Stability of the tail Markov chain and the evaluation of improper priors for an exponential rate parameter

JAMES P. HOBERT^{1,*}, DOBRIN MARCHEV^{1,**} and JASON SCHWEINSBERG²

¹Department of Statistics, University of Florida, Griffin-Floyd Hall, Gainesville FL 32611, USA. E-mail: *jhobert@stat.ufl.edu; **dmarchev@stat.ufl.edu

²Department of Mathematics, Cornell University, Malott Hall, Ithaca NY 14853, USA. E-mail: jasonsch@math.cornell.edu

Let Z be a continuous random variable with a lower semicontinuous density f that is positive on $(0, \infty)$ and 0 elsewhere. Put $G(x) = \int_x^\infty f(z) dz$. We study the tail Markov chain generated by Z, defined as the Markov chain $\Phi = (\Phi_n)_{n=0}^\infty$ with state space $[0, \infty)$ and Markov transition density k(y|x) = f(y+x)/G(x). This chain is irreducible, aperiodic and reversible with respect to G. It follows that Φ is positive recurrent if and only if Z has a finite expectation. We prove (under regularity conditions) that if $EZ = \infty$, then Φ is null recurrent if and only if $\int_1^\infty 1/[z^3 f(z)]dz = \infty$. Furthermore, we describe an interesting decision-theoretic application of this result. Specifically, suppose that X is an $Exp(\theta)$ random variable; that is, X has density $\theta e^{-\theta x}$ for x > 0. Let ν be an improper prior density for θ that is positive on $(0, \infty)$. Assume that $\int_0^\infty \theta \nu(\theta) d\theta < \infty$, which implies that the posterior density induced by ν is proper. Let m_ν denote the marginal density of X induced by ν ; that is, $m_\nu(x) = \int_0^\infty \theta e^{-\theta x} \nu(\theta) d\theta$. We use our results, together with those of Eaton and of Hobert and Robert, to prove that ν is a \mathcal{P} -admissible prior if $\int_1^\infty 1/[x^2 m_\nu(x)]dx = \infty$.

Keywords: admissibility; coupling; hazard rate; null recurrence; reversibility; stochastic comparison; stochastically monotone Markov chain; transience

1. Introduction

1.1. Tail Markov chains and the main result

Let Z be a random variable whose density (with respect to Lebesgue measure) is a lower semicontinuous function $f : \mathbb{R} \to [0, \infty)$ that is positive on $\mathbb{R}^+ := (0, \infty)$ and 0 on $(-\infty, 0]$. We will say that such a random variable (and its density) satisfies assumption \mathcal{A} . Let G and q denote the survival function and hazard rate, respectively; that is, $G(x) = \int_x^\infty f(z) dz$ and q(z) = f(z)/G(z).

With each such Z we associate a Markov chain $\Phi = (\Phi_n)_{n=0}^{\infty}$ with state space $[0, \infty)$ and Markov transition density k(y|x) = f(y+x)/G(x). Thus, for any $n \in \mathbb{Z}^+ := \{0, 1, 2, ...\}$, any $x \ge 0$, and any Borel measurable set $A \subset [0, \infty)$,

1350-7265 © 2004 ISI/BS

$$P(x, A) := \Pr(\Phi_{n+1} \in A | \Phi_n = x) = \int_A k(y|x) \, \mathrm{d}y = \int_A \frac{f(y+x)}{G(x)} \, \mathrm{d}y.$$
(1)

One can think of the chain evolving as follows. Suppose that the current state is $\Phi_n = x$ and let Z_x denote a random variable with density proportional to f(z) I(z > x). Then Φ_{n+1} is set equal to a realization of $Z_x - x$ whose support is $[0, \infty)$. We call this chain the *tail Markov* chain generated by Z (or by the density f).

Since f is positive on \mathbb{R}^+ , the probability in (1) is positive for any x as long as $\lambda(A) > 0$, where λ denotes Lebesgue measure. Thus, Φ is λ -irreducible and aperiodic; see Meyn and Tweedie (1993) for definitions. Moreover, Φ is a *Feller* Markov chain; that is, for each fixed open set $A \subset [0, \infty)$, P(x, A) is a lower semicontinuous function of x. To see this, let $(x_n)_{n=1}^{\infty}$ be a sequence of positive real numbers such that $x_n \neq x_0$ and $x_n \to x_0 \ge 0$ as $n \to \infty$. Now using Fatou's lemma and the fact that products of positive, lower semicontinuous functions are lower semicontinuous, we have

$$\liminf_{n\to\infty} P(x_n, A) \ge \int_A \liminf_{n\to\infty} \frac{f(y+x_n)}{G(x_n)} \, \mathrm{d}y \ge \int_A \frac{f(y+x_0)}{G(x_0)} \, \mathrm{d}y = P(x_0, A),$$

which implies the desired lower semicontinuity. Because Φ is a Feller chain, every compact set in the state space is a *petite set* (Meyn and Tweedie, 1993, Chapters 5–6). This facilitates several technical arguments later in the paper.

The chain is *reversible* with respect to the function G; that is,

$$k(y|x) G(x) = k(x|y) G(y), \qquad \forall x, y \in [0, \infty).$$

Hence, $\int_0^\infty k(y|x) G(x) dx = G(y)$, which means that G(y) dy is an invariant measure for Φ . Since $\int_0^\infty G(y) dy = EZ$, it follows that the tail Markov chain generated by Z is positive recurrent if $EZ < \infty$ and is either null recurrent or transient if $EZ = \infty$. In this paper, we concentrate on differentiating between null recurrence and transience when Z has an infinite mean. The following theorem, which is proved in Section 4, is our main result.

Theorem 1. Assume that Z satisfies assumption A and that $EZ = \infty$ so that the tail Markov chain generated by Z is either null recurrent or transient. Assume that there exists an M > 0 such that q(z) is non-increasing for z > M. Then Φ is null recurrent if

$$\int_{1}^{\infty} \frac{1}{z^2 G(z)} dz = \infty,$$
(2)

and transient if

$$\int_{1}^{\infty} \frac{1}{z^3 f(z)} \mathrm{d}z < \infty.$$
(3)

Remark 1. It is shown in Barlow *et al.* (1963) that if $EZ^r = \infty$ for r > 0, then $\liminf_{z\to\infty} z q(z) \le r$. Thus, if $EZ = \infty$ and $\lim_{z\to\infty} q(z)$ exists, the limit must be 0. Hence, our assumption regarding q is not as restrictive as it may at first seem.

Remark 2. In Section 4, we prove that under the additional condition $\liminf_{z\to\infty} z q(z) > 0$,

one of (2) or (3) must be true. Thus, under this extra condition, the conclusion of Theorem 1 can be stated as: Then Φ is null recurrent if and only if

$$\int_{1}^{\infty} \frac{1}{z^3 f(z)} \mathrm{d}z = \infty$$

Example 1. Consider the tail Markov chains generated by the (centred) Pareto distributions with densities

$$f(z; \alpha, \beta) = \frac{\beta \alpha^{\beta}}{(z+\alpha)^{\beta+1}} I(z>0),$$

where α , $\beta > 0$. We restrict attention to the case in which $\beta \le 1$ since otherwise the mean is finite and the chain is positive recurrent. Note that $q(z) = \beta/(z + \alpha)$, which is clearly decreasing. Moreover, $\lim_{z\to\infty} z q(z) = \beta > 0$. Now

$$\int_{1}^{\infty} \frac{1}{z^3 f(z)} dz \propto \int_{1}^{\infty} \frac{(z+\alpha)^{\beta+1}}{z^3} dz$$

This integral diverges if $\beta = 1$ and converges if $\beta \in (0, 1)$. Hence, by Remark 2 above, Φ is null recurrent when $\beta = 1$ and is transient when $\beta \in (0, 1)$.

If G is an intractable integral, it may be difficult to analyse q directly. This makes it difficult to decide if Theorem 1 is applicable. We now prove a result providing a simple sufficient condition (involving only f) for q to be eventually non-increasing.

Lemma 1. Suppose Z satisfies assumption A and that there exists an M > 0 such that $\log f(z)$ is convex for z > M. Then q(z) is non-increasing for z > M.

Proof. We use the following property of convex functions (see, for example, Pečarić *et al.*, 1992, p. 2). Let g be a convex function on an interval I. If $x_1 \le y_1$, $x_2 \le y_2$, $x_1 \ne x_2$, and $y_1 \ne y_2$, then

$$\frac{g(x_2) - g(x_1)}{x_2 - x_1} \le \frac{g(y_2) - g(y_1)}{y_2 - y_1}.$$
(4)

Now let M < z < z', and let x > 0. Applying (4) with $x_1 = z$, $x_2 = z + x$, $y_1 = z'$ and $y_2 = z' + x$, we obtain

$$\frac{\log f(z+x) - \log f(z)}{x} \leq \frac{\log f(z'+x) - \log f(z')}{x}.$$

It follows that $f(z' + x)f(z) \ge f(z')f(z + x)$ for all x > 0. Thus,

$$f(z)\int_0^\infty f(z'+x)\,\mathrm{d}x \ge f(z')\int_0^\infty f(z+x)\,\mathrm{d}x$$

and hence $q(z) \ge q(z')$.

Example 2. Consider the tail Markov chains generated by the inverse gamma (IG) distributions with densities

$$f(z; \alpha, \beta) = \frac{e^{-1/z\beta}}{\Gamma(\alpha)\beta^{\alpha} z^{\alpha+1}} I(z > 0),$$

where $\alpha, \beta > 0$. We restrict attention to the case in which $\alpha \le 1$ since otherwise the mean is finite. We have $(\partial^2/\partial z^2)\log f(z; \alpha, \beta) > 0$ as long as $z > 2/[\beta(\alpha + 1)]$. Thus, by Lemma 1, Theorem 1 is applicable. If $\alpha \in (0, 1)$,

$$\int_{1}^{\infty} \frac{1}{z^3 f(z)} \mathrm{d} z \propto \int_{1}^{\infty} \frac{\mathrm{e}^{1/z\beta}}{z^{2-\alpha}} \mathrm{d} z < \infty,$$

which implies that Φ is transient. If $\alpha = 1$, it is easy to show that G(z) < c/z, where c is a constant, and it follows from (2) that Φ is null recurrent in this case.

Example 3. Consider the tail Markov chains generated by the F distributions. The F densities are given by

$$f(z; \alpha, \beta) = \frac{\Gamma((\alpha + \beta)/2)}{\Gamma(\alpha/2)\Gamma(\beta/2)} \left(\frac{\alpha}{\beta}\right)^{\alpha/2} \frac{z^{(\alpha-2)/2}}{[1 + (\alpha/\beta)z]^{(\alpha+\beta)/2}} I(z > 0)$$

where $\alpha, \beta > 0$. We restrict attention to the case in which $\beta \le 2$ since otherwise the mean is finite. First,

$$\frac{\partial^2}{\partial z^2} \log f(z; \alpha, \beta) = -\left(\frac{\alpha - 2}{2}\right) \frac{1}{z^2} + \left(\frac{\alpha + \beta}{2}\right) \left(\frac{\alpha}{\beta}\right)^2 \left[1 + \frac{\alpha}{\beta} z\right]^{-2}.$$

If $\alpha \leq 2$, then $\log f(z)$ is clearly convex on all of \mathbb{R}^+ . Now suppose that $\alpha > 2$. A straightforward calculation shows that $(\partial^2/\partial z^2)\log f(z; \alpha, \beta) > 0$ as long as

$$z > \frac{\beta(\alpha-2) + \beta\{(\alpha-2)(\alpha+\beta)\}^{1/2}}{\alpha(\beta+2)} > 0.$$

Thus, by Lemma 1, Theorem 1 is applicable. If $\beta \in (0, 2)$, then

$$\int_{1}^{\infty} \frac{1}{z^{3}f(z)} dz = c \int_{1}^{\infty} \frac{[1 + (\alpha/\beta) z]^{(\alpha+\beta)/2}}{z^{\alpha/2+2}} dz < c' \int_{1}^{\infty} \frac{1}{z^{2-\beta/2}} dz < \infty,$$

and hence Φ is transient. Now, if $\beta = 2$, it's easy to show that G(z) < c/z and it follows from (2) that Φ is null recurrent in this case.

In the next subsection, we describe a connection between null recurrent tail Markov chains and good prior distributions for an exponential rate parameter.

1.2. Evaluating improper priors for an exponential rate parameter

Suppose that X is an $\text{Exp}(\theta)$ random variable; that is, the conditional density of X given θ

is $h(x|\theta) = \theta \exp\{-x\theta\} I(x > 0)$, where $\theta > 0$. Let $\nu : \mathbb{R}^+ \to \mathbb{R}^+$ be such that $\int_{\mathbb{R}^+} \nu(\theta) d\theta = \infty$ and $\int_{\mathbb{R}^+} \theta \nu(\theta) d\theta < \infty$. Note that

$$\int_{\mathbb{R}^+} \theta \,\nu(\theta) \,\mathrm{d}\theta < \infty \Rightarrow \int_{\mathbb{R}^+} \theta^{k+1} \exp\left\{-x\,\theta\right\} \nu(\theta) \,\mathrm{d}\theta < \infty$$

whenever x > 0 and $k \ge 0$. Thus, $v(\theta)$ can be viewed as an *improper* prior density that yields a *proper* posterior density given by

$$\pi(\theta|x) = \frac{\theta \exp\left\{-x\,\theta\right\}\nu(\theta)\,I(\theta>0)}{m_{\nu}(x)},$$

where, of course,

$$m_{\nu}(x) := \int_{\mathbb{R}^+} \theta \exp\{-x\,\theta\}\,\nu(\theta)\,\mathrm{d}\theta.$$

An example of a prior satisfying these conditions is $\nu(\theta; p) = \theta^{-1} I(0 < \theta < 1) + \theta^{-p} I(\theta > 1)$ for any p > 2.

Priors satisfying these conditions are 'proper at ∞ ' in the sense that $\int_{1}^{\infty} \nu(\theta) d\theta < \infty$ but 'improper at 0' in the sense that $\int_{0}^{1} \nu(\theta) d\theta = \infty$. The exponential scale family can easily be transformed into a location family by taking logs. If τ is the corresponding prior density for the location parameter $\lambda = -\log \theta$, then $\int_{-\infty}^{0} \tau(\lambda) d\lambda < \infty$ and $\int_{0}^{\infty} \tau(\lambda) d\lambda = \infty$, so the prior is proper in one tail but improper in the other.

Consider a statistical decision problem where $R(\delta, \theta)$ is the risk function for the decision rule δ . If ν is an improper prior, a decision rule δ_0 is said to be *almost-v-admissible* if, for any decision rule δ_1 which satisfies $R(\delta_1, \theta) \leq R(\delta_0, \theta)$ for all θ , we have $\nu(\{\theta : R(\delta_1, \theta) < R(\delta_0, \theta)\}) = 0$. The prior ν is called \mathcal{P} -admissible if the generalized Bayes estimator of every bounded function of θ is almost- ν -admissible under squared error loss (Eaton, 1992; Hobert and Robert, 1999). (Such improper priors have also been called *strongly admissible*.)

With each prior ν satisfying $\int_{\mathbb{R}^+} \nu(\theta) d\theta = \infty$ and $\int_{\mathbb{R}^+} \theta \nu(\theta) d\theta < \infty$, we associate a Markov chain Φ^{ν} with state space $[0, \infty)$ and Markov transition density

$$k_{\nu}(y|x) = \int_{\mathbb{R}^{+}} h(y|\theta) \,\pi(\theta|x) \,\mathrm{d}\theta = \frac{\int_{\mathbb{R}^{+}} \theta^{2} \exp\left\{-(x+y)\theta\right\} \nu(\theta) \,\mathrm{d}\theta}{\int_{\mathbb{R}^{+}} \theta \exp\left\{-x\,\theta\right\} \nu(\theta) \,\mathrm{d}\theta}$$

for $x, y \in [0, \infty)$. It follows from results of Eaton (1992) and Hobert and Robert (1999) that if Φ^{ν} is (null) recurrent, then the prior ν is \mathcal{P} -admissible. See Eaton (1997) for a detailed introduction to these ideas. Other key papers in which connections between admissibility and recurrence are established include Brown (1971), Johnstone (1984; 1986), Lai (1996) and Eaton (2001).

The Markov chain Φ^{ν} is actually the tail Markov chain generated by the density

$$f_{\nu}(z) = \frac{\int_{\mathbb{R}^{+}} \theta^{2} \exp\left\{-z \,\theta\right\} \nu(\theta) \,\mathrm{d}\theta}{\int_{\mathbb{R}^{+}} \theta \,\nu(\theta) \,\mathrm{d}\theta} I(z > 0),$$

which is clearly lower semicontinuous and hence satisfies assumption \mathcal{A} . Note also that $\int_{\mathbb{R}^+} z f_{\nu}(z) dz \propto \int_{\mathbb{R}^+} \nu(\theta) d\theta = \infty$. Hence, Φ^{ν} is never positive recurrent. The hazard rate is given by

$$q_{\nu}(z) = \frac{\int_{\mathbb{R}^{+}} \theta^{2} \exp\left\{-z\,\theta\right\}\nu(\theta)\,\mathrm{d}\theta}{\int_{\mathbb{R}^{+}} \theta\,\exp\left\{-z\,\theta\right\}\nu(\theta)\,\mathrm{d}\theta}$$

We now show that q_{ν} is non-increasing, which means that Theorem 1 is applicable. Consider the exponential family of probability densities given by

$$g(w; \eta) = w v(w) \exp \{w\eta - \psi(\eta)\} I(w > 0),$$

where $\eta < 0$ and $\psi(\eta) = \log \int_{\mathbb{R}^+} w v(w) e^{w\eta} dw$. Brown (1986) shows that the derivatives of ψ exist and can be computed by differentiating under the integral sign. Moreover, $\psi''(\eta) = \operatorname{var}_{\eta}(W)$, where W is a random variable with density $g(w; \eta)$. Now, for z > 0, $q_{\nu}(z) = \psi'(-z)$ and hence $(d/dz)q_{\nu}(z) = -\psi''(-z) \leq 0$. Thus, $q_{\nu}(z)$ is non-increasing. Applying Theorem 1 in this context leads to a simple sufficient condition for the \mathcal{P} -admissibility of ν .

Theorem 2. Suppose that $X \sim \text{Exp}(\theta)$ and let $\nu : \mathbb{R}^+ \to \mathbb{R}^+$ be an improper prior for θ such that $\int_{\mathbb{R}^+} \theta \, \nu(\theta) \, d\theta < \infty$. Then ν is \mathcal{P} -admissible if

$$\int_{1}^{\infty} \frac{1}{x^2 m_{\nu}(x)} \mathrm{d}x = \infty.$$
(5)

Example 4. Let $v(\theta; p) = \theta^{-1} I(0 < \theta < 1) + \theta^{-p} I(\theta > 1)$, where p > 2. Then

$$m_{\nu}(x) = \int_0^1 e^{-x\theta} d\theta + \int_1^\infty \theta^{1-p} e^{-x\theta} d\theta < \int_0^1 e^{-x\theta} d\theta + \int_1^\infty e^{-x\theta} d\theta = \frac{1}{x}$$

Thus, by Theorem 2, all the priors in this class are \mathcal{P} -admissible.

Example 5. Consider the improper conjugate priors

$$\nu(\theta; \alpha, \beta) = \theta^{\alpha - 1} \exp\{-\beta\theta\} I(\theta > 0),$$

where $\alpha \in (-1, 0]$ and $\beta > 0$. The marginal density is given by $m_{\nu}(x) = \Gamma(\alpha + 1)(\beta + x)^{-\alpha - 1}$, and hence

$$\int_{1}^{\infty} \frac{1}{x^2 m_{\nu}(x)} dx = \frac{1}{\Gamma(\alpha+1)} \int_{1}^{\infty} \frac{(\beta+x)^{\alpha+1}}{x^2} dx,$$

which diverges if $\alpha = 0$. Thus, by Theorem 2, all priors of the form $\theta^{-1} \exp\{-\beta\theta\} I(\theta > 0)$ with $\beta > 0$ are \mathcal{P} -admissible. Hobert and Robert (1999) arrived at this conclusion through a completely different argument.

The results of Hobert and Robert (1999) also imply that the prior $\theta^{-1}I(\theta > 0)$ is \mathcal{P} -admissible. Alternatively, the fact that $\theta^{-1}I(\theta > 0)$ is \mathcal{P} -admissible can be deduced from Example 3.1 of Eaton (1992). The fact that this prior is \mathcal{P} -admissible does not, however, follow from the results of the present paper, because the condition $\int_{\mathbb{R}^+} \theta v(\theta) d\theta < \infty$ is needed to define the density $f_{\nu}(z)$. This is also the reason why we needed to assume p > 2 in Example 4.

The rest of this paper is organized as follows. Section 2 contains two results that are used in the proof of Theorem 1. We first prove that the tail Markov chain generated by Z is *stochastically monotone* if q(z) is non-increasing on \mathbb{R}^+ . We then prove that given a density, f(z), whose hazard rate is eventually non-increasing, there exists another density that is both equal to f(z) for all large z and has a hazard rate that is non-increasing on \mathbb{R}^+ . In Section 3, we describe a discrete analogue of Φ and state a result of Hobert and Schweinsberg (2002) that is also used in the proof of Theorem 1. Section 4 contains the proof of Theorem 1 as well as a lemma connecting the limiting behaviour of z q(z) with the integrals in (2) and (3).

2. Stochastic monotonicity and monotone hazard rate

Define

$$K(y|x) := \Pr(\Phi_{n+1} \le y | \Phi_n = x) = P(x, [0, y]) = \int_0^y \frac{f(t+x)}{G(x)} dt.$$

The Markov chain Φ is called *stochastically monotone* (Daley, 1968) if, for every pair $0 \le x_1 < x_2$ and every y > 0, $K(y|x_1) \ge K(y|x_2)$. Note that K(y|x) is the distribution function of the random variable $Z_x - x$. Hence, stochastic monotonicity of Φ is equivalent to saying that $Z_{x_2} - x_2$ is stochastically larger than $Z_{x_1} - x_1$ whenever $0 \le x_1 < x_2$. The following result gives a direct connection between the stochastic monotonicity of Φ and the behaviour of q.

Lemma 2. Suppose Z satisfies assumption A. If Z has a non-increasing hazard rate, then the tail Markov chain generated by Z is stochastically monotone.

Proof. First, it is simple to verify that

$$G(x) = \exp\left\{-\int_0^x q(t)\,\mathrm{d}t\right\}.$$

Thus, we can write

$$K(y|x) = 1 - \frac{G(x+y)}{G(x)} = 1 - \exp\left\{-\int_{x}^{x+y} q(t) \,\mathrm{d}t\right\}$$

Now fix x_1 , x_2 and y such that $0 \le x_1 < x_2$ and y > 0. Clearly, $\int_{x_1}^{x_1+y} q(t) dt \ge \int_{x_2}^{x_2+y} q(t) dt$, and hence $K(y|x_1) \ge K(y|x_2)$. Thus, K(y|x) is non-increasing in x for each fixed y.

Remark 3. If we assume that f is continuous, the conclusion of Lemma 1 can be written: The tail Markov chain generated by Z is stochastically monotone if and only if Z has a nonincreasing hazard rate. Indeed, K(y|x) is non-increasing in x for each fixed y if and only if $\int_{x}^{x+y} q(t) dt$ is non-increasing in x for each fixed y. Taking a derivative (q is continuous), we find that K(y|x) is non-increasing in x for each fixed y if and only if $q(x + y) \leq q(x)$ for all x > 0 for each fixed y.

Now suppose all we can say regarding the monotonicity of q is that there exists an M > 0 such that q(z) is non-increasing for all z > M. We now consider whether it is possible to find a $z^* \ge M$ and a density f^* such that the following four conditions hold:

- 1. f^* satisfies assumption \mathcal{A} .
- 2. f^* has non-increasing hazard rate.
- 3. $f(z^*) = f^*(z^*)$. 4. $\int_{z^*}^{\infty} f(z) dz = \int_{z^*}^{\infty} f^*(z) dz$.

If such an f^* exists, then the density

$$\tilde{f}(z) = \begin{cases} f^*(z) & \text{if } z < z^*, \\ f(z) & \text{if } z \ge z^*, \end{cases}$$
(6)

satisfies assumption A, has non-decreasing hazard rate, and has exactly the same tail as f. We will now prove that the answer to the question above is 'yes' (as long as there exists an r > 0 such that $EZ^r = \infty$). In fact, one can always find a Weibull density that does the job. Write the Weibull density as $w(z; \lambda, \alpha) = \lambda \alpha z^{\alpha-1} \exp \{-\lambda z^{\alpha}\} I(z > 0)$, where $\lambda, \alpha > 0$. The hazard rate of the Weibull density is non-increasing whenever $\alpha \leq 1$.

Lemma 3. Assume that Z satisfies assumption \mathcal{A} , $\mathbb{E}Z^r = \infty$ for some r > 0, and that there exists an M > 0 such that q(z) is non-increasing for all z > M. Then there exists a $z^* \ge M$ and a density f^* such that (1), (2), (3) and (4) all hold.

Proof. We simply demonstrate the existence of a Weibull density satisfying all the conditions. First, Barlow et al. (1963) show that

$$EZ^r = \infty \Rightarrow \liminf_{z \to \infty} z q(z) \le r.$$

Therefore,

$$\liminf_{z \to \infty} \frac{z \, q(z)}{-\log G(z)} = 0.$$

Thus, there exists a $z^* \ge M$ such that

$$\frac{z^* \, q(z^*)}{-\log G(z^*)} < 1.$$

Now fix z^* as above, and consider the following system of two equations and two unknowns:

$$w(z^*; \lambda, \alpha) = f(z^*),$$
$$\int_{z^*}^{\infty} w(z; \lambda, \alpha) dz = G(z^*).$$

Solving for α and λ yields

$$\hat{\alpha} = \frac{z^* q(z^*)}{-\log G(z^*)}$$
 and $\hat{\lambda} = [-\log G(z^*)](z^*)^{-[z^* q(z^*)/\{-\log G(z^*)\}]}.$

Since $\hat{\alpha} < 1$ by construction, the Weibull density that is the solution has non-increasing hazard rate.

Example 2 (continued). Consider the IG(1, 1) density; that is, $f(z) = z^{-2} \exp\{-1/z\}$ I(z > 0). We know that $EZ = \infty$. It is easy to show that the hazard rate, q(z), is increasing for small z and decreasing for z > 1. Taking $z^* = 2$, the Weibull solution has $\lambda \doteq 0.526$ and $\alpha \doteq 0.826$. Figure 1 shows f and f^* .

3. The discrete analogue of Φ

Hobert and Schweinsberg (2002) studied a discrete analogue of Φ and one of their results will be used in the proof of Theorem 1. Suppose W is a discrete random variable with support \mathbb{Z}^+ . Let $\Psi = (\Psi_n)_{n=0}^{\infty}$ be a Markov chain with state space \mathbb{Z}^+ and transition probabilities given by

$$p_{ij} := \Pr\left(\Psi_{n+1} = j | \Psi_n = i\right) = \frac{P(W = i+j)}{P(W \ge i)}$$
(7)

for all $i, j \in \mathbb{Z}^+$. The fact that P(W = i + j) > 0 for all $i, j \in \mathbb{Z}^+$ implies that Ψ is irreducible and aperiodic. Let $\pi_i = P(W \ge i)$ and note that $\pi_i p_{ij} = \pi_j p_{ji}$ for all $i, j \in \mathbb{Z}^+$. Thus, Ψ is *reversible* and the sequence $(\pi_i)_{i=0}^{\infty}$ is an invariant sequence for Ψ since

$$\sum_{i=0}^{\infty} \pi_i p_{ij} = \sum_{i=0}^{\infty} \pi_j p_{ji} = \pi_j$$

for all $j \in \mathbb{Z}^+$. It follows that if $\sum_{i=0}^{\infty} \pi_i < \infty$, then the chain is positive recurrent, and if $\sum_{i=0}^{\infty} \pi_i = \infty$, then the chain is either null recurrent or transient. Moreover, since $\sum_{i=0}^{\infty} \pi_i = 1 + EW$, the Markov chain Ψ is positive recurrent if and only if $EW < \infty$. The following result is due to Hobert and Schweinsberg (2002).

Figure 1. The IG(1,1) density between 0 and 6 and the Weibull density with $\lambda \doteq 0.526$ and $\alpha \doteq 0.826$ between 0 and 2. The densities are equal at the point 2 and the area under the curve between 0 and 2 is the same for the two densities.

Theorem 3. If $\sum_{i=1}^{\infty} [i^3 P(W=i)]^{-1} < \infty$, then the Markov chain Ψ is transient. If $\sum_{i=1}^{\infty} [i^2 P(W \ge i)]^{-1} = \infty$, then Ψ is recurrent.

Theorem 1 is the continuous analogue of Theorem 3. It is important to note, however, that the techniques used to prove Theorem 3 are based on connections between reversible Markov chains and electrical networks and consequently are specific to Markov chains on countable state spaces. Thus, while Φ and Ψ are quite similar in structure, the methods used to prove Hobert and Schweinsberg's (2002) result *cannot* be applied to Φ .

4. The main result

This section contains the proof of Theorem 1. The proof has two parts. The first part is a coupling argument that requires Z to be *stochastically monotone*. In this part of the argument, we assume that q is non-increasing on all of \mathbb{R}^+ . The second part involves relaxing the assumption that q is non-increasing on all of \mathbb{R}^+ and is based on a stochastic comparison technique (Meyn and Tweedie, 1993, p. 220).

Proof of Theorem 1. We first show that the result is true under the more restrictive

assumption that q is non-increasing on all of \mathbb{R}^+ . Define a \mathbb{Z}^+ -valued random variable W such that

$$P(W = i) = P(i < Z \le i + 1)$$

for all $i \in \mathbb{Z}^+$. Define another \mathbb{Z}^+ -valued random variable W' by

$$P(W' = i) = \frac{P(i+1 < Z \le i+2)}{P(Z > 1)}$$

for all $i \in \mathbb{Z}^+$. Now, for fixed $i \in \mathbb{Z}^+$, let W_i be a random variable with support $\{i, i + 1, \ldots\}$ and probabilities proportional to those of W. Define W'_i similarly.

We now construct three coupled Markov chains, which we denote by Ψ , Φ and Ψ' . Let U_0, U_1, U_2, \ldots be a sequence of independent and identically distributed Uniform(0, 1) random variables. Fix a real number $s \ge 0$. Let $\Phi_0 = s$, and then let Ψ_0 and Ψ'_0 be non-negative integers such that $\Psi_0 \le \Phi_0 \le \Psi'_0 + 1$. Given $\Psi_n = i$, $\Phi_n = x$ and $\Psi'_n = i'$, we define

$$\begin{split} \Psi_{n+1} &= \inf \{ j \in \mathbb{Z}^+ : P(W_i - i \le j) \ge U_n \}, \\ \Phi_{n+1} &= \inf \{ y \in [0, \infty) : P(Z_x - x \le y) \ge U_n \}, \\ \Psi_{n+1}' &= \inf \{ j \in \mathbb{Z}^+ : P(W_{i'}' - i' \le j) \ge U_n \}. \end{split}$$

Note that Ψ is a Markov chain with transition probabilities given by (7), and Ψ' is a Markov chain with transition probabilities given by (7) with W' in place of W. Also, Φ is a Markov chain whose transition densities are given by (1).

We now prove by induction that $\Psi_n \leq \Phi_n \leq \Psi'_n + 1$ for all $n \in \mathbb{Z}^+$. Suppose we have $\Psi_n \leq \Phi_n \leq \Psi'_n + 1$ for some *n*. If $i, j \in \mathbb{Z}^+$ and $j \geq 1$, then

$$P(Z_i - i \le j) = \frac{P(i < Z \le i + j)}{P(Z > i)} = \frac{P(i \le W \le i + j - 1)}{P(W \ge i)} = P(W_i - i \le j - 1)$$

and

$$P(Z_{i+1} - (i+1) \le j+1) = \frac{P(i+1 < Z \le i+j+2)}{P(Z > i+1)} = \frac{P(i \le W' \le i+j)}{P(W' \ge i)} = P(W'_i - i \le j).$$

If $\Psi_n = i$ and $\Psi_{n+1} = j \ge 1$, then $P(W_i - i \le j - 1) < U_n$. If we also have $\Phi_n = x$, then our assumption about the hazard rate of Z implies that $Z_x - x$ is stochastically larger than $Z_i - i$ and hence

$$P(Z_x - x \leq j) \leq P(Z_i - i \leq j) = P(W_i - i \leq j - 1) < U_n,$$

which means $\Phi_{n+1} \ge j = \Psi_{n+1}$. Likewise, if $\Psi'_n = i'$ and $\Psi'_{n+1} = j'$, then $P(W'_{i'} - i' \le j') \ge U_n$. Therefore, if we also have $\Phi_n = x$, then

$$P(Z_x - x \le j' + 1) \ge P(Z_{i'+1} - (i' + 1) \le j' + 1) = P(W'_{i'} - i' \le j') \ge U_n,$$

which means $\Phi_{n+1} \leq j'+1 = \Psi'_{n+1}+1$. Thus, by induction, $\Psi_n \leq \Phi_n \leq \Psi'_n+1$ for all $n \in \mathbb{Z}^+$, as claimed.

Suppose (3) holds. Then, using Jensen's inequality, we have

$$\sum_{i=1}^{\infty} \frac{1}{i^3 P(W=i)} = \sum_{i=1}^{\infty} \frac{1}{i^3 \int_i^{i+1} f(z) dz} \le \sum_{i=1}^{\infty} \frac{1}{i^3} \int_i^{i+1} \frac{1}{f(z)} dz$$
$$\le 8 \sum_{i=1}^{\infty} \int_i^{i+1} \frac{1}{z^3 f(z)} dz = 8 \int_1^{\infty} \frac{1}{z^3 f(z)} dz < \infty.$$

Thus, by Theorem 3, the chain Ψ is transient. Fix a positive real number K, and define $U(s, K) = \sum_{n=0}^{\infty} P(\Phi_n \leq K)$. (Recall that $\Phi_0 = s$.) Since $\Psi_n \leq \Phi_n$ for all n and Ψ is transient, we have $U(s, K) \leq \sum_{n=0}^{\infty} P(\Psi_n \leq K) < \infty$. It follows that Φ is transient.

Now suppose (2) holds. Then

$$\sum_{i=1}^{\infty} \frac{1}{i^2 P(W' \ge i)} = \sum_{i=1}^{\infty} \frac{G(1)}{i^2 G(i+1)} \ge G(1) \int_1^{\infty} \frac{1}{z^2 G(z)} dz = \infty$$

Therefore, Theorem 3 implies that Ψ' is recurrent, which means $\Psi'_n = 0$ infinitely often. Thus, $\Phi_n \in [0, 1]$ infinitely often, and it follows from Theorem 8.3.5 of Meyn and Tweedie (1993, p. 187) that Φ is null recurrent. (We are using the fact that [0, 1] is a petite set. Since [0, 1] is compact, this follows from the fact that Φ is a Feller chain.)

We have so far shown that the result holds under the assumption that q is non-increasing on all of \mathbb{R}^+ . We now relax this assumption and suppose only that there exists an M > 0such that q(z) is non-increasing for z > M. Lemma 3 implies the existence of \tilde{f} defined in (6). Note that \tilde{f} satisfies assumption \mathcal{A} , has non-increasing hazard rate on all of \mathbb{R}^+ and is identical to f on $[z^*, \infty)$. Let $\tilde{G}(z) = \int_z^{\infty} \tilde{f}(t) dt$. Define $\tilde{\Phi}$ to be the tail Markov chain generated by \tilde{f} and let $\tilde{k}(y|x)$ be the corresponding Markov transition density; that is, $\tilde{k}(y|x) = \tilde{f}(y+x)/\tilde{G}(x)$ for $x, y \in [0, \infty)$. By construction, $k(y|x) = \tilde{k}(y|x)$ for all $y \ge 0$ whenever $x \ge z^*$. Put $C = [0, z^*]$ and define

$$au_C = \min\{n \ge 1 : \Phi_n \in C\} \text{ and } ilde{ au}_C = \min\{n \ge 1 : \Phi_n \in C\}.$$

Then for any $x \in C^c$ and any $n \in \{2, 3, \ldots\}$,

$$\Pr(\tau_{C} \ge n | \Phi_{0} = x) = \int_{C^{c}} \cdots \int_{C^{c}} k(t_{n-1} | t_{n-2}) \cdots k(t_{1} | x) dt_{1} \cdots dt_{n-1}$$
$$= \int_{C^{c}} \cdots \int_{C^{c}} \tilde{k}(t_{n-1} | t_{n-2}) \cdots \tilde{k}(t_{1} | x) dt_{1} \cdots dt_{n-1}$$
(8)
$$= \Pr(\tilde{\tau}_{C} \ge n | \tilde{\Phi}_{0} = x).$$

Meyn and Tweedie (1993, p. 220) show that from (8) we may conclude that Φ is null recurrent if and only if $\tilde{\Phi}$ is null recurrent. (Here again we are using the fact that *C* is a petite set.)

Assume (2) holds. Clearly, (2) implies that $\int_{1}^{\infty} [z^2 \tilde{G}(z)]^{-1} dz = \infty$. Now since the hazard rate of \tilde{f} is non-increasing on all of \mathbb{R}^+ , we may conclude that $\tilde{\Phi}$ is null recurrent, and this in turn implies that Φ is null recurrent. A similar argument works for the transient case.

Stability of the tail Markov chain

An obvious question regarding Theorem 1 is whether it is possible to find a Z such that neither (2) nor (3) holds. We will now show that either (2) or (3) must hold when $\liminf_{z\to\infty} z q(z) > 0$. We will then give an example in which $\liminf_{z\to\infty} z q(z) = 0$ and neither (2) nor (3) holds. Define $\liminf_{z\to\infty} z q(z) = \underline{L}$ and $\limsup_{z\to\infty} z q(z) = \overline{L}$. The next result gives two relationships between these limits and the integrals in (2) and (3).

Lemma 4. Assume that Z satisfies assumption A.

(i) If $\underline{L} > 0$, then $\int_{1}^{\infty} \frac{1}{z^2 G(z)} dz < \infty \Rightarrow \int_{1}^{\infty} \frac{1}{z^3 f(z)} dz < \infty.$

(ii) If $\overline{L} < 1$, then

$$\int_1^\infty \frac{1}{z^2 G(z)} \mathrm{d} z < \infty.$$

Proof. (i) Let $0 < L < \underline{L}$. There exists $0 < A < \infty$ such that z q(z) > L for all z > A. Thus, $\int_{-\frac{\pi^2 f(z)}{2}}^{\infty} \mathrm{d}z = \int_{-\frac{\pi^2 f(z)}{2}}^{\infty} \frac{1}{z^2 G(z)} \mathrm{d}z < \frac{1}{L} \int_{-\frac{\pi^2 f(z)}{2}}^{\infty} \frac{1}{z^2 G(z)} \mathrm{d}z < \infty.$

i) Let
$$\overline{L} < L < 1$$
. There exists $0 < B < \infty$ such that $z q(z) < L$ for all $z > B$. There exists $0 < B < \infty$ such that $z q(z) < L$ for all $z > B$.

(i hus, q(z) < L/z for all z > B. Integration of both sides yields

$$\int_{B}^{z} q(t) \, \mathrm{d}t < L \log\left(\frac{z}{B}\right)$$

for all z > B. Exponentiating and rearranging yields

$$\exp\left\{\int_{0}^{z} q(t) \,\mathrm{d}t\right\} < \left(\frac{z}{B}\right)^{L} \exp\left\{\int_{0}^{B} q(t) \,\mathrm{d}t\right\}$$

for all z > B. Thus, for all z > B, we have

$$\frac{1}{z^2 G(z)} < c \frac{1}{z^{2-L}},$$

where c is a constant that does not depend on z. Finally, since 2 - L > 1,

$$\int_B^\infty \frac{1}{z^2 G(z)} \, \mathrm{d}z < c \int_B^\infty \frac{1}{z^{2-L}} \, \mathrm{d}z < \infty.$$

Remark 4. Part (i) shows that if $\liminf_{z\to\infty} z q(z) > 0$, then one of (2) or (3) must hold.

Example 6. This example shows that it is possible that neither (2) nor (3) holds, even if the other conditions of Theorem 1 are satisfied. For all non-negative integers n, let $a_n = 2^{2^n}$. Note that $a_{n+1} = a_n^2$. For positive integers n, let $r_n = (2^{n-3} \log 2)/(a_n - a_{n-1})$. Next, define

the function q by setting $q(z) = r_n$ for $z \in [a_{n-1}, a_n)$ and $q(z) = r_1$ for $z \in (0, a_0)$. Since the sequence $(r_n)_{n=1}^{\infty}$ is decreasing, q(z) is a non-increasing function of z on $(0, \infty)$. Define $G(z) = \exp\{-\int_0^z q(x) dx\}$ and f(z) = q(z)G(z) for z > 0. Since $\int_0^\infty q(z) dz = \infty$, the function f is a density function. Since f is lower semicontinuous and positive on $(0, \infty)$, we see that f satisfies assumption \mathcal{A} . Also, note that if Z is a random variable with density f, then G is the survival function of Z and q is the hazard rate.

For $n \ge 2$,

$$G(a_n) = \exp\left\{-a_1r_1 - \sum_{i=2}^n (a_i - a_{i-1})r_i\right\} = \exp\left\{-a_1r_1 - \sum_{i=2}^n 2^{i-3}\log 2\right\}$$
$$= \exp\left\{-\frac{1}{2}\log 2 - (\log 2)\left(2^{n-2} - \frac{1}{2}\right)\right\} = 2^{-2^{n-2}} = a_{n-2}^{-1}.$$

Since G(z) is a decreasing function of z, we have

$$\mathbb{E}[Z] \ge \sum_{n=2}^{\infty} \int_{a_{n-1}}^{a_n} G(z) \, \mathrm{d}z \ge \sum_{n=2}^{\infty} a_{n-2}^{-1} (a_n - a_{n-1}) = \sum_{n=2}^{\infty} a_{n-2} (a_{n-2}^2 - 1) \ge \sum_{n=2}^{\infty} a_{n-2} = \infty.$$

Thus, all of the hypotheses of Theorem 1 are satisfied. Now since $f(z) \ge G(a_n)r_n = a_{n-2}^{-1}r_n$ for all z such that $a_{n-1} \le z \le a_n$, we have

$$\int_{1}^{\infty} \frac{1}{z^{3} f(z)} dz \ge \sum_{n=2}^{\infty} \int_{a_{n-1}}^{a_{n}} \frac{1}{z^{3} f(z)} dz \ge \sum_{n=2}^{\infty} \frac{1}{G(a_{n-1})r_{n}} \int_{a_{n-1}}^{a_{n}} \frac{1}{z^{3}} dz$$
$$= \sum_{n=2}^{\infty} \frac{a_{n-3}(a_{n} - a_{n-1})}{2^{n-3} \log 2} \left[\frac{1}{2a_{n-1}^{2}} - \frac{1}{2a_{n}^{2}} \right]$$
$$= \sum_{n=2}^{\infty} \frac{4a_{n}^{1/8}(a_{n} - a_{n}^{1/2})}{\log a_{n}} \left[\frac{1}{a_{n}} - \frac{1}{a_{n}^{2}} \right] = \infty,$$

so (3) does not hold. Furthermore, letting $c = \int_{1}^{4} [z^2 G(z)]^{-1} dz$, we obtain

$$\int_{1}^{\infty} \frac{1}{z^2 G(z)} dz = c + \sum_{n=2}^{\infty} \int_{a_{n-1}}^{a_n} \frac{1}{z^2 G(z)} dz \le c + \sum_{n=2}^{\infty} \frac{1}{G(a_n)} \int_{a_{n-1}}^{a_n} \frac{1}{z^2} dz$$
$$\le c + \sum_{n=2}^{\infty} \frac{a_{n-2}}{a_{n-1}} = c + \sum_{n=2}^{\infty} \frac{1}{a_{n-2}} < \infty.$$

Thus, (2) also fails to hold. Note that

$$\lim_{n \to \infty} a_{n-1} q(a_{n-1}) = \lim_{n \to \infty} a_{n-1} r_n = \lim_{n \to \infty} \frac{a_{n-1}(2^{n-3}\log 2)}{a_n - a_{n-1}} = 0,$$

so $\liminf_{z\to\infty} z q(z) = 0$, as it must.

Remark 5. If $\underline{L} > 0$ and $\overline{L} < 1$, then Lemma 4 implies that Φ is transient. Furthermore, if

<u>L</u> > 1, then $EZ < \infty$ (Barlow *et al.*, 1963), which means that Φ is positive recurrent. It is tempting to conjecture that if $L = \lim_{z\to\infty} z q(z)$ exists, then Φ is positive recurrent, null recurrent or transient as L is greater than 1, equal to 1, or less than 1. However, the next example shows that Φ can be transient when L = 1.

Example 7. Consider the density

$$f(z) = \frac{C[\log(z+1)]^2}{(z+1)^2} I(z>0),$$

where C is a constant. Note that f is lower semicontinuous and positive on $(0, \infty)$, and thus satisfies assumption A. Also, one can check that

$$\frac{\partial^2}{\partial z^2} \log f(z) = \frac{2}{(z+1)^2} \left(1 - \frac{1}{\log(z+1)} - \frac{1}{[\log(z+1)]^2} \right),$$

which is positive for sufficiently large z. Therefore, by Lemma 1, the function q(z) is non-increasing for sufficiently large z. Note that

$$\int_{0}^{\infty} zf(z)dz = \int_{0}^{\infty} \frac{Cz[\log(z+1)]^2}{(z+1)^2} dz = \infty,$$

and

$$\int_{1}^{\infty} \frac{1}{z^3 f(z)} dz = \int_{1}^{\infty} \frac{(z+1)^2}{C z^3 [\log(z+1)]^2} dz < \infty.$$

Therefore, by Theorem 1, the tail Markov chain generated by f is transient. It remains to show that L = 1. Changing variables from x to u = 1/(x + 1), we have

$$G(z) = C \int_{z}^{\infty} \frac{[\log(x+1)]^2}{(x+1)^2} dx = \frac{C}{z+1} \{ [\log(z+1)]^2 + 2\log(z+1) + 2 \}.$$

Therefore,

$$z q(z) = \frac{zf(z)}{G(z)} = \frac{z[\log(z+1)]^2}{(z+1)\{[\log(z+1)]^2 + 2\log(z+1) + 2\}}$$

and hence $\lim_{z\to\infty} z q(z) = 1$, as claimed.

Acknowledgements

The authors are grateful to an anonymous referee for constructive comments and suggestions. This research partially supported by National Science Foundation Grant DMS-00-72827 (Hobert and Marchev) and National Science Foundation Postdoctoral Fellowship DMS-01-02022 (Schweinsberg).

References

- Barlow, R.E., Marshall, A.W. and Proschan, F. (1963) Properties of probability distributions with monotone hazard rate. *Ann. Math. Statist.*, **34**, 375-389.
- Brown, L.D. (1971) Admissible estimators, recurrent diffusions, and insoluble boundary value problems. *Ann. Math. Statist.*, **42**, 855–904.
- Brown, L.D. (1986) Fundamentals of Statistical Exponential Families with Applications to Statistical Decision Theory. Hayward, CA: Institute of Mathematical Statistics.
- Daley, D.J. (1968) Stochastically monotone Markov chains. Z. Wahrscheinlichkeitstheorie Verw. Geb., 10, 305–317.
- Eaton, M.L. (1992) A statistical diptych: Admissible inferences recurrence of symmetric Markov chains. *Ann. Statist.*, **20**, 1147–1179.
- Eaton, M.L. (1997) Admissibility in quadratically regular problems and recurrence of symmetric Markov chains: Why the connection? J. Statist. Plann. Inference, 64, 231–247.
- Eaton, M.L. (2001) Markov chain conditions for admissibility in estimation problems with quadratic loss. In M. de Gunst, C. Klaassen and A. van der Vaart (eds), *State of the Art in Probability and Statistics A Festschrift for Willem R. van Zwet*, IMS Lecture Notes Monogr. Ser. 36. Beachwood, OH: Institute of Mathematical Statistics.
- Hobert, J.P. and Robert C.P. (1999) Eaton's Markov chain, its conjugate partner and *P*-admissibility. *Ann. Statist.*, **27**, 361–373.
- Hobert, J.P. and Schweinsberg, J. (2002) Conditions for recurrence and transience of a Markov chain on \mathbb{Z}^+ and estimation of a geometric success probability. *Ann. Statist.*, **30**, 1214–1223.
- Johnstone, I. (1984) Admissibility, difference equations and recurrence in estimating a Poisson mean. Ann. Statist., **12**, 1173–1198.
- Johnstone, I. (1986) Admissible estimation, Dirichlet principles and recurrence of birth-death chains on Z_{\perp}^{P} . Probab. Theory Related Fields, **71**, 231–269.
- Lai, W.-L. (1996) Admissibility and the recurrence of Markov chains with applications. Technical Report No. 612, School of Statistics, University of Minnesota.
- Meyn, S.P. and Tweedie, R.L. (1993) Markov Chains and Stochastic Stability. London: Springer-Verlag.
- Pečarić, J.E., Proschan, F. and Tong, Y.L. (1992) Convex Functions, Partial Orderings, and Statistical Applications. Boston: Academic Press.

Received November 2002 and revised July 2003