume that Ł� is the unique positive solution of ¸(º) ¼ 0, there must

be values Ł , Ł� and q , q� with

¸(Ł) , 0 and ¸9(Ł�) < q < ¸9(Łþ),

since otherwise we would have ¸(º) ¼ 0 for all º 2 [0, Ł�]. Using q, we define nt :¼ bt=qc.

We now split the sum in (13) into two parts:

X1
n¼0

P(T0,n . t) ¼
Xn t

n¼0

P(T0,n . t) þ
X1

n¼ntþ1

P(T0,n . t): (14)

For the first sum on the right we have

Xn t

n¼0

P(T0,n . t) < (nt þ 1)max
n>0

P(T0,n . t),

so taking logarithms and dividing by �t gives

� 1

t
log

Xnt

n¼0

P(T0,n . t) > �
log(t=qþ 2) ¼ max

n>0
logP(T0,n . t)

t
�!
t!1

Ł�:

Turning to the second sum on the right of (14), we define qt,n :¼ t=n and º t,n as in (10).

Recall the basic equality (11). For convenience we set

� t,n :¼ º t,n �
(1=n)¸n(º t,n)

qt,n

,

so that we can write

P(T0,n . t) < e� t� t,n : (15)

Furthermore, it is clear that for the above chosen Ł and q we have
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� :¼ Ł�¸(Ł)

q
> Ł�:

The definition of nt gives that

qt,n t
¼ t

nt

¼ t

bt=qc > q,

which implies that

1

q
>

nt

t
: (16)

Also we have for n . nt that qt,n < q, and it follows from convexity considerations which

are clarified in Figure 2 that for such n we have

� t,n ¼ º t,n �
(1=n)¸n(º t,n)

qt,n

> Ł�¸(Ł)

qt,n

¼: � t,n: (17)

Expressions (16) and (17) together imply that, for n . nt,

� t,n � � >
¸(Ł)

t
(nt � n)

or

�t(� t,n � �) < ¸(Ł)(n� nt): (18)

θ∗θ
µ

µt,n

slope q

slope qt,n

µt,n

Λ 
n

1
nΛ 

Figure 2. Illustrating (17)
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Finally, this gives X1
n¼ntþ1

P(T0,n . t) < e� t�
X1

n¼ntþ1

e� t( � t,n��)

< e t�
X1

n¼n tþ1

e¸(Ł)(n�n t)

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼:c5

< c5e� tŁ� :

h

Again from the proof it is obvious that we have the following upper bound.

Corollary 2. There exists some constant c . 0 such that for t large enough we have

P(G . t) < cte� tŁ� :

3. Optimal gapped alignments

Consider two sequences X ¼ (X1, X2, . . .) and Y ¼ (Y1, Y2 . . .) of independent and

identically distributed letters drawn from some finite alphabet A according to some

distribution �. Take two substrings X i1þ1, . . . , X j1 and Yi2þ1, . . . , Y j2 of the sequences,

where i1 < j1 and i2 < j2. An alignment of these two substrings is simply a way of writing

them one above the other such that some letter pairs are aligned vertically. Also we are

allowed to insert gaps at appropriate points in the sequences in order to deal with those

letters that are not aligned to others.

Our aim is to define the optimal global scores S(X i1þ1, . . . , X j1 ; Yi1þ1, . . . , Y j2 ) and the

optimal local alignment scores M(X i1þ1, . . . , X j1 ; Yi2þ1, . . . , Y j2 ), which we will do by first

defining a score for each possible alignment and then maximizing over certain sets of

alignments.

To define the score of an alignment fix a scoring matrix F : A3A ! R which assigns a

real value to each possible combination of two aligned letters. The usual scoring matrices

have positive entries for combinations of equal letters and negative entries otherwise. For

the rest of the paper we assume that the scoring matrix has positive entries at least for some

letter combination that has a positive probability under �3 �, i.e. that

P�3�(F(X , Y ) . 0) . 0: (H)

The score of the alignment is obtained by summing the score values over the aligned letter

pairs and subtracting a penalty for the gaps in the alignment. One popular gap penalty

scheme is the affine-linear gap penalty, where a sequence of k successive gaps is penalized

by g(k) ¼ ˜þ �k, with �, ˜ > 0.
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In order to make this definition of alignment scores more transparent, it is convenient to

have a special graphical representation of alignments. To this end we introduce the lattice L

with vertex set VL :¼ N0 3N0. Denote vertices in VL by bold lower-case letters (i, j, k, . . .)
and use italic lower-case letters to refer to their coordinates (i ¼ (i1, i2), j ¼ ( j1, j2), . . .).
The edge set is then given by

EL :¼ fe ¼ (i, j) 2 VL 3 VL : j� i 2 f(1, 0), (0, 1), (1, 1)gg:

Any alignment of the substrings (X i1þ1, . . . , X j1 ) and (Yi2þ1, . . . , Y j2 ) can now be

represented by an increasing path z that starts at i and ends at j. Increasing means that

the path visits the vertices in increasing order, where we use the usual partial ordering on

N0 3N0.

The representation goes as follows. If for some i1 , k < j1 and i2 , l < j2 the path z

follows the edge ((k � 1, l � 1), (k, l )), this means that the letters Xk and Yl are aligned. If

z uses the horizontal edge ((k � 1, l ), (k, l )) this means that Xk is aligned with a gap, and

if it uses the vertical edge ((k, l � 1), (k, l )) it means that Yl is aligned with a gap.

The score of an alignment can now easily be calculated using this path representation.

We start with the case ˜ ¼ 0. Assign values to each edge in EL. To all horizontal or

vertical edges we simply assign the value ��. To the diagonal edge ((k � 1, l � 1), (k, l ))

we assign the (random) value F(Xk , Yl). The score of an alignment is then given by the

sum of the edge values along the path. In the case ˜ . 0 we have to consider another small

complication. Denote by �z the number of horizontal or vertical stretches in the path z

(each block of successive gaps in one of the sequences is a stretch). From the score value

calculated so far, we then have to subtract �z˜ to obtain the final score of the alignment.

We denote this path score by Sz.

We can now define the optimal scores. For two vertices j > i of the lattice, denote by Zi,j

the set of all increasing paths that start at i and end at j. The optimal global score can then

be defined as

Si,j :¼ S(X i1þ1, . . . , X j1 ; Yi2þ1, . . . , Y j2 ) :¼ max
z2Zi,j

Sz,

whereas we define the optimal local score as

M i,j :¼ M(X i1þ1, . . . , X j1 ; Yi2þ1, . . . , Y j2 ) :¼ max
i<k<l<j

Sk,l:

We also introduce the shorthand notation Si, j :¼ S(i,i),( j, j) and Mi, j :¼ M (i,i),( j, j).

This definition of optimal global scores is obviously reminiscent of the definition of first-

passage times in percolation theory. However, the concept of optimal local scores has no

counterpart in classical first-passage percolation theory.

Many basic properties of S0,n and M0,n were discussed in Arratia and Waterman (1994)

(see also Zhang 1995). However, Arratia and Waterman did not connect the fact that the

process (Si, j)0<i< j forms an independent superadditive process to Hammersley’s result which

we stated in Theorem 1. As we will see, only the combination of the results from Arratia

and Waterman (1994) and Theorem 1 gives additional insight into the gapped alignment

model. The rest of our paper is devoted to this special independent superadditive process,

and all the objects (¸, r, etc.) that we introduced in the context of general independent
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supperadditive processes are henceforth tacitly understood to be defined on the alignment

model.

From the results in Arratia and Waterman (1994) it follows directly that (Si, j)0<i< j has

some advantageous properties. Whereas it is in general only true that ¸9(0þ) > ª (cf.

Remark 3), equality holds for the alignment model. The basis for this is Theorem 2 in

Arratia and Waterman (1994), where, using an Azuma–Hoeffding–type concentration

inequality, it is shown that

r(q) . 0, for all q . ª: (19)

Suppose now that q0 :¼ ¸9(0þ) . ª. Then one directly obtains from (6) that r(q0) ¼ 0 – a

contradiction to (19). Therefore ¸ has a unique positive zero Ł� as soon as ª , 0.

The central result in Arratia and Waterman (1994) is that, depending on the sign of ª,

the mean behaviour of M0,n exhibits a phase transition in the parameter space. When ª . 0

the optimal local score M0,n behaves asymptotically as its global counterpart S0,n, i.e. we

have

lim
n!1

M0,n

n
¼ ª a:s:,

whereas when ª , 0 there exists a constant b such that

lim
n!1

M0,n

2 log n
¼ b in probability:

These two phases are usually referred to as the global and the local phase, repectively. It

should be clear that local similarities can only be detected by using parameter values from

the local phase, where long alignments typically get a large negative score. This all fits nicely

together: when ª , 0 we are in the regime of practical interest and also our results from the

previous section hold. The rest of our paper therefore is restricted to this local phase.

Arratia and Waterman (1994) characterized the logarithmic growth constant b using the

function r which we have already encountered in Theorem 1. They show that

b :¼ sup
q.0

q

r(q)
,

from which we directly obtain

Ł� ¼ b�1

by our Lemma 1.

Our main result concerning optimal local alignments is the following characterization of

the large deviations of M .

Theorem 3. Let m, n and t tend to infinity in such a way that g ¼ o(min(m, n)) and

log(mn) ¼ o(t). Then

lim
m,n, t!1

� 1

t
logP(M (0,0),(m,n) . t) ¼ Ł�:
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The key to proving this theorem is the following two-dimensional generalization of

Theorem 2.

Theorem 4. Define

G :¼ max
j>(0,0)

S(0,0),j: (20)

Then

lim
t!1

� 1

t
logP(G . t) ¼ Ł�:

Proof. The statement can essentially be proved by following the line of argument for

Theorem 2. We will only point out how to handle the problems that arise from the

bidimensionality.

To this end we first define, for all i 2 VL,

¸i(º) :¼ log E[eºS(0,0),i ]:

In this notation the defining equation (4) for ¸ becomes

¸(º) ¼ lim
n!1

¸(n,n)(º)

k(n, n)k1=2
¼ sup

n.0

¸(n,n)(º)

k(n, n)k1=2
:

This can be extended to the statement that, for all i 2 VL, we have

¸i(º)

kik1=2
< ¸(º): (21)

Indeed, if we define ı as the vertex obtained by interchanging the coordinates of i, then iþ ı

is a vertex on the main diagonal with kiþ ık1 ¼ 2kik1. Thus we have

¸kik1
(º) ¼ log E[eºS(0,0),iþı ]

> log E[eº(S(0,0),iþSi,iþı)]

¼ 2 log E[eºS(0,0),i]

¼ 2¸i(º)

by superadditivity and independence. This proves (21).

From this point on everything proceeds as in Section 2. The analogues to Lemmas 2 and

3 can be proved: in particular, the basic equation (11) holds in the adapted formulation, and

we also have

P(S(0,0),i . t) < e� tŁ�

for all i 2 VL. The only thing that changes is the number of summands in the analogue of the

first sum in (14), which is of the order O(t2). h
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The statement corresponding to Corollary 2 reads as follows:

Corollary 3. There exists some constant c . 0 such that, for t large enough, we have

P(G . t) < ct2e� tŁ� :

Theorem 3 can now be proved.

Proof of Theorem 3. In analogy to (20) we define, for every i 2 VL,

Gi :¼ max
j>i

Si,j:

It is clear that

P(M (0,0),(m,n) . t) < P max
(0,0)<i<(m,n)

Gi . t

� �
< mn � P(G . t): (22)

Taking logs and dividing by �t gives

lim
t!1

� 1

t
logP(M (0,0),(m,n) . t) > Ł�

by Theorem 4 and since we assumed log(mn) ¼ o(t).

For the reverse inequality we can simply repeat the second part of the proof of Lemma 3.

Observe that in the notation introduced there we have

P(T0,n�t . t) < P(M (0,0),(m,n) . t),

since t ¼ o(min(m, n)). It follows that

lim
t!1

� 1

t
logP(M (0,0),(m,n) . t) < lim

t!1
� 1

t
logP(T0,n�t . t) ¼ Ł�:

h

It is obvious that from (22) we can give an upper bound for P(M (0,0),(m,n) . t) which is

in the same spirit as Corollary 3.

Corollary 4. There exists some constant c . 0, such that, for t large enough, we have

P(M (0,0),(m,n) . t) < cmnt2e� tŁ� :

Convergence results implied by sub- or superadditivity arguments, as have frequently

appeared in this paper, immediately raise the question of the corresponding rates of

convergence. Whereas it is a common opinion (see, Steele 1997, p. 13) that in general one

cannot say much about sub- or superadditive convergence rates, interesting results have

meanwhile been given in a number of concrete cases (see, for example, Alexander 1993,

1994, 1997). One such case is the alignment model, where we show that:
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Lemma 4. There exists a constant c (depending on the scoring scheme) such that, for all n

large enough, we have

0 < n¸(Ł) �¸n(Ł) < Łcþ log(2nþ 1):

Proof. We start by defining

¸n(º) :¼ log
Xn
h¼�n

e¸ n�h,nþ h(º):

It is clear that

0 < ¸n(º) �¸n(º) < log(2nþ 1)

and therefore also that (1=n)¸n(º) converges to ¸(º). In fact we show that, for some constant

c,

n¸(º) �¸n(º) < ºc, (23)

from which the statement follows.

To show (23) we first need some more notation. Define the secondary diagonals in

distance n and 2n as

Dl,n :¼ fk : k > (0, 0), kkk1 ¼ 2lng, l ¼ 1, 2:

The key calculation for a j 2 D2,n is

e¸j(º) < eºc
X
i2D1,n

i<j

e¸i(º)þ¸j�i(º)E((0,0),i,j),º

max
i92D1,n,i9<j

eº(S(0,0),i9þSi9,j)

X
i 02D1,n,i 0<j

eº(S(0,0),i 0þSi 0,j)

2
6664

3
7775

< eºc
X
i2D1,n

i<j

e¸i(º)þ¸j�i(º),

where the first inequality comes from Lemma 5 and the second inequality comes from the

fact that the expectation of the maximum over the sum is bounded from above by one.

Summing over all j 2 D2,n gives, after a simple rearrangement of the summands,

e¸2n(º) < eºc2

X
j2D2,n

X
i2D1,n

i<j

e¸i(º)þ¸j�i(º)

¼ eºc2

X
i2D1,n

e¸i(º)
X
j2D2,n

j>i

e¸j�i(º) ¼ eºce2¸ n(º)

from which it follows, by taking logarithms, that

¸2n(º) < ºcþ 2¸n(º):
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Applying Lemma 6 to this inequality gives (23). h

We conclude this section with the two lemmas cited in the above proof. The first is a

result on the splitting of optimal paths.

Lemma 5. Let j > i. Fix some integer d with 0 < d < kj� ik1. Then there is a constant c

(depending on the scoring scheme) such that

Si,j � c < max
k:i<k<j
kk�ik1¼d

fSi,k þ Sk,jg < Si,j:

Proof. The second inequality is clear by superadditivity. The first inequality comes from the

fact that the optimizing path for Si,j has to hit or pass close by one of the vertices from the

set fk : i < k < j, kk � ik1 ¼ dg. An optimizing path for Si,j that does not hit one of those

vertices can easily be modified to a path that does so and still gets a score that differs from

Si,j by a scoring-scheme-dependent amount of at most c. h

The second lemma derives a bound for the difference between the elements of a

convergent series and their limit from a bound for the difference between the elements. The

proof is by elementary algebra and will be omitted.

Lemma 6. Let (an)n>0 be a sequence for which Æ :¼ limn!1 an=n exists and for which

2an � l(2n) < a2n < 2an þ u(2n),

for all n and for some non-negative functions l(:) and u(:). Then

�
X1
i¼1

2�i l(2i n) < nÆ� an <
X1
i¼1

2�iu(2i n):

4. Discussion

The calculation of p-values of optimal gapped sequence alignments has been one of the

major statistical problems motivated by bioinformatics. Practitioners are comfortable with

the conjecture that optimal gapped alignments behave qualitatively in the same way as the

optimal ungapped alignments which were thoroughly analysed in Dembo et al. (1994a;

1994b). At least since the paper of Waterman and Vingron (1994) it has therefore been

assumed that

P(M (0,0),(m,n) > t) � Kmn exp(�Łt), (24)

for large m, n and t, where the two parameters K and Ł depend on the chosen scoring

scheme. Various methods, from naive simulations to the formulation of complex functional

relationships (as in Mott 2002), have been proposed to describe this dependency.

Exact formulae for K and Ł were given in Siegmund and Yakir (2000) in the related case
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where gaps are allowed, but the gap-open penalty ˜ is required to grow logarithmically in t.

This growth has the effect that the gaps which appear in optimal alignments happen to

follow an essentially Poisson-distributed number of gap intervals as t ! 1. This is in sharp

contrast to the case treated here, where the number of gap intervals cannot be expected to

be bounded for growing t. Formally, this difference is reflected in the fact that in the model

from Siegmund and Yakir (2000) Ł is given by the corresponding gapless rate (and

therefore does not depend on the gap penalties), whereas in our full model Ł differs

substantially from the gapless rate.

Returning to more practical matters, we wish to point out that our results give a

theoretical justification for one special method to calculate Ł that was proposed in

Bundschuh (2002). It is clear that our Theorem 3 directly implies that the unknown

parameter Ł in (24) is equal to Ł�, i.e. the unique positive zero of ¸. Bundschuh

conjectured this and showed how to estimate Ł� in practice. Of course, since a limiting

procedure is involved, ¸ cannot be calculated directly, and neither can Ł�. But if we define

Ł�n as the unique positive solution of the equation

¸n(Ł) ¼ 0,

Lemma 4 gives that Ł�n ¼ Ł� þ O(log n=n). Bundschuh showed that this recipe for estimating

Ł� works well in so far as it suffices to first estimate Ł�n for a small set of different, only

moderately large values of n, and then to extrapolate to obtain an estimate for Ł�. Of course,

our results say nothing about the second parameter K, but is has been pointed out by

practitioners (see Mott 2002) that p-values depend more crucially on the parameter Ł.

From a mathematical point of view, conjecture (24) seems a long way from being proved

rigorously. Our results are a first step towards a more precise understanding of the model.

We give a rigorous characterization of the leading rate of the exponential decay of

P(M (0,0),(m,n) > t) that extends the gapless case in a consistent way. However, a finer

description of the asymptotic behaviour of the p-values remains an open and apparently

hard problem.
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