Stability of the tail Markov chain and the evaluation of improper priors for an exponential rate parameter

JAMES P. HOBERT ${ }^{1, *}$, DOBRIN MARCHEV ${ }^{1, * *}$ and JASON SCHWEINSBERG ${ }^{2}$
${ }^{1}$ Department of Statistics, University of Florida, Griffin-Floyd Hall, Gainesville FL 32611, USA. E-mail: *jhobert@stat.ufl.edu; ** dmarchev@stat.ufl.edu
${ }^{2}$ Department of Mathematics, Cornell University, Malott Hall, Ithaca NY 14853, USA. E-mail: jasonsch@math.cornell.edu

Let Z be a continuous random variable with a lower semicontinuous density f that is positive on $(0, \infty)$ and 0 elsewhere. Put $G(x)=\int_{x}^{\infty} f(z) \mathrm{d} z$. We study the tail Markov chain generated by Z, defined as the Markov chain $\Phi=\left(\Phi_{n}\right)_{n=0}^{\infty}$ with state space $[0, \infty)$ and Markov transition density $k(y \mid x)=f(y+x) / G(x)$. This chain is irreducible, aperiodic and reversible with respect to G. It follows that Φ is positive recurrent if and only if Z has a finite expectation. We prove (under regularity conditions) that if $\mathrm{E} Z=\infty$, then Φ is null recurrent if and only if $\int_{1}^{\infty} 1 /\left[z^{3} f(z)\right] \mathrm{d} z=\infty$. Furthermore, we describe an interesting decision-theoretic application of this result. Specifically, suppose that X is an $\operatorname{Exp}(\theta)$ random variable; that is, X has density $\theta \mathrm{e}^{-\theta x}$ for $x>0$. Let v be an improper prior density for θ that is positive on $(0, \infty)$. Assume that $\int_{0}^{\infty} \theta v(\theta) \mathrm{d} \theta<\infty$, which implies that the posterior density induced by v is proper. Let m_{v} denote the marginal density of X induced by v; that is, $m_{\nu}(x)=\int_{0}^{\infty} \theta \mathrm{e}^{-\theta x} v(\theta) \mathrm{d} \theta$. We use our results, together with those of Eaton and of Hobert and Robert, to prove that v is a \mathcal{P}-admissible prior if $\int_{1}^{\infty} 1 /\left[x^{2} m_{\nu}(x)\right] \mathrm{d} x=\infty$.

Keywords: admissibility; coupling; hazard rate; null recurrence; reversibility; stochastic comparison; stochastically monotone Markov chain; transience

1. Introduction

1.1. Tail Markov chains and the main result

Let Z be a random variable whose density (with respect to Lebesgue measure) is a lower semicontinuous function $f: \mathbb{R} \rightarrow[0, \infty)$ that is positive on $\mathbb{R}^{+}:=(0, \infty)$ and 0 on $(-\infty, 0]$. We will say that such a random variable (and its density) satisfies assumption \mathcal{A}. Let G and q denote the survival function and hazard rate, respectively; that is, $G(x)=\int_{x}^{\infty} f(z) \mathrm{d} z$ and $q(z)=f(z) / G(z)$.

With each such Z we associate a Markov chain $\Phi=\left(\Phi_{n}\right)_{n=0}^{\infty}$ with state space $[0, \infty)$ and Markov transition density $k(y \mid x)=f(y+x) / G(x)$. Thus, for any $n \in \mathbb{Z}^{+}:=\{0,1,2, \ldots\}$, any $x \geqslant 0$, and any Borel measurable set $A \subset[0, \infty)$,

$$
\begin{equation*}
P(x, A):=\operatorname{Pr}\left(\Phi_{n+1} \in A \mid \Phi_{n}=x\right)=\int_{A} k(y \mid x) \mathrm{d} y=\int_{A} \frac{f(y+x)}{G(x)} \mathrm{d} y \tag{1}
\end{equation*}
$$

One can think of the chain evolving as follows. Suppose that the current state is $\Phi_{n}=x$ and let Z_{x} denote a random variable with density proportional to $f(z) I(z>x)$. Then Φ_{n+1} is set equal to a realization of $Z_{x}-x$ whose support is $[0, \infty)$. We call this chain the tail Markov chain generated by Z (or by the density f).

Since f is positive on \mathbb{R}^{+}, the probability in (1) is positive for any x as long as $\lambda(A)>0$, where λ denotes Lebesgue measure. Thus, Φ is λ-irreducible and aperiodic; see Meyn and Tweedie (1993) for definitions. Moreover, Φ is a Feller Markov chain; that is, for each fixed open set $A \subset[0, \infty), P(x, A)$ is a lower semicontinuous function of x. To see this, let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of positive real numbers such that $x_{n} \neq x_{0}$ and $x_{n} \rightarrow x_{0} \geqslant 0$ as $n \rightarrow \infty$. Now using Fatou's lemma and the fact that products of positive, lower semicontinuous functions are lower semicontinuous, we have

$$
\liminf _{n \rightarrow \infty} P\left(x_{n}, A\right) \geqslant \int_{A} \liminf _{n \rightarrow \infty} \frac{f\left(y+x_{n}\right)}{G\left(x_{n}\right)} \mathrm{d} y \geqslant \int_{A} \frac{f\left(y+x_{0}\right)}{G\left(x_{0}\right)} \mathrm{d} y=P\left(x_{0}, A\right)
$$

which implies the desired lower semicontinuity. Because Φ is a Feller chain, every compact set in the state space is a petite set (Meyn and Tweedie, 1993, Chapters 5-6). This facilitates several technical arguments later in the paper.

The chain is reversible with respect to the function G; that is,

$$
k(y \mid x) G(x)=k(x \mid y) G(y), \quad \forall x, y \in[0, \infty)
$$

Hence, $\int_{0}^{\infty} k(y \mid x) G(x) \mathrm{d} x=G(y)$, which means that $G(y) \mathrm{d} y$ is an invariant measure for Φ. Since $\int_{0}^{\infty} G(y) \mathrm{d} y=\mathrm{E} Z$, it follows that the tail Markov chain generated by Z is positive recurrent if $\mathrm{E} Z<\infty$ and is either null recurrent or transient if $\mathrm{E} Z=\infty$. In this paper, we concentrate on differentiating between null recurrence and transience when Z has an infinite mean. The following theorem, which is proved in Section 4, is our main result.

Theorem 1. Assume that Z satisfies assumption \mathcal{A} and that $\mathrm{E} Z=\infty$ so that the tail Markov chain generated by Z is either null recurrent or transient. Assume that there exists an $M>0$ such that $q(z)$ is non-increasing for $z>M$. Then Φ is null recurrent if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{1}{z^{2} G(z)} \mathrm{d} z=\infty \tag{2}
\end{equation*}
$$

and transient if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z<\infty \tag{3}
\end{equation*}
$$

Remark 1. It is shown in Barlow et al. (1963) that if $\mathrm{E} Z^{r}=\infty$ for $r>0$, then $\lim _{\inf _{z \rightarrow \infty} z} q(z) \leqslant r$. Thus, if $\mathrm{E} Z=\infty$ and $\lim _{z \rightarrow \infty} q(z)$ exists, the limit must be 0 . Hence, our assumption regarding q is not as restrictive as it may at first seem.

Remark 2. In Section 4, we prove that under the additional condition $\liminf _{z \rightarrow \infty} z q(z)>0$,
one of (2) or (3) must be true. Thus, under this extra condition, the conclusion of Theorem 1 can be stated as: Then Φ is null recurrent if and only if

$$
\int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z=\infty
$$

Example 1. Consider the tail Markov chains generated by the (centred) Pareto distributions with densities

$$
f(z ; \alpha, \beta)=\frac{\beta \alpha^{\beta}}{(z+\alpha)^{\beta+1}} I(z>0)
$$

where $\alpha, \beta>0$. We restrict attention to the case in which $\beta \leqslant 1$ since otherwise the mean is finite and the chain is positive recurrent. Note that $q(z)=\beta /(z+\alpha)$, which is clearly decreasing. Moreover, $\lim _{z \rightarrow \infty} z q(z)=\beta>0$. Now

$$
\int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z \propto \int_{1}^{\infty} \frac{(z+\alpha)^{\beta+1}}{z^{3}} \mathrm{~d} z
$$

This integral diverges if $\beta=1$ and converges if $\beta \in(0,1)$. Hence, by Remark 2 above, Φ is null recurrent when $\beta=1$ and is transient when $\beta \in(0,1)$.

If G is an intractable integral, it may be difficult to analyse q directly. This makes it difficult to decide if Theorem 1 is applicable. We now prove a result providing a simple sufficient condition (involving only f) for q to be eventually non-increasing.

Lemma 1. Suppose Z satisfies assumption \mathcal{A} and that there exists an $M>0$ such that $\log f(z)$ is convex for $z>M$. Then $q(z)$ is non-increasing for $z>M$.

Proof. We use the following property of convex functions (see, for example, Pečarić et al., 1992, p. 2). Let g be a convex function on an interval I. If $x_{1} \leqslant y_{1}, x_{2} \leqslant y_{2}, x_{1} \neq x_{2}$, and $y_{1} \neq y_{2}$, then

$$
\begin{equation*}
\frac{g\left(x_{2}\right)-g\left(x_{1}\right)}{x_{2}-x_{1}} \leqslant \frac{g\left(y_{2}\right)-g\left(y_{1}\right)}{y_{2}-y_{1}} . \tag{4}
\end{equation*}
$$

Now let $M<z<z^{\prime}$, and let $x>0$. Applying (4) with $x_{1}=z, x_{2}=z+x, y_{1}=z^{\prime}$ and $y_{2}=z^{\prime}+x$, we obtain

$$
\frac{\log f(z+x)-\log f(z)}{x} \leqslant \frac{\log f\left(z^{\prime}+x\right)-\log f\left(z^{\prime}\right)}{x} .
$$

It follows that $f\left(z^{\prime}+x\right) f(z) \geqslant f\left(z^{\prime}\right) f(z+x)$ for all $x>0$. Thus,

$$
f(z) \int_{0}^{\infty} f\left(z^{\prime}+x\right) \mathrm{d} x \geqslant f\left(z^{\prime}\right) \int_{0}^{\infty} f(z+x) \mathrm{d} x
$$

and hence $q(z) \geqslant q\left(z^{\prime}\right)$.

Example 2. Consider the tail Markov chains generated by the inverse gamma (IG) distributions with densities

$$
f(z ; \alpha, \beta)=\frac{\mathrm{e}^{-1 / z \beta}}{\Gamma(\alpha) \beta^{\alpha} z^{\alpha+1}} I(z>0),
$$

where $\alpha, \beta>0$. We restrict attention to the case in which $\alpha \leqslant 1$ since otherwise the mean is finite. We have $\left(\partial^{2} / \partial z^{2}\right) \log f(z ; \alpha, \beta)>0$ as long as $z>2 /[\beta(\alpha+1)]$. Thus, by Lemma 1, Theorem 1 is applicable. If $\alpha \in(0,1)$,

$$
\int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z \propto \int_{1}^{\infty} \frac{\mathrm{e}^{1 / z \beta}}{z^{2-\alpha}} \mathrm{d} z<\infty,
$$

which implies that Φ is transient. If $\alpha=1$, it is easy to show that $G(z)<c / z$, where c is a constant, and it follows from (2) that Φ is null recurrent in this case.

Example 3. Consider the tail Markov chains generated by the F distributions. The F densities are given by

$$
f(z ; \alpha, \beta)=\frac{\Gamma((\alpha+\beta) / 2)}{\Gamma(\alpha / 2) \Gamma(\beta / 2)}\left(\frac{\alpha}{\beta}\right)^{\alpha / 2} \frac{z^{(\alpha-2) / 2}}{[1+(\alpha / \beta) z]^{(\alpha+\beta) / 2}} I(z>0),
$$

where $\alpha, \beta>0$. We restrict attention to the case in which $\beta \leqslant 2$ since otherwise the mean is finite. First,

$$
\frac{\partial^{2}}{\partial z^{2}} \log f(z ; \alpha, \beta)=-\left(\frac{\alpha-2}{2}\right) \frac{1}{z^{2}}+\left(\frac{\alpha+\beta}{2}\right)\left(\frac{\alpha}{\beta}\right)^{2}\left[1+\frac{\alpha}{\beta} z\right]^{-2} .
$$

If $\alpha \leqslant 2$, then $\log f(z)$ is clearly convex on all of \mathbb{R}^{+}. Now suppose that $\alpha>2$. A straightforward calculation shows that $\left(\partial^{2} / \partial z^{2}\right) \log f(z ; \alpha, \beta)>0$ as long as

$$
z>\frac{\beta(\alpha-2)+\beta\{(\alpha-2)(\alpha+\beta)\}^{1 / 2}}{\alpha(\beta+2)}>0 .
$$

Thus, by Lemma 1 , Theorem 1 is applicable. If $\beta \in(0,2)$, then

$$
\int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z=c \int_{1}^{\infty} \frac{[1+(\alpha / \beta) z]^{(\alpha+\beta) / 2}}{z^{\alpha / 2+2}} \mathrm{~d} z<c^{\prime} \int_{1}^{\infty} \frac{1}{z^{2-\beta / 2}} \mathrm{~d} z<\infty,
$$

and hence Φ is transient. Now, if $\beta=2$, it's easy to show that $G(z)<c / z$ and it follows from (2) that Φ is null recurrent in this case.

In the next subsection, we describe a connection between null recurrent tail Markov chains and good prior distributions for an exponential rate parameter.

1.2. Evaluating improper priors for an exponential rate parameter

Suppose that X is an $\operatorname{Exp}(\theta)$ random variable; that is, the conditional density of X given θ
is $h(x \mid \theta)=\theta \exp \{-x \theta\} I(x>0)$, where $\theta>0$. Let $v: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be such that $\int \mathbb{R}^{+} \boldsymbol{v}(\theta) \mathrm{d} \theta$ $=\infty$ and $\int_{\mathbb{R}^{+}} \theta v(\theta) \mathrm{d} \theta<\infty$. Note that

$$
\int_{\mathbb{R}^{+}} \theta v(\theta) \mathrm{d} \theta<\infty \Rightarrow \int_{\mathbb{R}^{+}} \theta^{k+1} \exp \{-x \theta\} v(\theta) \mathrm{d} \theta<\infty
$$

whenever $x>0$ and $k \geqslant 0$. Thus, $\nu(\theta)$ can be viewed as an improper prior density that yields a proper posterior density given by

$$
\pi(\theta \mid x)=\frac{\theta \exp \{-x \theta\} v(\theta) I(\theta>0)}{m_{\nu}(x)},
$$

where, of course,

$$
m_{\nu}(x):=\int_{\mathbb{R}^{+}} \theta \exp \{-x \theta\} v(\theta) \mathrm{d} \theta .
$$

An example of a prior satisfying these conditions is $v(\theta ; p)=\theta^{-1} I(0<\theta<1)+$ $\theta^{-p} I(\theta>1)$ for any $p>2$.

Priors satisfying these conditions are 'proper at ∞ ' in the sense that $\int_{1}^{\infty} \nu(\theta) \mathrm{d} \theta<\infty$ but 'improper at 0 ' in the sense that $\int_{0}^{1} \nu(\theta) \mathrm{d} \theta=\infty$. The exponential scale family can easily be transformed into a location family by taking logs. If τ is the corresponding prior density for the location parameter $\lambda=-\log \theta$, then $\int_{-\infty}^{0} \tau(\lambda) \mathrm{d} \lambda<\infty$ and $\int_{0}^{\infty} \tau(\lambda) \mathrm{d} \lambda=\infty$, so the prior is proper in one tail but improper in the other.

Consider a statistical decision problem where $R(\delta, \theta)$ is the risk function for the decision rule δ. If v is an improper prior, a decision rule δ_{0} is said to be almost- v-admissible if, for any decision rule δ_{1} which satisfies $R\left(\delta_{1}, \theta\right) \leqslant R\left(\delta_{0}, \theta\right)$ for all θ, we have $v\left(\left\{\theta: R\left(\delta_{1}, \theta\right)<R\left(\delta_{0}, \theta\right)\right\}\right)=0$. The prior v is called \mathcal{P}-admissible if the generalized Bayes estimator of every bounded function of θ is almost- ν-admissible under squared error loss (Eaton, 1992; Hobert and Robert, 1999). (Such improper priors have also been called strongly admissible.)

With each prior v satisfying $\int_{\mathbb{R}^{+}} \nu(\theta) \mathrm{d} \theta=\infty$ and $\int_{\mathbb{R}^{+}} \theta \nu(\theta) \mathrm{d} \theta<\infty$, we associate a Markov chain Φ^{v} with state space $[0, \infty)$ and Markov transition density

$$
k_{v}(y \mid x)=\int_{\mathbb{R}^{+}} h(y \mid \theta) \pi(\theta \mid x) \mathrm{d} \theta=\frac{\int_{\mathbb{R}^{+}} \theta^{2} \exp \{-(x+y) \theta\} v(\theta) \mathrm{d} \theta}{\int_{\mathbb{R}^{+}} \theta \exp \{-x \theta\} v(\theta) \mathrm{d} \theta}
$$

for $x, y \in[0, \infty)$. It follows from results of Eaton (1992) and Hobert and Robert (1999) that if Φ^{v} is (null) recurrent, then the prior v is \mathcal{P}-admissible. See Eaton (1997) for a detailed introduction to these ideas. Other key papers in which connections between admissibility and recurrence are established include Brown (1971), Johnstone (1984; 1986), Lai (1996) and Eaton (2001).

The Markov chain Φ^{v} is actually the tail Markov chain generated by the density

$$
f_{v}(z)=\frac{\int_{\mathbb{R}^{+}} \theta^{2} \exp \{-z \theta\} v(\theta) \mathrm{d} \theta}{\int_{\mathbb{R}^{+}} \theta v(\theta) \mathrm{d} \theta} I(z>0),
$$

which is clearly lower semicontinuous and hence satisfies assumption \mathcal{A}. Note also that $\int_{\mathbb{R}^{+} z} f_{v}(z) \mathrm{d} z \propto \int_{\mathbb{R}^{+}} v(\theta) \mathrm{d} \theta=\infty$. Hence, Φ^{v} is never positive recurrent. The hazard rate is given by

$$
q_{v}(z)=\frac{\int_{\mathbb{R}^{+}} \theta^{2} \exp \{-z \theta\} v(\theta) \mathrm{d} \theta}{\int_{\mathbb{R}^{+}} \theta \exp \{-z \theta\} v(\theta) \mathrm{d} \theta}
$$

We now show that q_{v} is non-increasing, which means that Theorem 1 is applicable. Consider the exponential family of probability densities given by

$$
g(w ; \eta)=w v(w) \exp \{w \eta-\psi(\eta)\} I(w>0),
$$

where $\eta<0$ and $\psi(\eta)=\log \int_{\mathbb{R}^{+}+w} v(w) \mathrm{e}^{w \eta} \mathrm{~d} w$. Brown (1986) shows that the derivatives of ψ exist and can be computed by differentiating under the integral sign. Moreover, $\psi^{\prime \prime}(\eta)=\operatorname{var}_{\eta}(W)$, where W is a random variable with density $g(w ; \eta)$. Now, for $z>0$, $q_{\nu}(z)=\psi^{\prime}(-z)$ and hence $(\mathrm{d} / \mathrm{d} z) q_{\nu}(z)=-\psi^{\prime \prime}(-z) \leqslant 0$. Thus, $q_{\nu}(z)$ is non-increasing. Applying Theorem 1 in this context leads to a simple sufficient condition for the \mathcal{P}-admissibility of ν.

Theorem 2. Suppose that $X \sim \operatorname{Exp}(\theta)$ and let $v: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an improper prior for θ such that $\int_{\mathbb{R}^{+}} \theta v(\theta) \mathrm{d} \theta<\infty$. Then v is \mathcal{P}-admissible if

$$
\begin{equation*}
\int_{1}^{\infty} \frac{1}{x^{2} m_{v}(x)} \mathrm{d} x=\infty . \tag{5}
\end{equation*}
$$

Example 4. Let $v(\theta ; p)=\theta^{-1} I(0<\theta<1)+\theta^{-p} I(\theta>1)$, where $p>2$. Then

$$
m_{\nu}(x)=\int_{0}^{1} \mathrm{e}^{-x \theta} \mathrm{~d} \theta+\int_{1}^{\infty} \theta^{1-p} \mathrm{e}^{-x \theta} \mathrm{~d} \theta<\int_{0}^{1} \mathrm{e}^{-x \theta} \mathrm{~d} \theta+\int_{1}^{\infty} \mathrm{e}^{-x \theta} \mathrm{~d} \theta=\frac{1}{x} .
$$

Thus, by Theorem 2, all the priors in this class are \mathcal{P}-admissible.
Example 5. Consider the improper conjugate priors

$$
\nu(\theta ; \alpha, \beta)=\theta^{\alpha-1} \exp \{-\beta \theta\} I(\theta>0),
$$

where $\alpha \in(-1,0]$ and $\beta>0$. The marginal density is given by $m_{\nu}(x)=$ $\Gamma(\alpha+1)(\beta+x)^{-\alpha-1}$, and hence

$$
\int_{1}^{\infty} \frac{1}{x^{2} m_{v}(x)} \mathrm{d} x=\frac{1}{\Gamma(\alpha+1)} \int_{1}^{\infty} \frac{(\beta+x)^{\alpha+1}}{x^{2}} \mathrm{~d} x,
$$

which diverges if $\alpha=0$. Thus, by Theorem 2, all priors of the form $\theta^{-1} \exp \{-\beta \theta\} I(\theta>0)$ with $\beta>0$ are \mathcal{P}-admissible. Hobert and Robert (1999) arrived at this conclusion through a completely different argument.

The results of Hobert and Robert (1999) also imply that the prior $\theta^{-1} I(\theta>0)$ is \mathcal{P}-admissible. Alternatively, the fact that $\theta^{-1} I(\theta>0)$ is \mathcal{P}-admissible can be deduced from Example 3.1 of Eaton (1992). The fact that this prior is \mathcal{P}-admissible does not, however, follow from the results of the present paper, because the condition $\int \mathbb{R}^{+} \theta v(\theta) \mathrm{d} \theta<\infty$ is needed to define the density $f_{v}(z)$. This is also the reason why we needed to assume $p>2$ in Example 4.

The rest of this paper is organized as follows. Section 2 contains two results that are used in the proof of Theorem 1. We first prove that the tail Markov chain generated by Z is stochastically monotone if $q(z)$ is non-increasing on \mathbb{R}^{+}. We then prove that given a density, $f(z)$, whose hazard rate is eventually non-increasing, there exists another density that is both equal to $f(z)$ for all large z and has a hazard rate that is non-increasing on \mathbb{R}^{+}. In Section 3, we describe a discrete analogue of Φ and state a result of Hobert and Schweinsberg (2002) that is also used in the proof of Theorem 1. Section 4 contains the proof of Theorem 1 as well as a lemma connecting the limiting behaviour of $z q(z)$ with the integrals in (2) and (3).

2. Stochastic monotonicity and monotone hazard rate

Define

$$
K(y \mid x):=\operatorname{Pr}\left(\Phi_{n+1} \leqslant y \mid \Phi_{n}=x\right)=P(x,[0, y])=\int_{0}^{y} \frac{f(t+x)}{G(x)} \mathrm{d} t
$$

The Markov chain Φ is called stochastically monotone (Daley, 1968) if, for every pair $0 \leqslant x_{1}<x_{2}$ and every $y>0, K\left(y \mid x_{1}\right) \geqslant K\left(y \mid x_{2}\right)$. Note that $K(y \mid x)$ is the distribution function of the random variable $Z_{x}-x$. Hence, stochastic monotonicity of Φ is equivalent to saying that $Z_{x_{2}}-x_{2}$ is stochastically larger than $Z_{x_{1}}-x_{1}$ whenever $0 \leqslant x_{1}<x_{2}$. The following result gives a direct connection between the stochastic monotonicity of Φ and the behaviour of q.

Lemma 2. Suppose Z satisfies assumption \mathcal{A}. If Z has a non-increasing hazard rate, then the tail Markov chain generated by Z is stochastically monotone.

Proof. First, it is simple to verify that

$$
G(x)=\exp \left\{-\int_{0}^{x} q(t) \mathrm{d} t\right\} .
$$

Thus, we can write

$$
K(y \mid x)=1-\frac{G(x+y)}{G(x)}=1-\exp \left\{-\int_{x}^{x+y} q(t) \mathrm{d} t\right\}
$$

Now fix x_{1}, x_{2} and y such that $0 \leqslant x_{1}<x_{2}$ and $y>0$. Clearly, $\int_{x_{1}}^{x_{1}+y} q(t) \mathrm{d} t \geqslant \int_{x_{2}}^{x_{2}+y} q(t) \mathrm{d} t$, and hence $K\left(y \mid x_{1}\right) \geqslant K\left(y \mid x_{2}\right)$. Thus, $K(y \mid x)$ is non-increasing in x for each fixed y.

Remark 3. If we assume that f is continuous, the conclusion of Lemma 1 can be written: The tail Markov chain generated by Z is stochastically monotone if and only if Z has a nonincreasing hazard rate. Indeed, $K(y \mid x)$ is non-increasing in x for each fixed y if and only if $\int_{x}^{x+y} q(t) \mathrm{d} t$ is non-increasing in x for each fixed y. Taking a derivative (q is continuous), we find that $K(y \mid x)$ is non-increasing in x for each fixed y if and only if $q(x+y) \leqslant q(x)$ for all $x>0$ for each fixed y.

Now suppose all we can say regarding the monotonicity of q is that there exists an $M>0$ such that $q(z)$ is non-increasing for all $z>M$. We now consider whether it is possible to find a $z^{*} \geqslant M$ and a density f^{*} such that the following four conditions hold:

1. f^{*} satisfies assumption \mathcal{A}.
2. f^{*} has non-increasing hazard rate.
3. $f\left(z^{*}\right)=f^{*}\left(z^{*}\right)$.
4. $\int_{z^{*}}^{\infty} f(z) \mathrm{d} z=\int_{z^{*}}^{\infty} f^{*}(z) \mathrm{d} z$.

If such an f^{*} exists, then the density

$$
\tilde{f}(z)= \begin{cases}f^{*}(z) & \text { if } z<z^{*} \tag{6}\\ f(z) & \text { if } z \geqslant z^{*}\end{cases}
$$

satisfies assumption \mathcal{A}, has non-decreasing hazard rate, and has exactly the same tail as f. We will now prove that the answer to the question above is 'yes' (as long as there exists an $r>0$ such that $\left.\mathrm{E} Z^{r}=\infty\right)$. In fact, one can always find a Weibull density that does the job. Write the Weibull density as $w(z ; \lambda, \alpha)=\lambda \alpha z^{\alpha-1} \exp \left\{-\lambda z^{\alpha}\right\} I(z>0)$, where $\lambda, \alpha>0$. The hazard rate of the Weibull density is non-increasing whenever $\alpha \leqslant 1$.

Lemma 3. Assume that Z satisfies assumption $\mathcal{A}, \mathrm{E} Z^{r}=\infty$ for some $r>0$, and that there exists an $M>0$ such that $q(z)$ is non-increasing for all $z>M$. Then there exists $a z^{*} \geqslant M$ and a density f^{*} such that (1), (2), (3) and (4) all hold.

Proof. We simply demonstrate the existence of a Weibull density satisfying all the conditions. First, Barlow et al. (1963) show that

$$
\mathrm{E} Z^{r}=\infty \Rightarrow \liminf _{z \rightarrow \infty} z q(z) \leqslant r
$$

Therefore,

$$
\liminf _{z \rightarrow \infty} \frac{z q(z)}{-\log G(z)}=0
$$

Thus, there exists a $z^{*} \geqslant M$ such that

$$
\frac{z^{*} q\left(z^{*}\right)}{-\log G\left(z^{*}\right)}<1
$$

Now fix z^{*} as above, and consider the following system of two equations and two unknowns:

$$
\begin{aligned}
w\left(z^{*} ; \lambda, \alpha\right) & =f\left(z^{*}\right) \\
\int_{z^{*}}^{\infty} w(z ; \lambda, \alpha) \mathrm{d} z & =G\left(z^{*}\right) .
\end{aligned}
$$

Solving for α and λ yields

$$
\hat{\alpha}=\frac{z^{*} q\left(z^{*}\right)}{-\log G\left(z^{*}\right)} \quad \text { and } \quad \hat{\lambda}=\left[-\log G\left(z^{*}\right)\right]\left(z^{*}\right)^{-\left[z^{*} q\left(z^{*}\right) /\left\{-\log G\left(z^{*}\right)\right\}\right]}
$$

Since $\hat{\alpha}<1$ by construction, the Weibull density that is the solution has non-increasing hazard rate.

Example 2 (continued). Consider the $\operatorname{IG}(1,1)$ density; that is, $f(z)=z^{-2} \exp \{-1 / z\}$ $I(z>0)$. We know that $\mathrm{E} Z=\infty$. It is easy to show that the hazard rate, $q(z)$, is increasing for small z and decreasing for $z>1$. Taking $z^{*}=2$, the Weibull solution has $\lambda \doteq 0.526$ and $\alpha \doteq 0.826$. Figure 1 shows f and f^{*}.

3. The discrete analogue of Φ

Hobert and Schweinsberg (2002) studied a discrete analogue of Φ and one of their results will be used in the proof of Theorem 1. Suppose W is a discrete random variable with support \mathbb{Z}^{+}. Let $\Psi=\left(\Psi_{n}\right)_{n=0}^{\infty}$ be a Markov chain with state space \mathbb{Z}^{+}and transition probabilities given by

$$
\begin{equation*}
p_{i j}:=\operatorname{Pr}\left(\Psi_{n+1}=j \mid \Psi_{n}=i\right)=\frac{P(W=i+j)}{P(W \geqslant i)} \tag{7}
\end{equation*}
$$

for all $i, j \in \mathbb{Z}^{+}$. The fact that $P(W=i+j)>0$ for all $i, j \in \mathbb{Z}^{+}$implies that Ψ is irreducible and aperiodic. Let $\pi_{i}=P(W \geqslant i)$ and note that $\pi_{i} p_{i j}=\pi_{j} p_{j i}$ for all $i, j \in \mathbb{Z}^{+}$. Thus, Ψ is reversible and the sequence $\left(\pi_{i}\right)_{i=0}^{\infty}$ is an invariant sequence for Ψ since

$$
\sum_{i=0}^{\infty} \pi_{i} p_{i j}=\sum_{i=0}^{\infty} \pi_{j} p_{j i}=\pi_{j}
$$

for all $j \in \mathbb{Z}^{+}$. It follows that if $\sum_{i=0}^{\infty} \pi_{i}<\infty$, then the chain is positive recurrent, and if $\sum_{i=0}^{\infty} \pi_{i}=\infty$, then the chain is either null recurrent or transient. Moreover, since $\sum_{i=0}^{\infty} \pi_{i}=1+\mathrm{E} W$, the Markov chain Ψ is positive recurrent if and only if $\mathrm{E} W<\infty$. The following result is due to Hobert and Schweinsberg (2002).

Figure 1. The $\operatorname{IG}(1,1)$ density between 0 and 6 and the Weibull density with $\lambda \doteq 0.526$ and $\alpha \doteq 0.826$ between 0 and 2 . The densities are equal at the point 2 and the area under the curve between 0 and 2 is the same for the two densities.

Theorem 3. If $\sum_{i=1}^{\infty}\left[i^{3} P(W=i)\right]^{-1}<\infty$, then the Markov chain Ψ is transient. If $\sum_{i=1}^{\infty}\left[i^{2} P(W \geqslant i)\right]^{-1}=\infty$, then Ψ is recurrent.

Theorem 1 is the continuous analogue of Theorem 3. It is important to note, however, that the techniques used to prove Theorem 3 are based on connections between reversible Markov chains and electrical networks and consequently are specific to Markov chains on countable state spaces. Thus, while Φ and Ψ are quite similar in structure, the methods used to prove Hobert and Schweinsberg's (2002) result cannot be applied to Φ.

4. The main result

This section contains the proof of Theorem 1. The proof has two parts. The first part is a coupling argument that requires Z to be stochastically monotone. In this part of the argument, we assume that q is non-increasing on all of \mathbb{R}^{+}. The second part involves relaxing the assumption that q is non-increasing on all of \mathbb{R}^{+}and is based on a stochastic comparison technique (Meyn and Tweedie, 1993, p. 220).

Proof of Theorem 1. We first show that the result is true under the more restrictive
assumption that q is non-increasing on all of \mathbb{R}^{+}. Define a \mathbb{Z}^{+}-valued random variable W such that

$$
P(W=i)=P(i<Z \leqslant i+1)
$$

for all $i \in \mathbb{Z}^{+}$. Define another \mathbb{Z}^{+}-valued random variable W^{\prime} by

$$
P\left(W^{\prime}=i\right)=\frac{P(i+1<Z \leqslant i+2)}{P(Z>1)}
$$

for all $i \in \mathbb{Z}^{+}$. Now, for fixed $i \in \mathbb{Z}^{+}$, let W_{i} be a random variable with support $\{i, i+1, \ldots\}$ and probabilities proportional to those of W. Define W_{i}^{\prime} similarly.

We now construct three coupled Markov chains, which we denote by Ψ, Φ and Ψ^{\prime}. Let $U_{0}, U_{1}, U_{2}, \ldots$ be a sequence of independent and identically distributed Uniform $(0,1)$ random variables. Fix a real number $s \geqslant 0$. Let $\Phi_{0}=s$, and then let Ψ_{0} and Ψ_{0}^{\prime} be nonnegative integers such that $\Psi_{0} \leqslant \Phi_{0} \leqslant \Psi_{0}^{\prime}+1$. Given $\Psi_{n}=i, \Phi_{n}=x$ and $\Psi_{n}^{\prime}=i^{\prime}$, we define

$$
\begin{aligned}
& \Psi_{n+1}=\inf \left\{j \in \mathbb{Z}^{+}: P\left(W_{i}-i \leqslant j\right) \geqslant U_{n}\right\} \\
& \Phi_{n+1}=\inf \left\{y \in[0, \infty): P\left(Z_{x}-x \leqslant y\right) \geqslant U_{n}\right\} \\
& \Psi_{n+1}^{\prime}=\inf \left\{j \in \mathbb{Z}^{+}: P\left(W_{i^{\prime}}^{\prime}-i^{\prime} \leqslant j\right) \geqslant U_{n}\right\} .
\end{aligned}
$$

Note that Ψ is a Markov chain with transition probabilities given by (7), and Ψ^{\prime} is a Markov chain with transition probabilities given by (7) with W^{\prime} in place of W. Also, Φ is a Markov chain whose transition densities are given by (1).

We now prove by induction that $\Psi_{n} \leqslant \Phi_{n} \leqslant \Psi_{n}^{\prime}+1$ for all $n \in \mathbb{Z}^{+}$. Suppose we have $\Psi_{n} \leqslant \Phi_{n} \leqslant \Psi_{n}^{\prime}+1$ for some n. If $i, j \in \mathbb{Z}^{+}$and $j \geqslant 1$, then

$$
P\left(Z_{i}-i \leqslant j\right)=\frac{P(i<Z \leqslant i+j)}{P(Z>i)}=\frac{P(i \leqslant W \leqslant i+j-1)}{P(W \geqslant i)}=P\left(W_{i}-i \leqslant j-1\right)
$$

and
$P\left(Z_{i+1}-(i+1) \leqslant j+1\right)=\frac{P(i+1<Z \leqslant i+j+2)}{P(Z>i+1)}=\frac{P\left(i \leqslant W^{\prime} \leqslant i+j\right)}{P\left(W^{\prime} \geqslant i\right)}=P\left(W_{i}^{\prime}-i \leqslant j\right)$.
If $\Psi_{n}=i$ and $\Psi_{n+1}=j \geqslant 1$, then $P\left(W_{i}-i \leqslant j-1\right)<U_{n}$. If we also have $\Phi_{n}=x$, then our assumption about the hazard rate of Z implies that $Z_{x}-x$ is stochastically larger than $Z_{i}-i$ and hence

$$
P\left(Z_{x}-x \leqslant j\right) \leqslant P\left(Z_{i}-i \leqslant j\right)=P\left(W_{i}-i \leqslant j-1\right)<U_{n}
$$

which means $\Phi_{n+1} \geqslant j=\Psi_{n+1}$. Likewise, if $\Psi_{n}^{\prime}=i^{\prime} \quad$ and $\quad \Psi_{n+1}^{\prime}=j^{\prime}$, then $P\left(W_{i^{\prime}}^{\prime}-i^{\prime} \leqslant j^{\prime}\right) \geqslant U_{n}$. Therefore, if we also have $\Phi_{n}=x$, then

$$
P\left(Z_{x}-x \leqslant j^{\prime}+1\right) \geqslant P\left(Z_{i^{\prime}+1}-\left(i^{\prime}+1\right) \leqslant j^{\prime}+1\right)=P\left(W_{i^{\prime}}^{\prime}-i^{\prime} \leqslant j^{\prime}\right) \geqslant U_{n}
$$

which means $\Phi_{n+1} \leqslant j^{\prime}+1=\Psi_{n+1}^{\prime}+1$. Thus, by induction, $\Psi_{n} \leqslant \Phi_{n} \leqslant \Psi_{n}^{\prime}+1$ for all $n \in \mathbb{Z}^{+}$, as claimed.

Suppose (3) holds. Then, using Jensen's inequality, we have

$$
\begin{aligned}
\sum_{i=1}^{\infty} \frac{1}{i^{3} P(W=i)} & =\sum_{i=1}^{\infty} \frac{1}{i^{3} \int_{i}^{i+1} f(z) \mathrm{d} z} \leqslant \sum_{i=1}^{\infty} \frac{1}{i^{3}} \int_{i}^{i+1} \frac{1}{f(z)} \mathrm{d} z \\
& \leqslant 8 \sum_{i=1}^{\infty} \int_{i}^{i+1} \frac{1}{z^{3} f(z)} \mathrm{d} z=8 \int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z<\infty .
\end{aligned}
$$

Thus, by Theorem 3, the chain Ψ is transient. Fix a positive real number K, and define $U(s, K)=\sum_{n=0}^{\infty} P\left(\Phi_{n} \leqslant K\right)$. (Recall that $\Phi_{0}=s$.) Since $\Psi_{n} \leqslant \Phi_{n}$ for all n and Ψ is transient, we have $U(s, K) \leqslant \sum_{n=0}^{\infty} P\left(\Psi_{n} \leqslant K\right)<\infty$. It follows that Φ is transient.

Now suppose (2) holds. Then

$$
\sum_{i=1}^{\infty} \frac{1}{i^{2} P\left(W^{\prime} \geqslant i\right)}=\sum_{i=1}^{\infty} \frac{G(1)}{i^{2} G(i+1)} \geqslant G(1) \int_{1}^{\infty} \frac{1}{z^{2} G(z)} \mathrm{d} z=\infty
$$

Therefore, Theorem 3 implies that Ψ^{\prime} is recurrent, which means $\Psi_{n}^{\prime}=0$ infinitely often. Thus, $\Phi_{n} \in[0,1]$ infinitely often, and it follows from Theorem 8.3.5 of Meyn and Tweedie (1993, p. 187) that Φ is null recurrent. (We are using the fact that [0, 1] is a petite set. Since $[0,1]$ is compact, this follows from the fact that Φ is a Feller chain.)

We have so far shown that the result holds under the assumption that q is non-increasing on all of \mathbb{R}^{+}. We now relax this assumption and suppose only that there exists an $M>0$ such that $q(z)$ is non-increasing for $z>M$. Lemma 3 implies the existence of \tilde{f} defined in (6). Note that \tilde{f} satisfies assumption \mathcal{A}, has non-increasing hazard rate on all of \mathbb{R}^{+}and is identical to f on $\left[z^{*}, \infty\right)$. Let $\tilde{G}(z)=\int_{z}^{\infty} \tilde{f}(t) \mathrm{d} t$. Define $\tilde{\Phi}$ to be the tail Markov chain generated by \tilde{f} and let $\tilde{k}(y \mid x)$ be the corresponding Markov transition density; that is, $\tilde{k}(y \mid x)=\tilde{f}(y+x) / \tilde{G}(x)$ for $x, y \in[0, \infty)$. By construction, $k(y \mid x)=\tilde{k}(y \mid x)$ for all $y \geqslant 0$ whenever $x \geqslant z^{*}$. Put $C=\left[0, z^{*}\right]$ and define

$$
\tau_{C}=\min \left\{n \geqslant 1: \Phi_{n} \in C\right\} \quad \text { and } \quad \tilde{\tau}_{C}=\min \left\{n \geqslant 1: \tilde{\Phi}_{n} \in C\right\}
$$

Then for any $x \in C^{c}$ and any $n \in\{2,3, \ldots\}$,

$$
\begin{align*}
\operatorname{Pr}\left(\tau_{C} \geqslant n \mid \Phi_{0}=x\right) & =\int_{C^{c}} \cdots \int_{C^{c}} k\left(t_{n-1} \mid t_{n-2}\right) \cdots k\left(t_{1} \mid x\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n-1} \\
& =\int_{C^{c}} \cdots \int_{C^{c}} \tilde{k}\left(t_{n-1} \mid t_{n-2}\right) \cdots \tilde{k}\left(t_{1} \mid x\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n-1} \tag{8}\\
& =\operatorname{Pr}\left(\tilde{\tau}_{C} \geqslant n \mid \tilde{\Phi}_{0}=x\right)
\end{align*}
$$

Meyn and Tweedie (1993, p. 220) show that from (8) we may conclude that Φ is null recurrent if and only if $\tilde{\Phi}$ is null recurrent. (Here again we are using the fact that C is a petite set.)

Assume (2) holds. Clearly, (2) implies that $\int_{1}^{\infty}\left[z^{2} \tilde{G}(z)\right]^{-1} \mathrm{~d} z=\infty$. Now since the hazard rate of \tilde{f} is non-increasing on all of \mathbb{R}^{+}, we may conclude that $\tilde{\Phi}$ is null recurrent, and this in turn implies that Φ is null recurrent. A similar argument works for the transient case.

An obvious question regarding Theorem 1 is whether it is possible to find a Z such that neither (2) nor (3) holds. We will now show that either (2) or (3) must hold when $\liminf _{z \rightarrow \infty} z q(z)>0$. We will then give an example in which $\liminf _{z \rightarrow \infty} z q(z)=0$ and neither (2) nor (3) holds. Define $\lim _{\inf _{z \rightarrow \infty} z} q(z)=\underline{L}$ and $\lim \sup _{z \rightarrow \infty} z q(z)=\bar{L}$. The next result gives two relationships between these limits and the integrals in (2) and (3).

Lemma 4. Assume that Z satisfies assumption \mathcal{A}.
(i) If $L>0$, then

$$
\int_{1}^{\infty} \frac{1}{z^{2} G(z)} \mathrm{d} z<\infty \Rightarrow \int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z<\infty .
$$

(ii) If $\bar{L}<1$, then

$$
\int_{1}^{\infty} \frac{1}{z^{2} G(z)} \mathrm{d} z<\infty .
$$

Proof. (i) Let $0<L<\underline{L}$. There exists $0<A<\infty$ such that $z q(z)>L$ for all $z>A$. Thus,

$$
\int_{A}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z=\int_{A}^{\infty} \frac{1}{z^{2} G(z) z q(z)} \mathrm{d} z<\frac{1}{L} \int_{A}^{\infty} \frac{1}{z^{2} G(z)} \mathrm{d} z<\infty .
$$

(ii) Let $\bar{L}<L<1$. There exists $0<B<\infty$ such that $z q(z)<L$ for all $z>B$. Thus, $q(z)<L / z$ for all $z>B$. Integration of both sides yields

$$
\int_{B}^{z} q(t) \mathrm{d} t<L \log \left(\frac{z}{B}\right)
$$

for all $z>B$. Exponentiating and rearranging yields

$$
\exp \left\{\int_{0}^{z} q(t) \mathrm{d} t\right\}<\left(\frac{z}{B}\right)^{L} \exp \left\{\int_{0}^{B} q(t) \mathrm{d} t\right\}
$$

for all $z>B$. Thus, for all $z>B$, we have

$$
\frac{1}{z^{2} G(z)}<c \frac{1}{z^{2-L}},
$$

where c is a constant that does not depend on z. Finally, since $2-L>1$,

$$
\int_{B}^{\infty} \frac{1}{z^{2} G(z)} \mathrm{d} z<c \int_{B}^{\infty} \frac{1}{z^{2-L}} \mathrm{~d} z<\infty .
$$

Remark 4. Part (i) shows that if $\liminf _{z \rightarrow \infty} z q(z)>0$, then one of (2) or (3) must hold.
Example 6. This example shows that it is possible that neither (2) nor (3) holds, even if the other conditions of Theorem 1 are satisfied. For all non-negative integers n, let $a_{n}=2^{2^{n}}$. Note that $a_{n+1}=a_{n}^{2}$. For positive integers n, let $r_{n}=\left(2^{n-3} \log 2\right) /\left(a_{n}-a_{n-1}\right)$. Next, define
the function q by setting $q(z)=r_{n}$ for $z \in\left[a_{n-1}, a_{n}\right)$ and $q(z)=r_{1}$ for $z \in\left(0, a_{0}\right)$. Since the sequence $\left(r_{n}\right)_{n=1}^{\infty}$ is decreasing, $q(z)$ is a non-increasing function of z on $(0, \infty)$. Define $G(z)=\exp \left\{-\int_{0}^{z} q(x) \mathrm{d} x\right\}$ and $f(z)=q(z) G(z)$ for $z>0$. Since $\int_{0}^{\infty} q(z) \mathrm{d} z=\infty$, the function f is a density function. Since f is lower semicontinuous and positive on $(0, \infty)$, we see that f satisfies assumption \mathcal{A}. Also, note that if Z is a random variable with density f, then G is the survival function of Z and q is the hazard rate.

For $n \geqslant 2$,

$$
\begin{aligned}
G\left(a_{n}\right) & =\exp \left\{-a_{1} r_{1}-\sum_{i=2}^{n}\left(a_{i}-a_{i-1}\right) r_{i}\right\}=\exp \left\{-a_{1} r_{1}-\sum_{i=2}^{n} 2^{i-3} \log 2\right\} \\
& =\exp \left\{-\frac{1}{2} \log 2-(\log 2)\left(2^{n-2}-\frac{1}{2}\right)\right\}=2^{-2^{n-2}}=a_{n-2}^{-1}
\end{aligned}
$$

Since $G(z)$ is a decreasing function of z, we have

$$
\mathrm{E}[Z] \geqslant \sum_{n=2}^{\infty} \int_{a_{n-1}}^{a_{n}} G(z) \mathrm{d} z \geqslant \sum_{n=2}^{\infty} a_{n-2}^{-1}\left(a_{n}-a_{n-1}\right)=\sum_{n=2}^{\infty} a_{n-2}\left(a_{n-2}^{2}-1\right) \geqslant \sum_{n=2}^{\infty} a_{n-2}=\infty .
$$

Thus, all of the hypotheses of Theorem 1 are satisfied. Now since $f(z) \geqslant G\left(a_{n}\right) r_{n}=a_{n-2}^{-1} r_{n}$ for all z such that $a_{n-1} \leqslant z<a_{n}$, we have

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z & \geqslant \sum_{n=2}^{\infty} \int_{a_{n-1}}^{a_{n}} \frac{1}{z^{3} f(z)} \mathrm{d} z \geqslant \sum_{n=2}^{\infty} \frac{1}{G\left(a_{n-1}\right) r_{n}} \int_{a_{n-1}}^{a_{n}} \frac{1}{z^{3}} \mathrm{~d} z \\
& =\sum_{n=2}^{\infty} \frac{a_{n-3}\left(a_{n}-a_{n-1}\right)}{2^{n-3} \log 2}\left[\frac{1}{2 a_{n-1}^{2}}-\frac{1}{2 a_{n}^{2}}\right] \\
& =\sum_{n=2}^{\infty} \frac{4 a_{n}^{1 / 8}\left(a_{n}-a_{n}^{1 / 2}\right)}{\log a_{n}}\left[\frac{1}{a_{n}}-\frac{1}{a_{n}^{2}}\right]=\infty,
\end{aligned}
$$

so (3) does not hold. Furthermore, letting $c=\int_{1}^{4}\left[z^{2} G(z)\right]^{-1} \mathrm{~d} z$, we obtain

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{z^{2} G(z)} \mathrm{d} z & =c+\sum_{n=2}^{\infty} \int_{a_{n-1}}^{a_{n}} \frac{1}{z^{2} G(z)} \mathrm{d} z \leqslant c+\sum_{n=2}^{\infty} \frac{1}{G\left(a_{n}\right)} \int_{a_{n-1}}^{a_{n}} \frac{1}{z^{2}} \mathrm{~d} z \\
& \leqslant c+\sum_{n=2}^{\infty} \frac{a_{n-2}}{a_{n-1}}=c+\sum_{n=2}^{\infty} \frac{1}{a_{n-2}}<\infty .
\end{aligned}
$$

Thus, (2) also fails to hold. Note that

$$
\lim _{n \rightarrow \infty} a_{n-1} q\left(a_{n-1}\right)=\lim _{n \rightarrow \infty} a_{n-1} r_{n}=\lim _{n \rightarrow \infty} \frac{a_{n-1}\left(2^{n-3} \log 2\right)}{a_{n}-a_{n-1}}=0
$$

so $\liminf _{z \rightarrow \infty} z q(z)=0$, as it must.
Remark 5. If $\underline{L}>0$ and $\bar{L}<1$, then Lemma 4 implies that Φ is transient. Furthermore, if
$\underline{L}>1$, then $\mathrm{E} Z<\infty$ (Barlow et al., 1963), which means that Φ is positive recurrent. It is tempting to conjecture that if $L=\lim _{z \rightarrow \infty} z q(z)$ exists, then Φ is positive recurrent, null recurrent or transient as L is greater than 1 , equal to 1 , or less than 1 . However, the next example shows that Φ can be transient when $L=1$.

Example 7. Consider the density

$$
f(z)=\frac{C[\log (z+1)]^{2}}{(z+1)^{2}} I(z>0),
$$

where C is a constant. Note that f is lower semicontinuous and positive on $(0, \infty)$, and thus satisfies assumption \mathcal{A}. Also, one can check that

$$
\frac{\partial^{2}}{\partial z^{2}} \log f(z)=\frac{2}{(z+1)^{2}}\left(1-\frac{1}{\log (z+1)}-\frac{1}{[\log (z+1)]^{2}}\right)
$$

which is positive for sufficiently large z. Therefore, by Lemma 1 , the function $q(z)$ is nonincreasing for sufficiently large z. Note that

$$
\int_{0}^{\infty} z f(z) \mathrm{d} z=\int_{0}^{\infty} \frac{C z[\log (z+1)]^{2}}{(z+1)^{2}} \mathrm{~d} z=\infty
$$

and

$$
\int_{1}^{\infty} \frac{1}{z^{3} f(z)} \mathrm{d} z=\int_{1}^{\infty} \frac{(z+1)^{2}}{C z^{3}[\log (z+1)]^{2}} \mathrm{~d} z<\infty
$$

Therefore, by Theorem 1, the tail Markov chain generated by f is transient. It remains to show that $L=1$. Changing variables from x to $u=1 /(x+1)$, we have

$$
G(z)=C \int_{z}^{\infty} \frac{[\log (x+1)]^{2}}{(x+1)^{2}} \mathrm{~d} x=\frac{C}{z+1}\left\{[\log (z+1)]^{2}+2 \log (z+1)+2\right\}
$$

Therefore,

$$
z q(z)=\frac{z f(z)}{G(z)}=\frac{z[\log (z+1)]^{2}}{(z+1)\left\{[\log (z+1)]^{2}+2 \log (z+1)+2\right\}}
$$

and hence $\lim _{z \rightarrow \infty} z q(z)=1$, as claimed.

Acknowledgements

The authors are grateful to an anonymous referee for constructive comments and suggestions. This research partially supported by National Science Foundation Grant DMS-00-72827 (Hobert and Marchev) and National Science Foundation Postdoctoral Fellowship DMS-01-02022 (Schweinsberg).

References

Barlow, R.E., Marshall, A.W. and Proschan, F. (1963) Properties of probability distributions with monotone hazard rate. Ann. Math. Statist., 34, 375-389.
Brown, L.D. (1971) Admissible estimators, recurrent diffusions, and insoluble boundary value problems. Ann. Math. Statist., 42, 855-904.
Brown, L.D. (1986) Fundamentals of Statistical Exponential Families with Applications to Statistical Decision Theory. Hayward, CA: Institute of Mathematical Statistics.
Daley, D.J. (1968) Stochastically monotone Markov chains. Z. Wahrscheinlichkeitstheorie Verw. Geb., 10, 305-317.
Eaton, M.L. (1992) A statistical diptych: Admissible inferences - recurrence of symmetric Markov chains. Ann. Statist., 20, 1147-1179.
Eaton, M.L. (1997) Admissibility in quadratically regular problems and recurrence of symmetric Markov chains: Why the connection? J. Statist. Plann. Inference, 64, 231-247.
Eaton, M.L. (2001) Markov chain conditions for admissibility in estimation problems with quadratic loss. In M. de Gunst, C. Klaassen and A. van der Vaart (eds), State of the Art in Probability and Statistics - A Festschrift for Willem R. van Zwet, IMS Lecture Notes Monogr. Ser. 36. Beachwood, OH: Institute of Mathematical Statistics.
Hobert, J.P. and Robert C.P. (1999) Eaton's Markov chain, its conjugate partner and \mathcal{P}-admissibility. Ann. Statist., 27, 361-373.
Hobert, J.P. and Schweinsberg, J. (2002) Conditions for recurrence and transience of a Markov chain on \mathbb{Z}^{+}and estimation of a geometric success probability. Ann. Statist., 30, 1214-1223.
Johnstone, I. (1984) Admissibility, difference equations and recurrence in estimating a Poisson mean. Ann. Statist., 12, 1173-1198.
Johnstone, I. (1986) Admissible estimation, Dirichlet principles and recurrence of birth-death chains on Z_{+}^{P}. Probab. Theory Related Fields, 71, 231-269.
Lai, W.-L. (1996) Admissibility and the recurrence of Markov chains with applications. Technical Report No. 612, School of Statistics, University of Minnesota.
Meyn, S.P. and Tweedie, R.L. (1993) Markov Chains and Stochastic Stability. London: SpringerVerlag.
Pečarić, J.E., Proschan, F. and Tong, Y.L. (1992) Convex Functions, Partial Orderings, and Statistical Applications. Boston: Academic Press.

Received November 2002 and revised July 2003

