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In this paper we discuss stochastic differential delay equations with Markovian switching. These can
be regarded as the result of several stochastic differential delay equations switching among each other
according to the movement of a Markov chain. One of the main aims of this paper is to investigate
the exponential stability of the equations.
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1. Introduction

Stochastic modelling has come to play an important role in many branches of science and
industry. An area of particular interest has been the automatic control of stochastic systems,
with consequent emphasis being placed on the analysis of stability in stochastic models, and
we here mention Arnold (1972), Has’minskii (1981), Kolmanovskii and Myshkis (1992),
Kolmanovskii and Nosov (1986), Ladde and Lakshmikantham (1980), Mao (1991; 1994) and
Mohammed (1986) among others. There has been little work on the stability of stochastic
differential delay equations with Markovian switching, although there are several papers on
the stability of stochastic differential equations with Markovian switching, for example Basak
et al. (1996), Ghosh et al. (1993) and Skorohod (1989).

In this paper we consider a stochastic differential delay equation with Markovian
switching of the form

dx(1) = f(x(?), x(t — 1), t, (1)) dt + g(x(2), x(t — 7), t, ¥(?)) dw(?), (1.1

where r(f) is a Markov chain taking values on S = {1, 2, ..., N}. This equation can be
regarded as the result of the N equations

dx(t) = f(x(0), x(t — 1), t, i) dt + g(x(£), x(t — ), t, D)dw(r), 1<i<N, (1.2)
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switching among each other according to the movement of the Markov chain. In Section 2 we
shall quickly establish the theorem for the existence and uniqueness of the solution of the
equation and cite the generalized 1t6 formula. We shall then discuss the mean square
exponential stability of linear stochastic differential delay equations with Markovian
switching in Section 3, and generalize the results to the pth moment exponential stability
for equation (1.1) in Section 4. The almost sure exponential stability will be studied in
Section 5. Finally, we give some illustrative examples in Section 6.

2. Stochastic differential delay equations with Markovian
switching

Throughout this paper, unless otherwise specified, we let (Q, .7, {7} =0, P) be a complete
probability space with a filtration {7,},=¢ satisfying the usual conditions (i.e. it is right
continuous and .7, contains all P-null sets). Let w(f) = (wi(?), ..., wn(#))T be an m-
dimensional Brownian motion defined on the probability space. Let 7 >0 and C([—7, 0]; R")
denote the family of continuous functions ¢ from [—7,0] to R” with the norm
l@]l = supr<g<o|@(0)|, where |-| is the Euclidean norm in R”. If 4 is a vector or matrix,
its transpose is denoted by AT. If 4 is a matrix, its trace norm is denoted by |4| = /tr(4TA)
while its operator norm is denoted by ||A|| = sup{|4x|: |x| = 1} (without any confusion with
llolD. If A is a symmetric matrix, denote by Amax(4) and Amin(A) its largest and smallest
eigenvalue, respectively. Denote by C%([—r, 0]; R™) the family of all bounded, .7-
measurable, C([—t, 0]; R")-valued random variables. If x(#) is a continuous R”-valued
stochastic process on ¢ € [—7, 00), we let x, = {x(¢ + 0): —t < 6 < 0} for ¢ = 0, which is
regarded as a C([—7, 0]; R")-valued stochastic process.

Let r(¢), t =0, be a right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, ..., N} with generator I' = (y;)yxn given by

7iA + o(A), if i J,
1+ '}/,‘iA + O(A), lf = j,
where A>0. Here y; = 0 is the transition rate from i to j if i # j, while

YVii= — Z)’y

J#

P{r(t+ M) = jlr(r) = i} ={

We assume that the Markov chain 7(-) is independent of the Brownian motion w(-). It is
known that almost every sample path of r(¢) is a right-continuous step function with a finite
number of simple jumps in any finite subinterval of R, (:= [0, c0)).

Consider a stochastic differential delay equation with Markovian switching of the form

dx(2) = f(x(8), x(¢ — 7), 1, (1)) dt + g(x(1), x(1 — 7), 1, (1)) dw(?) (2.1
on t =0, with initial data xp = & € C% ([, 0]; R"), where
FiR'XR"XR, XS —R" and g:R"XR"XR, X 8§ — R™".



Stochastic differential delay equations with Markovian switching 75

We impose a hypothesis:

(H1) Both f and g satisfy the local Lipschitz condition and the linear growth condition.
That is, for each k =1, 2, ..., there is an /j; >0 such that

\f(x, ) Z, l) _f(fa ?, 1, 1)‘ + |g(x9 Vs 1, l) - g(fa ?, 5 l)‘ = hk(|x - f‘ + |y - y‘)

for all t=0, i€ S and those x, y,%, 7€ R" with |x|V|y|VI|x|V|P| < k; and
there is, moreover, an 4 >0 such that

Lf G p, 8, D+ g(x, p, 8, D] < h(1+ [x[ + [y])
for all x, ye R", t=0 and i € S.

Theorem 2.1. Under hypothesis (HI), equation (2.1) has a unique continuous solution x(t)
on t = —1. Moreover, for every p >0,
E[ sup |x(s)|p] <0 ont=0. (2.2)

—T=s<t

Proof. 1t should be pointed out that the reason why we let the initial data be bounded in this
paper is just for the study of pth moment stability; for the existence and uniqueness of the
solution we only require the initial data to be L.

Existence and uniqueness. Let us introduce some new notation. For any stopping time p,
denote by L2 - ([—7, 0]; R”) the family of all .7 ,-measurable C([—7, 0]; R")-valued random
variables & such that E|/&]* < oco. ObV10usly, C ([-7, 0]; R") C 1% ([-7, 0]; R"). Let
T >0 be arbitrary. It is sufficient to show that equatlon (2.1) has a unique solution on
[—7, T]. Tt is known (see Skorohod 1989) that there is a sequence {7j};=o of stopping
times such that 0 =79<7;<...<7; — 00 and r(¢) is constant on every interval
[Tk, Tiy1), that is, for every £k =0

r(t) = r(ty) ontTr<=t<Tpy1.
We first consider equation (2.1) on ¢ € [0, Ty A T], which becomes
dx(2) = f(x(1), x(1 — 1), £, (0))dt + g(x(1), x(1 — 7), 1, 7(0)) dw(1), (2.3)

with initial data xp =& € C ([-7,0]; R") C L_2,70([—r, 0]; R™. By the existence-and-
uniqueness theorem of stochastlc differential delay equations (see Mao 1994; 1997; or
Mohammed 1986) we know that equation (2.3) has a unique continuous solution on
[—7, Ty A T] which has the property that

E[ sup |x(s)|2}<oo

—T<s<T|AT
We next consider equation (2.1) on ¢ € [ty A T, T, A T], which becomes
dx(f) = f(x(2), x(t — 1), t, r(t1 A T))dt + g(x(t), x(t — 1), t, r(t1 A T)) dw(t), 2.4)

with initial data x; \7 € L% 7 AT([ 7, 0]; R™) given by the solution of equation (2.3). Again we
know that equation (2.4) has a unique continuous solution on [ty A T — 7, T, A T]. Repeating
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this procedure, we see that equation (2.1) has a unique solution x(¢) on [—7, T]. Since T is
arbitrary, the existence and uniqueness have been proved.
Moment estimation. To show (2.2), we note from Holder’s inequality that

(E{ sup |x(s)|”D%$ (E{ sup |x(s)2}>; ifo<p<2.

—Tssst —Tssst
So we only need to prove (2.2) in the case of p = 2. For each positive integer k, define a
stopping time
pr =1inf{z = 0: |x(1)| = k}
(as usual we set inf & = o0). Clearly, py — oo almost surely as & — oo. Again let 7> 0 be

arbitrary. For any ¢ € [0, 7] and k = 1, by Holder’s inequality, Theorem 1.7.2 of Mao (1997)
and the linear growth condition, we can show that

t
B[ sup (s po)l] < 3" B + CE| (14 Ixts A pol? + [x(5 A pi — 0)) s,
Oss<t¢ 0

where C is a positive constant dependent on p, T" and % only. Consequently,

[ swp_ [x(s A pol?] < EIEN + [ s s A ol

—T<ss< O=s<t
t
< @37 '+ DE|E|? + CT + ZCJ E[ sup |x(s /\pk)|q du.
0 —Tsssu

An application of the Gronwall inequality implies

E[ sup IX(SApk)I”} =3P + DE|E|” + CT].

—Ts=s5s<=
Letting & — oco, we obtain that

E[ sup |x(s>|q = @B + DE|E]|” + CT1.

—r<s<T
and the required assertion (2.2) follows. The proof is complete. O
Let C>'(R" X Ry X S; R,) denote the family of all non-negative functions V(x, ¢, i)
on R” X R, X § which are twice continuously differentiable in x and once differentiable
in ¢. If V€ CPY(R" X R, X S; R,), define an operator LV from R” X R” X R, X § to R
by
LV(x, y, t, ) =Vix, t, )+ Vi(x, t, D) f(x, y, t, i)

N

g (e vty DVr, 1, DgC s £ DI Y vV ), (25)
=1

where
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oVix, t, i . oVix, t,i oVix, t, i
Vt(x, f, l) = %, Vx(x> t, l) = ( (8x1 ), ey (ax ))’
. PV(x, t,i
Vi, t, 1) = <Wx)> .
! J Xn

For the reader’s convenience we cite the generalized It6 formula (see Skorohod 1989): if
Ve C*(R" X Ry X S; R,), then for any stopping times 0 < p; < p, < o0,

P2
EV(x(p2), p2, r(p2)) = EV(x(p1), p1, r(p1)) + EJ LV(x(s), x(s — 7), 5, r(s))ds  (2.6)

P1

as long as the expectations of the integrals exist. Let us point out that in the following
whenever we apply this generalized formula the expectations of integrals involved do exist
due to Theorem 2.1 and the conditions to be imposed.

3. Moment exponential stability of linear delay equations

From now on we shall discuss exponential stability. Let us start with the linear stochastic
differential delay equation with Markovian switching of the form

dx(#) = [A(r(t)x(2) + Br(D)x(t — D] dt + > _[Cr(r()x(2) + De(r(1)x(t — 7)] dwi(1)
k=1
3.1
on t = 0, with initial data xp =& € Cbz)([—t, 0]; R™). We shall simply write
A(i) = 4;, B(i) = Bi, Ci(i) = Cpi, Di(i) = Dy,

which are all » X n matrices. By Theorem 2.1, equation (3.1) has a unique global solution
which is denoted by x(#; &) in this paper. Clearly, (3.1) admits a trivial solution x(#; 0) = 0.

Theorem 3.1. Assume that there are symmetric positive definite matrices Q;, 1 <i < N,
such that all the 2n X 2n matrices

m N m
Qi+ A] Qi+ 1+ CLOCu+ Y vyQ, QB+ Y CLODy
k= i=1 k=
H, = : / : (3.2)
BI Qi+ Y Du0:Chi ~I+Y  D,0Dy
k=1

k=1

are negative definite, where I is the n X n identity matrix. Then

lim supl log(E|x(t; &) < —y (3.3)

1—00 t
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for all & € C%([—T, 0]; R™), where y >0 is the unique root of the equation
y(do+ 1) = Ay + [1 A(Are?)] (3.4)
with
/IQ = lrgiXN/Imax(Qi) and Ay = lr<n_i<nN[_/1max(Hi)]' (3.5)

In other words, the trivial solution of (3.1) is mean square exponentially stable and the
second moment Lyapunov exponent should not be greater than —v.

Proof. Note that —1 < A, (H;) <0 and 0 <Ay < 1. It is then easy to see that (3.4) has
a unique root y>0. Fix any &€ Cvt}o([—r, 0]; R") and write x(z; §) = x(¢z). Define
V(x, t, i) € C>'(R" X Ry X §; R,) by

t

Vix, t, i) =¢e" [xTQix + J E|x(s)|? ds} . (3.6)

t—7

By Ito’s formula, we can derive that

EV(x(t), t, r(¢)) = EV(x(0), 0, »(0)) + EJtLV(x(s), x(s — 1), 5, r(s))ds
0

= EV(x(0), 0, #(0)) + EJ RE [yxT(s)Qix(s) + yr |x(0)[> d6
0 S—T
x(s)
+ (xT(s), xT(s — D) Hy) ( )1 (3.7)
x(s = p)
< (hp + DEIIE] + (g — iH)EJOe”S|x(s)|2 ds
+ yEJte“JS |x(0)* d8 ds — AHEJtemx(s —7)[*ds. (3.8)
0 S—T 0

Compute

t s t (0+T)Nt
J e”SJ |x(0)|* d6 ds = J |x(0)? J e’ ds | do
0 s—T —T ov0

t 2 t
< J |x(0)[*re” T d < 7e’” (@ +J e”*|x(s))? ds>. (3.9)
7 0

Also
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t -7
—/'LHEJ e |x(s — 1)]*ds = —/'LHe”EJ e”*|x(s)|* ds
0

-7

—T

< —[lA (lHeVT)]EJ e”*|x(s)|* ds

t
0
t t
s—[1A(AHer)]ELeVS|x(s)|2ds+EJ e”|x(s)[*ds.  (3.10)
-7

Substituting (3.9) and (3.10) into (3.8) and using (3.4), we obtain that

t

EV(x(1), t, (1)) < [Ao+ (1 + e’ME||E||* + EJ e”*|x(s)|* ds. (3.11)

-7

On the other hand,

t
EV(x(1), t, r(1)) = " A,E|x(0)* + EJ e”*|x(s)[* ds, (3.12)
t—7
where A, = min|<;<yAmin(Q;). Combining (3.11) with (3.12) and using (3.6), we have
e/ AED < [Ao + o1 + &)E||E]?
and the required assertion (3.3) follows. The proof is complete. (|

Corollary 3.2. Let A; = Apax(4; + AZ.T) for 1 <i< N. Assume that there exist N positive
constants q; such that

m N
1+g; (ii +1Bill + D _MICE Dull + ||Cki||2]> + ) vig; <0 (3.13)
k=1 =1
and
—1+g; <||Bi|| + Y lICLDy + IIDkf|2]> <0, (3.14)
k=1

for all 1 < i< N. Then the trivial solution of equation (3.1) is mean square exponentially
stable.

Proof. By choosing Q; = ¢;1, H; defined by (3.2) becomes

m N m
qi(Ai + A7) + 1 + g Z CrCri + Z vidil, 4qiBi+qi Z Ci D
k=1 k=1

J=1

H; =

B} +q: Y _ D;Cu, —I+¢;» DyDy
k=1 k=1

For any x, y € R”, compute
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X m N
(", yT)H,-< ) =x"| gidi + AN+ 1+ q: Y CLCu+ Y viqil | x
y k=1 j=1

+2gux" (Bi + Z CL‘D/a) y+" (‘I + g Z DLD;@) y

k=1 k=1

m N
<|gidi+1+ Cliz ICuill* + ZVijqj [x[?
=1 =1

+4i (IBiII +Y IICLDki|> (1 + [y + (—1 +qi) ||Dki|2> v
k=1

k=1

m N
= 1+qi</1i+||Bi||+Z[IIC£,-DkiII+IICki|2]> + > vy | A
j=1

=1 =

+

-1+ qi<|Bi” + Z[”CL‘DM” + ||Dki|2]>] .
=1

By conditions (3.13) and (3.14), H; is negative definite. The assertion of the corollary now
follows from Theorem 3.1. The proof is complete. ]

It is easier to apply Corollary 3.2 than Theorem 3.1 since one needs only to find N
positive numbers ¢; instead of N symmetric positive definite matrices. But it is still difficult
to find such ¢; sometimes. We shall now establish a criterion, which is easy to verify, for
the existence of such ¢; and hence for the mean square exponential stability.

Let us introduce some new notation. Let B be a vector or matrix. By B = 0 we mean
that each element of B is non-negative. By B>0 we mean B = 0 and at least one element
of B is positive. By B> 0 we mean all elements of B are positive. Let B; and B, be two
vectors or matrices with same dimensions. We write By = B,, B; > B, and B; > B, if and
only if By — B, =0, B — B, >0 and B; — B, > 0, respectively. Define

91_1 q1
9;1 q2
o= | g= , A = diag(py, p2, ---» pn) — T, (3.15)
671
N qn

where

0; = |1 Bill + D _UICkDull + |1 Dul*),
k=1
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m

pi === |IBil = Y _MICLDull + [ Cuill*]

k=1
and 0;1 = oo if ; = 0. We can then write (3.13) and (3.14) as
OG>0 and 4Ag>1:=(1,1,..., D" (3.16)

The following corollary describes the sufficient conditions which guarantee the existence of
the ¢;s and hence the mean square exponential stability of the trivial solution of (3.1).
Corollary 3.3. Assume that A is inverse-positive, that is, A~" exists and A~ >0. If

0> 47, (3.17)
then the trivial solution of (3.1) is exponentially stable in mean square.
Proof. Note that A7'T > 0 since each row of A~ has all non-negative elements and has at

least one positive element, that is, each row > 0. By (3.17), we can choose a constant 3> 1
sufficiently close to 1 for

0> 4.
Set § = A'1. Then © > G > 0. Moreover,
AG=pT> 1.

In other words, we can find § = (g1, ..., gy)" which satisfies (3.16), that is, (3.13) and
(3.14). Hence, by Corollary 3.2, the trivial solution of (3.1) is exponentially stable in mean
square. The proof is complete. O

It is useful to point out that the matrix 4 defined by (3.15) has non-positive off-diagonal
entries. That is, if we adopt here the traditional notation by letting

ZNXN — {B = (bl/) S RY*N . bl.'f = 0, l7é]}

then 4 € ZV*N_ 1t is known that 4 € Z¥*V is inverse-positive if and only if 4 is a non-
singular so-called M-matrix. Berman and Plemmons (1994) has an excellent discussion on
M-matrices and lists many equivalent conditions. For example, 4 is a non-singular M-matrix
if and only if all the leading principal minors of A are positive.

4. Moment exponential stability of nonlinear delay equations

Let us now return to the general delay equation (2.1), namely
dx(#) = f(x(0), x(1 — 1), £, r(1))dt + g(x(1), x(1 — 1), 1, r(1)) dw(z) 4.1)

on t=0, with initial data xy =& € C_b%([—r, 0]; R™). The solution of this equation is
denoted by x(z; §) again. For the purpose of stability we may assume, without loss of
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generality, that f(0,0, ¢, /))=0 and g(0,0, ¢, {))=0. So (4.1) admits a trivial solution
x(t; 0) = 0.

Theorem 4.1. Let (H1) hold. Let p, cy, ca be positive numbers and 1, > A, = 0. Assume that
there exists a function V(x, t, i) € C*'(R" X R, X S; R,) such that
alx|? < V(x, t, i) < c|x|? 4.2)
forall (x,t,i) € R" X Ry XS, and
LV(x, y, t, ) < —A1|x|? + Aa|y|? (4.3)

for all (x, y, t,i) e R" XR" X Ry X S. Then

lim sup ~ log(E[x(#; &)|7) < —y (4.4)

t—00 t
for all § € Cb%([fr, 0]; R™), where y >0 is the unique root to the equation
y(cr + T/lze”) =1 — . 4.5)

In other words, the trivial solution of (4.1) is pth moment exponentially stable and the pth
moment Lyapunov exponent is not greater than —y.

Proof. Fix any §&¢ C%([ft, 0]; R") and write x(f; §) = x(f). Define U(x, t, i) €
C>'(R" X R, X S; R,) by

t

Ux, t, i) =¢"" {V(x, t, i)+ /'LQJ E|x(s)|”ds} ) (4.6)

-7

By Ito’s formula, we can derive that
t

EU(x(?), t, r(t)) = EU(x(0), 0, r(0)) + EJ LU(x(s), x(s — 1), s, r(s))ds
0

S

= EU(x(0), 0, (0)) + EJ e’ [y V(x(s), s, r(s)) + y/'LzJ
0

s

[x(6)[” d&

+ Lao(|x(9)]” = |x(s = DP) + LV (x(5), X(s — 7), 5, r(s))] ds

t

< (2 + TA)E|&]|? + (yea + 42 — il)EJ e”*|x(s)|? ds
0

t S
+ yizEJ e”SJ |x(6)|? dO ds. 4.7)

0 s—

Compute
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t s t (O+T)Nt
EJ e”SJ |x(6)|” dOds = EJ |x(6)]7 J e’ ds | do
0 T -7

s— 6vo

' 0 E[[&]” '
< EJ |x(0)|P7e" " dO < 7e”” - + EJ e¥|x(s)|Pds |. (4.8)
—T 0

Substituting this into (4.7) and using (4.5), we obtain that

EU(x(?), t, (1)) < [c2 + TA2(1 + ")]E| & 7.

But
EU(x(?), t, r(£)) = c1e""E|x(1)|?.
Consequently
1
Elx()|? < —[cz + tha(1 +€e)]e 7,
cl
and the required assertion (4.4) follows. The proof is complete. O

5. Almost sure exponential stability
We now begin to discuss the almost sure exponential stability for the delay equation (4.1).

Theorem 5.1. Let (HI1) hold. Assume that there is a constant K >0 such that for all
x, y,t, ) ER"XR"XR, XS,

Lf G, v, £, DIV | gCx, p, 1, D < K(Jx| + []. (5.1
Let p > 0. Assume that the trivial solution of (4.1) is pth moment exponentially stable, that is,

there is a positive constant y such that

lim supl log(E|x(t; §)|7) < —y 5.2)

1—00 t

for all & € C% ([, 0]; R"). Then

1
limsup ~ log(|x(1; &)|) < — %a.s. (5.3)

f—oo
In other words, pth moment exponential stability implies almost sure exponential stability.
Proof. The case when p = 1 without Markovian switching has been proved by Mao (1997);

here we extend to the case when p >0 with Markovian switching. Fix the initial value &
arbitrarily and write x(#; £) = x(¢). Let € € (0, y/2) be arbitrary. By (5.2) and Theorem 2.1,
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there is a positive constant x such that
E|x(£)|? < ke 9! ont= -t (5.4
Let k be an integer sufficiently large for
(6K [(t/k)? + Cp(z/k)PP1 <1 ne™), (5.5)

where C, is the constant given by the Burkholder—Davis—Gundy inequality (see Karatzas and
Shreve 1991; or Mao 1997). Let 0 =7/k and k=k+1,k+2,.... Noting that for any
a, b, c=0,

(a+ b+’ <[3aVvbVo]? =3P’ Vb?VcP)<3?(a’+ bP 4+ cP),
we have that

ko

(k—lo<t<ko (k—Do

p
E sup |x(t)p} < 37E|x((k — Do)|? + 37E (J |/ (x(s), x(s — T), s, F(s))| ds)

t p
+ 37E sup J g(x(s), x(s — 1), 5, r(s))dw(s)| |.
(k=Do<=i<ko|J(k=1)0
(5.6)
By (5.4),
Elx((k — 1)0)|? < ke =9k, (5.7)
Compute that
ko P
E([ 16, x6 - 0.5 relds
(k=)o
< E(o sup | f(x(s), x(s — 1), 5, r(s))|) !
(k=)o <s<ko
< (20K)”E{ sup |x(t)|p] + (201<)PE[ sup  |x(t — r)q
(k—Do<t<ko (k—Do<t<ko
< (20K)’E sup  |x(0)|?| + Qo K)PE sup |x(H)]7]. (5.8)
(k=)o <t<ko (k=1=k)o<t=<(k—k)o

Compute also that
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JI g(x(s), x(s — 1), 5, r(s)) dw(s) p]

(k—1)o

E l sup

(k—o<t<ko

r/2

ko
< C,E J | g(x(s), x(s — 1), 5, r(s)|* ds
(k=)o

< C,E (O’ sup  |g(x(s), x(s — 1), s, r(s))z) 72

(k—Do=s<ko

SCP(2K)”0”/2E{ sup |x(t)|p]+Cp(2K)p0p/2E[ sup |x(t)|p]. (5.9)
(k—l)osts<ko (k—1-k)o <t<(k—k)o

Substituting (5.7)—(5.9) into (5.6) yields

(k—Do<t<ko (k—Do<t<ko

E[ sup |x(t)|1s3Pxe—(y—f>“‘—“”+(6K)ﬂ(ap+cpap/2)E{ sup |x(t)|1

+(6K)P(0” + C,o P/*)E sup Ix(1)|?]. (5.10)
(k—1-k)o <t<(k—k)o

Noting from (5.5) that (6K)?(c? + C,0 P2y < 1/2, we obtain from (5.10) that

E{ sup |x(r>|”}

(k—lo=<t<ko

< 2K3Pe” k=10 L 2(6K)P (0P + C,0 P/*)E sup |x(1)|?
(k=1—k)o <t<(k—k)o

< 23Pe~(Ok—10 4 o~(r-olho sup |x(H)]7], (5.11)
(k—1-B)o<t<(k—k)o

where (5.5) has been used once again. Let p = [k/k, the integer part of k/k. By induction,
we can show from (5.11) that
E sup  |x(9)|P| < 2pr3Pe kDo 4 e (r-awkog sup [x()[”].
(k=Do<t<ko (k=1—pk)o <t<(k—pk)o
(5.12)
Since k/k — 1 < p < k/k, we have k — k < pk < k and hence
1< -0 <(k—1-pk)o < (k- pk)o <ko =r.

We therefore see from (5.12) that



86 X. Mao, A. Matasov and A.B. Piunovskiy

2k .
E[  sup  |x(0)? g%ye—(y—ewﬁl)o +ef<y—s><kfk>oE[ sup ‘x(t)w

(k—No<t<ko —TSIST

< C(k + 1)e =9k (5.13)
where
2K 2 peyo |y grko P
C:73 e’ +e E{ sup |x(7)| }
—T<sI=<T

and, by Theorem 2.1, C <oo. Hence

P)w: sup  |x(9)] >e 29k /P | < Clk + 1)e 8.
(k=)o <t<ko

In view of the well-known Borel—Cantelli lemma, we see that for almost all w € Q,

sup  |x(f)| < e 20k/p (5.14)

(k=)o =<t<ko

holds for all but finitely many 4. Hence there exists a ko(w), for all w € Q excluding a P-null
set, for which (5.14) holds whenever k = k. Consequently, for almost all w € Q,

(y —2¢e)ko < v 2
pt p

1
~ log(x()) = —

if (k—1)o < t < ko. Therefore

y —2¢

1
lim sup; log(|x(H)]) < — a.s.
—00

and the required (5.3) follows by letting € — 0. The proof is complete. O

6. Examples

In this Section we shall discuss three examples to illustrate our theory. In the following
examples we shall omit mentioning the initial data.

Example 6.1. Consider a one-dimensional linear stochastic differential delay equation with
Markovian switching of the form
dx(?) = a(r(H))x(t) dt + o (r(1))x(t — 7) dw(?) (6.1)

on t = (. Here the Markov chain r(#) is the same as before, but w(#) is a scalar Brownian
motion independent of (), a(i) and o (i) are all constants and we shall write a(i) = a; and
o (i) = 0;. To apply Corollary 3.3, we note that ® and A defined by (3.15) become
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072
052
0= ) and A = diag(—2a,, —2ay, ..., —2ay) —1T,

)
Oy

where 02 = oo if 0; = 0. By Corollary 3.3, if 4=! >0 and
04, (6.2)

then the trivial solution of (6.1) is exponentially stable in mean square. Moreover, by
Theorem 5.1, the trivial solution is also almost surely exponentially stable. It is interesting to
note that (6.2) holds if all o; = 0. We therefore observe that if 47! >0, then the trivial
solution of the delay equation
dx(7)
TR a(r(1))x(1) (6.3)
t

is exponentially stable in mean square. Moreover, equation (6.1) can be regarded as the
stochastically perturbed system of (6.3), while condition (6.2) means that if the intensity o;
of the stochastic perturbation is sufficiently small then the perturbed system (6.1) will remain
stable.

Example 6.2. Let w(t) be a scalar Brownian motion. Let r(¢) be a right-continuous Markov
chain taking values in S = {1, 2, 3} with generator

-2 1 1
'=(3 -4 1
1 -2

Assume that w(¢) and r(¢) are independent. Consider a three-dimensional linear stochastic
differential delay equation with Markovian switching of the form

dx(t) = A(r())x(t)dt + D(r(£))x(t — ) dw(?) (6.4)
on t = 0, where
-2 1 =2 0.5 1 0.5
Al)y=4=|2 -2 1|, AQ2)=4,=|-0.8 05 1|,
1 -2 -3 —-0.7 —-09 0.2
-0.5 =09 -1
AQB) =43 = 1 —-0.6 —-0.7{,
0.8 1 -1

and D(i) = D; are all 3 X 3 constant matrices. To apply Corollary 3.3, we compute A; =
/1max(Ai + A;r)

A1 = —2.4385, Ay = 1.207 18, A3 = —0.95067.
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The vector ® and matrix A defined by (3.15) become

©=(IDi% ... [IDyI»)
and
4.4385 -1 -1
A = diag(2.4385, —1.207 18, 0.95067) — ' = -3 279282 -1
-1 -1 2.95067
Compute
0.439017 0.239537 0.229966
A= 10597 346 0.733437 0.451010
0.351230 0.329746 0.569 693
and

A71(1, 1, DT = (0.908 52, 1.781 79, 1.25067)".
Therefore, by Corollary 3.3, if ® > A~'(1, 1, 1)7, that is,
|1D1]|* < 1.100 69, | D2||* <0.56123, | Ds|* <0.799 57, (6.5)

then the trivial solution of equation (6.4) is exponentially stable in mean square. Moreover,
by Theorem 5.1, it is also almost surely exponentially stable. As explained in Section 1,
equation (6.4) can be regarded as the result of the following three stochastic differential delay
equations

dx(f) = A1x(¢)dt + Dix(t — 1) dw(?), (6.6a)
dx(f) = Apx(#)dt + Dox(t — 7) dw(?), (6.6b)
dx(1) = Asx(£)dt + Dsx(t — 7) dw(?) (6.6¢)

switching among each other according to the movement of the Markov chain. Note that
(6.6b) is not exponentially stable in mean square (since 4, + 4, is positive definite) but
(6.6a) is, while (6.6c) may be. However, as the result of Markovian switching, the overall
behaviour, expressed by (6.4), is exponentially stable.

Example 6.3. Let w(t) be a scalar Brownian motion. Let r(¢) be a right-continuous Markov
chain taking values in S = {1, 2} with generator

—1 1
r(%‘j)m[ : _J-

Assume that w(¢) and r(¢) are independent. Consider a one-dimensional stochastic differential
delay equation with Markovian switching of the form

dx(t) = f(x(2), t, r(t))dt + g(x(t — 1), t, r(t))dw(t) (6.7)
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on t =0, where f, g: RXR; XS — R. Assume that
2

X 1, 1) < xz, X (x, 1,2) < —3x2 (6.8)
for all (x, ) € R X R,, while
y y
o =2 e < (6.9)

for all (y, ) € R X R,. To examine the third moment exponential stability, we construct a
function V: RX R, X S — R, by

Vix, 1, i) = BilxP,

with 8, = 1 and §; = >0 a constant to be determined. It is easy to show that the operator
LV from RXR X R, X S to R has the form

LV(x, y, t, i) = 3Bilx|xf (x, 1, i)+ 3Bilx]| (v, £ D + (vaf + y)|x[.
By conditions (6.8) and (6.9), we then have
10256 1+ Dy =1,
LV(x, y, t, i) <
—(10 = B)|x|* + 13—6 e[|y ifi=2.
Noting that
x| [y? < gl + 3P,
we obtain that
LV(x, y, t, 1) < —(0.2343758 — 1)|x* + 0.031258|y|
and
LV(x, y, t, 2) < —(9.9375 — B)|x|> + 0.125|y]°.
Choosing £ as the solution to
0.2343758 — 1 = 9.9375 — 3,
that is, f = 8.8608, we then have
eyt iy = {—1.0767|x|3 +0.2769|y>  ifi=1,
—1.0767|x]* 4 0.125|y|? if i=2.
So
LV(x, y, t, i) < —1.0767|x]> + 0.2769|y|>.

By Theorem 4.1, we conclude that the trivial solution of (6.7) is third moment exponentially
stable and, moreover, the third moment Lyapunov exponent is not greater than the unique root
y >0 of the equation
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¥(8.8608 + 0.27697e”) = 0.7998. (6.10)

For instance, the unique root of this equation is y = 0.09 if v = 0.1.

Acknowledgements

The authors would like to thank the referees for their helpful suggestions and detailed
remarks. The authors would also like to thank the Royal Society, the Biotechnology and
Biological Sciences Research Council and the Engineering and Physical Sciences Research
Council for their financial support.

References

Arnold, L. (1972) Stochastic Differential Equations: Theory and Applications. New York: Wiley.

Basak, G.K., Bisi, A. and Ghosh, M.K. (1996) Stability of a random diffusion with linear drift. J
Math. Anal. Appl., 202, 604—-622.

Berman, A. and Plemmons, R.J. (1994) Nomnnegative Matrices in the Mathematical Sciences.
Philadelphia: Society of Industrial and Applied Mathematics.

Ghosh, M.K., Arapostathis, A. and Marcus, S.I. (1993) Optimal control of switching diffusions with
application to flexible manufacturing systems. SIAM J. Control Optim., 31, 1183—1204.

Has’minskii, R.Z. (1981) Stochastic Stability of Differential Equations. Moscow: Sijthoff and
Noordhoff.

Karatzas, 1. and Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus, 2nd edition. Berlin:
Springer-Verlag.

Kolmanovskii, V.B. and Myshkis, A. (1992) Applied Theory of Functional Differential Equations.
Boston: Kluwer Academic Publishers.

Kolmanovskii, V.B. and Nosov, V.R. (1986) Stability of Functional Differential Equations. London:
Academic Press.

Ladde, G.S. and Lakshmikantham, V. (1980) Random Differential Inequalities. New York: Academic
Press.

Mao, X. (1991) Stability of Stochastic Differential Equations with Respect to Semimartingales.
Harlow: Longman Scientific and Technical.

Mao, X. (1994) Exponential Stability of Stochastic Differential Equations. New York: Marcel Dekker.

Mao, X. (1997) Stochastic Differential Equations and Applications. Chichester: Ellis Horwood.

Mohammed, S.-E.A. (1986) Stochastic Functional Differential Equations. Harlow: Longman Scientific
and Technical.

Skorohod, A.V. (1989) Asymptotic Methods in the Theory of Stochastic Differential Equations.
Providence, RI: American Mathematical Society.

Received December 1997 and revised July 1998



