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We study the positive random measure Ð t(ù, dy) � l
Btÿ y
t dy, where (la

t ; a 2 R, t . 0) denotes the

family of local times of the one-dimensional Brownian motion B. We prove that the measure-valued

process (Ð t; t > 0) is a Markov proces. We give two examples of functions ( f i)i�1,:::,n for which the

process (Ð t( f i)i�1,:::,n; t > 0) is a Markov process.
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1. Introduction

Let (Bt, t > 0) denote a one-dimensional Brownian motion, starting from 0, and (l
y
t ;

y 2 R, t > 0) its family of local times. We denote by F t the natural ®ltration of B.

Recently, a better understanding of an identity in law, originally due to Bougerol (1983),

which involves an exponential functional of Brownian motion, was obtained by Alili et al.

(1997) using the observation that if (î t; t > 0) and (ç t; t > 0) are two independent LeÂvy

processes, starting from 0, then for any ®xed t > 0,� t

0

dçs exp(îs) �(law)
exp(î t)

� t

0

dçs exp(ÿîs), (1:1)

and, moreover, the process

Y
(î,ç)
t �(def )

exp(î t)

� t

0

dçs exp(ÿîs), t > 0, (1:2)

is a Markov process. Equation (1.1) follows from the invariance by time reversal of the law of

a LeÂvy process, and the Markov property of Y (î,ç) is simply a consequence of the

independence of the increments of î and ç. The importance of these generalized Ornstein±

Uhlenbeck processes was noticed and discussed in depth by de Haan and Karandikar (1989).

Bougerol's identity,

for fixed t, sinh(Bt) �(law)
� t

0

dCs exp(Bs),
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where B and C are independent Brownian motions, is then deduced easily taking in (1.2) for

î and ç two independent Brownian motions.

Here, we shall consider mainly the particular case where î � B is a Brownian motion

and ç t � t, and pushing the preceding remark to the level of occupation times, we consider

the positive random measure on R

Ð t(ù, dy) � l
Btÿ y
t dy,

which integrates positive functions f : R! R� as

Ð t( f ) �
�

R

f (Bt ÿ z)lz
t dz �

� t

0

f (Bt ÿ Bs) ds: (1:3)

In the case of an exponential function f a(x) � exp(ax), the R�-valued process (Ð t( f a),

t > 0) is a Markov process (see (1.2)) which has been studied in Alili et al. (1997) and

Carmona et al. (1997). On the other hand, for f�(x) � 1x>0, the process Ð t( f�) was studied

by Walsh (1993), where it is shown that (Ð t( f�), t > 0) is a Dirichlet process. Our aim here

is to study the measure-valued process (Ð t; t > 0).

2. A stochastic differential equation satis®ed by (Ð t, t > 0)

Proposition 2.1. The process (Ð t, t > 0) is the unique solution (in the space Mb(R) of

bounded measures on R) of the following SDE : for every f in C2
b,

Ð t( f ) � tf (0)�
� t

0

dBsÐs( f 9 )� 1
2

� t

0

dsÐs( f 0): (2:1)

Proof. An application of ItoÃ's formula to f (Bt ÿ Bs), t > s, and Fubini's theorem show that

(Ð t, t > 0) solves the above stochastic differential equation (SDE). To prove uniqueness of

the solutions of (2.1), we consider, for each x 2 R, the Fourier transform (Ð(x)
t , x 2 R) of Ð t,

that is, Ð(x)
t �

�
Ð t(dy)exp(ixy). Now, Ð(x)

t solves a linear SDE; hence, (Ð t) is the unique

solution of the equation (2.1). h

In the next corollary, we give some examples of functions f (or f 1, f 2, . . . , f n) for

which the process (Ð t( f ); t > 0) (or (Ð t( f i)i�1,:::,n; t > 0)) is a Markov process.

Corollary 2.1. (a) For f a(x) � exp(ax), the process (Ð t( f a); t > 0) is an R�-valued Markov

process (see (1.2)). More generally, for any n 2 N, and a1, . . . , an, the process (Ð t( f ai
);

i < n) is an n-dimensional Markov process, whose in®nitesimal generator coincides on

C2(Rn
�) with

L � 1

2

Xn

i�1

a2
i y2

i

@2

@ y2
i

� 2
X
i , j

aiajyiyj

@2

@ yi @ yj

 !
�
Xn

i�1

a2
i

2
� bi

� �
yi � 1

� �
@

@ yi

:

(b) We set Ð(n)
t � Ð t(Pn), where Pn(x) � xn. Then, for every n 2 N, (Ð(0)

t , . . . , Ð(n)
t ) t>0
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constitutes an Rn�1-valued Markov process, whose in®nitesimal generator coincides on

C2(Rn�1) with

L(n) � 1

2

Xn

i�1

i2x2
iÿ1

@2

@x2
i

� 2
X

1<i , j<n

ijxiÿ1xjÿ1

@2

@xi@xj

 !
� @

@x0

�
Xn

i�2

i(iÿ 1)

2
xiÿ2

@

@xi

 !
:

Proof. This is just a consequence of formula (2.1). h

Remarks. (a) We can write (2.1) formally as

dÐ t � =�Ð t dBt � 1

2
Ä�Ð t � ä0

� �
dt,

Ð0 � 0,

8<: (2:2)

where = is the operator @=@x and Ä � @2=@x2; that is, Ð t solves a stochastic partial

differential equation driven by a one-dimensional Brownian motion. This type of equation is

well known and appears in ®ltering theory. We refer to Pardoux (1993) and Kallianpur (1996)

for a review on stochastic partial differential equations and ®ltering theory.

(b) We can consider, more generally, the process (ÐA
t ; t > 0) de®ned as

ÐA
t ( f ) �

� t

0

dAs f (Bt ÿ Bs), (2:3)

where (At; t > 0) is a semimartingale, which is assumed to be independent of the Brownian

motion B. Equation (2.1) becomes

ÐA
t ( f ) � At f (0)�

� t

0

dBsÐ
A
s ( f 9 )� 1

2

� t

0

dsÐA
s ( f 0 ): (2:1)9

The simplest situation is dA
(0)
t � ä0(dt) which yields: ÐA(0)

t ( f ) � f (Bt). Note that all

processes ÐA
t satisfy the SDE:

ót( f ) � ót(1) f (0)�
� t

0

ós( f 9) dBs � 1

2

� t

0

ós( f 0) ds:

(c) Proposition 2.1 extends to the case where B is a Brownian motion in Rd and

(Ð t; t > 0) solves the follwing SDE: for f 2 C2(Rd),

Ð t( f ) � tf (0)�
� t

0

Ðs(= f ) dBs � 1
2

� t

0

dsÐs(Ä f ):

More generally, we can extend Proposition 2.1 to the R 3 Mb(R)-valued process

(Bt, Ð t).

Proposition 2.2. (Bt, Ð t; t > 0) is a continuous Markov process, with state space

R 3 Mb(R) and is the solution of the following SDE: for f 2 C2(R), g 2 C2(R),
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g(Bt)Ð t( f ) �
� t

0

dBs(Ðs( f 9)g(Bs)�Ðs( f )g9(Bs))

�
� t

0

1
2
Ðs( f )g 0(Bs)� 1

2
Ðs( f 0 )g(Bs)�Ðs( f 9)g9(Bs)� f (0)g(Bs)

ÿ �
ds:

This is immediate, using (2.1) and ItoÃ's formula.

3. Semigroup and generator of the process (Ð t; t > 0)

First, we introduce some notation. If f : R! R� is measurable, we denote by Öf the

function on M�
b (R) de®ned by

Öf (í) � exp(ÿhí, f i):
If Ö : M�

b (R)! R, we set

DÖ(í) � lim
x!0

1

x
(Ö(ôxí)ÿÖ(í))

when the limit exists and hôxí, f i � hí, f (x� :)i. Finally, Ë t denotes the occupation

measure of B, that is,

Ë t( f ) �
� t

0

f (Bs) ds:

Proposition 3.1. (Ð t; t > 0) is a homogeneous Markov process with state space M�
b (R)

whose semigroup (Qt; t > 0) is given by:

Qt(ì; dí) � P(ôBt
ì�Ë t 2 dí): (3:1)

The generator L of (Ð t; t > 0) coincides, on the functions Öf , with

LÖf (ì) � 1
2
D2(Öf )(ì)ÿ f (0)Öf (ì): (3:2)

The resolvent of the semigroup Qt satis®es

Up(Ö f )(ì) �
�1

0

exp(ÿ pt)QtÖf (ì) dt

�
�

R

exp(ÿhì, f (x� :)i)U f ( p; x) dx, (3:3)

where the function U (x) :� U f ( p; x) is the unique solution of the differential equation

1
2
U 0(x) � ( p� f (x))U (x),

subject to the condition that U 9(x) exists for x 6� 0 and is bounded, that U vanishes at �1
and that U 9(0�)ÿ U 9(0ÿ) � ÿ2.

For ®xed t, the law of Ð t, or equivalently the law of the process fl
Btÿ y
t ; y 2 Rg, has
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been described by Leuridan (1998); see also related work by Pitman (1998; 1999) who

concentrates on the law of Ð t, conditionally on Bt � b, that is, the law of Brownian bridge

local times. We note that although the equation satis®ed by (Ð t) is quite simple, the law of

its marginal for ®xed time t is quite complicated, as shown in these papers.

Proof of Proposition 3.1. We note that the natural ®ltration F Ð
t of (Ð t) is equal to the

®ltration of B, since for f1(x) � x,

Ð t( f 1) �
� t

0

s dBs, and thus Bt �
� t

0

dÐs( f 1)

s
:

Furthermore,

E(Öf (Ð t�s)jF s)

� E exp ÿ
� t�s

0

f (Bt�s ÿ Bu) du

 !����F s

 !

� E exp ÿ
� s

0

f (Bt�s ÿ Bs � Bs ÿ Bu) du

� �
exp ÿ

� t�s

s

f (Bt�s ÿ Bu) du

 !����F s

 !
:

We introduce B̂v � Bv�s ÿ Bs. (B̂v; v > 0) is a Brownian motion independent of F s. Thus,

E(Öf (Ð t�s)jF s) � Ê exp ÿ
� s

0

f (B̂t � Bs(ù)ÿ Bu(ù)) du

� �
exp ÿ

� t

0

f (B̂t ÿ B̂u) du

� � !
,

where the expectation is taken with respect to B̂. Therefore,

Qt(Ö f )(ì) � E exp(ÿhì, f (Bt � :)i)exp ÿ
� t

0

f (Bs) ds

� �� �
� E(exp(ÿhôBt

ì�Ë t, f i)) � E(Ö f (ôBt
ì�Ë t)):

This gives formula (3.1).

By de®nition of L ,

L (Öf )(ì) � lim
t!0

1

t
(Qt(Öf )(ì)ÿÖf (ì)):

By (3.1), L (Öf )(ì) � I � J , with

I � lim
t!0

1

t
E (exp(ÿhì, f (Bt � :)i)ÿ exp(ÿhì, f i)) 3 exp ÿ

� t

0

f (Bu) du

� �� �

J � lim
t!0

1

t
exp(ÿhì, f i)E exp ÿ

� t

0

f (Bu) du

� �
ÿ 1

� �
:

It follows that:
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I � 1
2
e 0f (0), where ef (x) � exp(ÿhì, f (x� :)i)

and

J � exp(ÿhì, f i) f (0):

Now, by an easy computation, we verify that

e 0f (0) � exp(ÿhì, f i)((hì, f 9i)2 ÿ hì, f 0i) � D2(Öf )(ì),

proving formula (3.2).

Equation (3.3) is a consequence of the Feynman±Kac formula (Kac 1949; Jeanblanc

et al. 1997): �1
0

exp(ÿ pt)E q(Bt)exp ÿ
� t

0

f (Bu) du

� �� �
dt �

�
R

q(x)U f ( p; x) dx

(where U (� U f ) is de®ned as in the proposition) and of equation (3.1). The function U can

also be expressed as (see Jeanblanc et al. 1997, (3.14)):

U f ( p; x) � 2
Ö f� ( p; x)1x . 0 �Ö fÿ ( p; x)1x , 0

ÿÖ f� ( p; 0�)ÿÖ fÿ ( p; 0�)
, (3:4)

where f� is the restriction of f to R� and fÿ(x) � f (ÿx), x > 0, and for a measurable

function g : R� ! R�, Ö g( p; x) denotes the unique bounded solution of the Sturm±

Liouville equations,

1
2
Ö 0 � ( p� g)Ö, Ö(0) � 1:

Let è p be an exponential variable of parameter p, independent of (Bt, t > 0). Formula (3.4)

re¯ects the path decomposition of (Bt; t < è p) at time gè p
, the last zero of B before è p (see

Jeanblanc et al. 1997). h

As in the previous section, we can extend Proposition 3.1 to the process (Bt, Ð t).

Proposition 3.2. (Bt, Ð t; t > 0) is a homogeneous Markov process with state space R 3
Mb(R) whose semigroup Rt is given by

Rt((x, ì); (dy, dí)) � P(x� Bt 2 dy; ôBt
ì�Ë t 2 dí):

The proof is similar to the previous one.

4. An intertwining relationship between two measure-valued
Markov processes

Many examples of pairs (Xt) and (Yt) of Markov processes with respect to ®ltrations (X t)

and (Y t) such that Y t � X t lead to intertwining relationships between the semigroups of X

and Y ; see for example Pitman and Rogers (1981), Yor (1989), Carmona et al. (1998) and,

more recently Matsumoto and Yor (1998) in connection with exponential Brownian
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functionals ± in particular X t �
� t

0
exp(Bt ÿ Bs) dCs and Yt �

� t

0
exp(Bt ÿ Bs) ds, where B

and C are two independent Brownian motions satisfy an intertwining relationship.

We are interested in the extension of this result to the Markov processes (Ð t) t and (ÐC
t )t,

where ÐC
t ( f ) is de®ned by

ÐC
t ( f ) �

� t

0

dCs f (Bt ÿ Bs), t > 0:

For ®xed t, the variable ÐC
t is a random linear functional on S , the Schwartz space of rapidly

decreasing functions, that is, for j, ø 2 S and a, b 2 R,

ÐC
t (aj� bø) � aÐC

t (j)� bÐC
t (ø) a:s:

Since ÐC
t is continuous in probability on S (using kÐC

t ( f )k2 < Ctk f kL2(R)), ÐC
t has a

version with values in S 9 (see Walsh 1986, Corollary 4.2). So, we can consider the process

(ÐC
t ; t > 0) as a S 9-valued process. Obviously, the process (Ð t; t > 0) can also be

considered as a S 9-valued process.

As in the previous section, we can express the semigroup QC
t of the process ÐC

t by

QC
t (Ö f )(ì) � Ê exp(ÿhì, f (B̂t � :)i)exp ÿ

� t

0

f (B̂t ÿ B̂u) dĈu

� �� �

� E exp(ÿhì, f (Bt � :)i)exp ÿ
� t

0

f 2(Bu) du

� �� �
for f 2 S and ì 2 S 9.

Proposition 4.1. The semigroups Qt and QC
t enjoy the intertwining relationship

QtM �MQC
t ,

where M is a Markov kernel from S 9 to S 9 de®ned on the functions Öf ( f 2 S ) by

M(Öf )(ì) � E(exp(ÿì( f 2)1=2)N ) � exp(1
2
ì( f 2))

in which N denotes a standard Gaussian variable. In other words, M(ì, dí) is a centred

Gaussian measure over S 9 with intensity ì.

Sketch of proof. We de®ne G t � ófBu, Cu; u < tg. We compute the expression

A � E(Öf (ÐC
t�s)jF t)

®rst by conditioning with respect to F t�s. Now, conditionally to F t�s,

ÐC
t�s( f ) �(law)

(Ð t�s( f 2))1=2 N ,

where N is a standard Gaussian variable, independent of B. Then, we obtain

A � Qs(MÖf )(Ð t):

On the other hand, by conditioning ®rst with respect to G t, we ®nd
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A �M(QC
f (Ös))(Ð t):

h

5. The process
�

t
0 f(Bt 2 Bs) dBs

It seems natural to extend the de®nition of the process ÐA
t de®ned by (2.3) to the case where

A � B. Since, for t ®xed, the process (Bt ÿ Bs; s , t) is not F s-adapted, we must make

precise the meaning of the stochastic integral
� t

0
f (Bt ÿ Bs) dBs. (Bt ÿ Bs; s < t) is F s :�

ófBu ÿ Bt; s < u < tg adapted; therefore, we can de®ne this integral as a backward ItoÃ

integral and we denote it by � t

0

f (Bt ÿ Bs) dÿBs:

We recall brie¯y the de®nition of the backward integral: for an F s-measurable process Hs,� t

0

dÿBs Hs �def ÿ
� t

0

dB̂( t)
s H tÿs

where B̂( t)
s � Bt ÿ Btÿs, and on the right-hand side, the integral is a forward integral with

respect to the Brownian motion B̂( t).

Note that this integral coincides with the Skorohod integral (see Nualart and Pardoux

1988).

Proposition 5.1. The S 9-valued process (ÐB
t ; t > 0) de®ned by

ÐB
t ( f ) �

� t

0

f (Bt ÿ Bs)dÿBs

satis®es, for every f in C2
b,

ÐB
t ( f ) � Bt f (0)�

� t

0

dBsÐ
B
s ( f 9 )� 1

2

� t

0

dsÐB
s ( f 0): (5:1)

Proof. We apply ItoÃ's formula to f (Bt ÿ Bs) and we use the following Fubini-type identity

(see Rosen and Yor 1991, (2.2) and (2.3)):� t

0

dÿBs

� t

s

dBuj(Bu ÿ Bs) �
� t

0

dBu

�u

0

dÿBsj(Bu ÿ Bs): (5:2)

h

Remark. We can also prove (5.1) without using (5.2). Take f of the form

f (x) �
�

g(î)exp(ixî) dî:

Then,
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Xt :�
� t

0

exp(iî(Bt ÿ Bu)) dÿBu

� exp(iîBt)

� t

0

exp(ÿiîBu) dBu ÿ iî exp(iîBt)

� t

0

exp(ÿiîBu) du,

using the well-known property for Skorohod integrals (see Nualart and Pardoux 1988):

ä(Fu:) � Fä(u:)ÿ
� t

0

DtFut dt:

We now apply ItoÃ's formula to X t. Integrating then with respect to g(î) dî (and using a

classical Fubini theorem) yields the result.

6. A measure-valued process related to Pitman's theorem

It is shown in Matsumoto and Yor (1998) that for ë 2 R, the process

exp(ÿëBt)

� t

0

ds exp(2ëBs)

is a Markov process with respect to its own ®ltration, a result from which one recovers

asymptotically Pitman's celebrated theorem (see Pitman 1975).

By analogy with our present work, this prompted us to de®ne a measure-valued process

( ~Ð t) by

~Ð t( f ) �
� t

0

ds f (2Bs ÿ Bt),

which satis®es the equation

~Ð t( f ) �
� t

0

ds f (Bs)�
� t

0

dBs
~Ðs( f 9)� 1

2

� t

0

ds ~Ðs( f 0 ): (6:1)

However, the analogy with (Ð t) cannot be pushed much further, as discussed in Matsumoto

and Yor (1998), to which we refer the reader: in particular, ( ~Ð t) t is not a Markov process. On

the other hand, note how similar the equation (6.1) is to equation (2.1), the only change being

that `the given data' tä0 has been changed in (6.1) into the occupation measure
� t

0
dsäBs

.
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