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Let Z be a continuous random variable with a lower semicontinuous density f that is positive on

(0, 1) and 0 elsewhere. Put G(x) ¼
Ð1
x

f (z) dz. We study the tail Markov chain generated by Z,

defined as the Markov chain � ¼ (�n)
1
n¼0 with state space [0, 1) and Markov transition density

k(yjx) ¼ f (yþ x)=G(x). This chain is irreducible, aperiodic and reversible with respect to G. It

follows that � is positive recurrent if and only if Z has a finite expectation. We prove (under

regularity conditions) that if EZ ¼ 1, then � is null recurrent if and only if
Ð1
1

1=[z3 f (z)]dz ¼ 1.

Furthermore, we describe an interesting decision-theoretic application of this result. Specifically,

suppose that X is an Exp(Ł) random variable; that is, X has density Ł e�Łx for x . 0. Let � be an

improper prior density for Ł that is positive on (0, 1). Assume that
Ð1
0

Ł �(Ł) dŁ , 1, which implies

that the posterior density induced by � is proper. Let m� denote the marginal density of X induced by

�; that is, m�(x) ¼
Ð1
0

Ł e�Łx �(Ł) dŁ. We use our results, together with those of Eaton and of Hobert

and Robert, to prove that � is a P-admissible prior if
Ð1
1

1=[x2 m�(x)]dx ¼ 1.

Keywords: admissibility; coupling; hazard rate; null recurrence; reversibility; stochastic comparison;

stochastically monotone Markov chain; transience

1. Introduction

1.1. Tail Markov chains and the main result

Let Z be a random variable whose density (with respect to Lebesgue measure) is a lower

semicontinuous function f : R ! [0, 1) that is positive on Rþ :¼ (0, 1) and 0 on

(�1, 0]. We will say that such a random variable (and its density) satisfies assumption A.

Let G and q denote the survival function and hazard rate, respectively; that is,

G(x) ¼
Ð1
x

f (z) dz and q(z) ¼ f (z)=G(z).
With each such Z we associate a Markov chain � ¼ (�n)

1
n¼0 with state space [0, 1) and

Markov transition density k(yjx) ¼ f (yþ x)=G(x). Thus, for any n 2 Zþ :¼ f0, 1, 2, . . .g,
any x > 0, and any Borel measurable set A � [0, 1),
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P(x, A) :¼ Pr (�nþ1 2 Aj�n ¼ x) ¼
ð
A

k(yjx) dy ¼
ð
A

f (yþ x)

G(x)
dy: (1)

One can think of the chain evolving as follows. Suppose that the current state is �n ¼ x and

let Zx denote a random variable with density proportional to f (z) I(z . x). Then �nþ1 is set

equal to a realization of Zx � x whose support is [0, 1). We call this chain the tail Markov

chain generated by Z (or by the density f ).

Since f is positive on Rþ, the probability in (1) is positive for any x as long as

º(A) . 0, where º denotes Lebesgue measure. Thus, � is º-irreducible and aperiodic; see

Meyn and Tweedie (1993) for definitions. Moreover, � is a Feller Markov chain; that is, for

each fixed open set A � [0, 1), P(x, A) is a lower semicontinuous function of x. To see

this, let (xn)
1
n¼1 be a sequence of positive real numbers such that xn 6¼ x0 and xn ! x0 > 0

as n ! 1. Now using Fatou’s lemma and the fact that products of positive, lower

semicontinuous functions are lower semicontinuous, we have

lim inf
n!1

P(xn, A) >

ð
A

lim inf
n!1

f (yþ xn)

G(xn)
dy >

ð
A

f (yþ x0)

G(x0)
dy ¼ P(x0, A),

which implies the desired lower semicontinuity. Because � is a Feller chain, every compact

set in the state space is a petite set (Meyn and Tweedie, 1993, Chapters 5–6). This facilitates

several technical arguments later in the paper.

The chain is reversible with respect to the function G; that is,

k(yjx)G(x) ¼ k(xjy)G(y), 8x, y 2 [0, 1):

Hence,
Ð1
0 k(yjx)G(x) dx ¼ G(y), which means that G(y) dy is an invariant measure for �.

Since
Ð1
0

G(y) dy ¼ EZ, it follows that the tail Markov chain generated by Z is positive

recurrent if EZ , 1 and is either null recurrent or transient if EZ ¼ 1. In this paper, we

concentrate on differentiating between null recurrence and transience when Z has an infinite

mean. The following theorem, which is proved in Section 4, is our main result.

Theorem 1. Assume that Z satisfies assumption A and that EZ ¼ 1 so that the tail Markov

chain generated by Z is either null recurrent or transient. Assume that there exists an M . 0

such that q(z) is non-increasing for z . M. Then � is null recurrent ifð1
1

1

z2G(z)
dz ¼ 1, (2)

and transient if ð1
1

1

z3 f (z)
dz , 1: (3)

Remark 1. It is shown in Barlow et al. (1963) that if EZ r ¼ 1 for r . 0, then

lim inf z!1z q(z) < r. Thus, if EZ ¼ 1 and limz!1q(z) exists, the limit must be 0. Hence,

our assumption regarding q is not as restrictive as it may at first seem.

Remark 2. In Section 4, we prove that under the additional condition lim inf z!1z q(z) . 0,
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one of (2) or (3) must be true. Thus, under this extra condition, the conclusion of Theorem 1

can be stated as: Then � is null recurrent if and only ifð1
1

1

z3 f (z)
dz ¼ 1:

Example 1. Consider the tail Markov chains generated by the (centred) Pareto distributions

with densities

f (z; Æ, �) ¼ � Æ�

(zþ Æ)�þ1
I(z . 0),

where Æ, � . 0. We restrict attention to the case in which � < 1 since otherwise the mean is

finite and the chain is positive recurrent. Note that q(z) ¼ �=(zþ Æ), which is clearly

decreasing. Moreover, limz!1z q(z) ¼ � . 0. Nowð1
1

1

z3 f (z)
dz /

ð1
1

(zþ Æ)�þ1

z3
dz:

This integral diverges if � ¼ 1 and converges if � 2 (0, 1). Hence, by Remark 2 above, � is

null recurrent when � ¼ 1 and is transient when � 2 (0, 1).

If G is an intractable integral, it may be difficult to analyse q directly. This makes it

difficult to decide if Theorem 1 is applicable. We now prove a result providing a simple

sufficient condition (involving only f ) for q to be eventually non-increasing.

Lemma 1. Suppose Z satisfies assumption A and that there exists an M . 0 such that

log f (z) is convex for z . M. Then q(z) is non-increasing for z . M.

Proof. We use the following property of convex functions (see, for example, Pec̆arić et al.,

1992, p. 2). Let g be a convex function on an interval I . If x1 < y1, x2 < y2, x1 6¼ x2, and

y1 6¼ y2, then

g(x2)� g(x1)

x2 � x1
<

g(y2)� g(y1)

y2 � y1
: (4)

Now let M , z , z9, and let x . 0. Applying (4) with x1 ¼ z, x2 ¼ zþ x, y1 ¼ z9 and

y2 ¼ z9þ x, we obtain

log f (zþ x)� log f (z)

x
<

log f (z9þ x)� log f (z9)

x
:

It follows that f (z9þ x) f (z) > f (z9) f (zþ x) for all x . 0. Thus,

f (z)

ð1
0

f (z9þ x) dx > f (z9)

ð1
0

f (zþ x) dx,

and hence q(z) > q(z9). h
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Example 2. Consider the tail Markov chains generated by the inverse gamma (IG)

distributions with densities

f (z; Æ, �) ¼ e�1=z�

ˆ(Æ) �Æ zÆþ1
I(z . 0),

where Æ, � . 0. We restrict attention to the case in which Æ < 1 since otherwise the mean is

finite. We have (@2=@z2)log f (z; Æ, �) . 0 as long as z . 2=[�(Æþ 1)]. Thus, by Lemma 1,

Theorem 1 is applicable. If Æ 2 (0, 1),ð1
1

1

z3 f (z)
dz /

ð1
1

e1=z�

z2�Æ
dz , 1,

which implies that � is transient. If Æ ¼ 1, it is easy to show that G(z) , c=z, where c is a

constant, and it follows from (2) that � is null recurrent in this case.

Example 3. Consider the tail Markov chains generated by the F distributions. The F

densities are given by

f (z; Æ, �) ¼ ˆ((Æþ �)=2)

ˆ(Æ=2)ˆ(�=2)

Æ

�

� �Æ=2 z(Æ�2)=2

[1þ (Æ=�) z](Æþ�)=2
I(z . 0),

where Æ, � . 0. We restrict attention to the case in which � < 2 since otherwise the mean is

finite. First,

@2

@z2
log f (z; Æ, �) ¼ � Æ� 2

2

� �
1

z2
þ Æþ �

2

� �
Æ

�

� �2

1þ Æ

�
z

� ��2

:

If Æ < 2, then log f (z) is clearly convex on all of Rþ. Now suppose that Æ . 2. A

straightforward calculation shows that (@2=@z2)log f (z; Æ, �) . 0 as long as

z .
�(Æ� 2)þ �f(Æ� 2)(Æþ �)g1=2

Æ(�þ 2)
. 0:

Thus, by Lemma 1, Theorem 1 is applicable. If � 2 (0, 2), thenð1
1

1

z3 f (z)
dz ¼ c

ð1
1

[1þ (Æ=�) z](Æþ�)=2

zÆ=2þ2
dz , c9

ð1
1

1

z2��=2
dz , 1,

and hence � is transient. Now, if � ¼ 2, it’s easy to show that G(z) , c=z and it follows from

(2) that � is null recurrent in this case.

In the next subsection, we describe a connection between null recurrent tail Markov

chains and good prior distributions for an exponential rate parameter.

1.2. Evaluating improper priors for an exponential rate parameter

Suppose that X is an Exp(Ł) random variable; that is, the conditional density of X given Ł
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is h(xjŁ) ¼ Ł exp f�x Łg I(x . 0), where Ł . 0. Let � : Rþ ! Rþ be such that
Ð
Rþ�(Ł) dŁ

¼ 1 and
Ð
RþŁ �(Ł) dŁ , 1. Note thatð

Rþ
Ł �(Ł) dŁ , 1 )

ð
Rþ
Łkþ1 exp f�x Łg �(Ł) dŁ , 1

whenever x . 0 and k > 0. Thus, �(Ł) can be viewed as an improper prior density that yields

a proper posterior density given by

�(Łjx) ¼ Ł exp f�x Łg �(Ł) I(Ł . 0)

m�(x)
,

where, of course,

m�(x) :¼
ð
Rþ
Ł exp f�x Łg �(Ł) dŁ:

An example of a prior satisfying these conditions is �(Ł; p) ¼ Ł�1 I(0 , Ł , 1) þ
Ł� p I(Ł . 1) for any p . 2.

Priors satisfying these conditions are ‘proper at 1’ in the sense that
Ð1
1

�(Ł) dŁ , 1 but

‘improper at 0’ in the sense that
Ð 1
0
�(Ł) dŁ ¼ 1. The exponential scale family can easily be

transformed into a location family by taking logs. If � is the corresponding prior density for

the location parameter º ¼ �log Ł, then
Ð 0
�1 �(º) dº , 1 and

Ð1
0

�(º) dº ¼ 1, so the prior

is proper in one tail but improper in the other.

Consider a statistical decision problem where R(�, Ł) is the risk function for the decision

rule �. If � is an improper prior, a decision rule �0 is said to be almost-�-admissible if, for

any decision rule �1 which satisfies R(�1, Ł) < R(�0, Ł) for all Ł, we have

�(fŁ : R(�1, Ł) , R(�0, Ł)g) ¼ 0. The prior � is called P-admissible if the generalized

Bayes estimator of every bounded function of Ł is almost-�-admissible under squared error

loss (Eaton, 1992; Hobert and Robert, 1999). (Such improper priors have also been called

strongly admissible.)

With each prior � satisfying
Ð
Rþ �(Ł) dŁ ¼ 1 and

Ð
RþŁ �(Ł) dŁ , 1, we associate a

Markov chain �� with state space [0, 1) and Markov transition density

k�(yjx) ¼
ð
Rþ

h(yjŁ)�(Łjx) dŁ ¼

ð
Rþ
Ł2 exp f�(xþ y)Łg �(Ł) dŁð
Rþ
Ł exp f�x Łg �(Ł) dŁ

for x, y 2 [0, 1). It follows from results of Eaton (1992) and Hobert and Robert (1999) that

if �� is (null) recurrent, then the prior � is P-admissible. See Eaton (1997) for a detailed

introduction to these ideas. Other key papers in which connections between admissibility and

recurrence are established include Brown (1971), Johnstone (1984; 1986), Lai (1996) and

Eaton (2001).

The Markov chain �� is actually the tail Markov chain generated by the density
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f �(z) ¼

ð
Rþ
Ł2 exp f�z Łg �(Ł) dŁð

Rþ
Ł �(Ł) dŁ

I(z . 0),

which is clearly lower semicontinuous and hence satisfies assumption A. Note also thatÐ
Rþ z f�(z) dz /

Ð
Rþ�(Ł) dŁ ¼ 1. Hence, �� is never positive recurrent. The hazard rate is

given by

q�(z) ¼

ð
Rþ
Ł2 exp f�z Łg �(Ł) dŁð

Rþ
Ł exp f�z Łg �(Ł) dŁ

:

We now show that q� is non-increasing, which means that Theorem 1 is applicable. Consider

the exponential family of probability densities given by

g(w; �) ¼ w �(w) exp fw�� ł(�)g I(w . 0),

where � , 0 and ł(�) ¼ log
Ð
Rþw �(w) ew� dw. Brown (1986) shows that the derivatives of

ł exist and can be computed by differentiating under the integral sign. Moreover,

ł 0(�) ¼ var�(W ), where W is a random variable with density g(w; �). Now, for z . 0,

q�(z) ¼ ł9(�z) and hence (d=dz)q�(z) ¼ �ł 0(�z) < 0. Thus, q�(z) is non-increasing.

Applying Theorem 1 in this context leads to a simple sufficient condition for the

P-admissibility of �.

Theorem 2. Suppose that X � Exp(Ł) and let � : Rþ ! Rþ be an improper prior for Ł such

that
Ð
RþŁ �(Ł) dŁ , 1. Then � is P-admissible ifð1

1

1

x2m�(x)
dx ¼ 1: (5)

Example 4. Let �(Ł; p) ¼ Ł�1 I(0 , Ł , 1)þ Ł� p I(Ł . 1), where p . 2. Then

m�(x) ¼
ð1
0

e�x Ł dŁþ
ð1
1

Ł1� p e�x Ł dŁ ,

ð1
0

e�x Ł dŁþ
ð1
1

e�x Ł dŁ ¼ 1

x
:

Thus, by Theorem 2, all the priors in this class are P-admissible.

Example 5. Consider the improper conjugate priors

�(Ł; Æ, �) ¼ ŁÆ�1 exp f��Łg I(Ł . 0),

where Æ 2 (�1, 0] and � . 0. The marginal density is given by m�(x) ¼
ˆ(Æþ 1)(�þ x)�Æ�1, and henceð1

1

1

x2m�(x)
dx ¼ 1

ˆ(Æþ 1)

ð1
1

(�þ x)Æþ1

x2
dx,
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which diverges if Æ ¼ 0. Thus, by Theorem 2, all priors of the form Ł�1 exp f��Łg I(Ł . 0)

with � . 0 are P-admissible. Hobert and Robert (1999) arrived at this conclusion through a

completely different argument.

The results of Hobert and Robert (1999) also imply that the prior Ł�1 I(Ł . 0) is

P-admissible. Alternatively, the fact that Ł�1 I(Ł . 0) is P-admissible can be deduced from

Example 3.1 of Eaton (1992). The fact that this prior is P-admissible does not, however,

follow from the results of the present paper, because the condition
Ð
RþŁ �(Ł) dŁ , 1 is

needed to define the density f �(z). This is also the reason why we needed to assume p . 2

in Example 4.

The rest of this paper is organized as follows. Section 2 contains two results that are

used in the proof of Theorem 1. We first prove that the tail Markov chain generated by Z is

stochastically monotone if q(z) is non-increasing on Rþ. We then prove that given a density,

f (z), whose hazard rate is eventually non-increasing, there exists another density that is

both equal to f (z) for all large z and has a hazard rate that is non-increasing on Rþ. In
Section 3, we describe a discrete analogue of � and state a result of Hobert and

Schweinsberg (2002) that is also used in the proof of Theorem 1. Section 4 contains the

proof of Theorem 1 as well as a lemma connecting the limiting behaviour of z q(z) with the

integrals in (2) and (3).

2. Stochastic monotonicity and monotone hazard rate

Define

K(yjx) :¼ Pr (�nþ1 < yj�n ¼ x) ¼ P(x, [0, y]) ¼
ð y

0

f (t þ x)

G(x)
dt:

The Markov chain � is called stochastically monotone (Daley, 1968) if, for every pair

0 < x1 , x2 and every y . 0, K(yjx1) > K(yjx2). Note that K(yjx) is the distribution

function of the random variable Zx � x. Hence, stochastic monotonicity of � is equivalent to

saying that Zx2 � x2 is stochastically larger than Zx1 � x1 whenever 0 < x1 , x2. The

following result gives a direct connection between the stochastic monotonicity of � and the

behaviour of q.

Lemma 2. Suppose Z satisfies assumption A. If Z has a non-increasing hazard rate, then the

tail Markov chain generated by Z is stochastically monotone.

Proof. First, it is simple to verify that

G(x) ¼ exp �
ðx

0

q(t) dt

� �
:

Thus, we can write
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K(yjx) ¼ 1� G(xþ y)

G(x)
¼ 1� exp �

ðxþ y

x

q(t) dt

( )
:

Now fix x1, x2 and y such that 0 < x1 , x2 and y . 0. Clearly,
Ð x1þ y

x1
q(t) dt >

Ð x2þ y

x2
q(t) dt,

and hence K(yjx1) > K(yjx2). Thus, K(yjx) is non-increasing in x for each fixed y. h

Remark 3. If we assume that f is continuous, the conclusion of Lemma 1 can be written: The

tail Markov chain generated by Z is stochastically monotone if and only if Z has a non-

increasing hazard rate. Indeed, K(yjx) is non-increasing in x for each fixed y if and only ifÐ xþ y

x
q(t) dt is non-increasing in x for each fixed y. Taking a derivative (q is continuous), we

find that K(yjx) is non-increasing in x for each fixed y if and only if q(xþ y) < q(x) for all

x . 0 for each fixed y.

Now suppose all we can say regarding the monotonicity of q is that there exists an

M . 0 such that q(z) is non-increasing for all z . M . We now consider whether it is

possible to find a z� > M and a density f � such that the following four conditions hold:

1. f � satisfies assumption A.

2. f � has non-increasing hazard rate.

3. f (z�) ¼ f �(z�).
4.

Ð1
z� f (z) dz ¼

Ð1
z� f �(z) dz.

If such an f � exists, then the density

~ff (z) ¼ f �(z) if z , z�,
f (z) if z > z�,

�
(6)

satisfies assumption A, has non-decreasing hazard rate, and has exactly the same tail as f .

We will now prove that the answer to the question above is ‘yes’ (as long as there exists an

r . 0 such that EZ r ¼ 1). In fact, one can always find a Weibull density that does the job.

Write the Weibull density as w(z; º, Æ) ¼ ºÆ zÆ�1 exp f�º zÆgI(z . 0), where º, Æ . 0. The

hazard rate of the Weibull density is non-increasing whenever Æ < 1.

Lemma 3. Assume that Z satisfies assumption A, EZ r ¼ 1 for some r . 0, and that there

exists an M . 0 such that q(z) is non-increasing for all z . M. Then there exists a z� > M

and a density f � such that (1), (2), (3) and (4) all hold.

Proof. We simply demonstrate the existence of a Weibull density satisfying all the conditions.

First, Barlow et al. (1963) show that

EZ r ¼ 1 ) lim inf
z!1

z q(z) < r:

Therefore,

lim inf
z!1

z q(z)

�logG(z)
¼ 0:
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Thus, there exists a z� > M such that

z� q(z�)
�logG(z�) , 1:

Now fix z� as above, and consider the following system of two equations and two unknowns:

w(z�; º, Æ) ¼ f (z�),ð1
z�
w(z; º, Æ)dz ¼ G(z�):

Solving for Æ and º yields

Æ̂Æ ¼ z� q(z�)
�logG(z�) and º̂º ¼ [�logG(z�)](z�)�[z� q(z�)=f�log G(z�)g]:

Since Æ̂Æ , 1 by construction, the Weibull density that is the solution has non-increasing

hazard rate. h

Example 2 (continued). Consider the IG(1, 1) density; that is, f (z) ¼ z�2 exp f�1=zg
I(z . 0). We know that EZ ¼ 1. It is easy to show that the hazard rate, q(z), is

increasing for small z and decreasing for z . 1. Taking z� ¼ 2, the Weibull solution has

º ¼: 0:526 and Æ ¼: 0:826. Figure 1 shows f and f �.

3. The discrete analogue of �

Hobert and Schweinsberg (2002) studied a discrete analogue of � and one of their results

will be used in the proof of Theorem 1. Suppose W is a discrete random variable with

support Zþ. Let � ¼ (�n)
1
n¼0 be a Markov chain with state space Zþ and transition

probabilities given by

pij :¼ Pr (�nþ1 ¼ jj�n ¼ i) ¼ P(W ¼ iþ j)

P(W > i)
(7)

for all i, j 2 Zþ. The fact that P(W ¼ iþ j) . 0 for all i, j 2 Zþ implies that � is

irreducible and aperiodic. Let �i ¼ P(W > i) and note that �i pij ¼ � j pji for all i, j 2 Zþ.
Thus, � is reversible and the sequence (�i)

1
i¼0 is an invariant sequence for � since

X1
i¼0

�i pij ¼
X1
i¼0

� j pji ¼ � j

for all j 2 Zþ. It follows that if
P1

i¼0�i , 1, then the chain is positive recurrent, and ifP1
i¼0�i ¼ 1, then the chain is either null recurrent or transient. Moreover, sinceP1
i¼0�i ¼ 1þ EW , the Markov chain � is positive recurrent if and only if EW , 1. The

following result is due to Hobert and Schweinsberg (2002).
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Theorem 3. If
P1

i¼1[i
3P(W ¼ i)]�1 , 1, then the Markov chain � is transient. IfP1

i¼1[i
2P(W > i)]�1 ¼ 1, then � is recurrent.

Theorem 1 is the continuous analogue of Theorem 3. It is important to note, however,

that the techniques used to prove Theorem 3 are based on connections between reversible

Markov chains and electrical networks and consequently are specific to Markov chains on

countable state spaces. Thus, while � and � are quite similar in structure, the methods

used to prove Hobert and Schweinsberg’s (2002) result cannot be applied to �.

4. The main result

This section contains the proof of Theorem 1. The proof has two parts. The first part is a

coupling argument that requires Z to be stochastically monotone. In this part of the

argument, we assume that q is non-increasing on all of Rþ. The second part involves

relaxing the assumption that q is non-increasing on all of Rþ and is based on a stochastic

comparison technique (Meyn and Tweedie, 1993, p. 220).

Proof of Theorem 1. We first show that the result is true under the more restrictive

Figure 1. The IG(1,1) density between 0 and 6 and the Weibull density with º ¼: 0:526 and

Æ ¼: 0:826 between 0 and 2. The densities are equal at the point 2 and the area under the curve

between 0 and 2 is the same for the two densities.
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assumption that q is non-increasing on all of Rþ. Define a Zþ-valued random variable W

such that

P(W ¼ i) ¼ P(i , Z < iþ 1)

for all i 2 Zþ. Define another Zþ-valued random variable W 9 by

P(W 9 ¼ i) ¼ P(iþ 1 , Z < iþ 2)

P(Z . 1)

for all i 2 Zþ. Now, for fixed i 2 Zþ, let Wi be a random variable with support fi, iþ 1, . . .g
and probabilities proportional to those of W . Define W 9i similarly.

We now construct three coupled Markov chains, which we denote by �, � and �9. Let

U0, U1, U2, . . . be a sequence of independent and identically distributed Uniform(0, 1)

random variables. Fix a real number s > 0. Let �0 ¼ s, and then let �0 and �90 be non-

negative integers such that �0 < �0 < �90 þ 1. Given �n ¼ i, �n ¼ x and �9n ¼ i9, we

define

�nþ1 ¼ inf f j 2 Zþ : P(Wi � i < j) > Ung,

�nþ1 ¼ inf fy 2 [0, 1) : P(Zx � x < y) > Ung,

�9nþ1 ¼ inf f j 2 Zþ : P(W 9i9 � i9 < j) > Ung:

Note that � is a Markov chain with transition probabilities given by (7), and �9 is a Markov

chain with transition probabilities given by (7) with W 9 in place of W . Also, � is a Markov

chain whose transition densities are given by (1).

We now prove by induction that �n < �n < �9n þ 1 for all n 2 Zþ. Suppose we have

�n < �n < �9n þ 1 for some n. If i, j 2 Zþ and j > 1, then

P(Zi � i < j) ¼ P(i , Z < iþ j)

P(Z . i)
¼ P(i < W < iþ j� 1)

P(W > i)
¼ P(Wi � i < j� 1)

and

P(Ziþ1 � (iþ 1) < jþ 1) ¼ P(iþ 1 , Z < iþ jþ 2)

P(Z . iþ 1)
¼ P(i < W 9 < iþ j)

P(W 9 > i)
¼ P(W 9i � i < j):

If �n ¼ i and �nþ1 ¼ j > 1, then P(Wi � i < j� 1) , Un. If we also have �n ¼ x, then

our assumption about the hazard rate of Z implies that Zx � x is stochastically larger than

Zi � i and hence

P(Zx � x < j) < P(Zi � i < j) ¼ P(Wi � i < j� 1) , Un,

which means �nþ1 > j ¼ �nþ1. Likewise, if �9n ¼ i9 and �9nþ1 ¼ j9, then

P(W 9i9 � i9 < j9) > Un. Therefore, if we also have �n ¼ x, then

P(Zx � x < j9þ 1) > P(Zi9þ1 � (i9þ 1) < j9þ 1) ¼ P(W 9i9 � i9 < j9) > Un,

which means �nþ1 < j9þ 1 ¼ �9nþ1 þ 1. Thus, by induction, �n < �n < �9n þ 1 for all

n 2 Zþ, as claimed.

Suppose (3) holds. Then, using Jensen’s inequality, we have
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X1
i¼1

1

i3P(W ¼ i)
¼

X1
i¼1

1

i3
ð iþ1

i

f (z)dz

<
X1
i¼1

1

i3

ð iþ1

i

1

f (z)
dz

< 8
X1
i¼1

ð iþ1

i

1

z3 f (z)
dz ¼ 8

ð1
1

1

z3 f (z)
dz , 1:

Thus, by Theorem 3, the chain � is transient. Fix a positive real number K, and define

U (s, K) ¼
P1

n¼0P(�n < K). (Recall that �0 ¼ s.) Since �n < �n for all n and � is

transient, we have U (s, K) <
P1

n¼0P(�n < K) , 1. It follows that � is transient.

Now suppose (2) holds. Then

X1
i¼1

1

i2P(W 9 > i)
¼

X1
i¼1

G(1)

i2G(iþ 1)
> G(1)

ð1
1

1

z2G(z)
dz ¼ 1:

Therefore, Theorem 3 implies that �9 is recurrent, which means �9n ¼ 0 infinitely often.

Thus, �n 2 [0, 1] infinitely often, and it follows from Theorem 8.3.5 of Meyn and Tweedie

(1993, p. 187) that � is null recurrent. (We are using the fact that [0, 1] is a petite set. Since

[0, 1] is compact, this follows from the fact that � is a Feller chain.)

We have so far shown that the result holds under the assumption that q is non-increasing

on all of Rþ. We now relax this assumption and suppose only that there exists an M . 0

such that q(z) is non-increasing for z . M. Lemma 3 implies the existence of ~ff defined in

(6). Note that ~ff satisfies assumption A, has non-increasing hazard rate on all of Rþ and is

identical to f on [z�, 1). Let ~GG(z) ¼
Ð1
z

~ff (t) dt. Define ~�� to be the tail Markov chain

generated by ~ff and let ~kk(yjx) be the corresponding Markov transition density; that is,
~kk(yjx) ¼ ~ff (yþ x)= ~GG(x) for x, y 2 [0, 1). By construction, k(yjx) ¼ ~kk(yjx) for all y > 0

whenever x > z�. Put C ¼ [0, z�] and define

�C ¼ minfn > 1 : �n 2 Cg and ~��C ¼ minfn > 1 : ~��n 2 Cg:

Then for any x 2 Cc and any n 2 f2, 3, . . .g,

Pr (�C > nj�0 ¼ x) ¼
ð
Cc

� � �
ð
Cc

k(tn�1jtn�2) � � � k(t1jx) dt1 � � � dtn�1

¼
ð
Cc

� � �
ð
Cc

~kk(tn�1jtn�2) � � � ~kk(t1jx) dt1 � � � dtn�1 (8)

¼ Pr (~��C > nj ~��0 ¼ x):

Meyn and Tweedie (1993, p. 220) show that from (8) we may conclude that � is null

recurrent if and only if ~�� is null recurrent. (Here again we are using the fact that C is a

petite set.)

Assume (2) holds. Clearly, (2) implies that
Ð1
1
[z2 ~GG(z)]�1dz ¼ 1. Now since the hazard

rate of ~ff is non-increasing on all of Rþ, we may conclude that ~�� is null recurrent, and this

in turn implies that � is null recurrent. A similar argument works for the transient case.h
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An obvious question regarding Theorem 1 is whether it is possible to find a Z such that

neither (2) nor (3) holds. We will now show that either (2) or (3) must hold when

lim inf z!1z q(z) . 0. We will then give an example in which lim inf z!1z q(z) ¼ 0 and

neither (2) nor (3) holds. Define lim inf z!1z q(z) ¼ L and lim supz!1z q(z) ¼ L. The next

result gives two relationships between these limits and the integrals in (2) and (3).

Lemma 4. Assume that Z satisfies assumption A.

(i) If L . 0, then ð1
1

1

z2G(z)
dz , 1 )

ð1
1

1

z3 f (z)
dz , 1:

(ii) If L , 1, then ð1
1

1

z2G(z)
dz , 1:

Proof. (i) Let 0 , L , L. There exists 0 , A , 1 such that z q(z) . L for all z . A. Thus,ð1
A

1

z3 f (z)
dz ¼

ð1
A

1

z2G(z) z q(z)
dz ,

1

L

ð1
A

1

z2G(z)
dz , 1:

(ii) Let L , L , 1. There exists 0 , B , 1 such that z q(z) , L for all z . B. Thus,

q(z) , L=z for all z . B. Integration of both sides yieldsð z

B

q(t) dt , L log
z

B

� �

for all z . B. Exponentiating and rearranging yields

exp

ð z

0

q(t) dt

� �
,

z

B

� �L

exp

ð B

0

q(t) dt

( )

for all z . B. Thus, for all z . B, we have

1

z2 G(z)
, c

1

z2�L
,

where c is a constant that does not depend on z. Finally, since 2� L . 1,ð1
B

1

z2 G(z)
dz , c

ð1
B

1

z2�L
dz , 1:

h

Remark 4. Part (i) shows that if lim inf z!1z q(z) . 0, then one of (2) or (3) must hold.

Example 6. This example shows that it is possible that neither (2) nor (3) holds, even if the

other conditions of Theorem 1 are satisfied. For all non-negative integers n, let an ¼ 22
n

.

Note that anþ1 ¼ a2n. For positive integers n, let rn ¼ (2n�3 log 2)=(an � an�1). Next, define
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the function q by setting q(z) ¼ rn for z 2 [an�1, an) and q(z) ¼ r1 for z 2 (0, a0). Since the

sequence (rn)
1
n¼1 is decreasing, q(z) is a non-increasing function of z on (0, 1). Define

G(z) ¼ exp f�
Ð z
0
q(x) dxg and f (z) ¼ q(z)G(z) for z . 0. Since

Ð1
0

q(z) dz ¼ 1, the function

f is a density function. Since f is lower semicontinuous and positive on (0, 1), we see that

f satisfies assumption A. Also, note that if Z is a random variable with density f , then G is

the survival function of Z and q is the hazard rate.

For n > 2,

G(an) ¼ exp �a1 r1 �
Xn

i¼2

(ai � ai�1)ri

( )
¼ exp �a1 r1 �

Xn

i¼2

2i�3 log 2

( )

¼ exp � 1

2
log 2� (log 2) 2n�2 � 1

2

� �� �
¼ 2�2n�2 ¼ a�1

n�2:

Since G(z) is a decreasing function of z, we have

E[Z] >
X1
n¼2

ðan

an�1

G(z) dz >
X1
n¼2

a�1
n�2(an � an�1) ¼

X1
n¼2

an�2(a
2
n�2 � 1) >

X1
n¼2

an�2 ¼ 1:

Thus, all of the hypotheses of Theorem 1 are satisfied. Now since f (z) > G(an)rn ¼ a�1
n�2 rn

for all z such that an�1 < z , an, we haveð1
1

1

z3 f (z)
dz >

X1
n¼2

ðan

an�1

1

z3 f (z)
dz >

X1
n¼2

1

G(an�1)rn

ðan

an�1

1

z3
dz

¼
X1
n¼2

an�3(an � an�1)

2n�3 log 2

1

2a2n�1

� 1

2a2n

� �

¼
X1
n¼2

4a1=8n (an � a1=2n )

log an

1

an

� 1

a2n

� �
¼ 1,

so (3) does not hold. Furthermore, letting c ¼
Ð 4
1
[z2G(z)]�1 dz, we obtainð1

1

1

z2G(z)
dz ¼ cþ

X1
n¼2

ðan

an�1

1

z2G(z)
dz < cþ

X1
n¼2

1

G(an)

ðan

an�1

1

z2
dz

< cþ
X1
n¼2

an�2

an�1

¼ cþ
X1
n¼2

1

an�2

, 1:

Thus, (2) also fails to hold. Note that

lim
n!1

an�1q(an�1) ¼ lim
n!1

an�1 rn ¼ lim
n!1

an�1(2
n�3 log 2)

an � an�1

¼ 0,

so lim inf z!1z q(z) ¼ 0, as it must.

Remark 5. If L . 0 and L , 1, then Lemma 4 implies that � is transient. Furthermore, if
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L . 1, then EZ , 1 (Barlow et al., 1963), which means that � is positive recurrent. It is

tempting to conjecture that if L ¼ limz!1z q(z) exists, then � is positive recurrent, null

recurrent or transient as L is greater than 1, equal to 1, or less than 1. However, the next

example shows that � can be transient when L ¼ 1.

Example 7. Consider the density

f (z) ¼ C[log(zþ 1)]2

(zþ 1)2
I(z . 0),

where C is a constant. Note that f is lower semicontinuous and positive on (0, 1), and thus

satisfies assumption A. Also, one can check that

@2

@z2
log f (z) ¼ 2

(zþ 1)2
1� 1

log(zþ 1)
� 1

[log(zþ 1)]2

� �
,

which is positive for sufficiently large z. Therefore, by Lemma 1, the function q(z) is non-

increasing for sufficiently large z. Note thatð1
0

z f (z)dz ¼
ð1
0

Cz[log(zþ 1)]2

(zþ 1)2
dz ¼ 1,

and ð1
1

1

z3 f (z)
dz ¼

ð1
1

(zþ 1)2

Cz3[log(zþ 1)]2
dz , 1:

Therefore, by Theorem 1, the tail Markov chain generated by f is transient. It remains to

show that L ¼ 1. Changing variables from x to u ¼ 1=(xþ 1), we have

G(z) ¼ C

ð1
z

[log(xþ 1)]2

(xþ 1)2
dx ¼ C

zþ 1
f[log(zþ 1)]2 þ 2 log(zþ 1)þ 2g:

Therefore,

z q(z) ¼ z f (z)

G(z)
¼ z[log(zþ 1)]2

(zþ 1)f[log(zþ 1)]2 þ 2 log(zþ 1)þ 2g

and hence limz!1z q(z) ¼ 1, as claimed.
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