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It is well known that fractional Brownian motion can be obtained as the limit of a superposition of

renewal reward processes with inter-renewal times that have in®nite variance (heavy tails with

exponent á) and with rewards that have ®nite variance. We show here that if the rewards also have

in®nite variance (heavy tails with exponent â) then the limit Zâ is a â-stable self-similar process. If

â < á, then Zâ is the LeÂvy stable motion with independent increments; but if â.á, then Zâ is a

stable process with dependent increments and self-similarity parameter H � (âÿ á� 1)=â.
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1. Introduction

There has recently been a lot of interest in understanding why time series in computer

Ethernet networks appear asymptotically self-similar (Leland et al. 1994). These time series

measure deviations from the mean of the number of packets or bytes that are circulating

through the network. A model based on on±off renewal processes was proposed in Willinger

et al. (1997) and Taqqu et al. (1997) as a possible explanation. This model is a modi®cation

of a renewal reward model investigated by Mandelbrot (1969) and Taqqu and Levy (1986). In

these papers it is fractional Brownian motion that appears in the limit. Fractional Brownian

motion is a self-similar Gaussian process with stationary increments (a process X (t) is said to

be self-similar with index H if, for all a . 0, aÿH X (at) and X (t) have identical ®nite-

dimensional distributions). The increments of fractional Brownian motion display `long-range

dependence' or `long memory' because their correlations decrease like a power function and

their spectral density explodes at the origin. Fractional Brownian motion is the best-known

and most widely modelled self-similar process. But because it is Gaussian, its values do not

differ greatly from the mean.

In this paper we will show that it is possible to obtain limits that are self-similar, with

increments that are stationary, dependent and non-Gaussian. They will have a stable

distribution with in®nite variance. This means that the marginal distribution has a tail that

Bernoulli 6(1), 2000, 23±44

1350±7265 # 2000 ISI/BS



decreases slowly, like a power function, and hence, that there is a much higher probability

than in the Gaussian case that the increments differ greatly from their median value.

Our set-up is similar to that of Taqqu and Levy (1986). The renewal reward processes in

that paper had in®nite-variance inter-renewal times but ®nite-variance rewards. In this paper,

both the inter-renewal times and the rewards are allowed to have in®nite variance. More

precisely, we suppose that the inter-renewal times are in the domain of attraction of a stable

distribution with index 1 ,á, 2 and the rewards are in the domain of attraction of a stable

distribution with index 0 , â, 2. The case â,á was considered in Levy and Taqqu

(1987). The limit, in this case, was found to be the LeÂvy stable motion with index â (we

recover this result here). While this process is self-similar (with H � 1=â), has stationary

increments and also in®nite variances, its increments are independent. It is merely the

in®nite-variance counterpart of the Gaussian Brownian motion.

We consider here the more delicate case â.á and show that the limit is a symmetric

stable process of index â, possesses stationary increments and is self-similar with index

H � âÿ á� 1

â
: (1:1)

Since 1 ,á, â, 2, relation (1.1) implies

H 2 (1=â, 1), (1:2)

â being the index of stability of the limiting process. Observe that in the ®nite-variance case

(â � 2), relation (1.1) reduces to the familiar H � (3ÿ á)=2 2 (1
2
, 1) which appears in

connection with fractional Brownian motion.

Let us be more speci®c. The inter-renewal times are modelled by a sequence Uk ,

k � 1, 2, . . . , of positive integer-valued independently and identically distributed (i.i.d.)

random variables attracted to the stable domain with index 1 ,á < 2 (á. 1 ensures that

Uk has a ®nite mean). The rewards are given by another i.i.d. sequence Wk , k � 0, 1, . . . of

real-valued random variables belonging to the stable domain of index 0 , â < 2. fUkg and

fWkg are assumed to be independent. A renewal±reward process W � fW (t), t � 0, 1, . . .g
is constructed by assigning to each inter-renewal interval a corresponding reward that is

constant throughout the interval (see Section 2 for a precise de®nition). We want to describe

the asymptotic behaviour exhibited by large accumulations of these processes over long

periods of time. Speci®cally, if Wm(t), m � 1, 2, . . . , are i.i.d. copies of W (t), then we

consider the total reward process de®ned by

W�(Ty, M) �
X[Ty]

t�1

XM

m�1

Wm(t), (1:3)

where 0 < y < 1, T � 0, 1, . . . , M � 1, 2, . . . , and [Ty] stands for the greatest integer less

than or equal to Ty. W� can be viewed, for example, as the cumulative workload of M

workstations up to time [Ty]. Our goal is to ®nd the limiting behaviour of W�(Ty, M),

appropriately normalized as M !1 followed by T !1.

Two remarks are now in order. One concerns the order of the limits, the second the role

of y. In Levy and Taqqu (1987), we investigated what happens when the limit is taken in
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the reverse order ± ®rst T !1, then M !1. We found that W�(Ty, M), appropriately

normalized, converges to LeÂvy stable motion with index â if â,á, and with index á if

â.á. We show in the present paper that, when â.á, the order of the limits matters,

because if we let M !1 ®rst, then T !1, the limit process is not LeÂvy stable motion

(which has independent increments) but is instead a stable self-similar process with

dependent increments. The case where T and M tend jointly to in®nity will be investigated

in a separate paper.

Secondly, let us explain the role of y in (1.3), which we take for convenience to be in the

interval [0, 1], although in fact our results hold for any y > 0. The index y corresponds to

time and is introduced in order to characterize the behaviour of the stochastic process W�
at large times. Consider, for example, two distinct values of y, say y1 and y2, and suppose

that T is large, so that [Ty1] and [Ty2] are large. The limit process we obtain characterizes,

in particular, the behaviour of the random vector (W�(Ty1, M), W�(Ty2, M)) for large M

and at large times [Ty1] and [Ty2], yielding information about the dependence structure of

the cumulative workload at time [Ty1] and the cumulative workload at time [Ty2].

We now describe the limit process Zâ. We show, in Theorem 2.1 below, that when

M !1 followed by T !1, W�(Ty, M), renormalized, converges in the sense of ®nite-

dimensional distributions to a limiting process fZâ(y), 0 < y < 1g. The process Zâ is best

described through its (®nite-dimensional) characteristic functions as follows. Let

0 < y1 < y2 < � � � < yd < 1 be d time points and let è1, è2, . . . , èd be arbitrary real

numbers. For convenience set y � (y1, . . . , yd) and è � (è1, . . . , èd). Recall that Zâ(y) is

called a symmetric stable process of index â if its ®nite-dimensional characteristic functions

can be expressed as

E exp i
Xd

j�1

è j Zâ(yj)

8<:
9=; � expfÿó â(è, y)g, (1:4)

where

ó â(è, y) �
�

E

����Xd

j�1

è j f j(î, y)

����âm(dî): (1:5)

Here f 1, . . . , f d are functions de®ned on a measure space (E, E , m) satisfying�
Ej f j(î, y)jâm(dî) ,1, j � 1, . . . , d (see Samorodnitsky and Taqqu 1994, p. 114). The

functions f 1, . . . , f d may depend on y.

When d � 1, for example (1.4) reduces to

E eièZâ( y1) � eÿjèj
âó â

0
( y1),

where ó0(y1) � (
�

Ej f (î, y1)jâm(dî))1=â is the scale parameter of the symmetric stable

random variable Zâ(y1).

When d . 1, the function ó (è, y) not only characterizes the scale parameters of the

marginal distributions of Zâ(y1), . . . , Zâ(yd), but also determines their dependence

structure.
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We show in Theorem 2.1 that when 0 , â < á, 2 (1 ,á, 2), the limit process Zâ(y)

satis®es (1.4) with

ó â(è, y) � C
Xd

j�1

jö jjâ(yj ÿ yjÿ1),

where C . 0 is a constant speci®ed in the theorem and where

ö j � è j � è j�1 � � � � � èd :

The process Zâ(y) then has independent increments because its ®nite-dimensional

characteristic functions factor:

E exp i
Xd

j�1

ö j(Zâ(yj)ÿ Zâ(yjÿ1))

8<:
9=; � E exp i

Xd

j�1

è j Zâ(yj)

8<:
9=;

� exp ÿC
Xd

j�1

jö jjâ(yj ÿ yjÿ1)

8<:
9=;

�
Yd

j�1

expfÿCjö jjâ(yj ÿ yjÿ1)g

�
Yd

j�1

E expfiö j(Zâ(yj)ÿ Zâ(yjÿ1)g:

Zâ(y) has also stationary increments since adding a constant h to each yj does not change the

®nite-dimensional characteristic functions of the increments. Therefore the process fZâ(y)g
is (symmetric) LeÂvy stable motion with index â when â < á.

When 2 . â.á. 1, however, the limit Zâ(y) is a different process. We show in

Theorem 2.1 that, in this case, the limit process Zâ(y) satis®es (1.4) with

ó â(è, y) � Cÿ1
â (I(è, y)� J (è, y)),

where

Câ �
�1

0

sin x

xâ
dx

� �ÿ1

� 1ÿ â

Ã(2ÿ â)cos(ðâ=2)
,

and

I(è, y) �
�1

0

ìÿ1

����Xd

j�1

è j(yj ^ x)

����âxÿá dx,

(1:6)

J (è, y) �
�1

0

�1
0

ìÿ1

����Xd

j�1

è j(yj ^ uÿ x)�

����âá(uÿ x)ÿáÿ1
� du dx:
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(As usual, (:)� � max(:, 0)).

The process Zâ(y) is then stable with index â. It is clearly self-similar with index

H � (âÿ á� 1)=â since I(è, ay) � aâÿá�1 I(è, y) and J (è, ay) � aâÿá�1 J (è, y). The

stationarity of the increments, which is established in Section 6, is not as obvious.

The paper is structured as follows. In Section 2, we present the basic assumptions and

state the main result, Theorem 2.1, which includes the cases 0 , â,á and â � á as well

as the case â.á described above. This theorem is a consequence of two others that are

proved in Sections 3 and 4, respectively. Their proofs make use of a number of key

propositions which are discussed in Section 5. The stationarity of the increments is

established in Section 6.

2. Assumptions and main results

We start with the basic assumptions:

Assumption 1. The reward sequence fWkg, k � 0, 1, . . . , is i.i.d., symmetric and has heavy

tails, that is, there exist an index 0 , â, 2 and a slowly varying function g(x) at in®nity,

such that

P(jW0j. x) � xÿâ g(x) as x!1: (2:1)

Assumption 2. The inter-renewal times fUkg, k � 1, 2, . . . , are i.i.d. with range the positive

integers and P(U1 � x) � áxÿáÿ1 h(x), where 1 ,á, 2 and h is slowly varying at in®nity.

Let ì � EU1, which is ®nite, and let U have the distribution of Uk .

Assumption 3. fWk , k > 0g and fUk , k > 1g are independent.

Assumption 1 implies that W0 is in the domain of attraction of a symmetric stable random

variable of index 0 , â, 2, that is, there exists a sequence of constants An(â) such that

L ÿ lim
n!1 An(â)ÿ1

Xn

k�1

Wk �D Ëâ,

where L and �D refer, respectively, to convergence and equality in distribution. The

normalization constants are An(â) � n1=âLg(n), where Lg is a slowly varying function

satisfying, for x 6� 0,

lim
n!1 Lg(n)ÿâ g(n1=âLg(n)jxj) � 1: (2:2)

The stable random variable Ëâ satis®es P(jËâj. x) � xÿâ as x!1, and its distribution is

totally characterized by the index â.

We could have assumed W0 to be non-symmetric for â 6� 1, that is, P(W0 < ÿx) �
cÿxÿâ g(x) and P(W0 > x) � c�xÿâ g(x), and to satisfy, for centring purposes, EW0 � 0 for

1 , â, 2. This situation is more realistic in the setting of telecommunications. In this case
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Ëâ is skewed as well and satis®es P(Ëâ < ÿx) � cÿxÿâ and P(Ëâ . x) � c�xÿâ as

x!1. It is for convenience' sake that we assume W0 symmetric here. Results for W0

skewed will be presented in a subsequent paper.

Similarly, Assumption 2 implies P(U . x) � xÿáh(x), and hence there exists a sequence

of constants Bn(á) � n1=áLh(n) such that

L ÿ lim
n!1 Bÿ1

n (á)
Xn

k�1

(Uk ÿ ì)�D Ë�á ,

where Lh and h are related as in (2.2), with g replaced by h. Since U1 is positive, the stable

random variable Ë�á is totally skewed to the right and satis®es P(Ë�á . x) � xÿá and

P(Ë�á < ÿx) � o(xÿá), as x!1.

We now turn to the construction of the total reward process. The sequence of inter-

renewal times de®nes a renewal process fSkg, k � 0, 1, . . . , by

Sk � S0 �
Xk

j�1

Uj, k > 1: (2:3)

To make it stationary, we let

P(S0 � x) � ìÿ1 P(U . x), x � 0, 1, . . . : (2:4)

Relations (2.4) and (2.3) imply that fSk , k > 0g is a stationary renewal process.

The associated renewal±reward process fW (t), t � 0, 1, . . .g equals Wk when t is in the

kth inter-renewal interval. More precisely,

W (t) �
Xt

k�0

WkI(Skÿ1 , t < Sk), which equals Wk if Skÿ1 , t < Sk , (2:5)

with Sÿ1 � 0. In particular, W (0) � 0. The cumulative reward process up through time T is

given by W�(0) � 0 and

W�(T ) �
XT

t�1

W (t), T � 1, 2, . . . : (2:6)

Now let fWm(t), t > 0g, m � 1, 2, . . . , be i.i.d. copies of the process W (t) and,

similarly, fW�m(T ), T > 0g be i.i.d. copies of the process W�(T ). De®ne the total reward

process W�(Ty, M), 0 < y < 1, T � 0, 1, . . . and M � 1, 2, . . . , by

W�(Ty, M) �
XM

m�1

W�m(Ty) �
X[Ty]

t�1

XM

m�1

Wm(t): (2:7)

We wish to ®nd out how W�(Ty, M), appropriately normalized, behaves as M !1 and

then T !1. To express the normalization factors, introduce
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aT � aT (á, â) �
T , â,á or â � á and

P1
x�1xÿ1 h(x) ,1,

T
� T

1
xÿ1 h(x) dx, â � á and

P1
x�1xÿ1 h(x) � 1,

T âÿá�1 h(T ), â.á,

8>><>>: (2:8)

where h is the slowly varying function in Assumption 2. Also let Lg be the slowly varying

function in (2.2). A stochastic process is H-sssi if it is self-similar with index H and has

stationary increments (see Samorodnitsky and Taqqu (1994)). The following theorem

provides the results for the cases â,á, â � á and â.á.

Theorem 2.1. Let Assumptions 1±3 hold and W�(Ty, M) be de®ned by (2.7) and aT by

(2.8). Then

L ÿ lim
T!1

lim
M!1

[a
1=â
T M1=âLg(M)]ÿ1W�(Ty, M) �D Zâ(y), 0 < y < 1, (2:9)

where Zâ � Zâ(y) is a symmetric â-stable H-self-similar process with stationary increments

(H-sssi process) with

H � (âÿ á)� � 1

â
�

1=â, â < á

(âÿ á� 1)=â, â.á:

(
(2:10)

Zâ(0) � 0 and Zâ is â-stable LeÂvy motion if and only if â < á. Here L and �D refer,

respectively, to convergence and equality of the ®nite-dimensional distributions.

To characterize the ®nite-dimensional distributions of Zâ, consider any è � (è1, . . . ,

èd) 2 Rd, y � (y1, . . . , yd) 2 [0, 1]d, 0 � y0 < y1 < � � � < yd < 1. Then

E exp i
Xd

j�1

è j Zâ(yj)

8<:
9=; � expfÿó â(è, y)g, (2:11)

where

ó â(è, y) �
Cÿ1

â fìÿ1 EU â
Pd

i�1jöijâ(yi ÿ yiÿ1)g, â,á or â � á and
P1

x�1xÿ1 h(x) ,1
Cÿ1

â fìÿ1
Pd

i�1jöijâ(yi ÿ yiÿ1)g, â � á and
P1

x�1xÿ1 h(x) � 1,

Cÿ1
â fI(è, y)� J (è, y)g, â.á:

8><>:
(2:12)

Here

öi �
Xd

j�1

è j, (2:13)

Câ �
�1

0

sin x

xâ
dx

� �ÿ1

�
1ÿ â

Ã(2ÿ â)cos(ðâ=2)
if â 6� 1

2=ð if â � 1,

8><>: (2:14)

and I(è, y) and J (è, y) are given by (1.6).
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When â < á, the form of the characteristic function of Zâ clearly identi®es Zâ with the

symmetric LeÂvy stable motion with index â, which has independent increments. When â.á,

the increments are dependent and Zâ is then no longer LeÂvy stable motion.

Observe that the expression for ó â(è, y) in (2.12) contains the term EU â when â,á
and does not contain it if â � á and

P1
x�1xÿ1 h(x) � 1. In the latter case

EU â � EU á �P1x�1xâP[U � x] �P1x�1xÿ1 h(x) � 1. The potential contribution of this

term is compensated by the presence of the integral
� T

1
xÿ1 h(x) dx in the normalization

factor aT in (2.8).

The proof of Theorem 2.1 is in two parts. The theorem follows from Theorems 2.2

(M !1) and 2.3 (T !1) stated below.

Theorem 2.2. Suppose Assumptions 1±3 hold. Then for each ®xed T � 0, 1, . . . ,

L ÿ lim
M!1

[M1=âLg(M)]ÿ1W�(Ty, M)�D Zâ,T (y), 0 < y < 1: (2:15)

Zâ,T � Zâ,T (y) is a symmetric â-stable process with Zâ,T (0) � 0. For any è � (è1, . . . , èd)

2 Rd and y � (y1, . . . , yd) 2 [0, 1]d, 0 � y0 < y1 < � � � < yd < 1,
Pd

i�1èi Zâ,T (yi) is

symmetric stable with index â and scale parameter ó T (è, y) satisfying

óâ
T (è, y) � Cÿ1

â E
X1
k�0

����Xd

j�1

è j([Tyj] ^ Sk ÿ Skÿ1)�

����â: (2:16)

The conclusion of Theorem 2.2 holds, in fact, for any non-decreasing sequence of random

variables Sk , k > ÿ1, with Sÿ1 � 0.

Observe that the process Zâ,T (y) has neither stationary nor independent increments and is

not self-similar.

Assumption 2 is used in the next theorem.

Theorem 2.3. If aT is given by (2.8) and Zâ,T (y), 0 < y < 1, is as in Theorem 2.2, then

L ÿ lim
T!1

a
ÿ1=â
T Zâ,T (y)�D Zâ(y), 0 < y < 1, (2:17)

where Zâ is the limit process of Theorem 2.1.

We prove Theorem 2.2 in Section 3 and Theorem 2.3 in Section 4.

3. Proof of Theorem 2.2

We shall use the following lemma.

Lemma 3.1. Suppose fWkg and fYkg, k � 1, 2, . . . , are independent of each other; fWkg is

i.i.d. and satis®es P(jW1j. x) � xÿâ g(x) as x!1 with g slowly varying at in®nity; and

fYkg is bounded a.s. and K is an almost surely bounded positive integer-valued random
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variable. Then
PK

k�1YkWk 2 D (â), in particular, as x!1,

P

����XK

k�1

YkWk

����. x

 !
� E

XK

k�1

jYk jâ
" #

xÿâ g(x): (3:1)

To verify this lemma, condition on fK, Yk , k � 1, . . . , Kg and use the fact that

P(jPK0

k�1 ykWk j. x) �PK0

k�1jyk jâxÿâ g(x) for ®xed constants K0 and y1, . . . , yK0
.

In order to prove Theorem 2.2, observe that the reward accumulated in the interval

Skÿ1 , t < Sk is (Sk ÿ Skÿ1)Wk , by (2.5). Now introduce the renewal function K(T ),

namely, the total number of renewals up through time T. Rewriting the cumulative reward

W�(T ) in (2.6), using (2.3) and K(T ), we obtain

W�(T ) � S0W0 �
XK(T)ÿ1

k�1

UkWk � (T ÿ SK(T)ÿ1)W K(T )

" #
I(S0 < T )� TW0 I(S0 . T )

� (T ^ S0)W0 �
XK(T)

k�1

(T ^ Sk ÿ Skÿ1)�WkI(S0 < T )

�
XK(T)

k�0

(T ^ Sk ÿ Skÿ1)�Wk �
X1
k�0

(T ^ Sk ÿ Skÿ1)�Wk ,

since Sÿ1 � 0, S0 . T , K(T ) � 0) (T ^ Sk ÿ Skÿ1)� � (T ÿ Skÿ1)� � 0 for k > 1, and

k > K(T )� 1, Skÿ1 . T ) (T ^ Sk ÿ Skÿ1)� � 0.

Since ([Tyj] ^ Sk ÿ Skÿ1)� is bounded by T, Lemma 3.1 applies. Theorem 2.2 follows

because the W�m(T ) are i.i.d. copies of W�(T ).

4. Proof of Theorem 2.3

To prove (2.17), it is suf®cient to verify
Pd

i�1èi Zâ,T (yi)!L
Pd

i�1èi Zâ(yi) as T !1 for any

è � (è1, . . . , èd) 2 Rd and y � (y1, . . . , yd) 2 [0, 1]d with è j 6� 0, j � 1, . . . , d and 0 ,
y1 , � � � , yd < 1. Set

y0 � 0 and yd�1 � 1:
It suf®ces, therefore, to prove

lim
T!1

aÿ1
T óâ

T (è, y) � ó â(è, y) (4:1)

where aT is given by (2.8), óâ
T (è, y) is given by (2.16), and ó â(è, y) is given by (2.12) and

(1.6). Set

Tj � [Tyj] for j � 1, . . . d, and Td�1 � 1,

and write in (2.16),
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E
X1
k�0

����Xd

j�1

è j(Tj ^ Sk ÿ Skÿ1)�

����â � I(T , è, y)� J (T , è, y), (4:2)

where

I(T , è, y) :� E

����Xd

j�1

è j(Tj ^ S0)

����â (4:3)

and

J (T , è, y) :�
X1
k�1

E

����Xd

j�1

è j(Tj ^ Sk ÿ Skÿ1)�

����â: (4:4)

The estimation of limT!1 I(T , è, y) is done in Proposition 5.1 below.

Regarding J (T , è, y), write

J (T , è, y) �
X1
k�1

J (T , è, y, k), (4:5)

where

J (T , è, y, k) � E

����Xd

j�1

è j(Tj ^ Sk ÿ Skÿ1)�

����â:
Setting Nd :� f1, 2, . . . , dg, d > 1, and A � f(i1, i2) 2 Nd�1 3 Nd�1 : i1 < i2g, we can

rewrite J (T , è, y, k) as

J (T , è, y, k) � E

����X
A

Xd

j�1

è j(Tj ^ Sk ÿ Skÿ1)� I(Ti1ÿ1 , Skÿ1 < Ti1 , Ti2ÿ1 , Sk < Ti2 )

����â

�
X

A

BT (k, i1, i2),

(4:6)

where i1 < i2 and

BT (k, i1, i2): � E

����Xd

j�1

è j(Tj ^ Sk ÿ Skÿ1)� I(Ti1ÿ1 , Skÿ1 < Ti1 , Ti2ÿ1 , Sk < Ti2 )

����â

�
XTi1

x�Ti1ÿ1�1

XTi2
ÿx

u�Ti2ÿ1�1ÿx

����Xd

j�1

è j(Tj ^ (x� u)ÿ x)�

����âP(Skÿ1 � x)P(U � u),

since Skÿ1 is independent of Uk and Uk �D U . Substituting back into (4.6) and then (4.6) back

into (4.5), factoring out P(Skÿ1 � x) and summing over k to obtain
P1

k�1 P(Skÿ1 � x) � ìÿ1,

and then making the variable change u 7! u� x, gives
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J (T , è, y) �
X

A

XTi1

x�Ti1ÿ1�1

XTi2

u�Ti2ÿ1�1

ìÿ1

����Xd

j�1

è j(Tj ^ uÿ x)�

����âP(U � uÿ x): (4:7)

Dividing A into the subsets

A1 � f(i1, i2) 2A : i1 � i2g � f(i1, i2) : i1 � i2 � i, 1 < i < d � 1g,
A2 � f(i1, i2) 2A : i1 , i2 ÿ 1g � f(i1, i2) : i1 , i2 ÿ 1 � i, 1 < i < dg, (4:8)

A3 � f(i1, i2) 2A : i1 � i2 ÿ 1g � f(i1, i2) : i1 � i2 ÿ 1 � i, 1 < i < dg,
we have

J (T , è, y) � J1(T , è, y)� J2(T , è, y)� J3(T , è, y), (4:9)

where Jl is J with A replaced by A l, l � 1, 2, 3.

The estimation of limT!1 Jl(T , è, y), l � 1, 2, 3, is carried out in Propositions 5.2,

5.3 and 5.4 respectively (see Section 5 below). By substituting the results into (4.9), we

obtain limT!1J (T , è, y). Combining this with limT!1 I(T , è, y) in (4.2), we obtain

limT!1 E
P1

k�0j
Pd

j�1è j(Tj ^ Sk ÿ Skÿ1)�jâ. In the case â < á, J1(T , è, y) dominates

J2(T , è, y), J3(T , è, y) and I(T , è, y), so J1 alone provides the rate of growth

E
P1

k�0j
Pd

j�1è j(Tj ^ Sk ÿ Skÿ1)�jâ. In fact, if â,á or if â � á and
P1

x�1xÿ1 h(x) ,1,

we have

E
X1
k�1

����Xd

j�1

è j(Tj ^ Sk ÿ Skÿ1)�

����â � J (T , è, y) � J1(T , è, y)

� ìÿ1(EU â)
Xd

i�1

jöijâ(yi ÿ yiÿ1)T ,

and, if â � á and
P1

x�1xÿ1 h(x) � 1, then

E
X1
k�1

����Xd

j�1

è j(Tj ^ Sk ÿ Skÿ1)�

����â � J (T , è, y) � J1(T , è, y)

� ìÿ1
Xd

i�1

jöijâ(yi ÿ yiÿ1)T

�T

1

xÿ1 h(x) dx,

where
� T

1
xÿ1 h(x) dx tends to in®nity, like a slowly varying function, but faster than h(T ).

In the case â.á, each term I(T , è, y), J1(T , è, y), J2(T , è, y) and J3(T , è, y)

contributes the growth rate of T âÿá�1 h(T ). Since I(è, y) and J (è, y) are given by (1.6),

and (4.4), (4.8) and (4.9) imply

J (è, y) � J1(è, y)� J2(è, y)� J3(è, y),

we obtain
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E
X1
k�0

����Xd

j�1

è j(Tj ^ Sk ÿ Skÿ1)�

����â � [I(è, y)� J (è, y)]T âÿáÿ1 h(T ):

It follows, now, that (4.1) holds with ó â(è, y) given by (2.12).

A particular consequence of (2.12) is the `scaling' relation

ó â(è, ay) � aâHó â(è, y), a . 0, (4:10)

with H de®ned in (2.10). This proves that Zâ is self-similar with parameter H since, for any

ã 2 R and a . 0,

E exp iã
Xd

j�1

è j Zâ(ayj)

8<:
9=; � E exp iãaH

Xd

j�1

è j Zâ(yj)

8<:
9=;:

Moreover, by Proposition 6.1 below, the process Zâ has stationary increments. Relation (2.12)

implies that when â < á, it has independent increments, and therefore it is LeÂvy stable

motion in this case.

5. Propositions

Let è � (è1, . . . , èd) and y � (y1, . . . , yd) be arbitrary. We assume without loss of generality

that è j 6� 0, j � 1, . . . , d and 0 , y1 , � � � , yd < 1, and set y0 � 0. The following

propositions are used in the proof of Theorem 2.3.

Proposition 5.1. As T !1,

I(T , è, y) �
O(1), if â,áÿ 1 or if â � áÿ 1 and

P1
x�1xÿ1 h(x) ,1,

O(
� T

1
xÿ1 h(x) dx), if â � áÿ 1 and

P1
x�1xÿ1 h(x) � 1,

I(è, y)T âÿá�1 h(T ), if â.áÿ 1,

8>><>>:
(5:1)

where

I(è, y) :�
�1

0

ìÿ1

����Xd

j�1

è j(yj ^ x)

����âxÿá dx: (5:2)

Remark. The term I(T , è, y) provides a non-negligible contribution to the limit in (2.9) only

when â.á.

Proof. From (4.3) and (2.4),

I(T , è, y) � E

����Xd

j�1

è j(Tj ^ S0)

����â � ìÿ1
X1
x�0

����Xd

j�1

è j(Tj ^ x)

����âP(U . x): (5:3)
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Suppose ®rst that â < áÿ 1. Subdivide
P1

x�0 into
PT1

x�1 and
P1

x�T1�1 and call I1 and

I2 the respective sums. Since 0 < x < T1 implies Tj ^ x � x for j � 1, . . . , d, we have

I1(T , è, y) � ìÿ1

����Xd

j�1

è j

����âXT1

x�1

xâP(U . x):

I1 is 0 if
Pd

j�1è j � 0. If
Pd

j�1è j 6� 0, then I1 is O(1) if â,áÿ 1 or if â � áÿ 1 andP1
x�1xÿ1 h(x) ,1; I1 � O(

� T

1
xÿ1 h(x) dx) if â � áÿ 1 and

P1
x�1xÿ1 h(x) � 1. On the

other hand,

I2(T , è, y) � o(1), if â,áÿ 1 or â � áÿ 1 and
P1

x�1xÿ1 h(x) ,1,

O(h(T )), if â � áÿ 1 and
P1

x�1xÿ1 h(x) � 1,

(

using in the ®rst case Tj ^ x < x and
P1

x�T1�1xâP(U . x) � o(1), and using in the second

case Tj ^ x < Tj < T and
P1

x�T1�1 P(U . x) � O(T 1ÿáh(T )). Since h(T ) �
o(
� T

1
xÿ1 h(x) dx), the term I2 is negligible with respect to I1 unless

Pd
i�1èi � 0. This

completes the proof in the case â < áÿ 1.

We now turn to the case â.áÿ 1. We ®rst show that as T !1,

~I(T , è, y) :� ìÿ1

�1
0

����Xd

j�1

è j(Tj ^ x)

����âP(U . x) dx � I(è, y)T âÿá�1 h(T ),

by writing
�1

0
� � x0

0
� �1

x0
and noting that the ®rst integral is O(1) while the second is

asymptotic to I(è, y)T âÿá�1 h(T ).

Next, we show that

I(T , è, y)ÿ ~I(T , è, y) � o(T âÿá�1 h(T )): (5:4)

By (5.3),

I(T , è, y)ÿ ~I(T , è, y)

� ìÿ1
X1
x�1

�x

xÿ1

����Xd

j�1

è j(Tj ^ x)

����âP(U . x)ÿ
����Xd

j�1

è j(Tj ^ t)

����âP(U . t)

24 35dt

� N1(T , è, y)� N2(T , è, y),

with

N1(T , è, y) � ìÿ1
Xd�1

i�1

XTi

x�Tiÿ1�1

�x

xÿ1

����Xd

j�1

è j(Tj ^ x)

����â ÿ ����Xd

j�1

è j(Tj ^ t)

����â
24 35P(U . t) dt

and

N2(T , è, y) � ìÿ1
Xd�1

i�1

XTi

x�Tiÿ1�1

�x

xÿ1

����Xd

j�1

è j(Tj ^ x)

����â[P(U . x)ÿ P(U . t)]dt:
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Using the inequality

j jajâ ÿ jbjâj <
jaÿ bj if 0 , â < 1

âjaÿ bj(jajâÿ1 � jbjâÿ1) if 1 , â,

(
for real numbers a, b, one can show N1(T , è, y) � O(T (âÿ1)�). Moreover, one can also show

that N2(T , è, y) � O([
� T

1
xÿ1 h(x) dx] _ T âÿáh(T )). Combining these estimates for N1 and

N2, one establishes (5.4). Consequently,

I(T , è, y) � ~I(T , è, y) � I(è, y)T âÿá�1 h(T ): h

We now state the propositions for J1, J2 and J3 and then outline their proofs. Recall that

J1(T , è, y), J2(T , è, y), and J3(T , è, y) are de®ned as J in (4.7) with A replaced by A1,

A2, A3, respectively (see (4.8)).

Proposition 5.2. As T !1,

J1(T , è, y) �

ìÿ1(EU â)
Pd

i�1jöijâ(yi ÿ yiÿ1)T , if â,á or â � á and
P1

x�1xÿ1 h(x) ,1,

ìÿ1
Pd

i�1jöijâ(yi ÿ yiÿ1)T
� T

1
xÿ1 h(x) dx, if â � á and

P1
x�1xÿ1 h(x) � 1,

J1(è, y)T âÿá�1 h(T ), if â.á,

8>>>><>>>>:
(5.5)

where

J1(è, y) :�
Xd

i�1

� yi

yiÿ1

� yi

yiÿ1

H(è, y; x, u) du dx (5:6)

and

H(è, y; x, u) :� ìÿ1

����Xd

j�1

è j(yj ^ uÿ x)�

����âá(uÿ x)ÿáÿ1
� : (5:7)

Remark. Note that for i1 < i2, yi1ÿ1 < x < yi1 , yi2ÿ1 < u < yi2 , we haveXd

j�1

è j(yj ^ uÿ x)� �
Xi1ÿ1

j�1

�
Xi2ÿ1

j�i1

�
Xd

j�i2

� 0�
Xi2ÿ1

j�i1

è j(yj ÿ x)� öi2 (uÿ x)�:

Since, when i1 � i2 � i, this reduces to öi(uÿ x)�, J1(è, y) de®ned in (5.6), can also be

expressed as

J1(è, y) � ìÿ1á(âÿ á)ÿ1(âÿ á� 1)ÿ1
Xd

i�1

jöijâ(yi ÿ yiÿ1)âÿá�1: (5:8)
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Proposition 5.3. As T !1,

J2(T , è, y) � J2(è, y)T âÿá�1 h(T ), (5:9)

where

J2(è, y) �
X

1<i1, i2ÿ1<d

� yi1

yi1ÿ1

� yi2

yi2ÿ1

H(è, y; x, u) du dx (5:10)

and H(è, y; x, u) is given by (5.7).

Proposition 5.4. As T !1,

J3(T , è, y) �
O(1), if â,áÿ 1 or if â � áÿ 1 and

P1
x�1xÿ1 h(x) ,1,

O(
� T

1
xÿ1 h(x) dx), if â � áÿ 1 and

P1
x�1xÿ1 h(x) � 1,

J3(è, y)T âÿá�1 h(T ), if â.áÿ 1,

8>><>>:
(5:11)

where

J3(è, y) :�
Xd

i�1

� yi

yiÿ1

� yi�1

yi

H(è, y; x, u) du dx (5:12)

and H(è, y; x, u) is de®ned by (5.7).

Remark. J3(T , è, y) and I(T , è, y) are asymptotically proportional in the case â.áÿ 1.

In order to prove the propositions involving J1, J2 and J3, we express J (T , è, y) in (4.7)

in a more convenient manner. Suppose throughout that i1 < i2, Ti1ÿ1 � 1 < x < Ti1 and

Ti2ÿ1 � 1 < u < Ti2 , as these constraints obtain in (4.7). Observe, now, that:

(i) for j � 1, . . . , i1 ÿ 1, we have (Tj ^ uÿ x)� � (Tj ÿ x)� � 0;

(ii) for j � i1, . . . , i2 ÿ 1, we have (Tj ^ uÿ x)� � Tj ÿ x;

(iii) for j � i2, . . . , d, we have (Tj ^ uÿ x)� � (uÿ x)�.

Using the notation öi �
Pd

j�iè j and öd�1 � 0, we obtain

J (T , è, y) �
X

A

XTi1

x�Ti1ÿ1�1

XTi2

u�Ti2ÿ1�1

ìÿ1

����Xi2ÿ1

j�i1

è j(Tj ÿ x)� öi2 (uÿ x)�

����âP(U � uÿ x): (5:13)

To get J1, J2 and J3, we replace A by A1, A2 and A3, respectively (see (4.8)).

Proof of Proposition 5.2. Since J1 is J with A replaced by A1 � f(i1, i2): i1 � i2 � i,

1 < i < d � 1g, we obtain, after the change of variables u! uÿ x,

J1(T , è, y) � ìÿ1
Xd�1

i�1

XTi

x�Tiÿ1�1

jöijâ
XTiÿx

u�1

uâP(U � u):
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The inner sum starts at u � 1 because Tiÿ1 � 1ÿ x < 0 and U takes only positive values.

Using öd�1 � 0 and making the further change of variables x! Ti ÿ x gives

J1(T , è, y) � ìÿ1
Xd

i�1

jöijâ
XTiÿTiÿ1ÿ1

x�0

Xx

u�1

uâP(U � u):

We clearly obtain (5.5) when â < á. Now assume â.á. Since
Px

u�1uâP(U � u) �
á(âÿ á)ÿ1xâÿáh(x) as x!1 and Ti � [Tyi], we obtain (5.5) as T !1, with J1(è, y)

given in the form (5.8). It follows, from the remark after Proposition 5.2, that J1(è, y) can

also be expressed as (5.6). This concludes the proof of Proposition 5.2. h

The proofs of Propositions 5.3 and 5.4 are much more delicate. The basic idea is as

follows. If

HT (è, y; x, u) � ìÿ1

����Xi2ÿ1

j�i1

è j(Tj ÿ x)� öi2 (uÿ x)�

����âP(U � uÿ x),

then

J l (T , è, y) �
X
Al

XTi2

x�Ti1ÿ1�1

XTi2

u�Ti2ÿ1�1

HT (è, y, x, u) �
X
Al

X
I T (i1,i2)

HT (è, y, x, u), (5:14)

where

I T (i1, i2) � f(x, u) 2 Z2: Ti1ÿ1 � 1 < x < Ti1 , Ti2ÿ1 � 1 < u < Ti2g: (5:15)

Proceeding as for the term I (see Proposition 5.1), we de®ne `continuous' versions ~HT and ~J l

of HT and J l , namely,

~HT (è, y; t, s) � ìÿ1

����Xi2ÿ1

j�i1

è j(Tj ÿ t)� öi2 (sÿ t)

����â j(sÿ t), s, t > 0,

where

j(u) � P(U . uÿ 1)ÿ P(U . u) � P(U � [u])

and

~J l (T , è, y) �
X
Al

�Ti2

Ti1ÿ1

�Ti2

Ti2ÿ1

~HT (è, y; x, u) du dx �
X
Al

X
I T (i1,i2)

�x

xÿ1

�u

uÿ1

~HT (è, y; t, s) ds dt,

(5:16)

and show that, for l � 2 and l � 3, as T !1,

~J l (T , è, y) � J l (è, y)T âÿá�1 h(T ) (5:17)

and

J l (T , è, y)ÿ ~J l (T , è, y) � o(T âÿá�1 h(T )): (5:18)
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These last two relations are technically involved. We now present some of the details.

Proof of Proposition 5.3. We must establish (5.17) and (5.18) for l � 2. (We may assume

that T is so large that T . (yi ÿ yiÿ1)ÿ1 for all i � 1, . . . , d:) We start with (5.17). Fix

(i1, i2) 2A2. Since uÿ x is bounded away from 0 when

Ti1ÿ1=T < x < Ti1=T , Ti2ÿ1=T < u < Ti2=T ,

and since j(T ) � áTÿáÿ1 h(T ) as T !1, there is a constant d1 . 0 such that

j(T (uÿ x))= j(T ) < d1(uÿ x)ÿáÿ1. After the rescaling x! x=T , u! u=T , we obtain�Ti1

Ti1ÿ1

�Ti2

Ti2ÿ1

~HT (è, y; x, u) du dx � T 2�â j(T )

�1
0

�1
0

f T (è, y; x, u) du dx,

where

f T (è, y; x, u)

� ìÿ1

����Xi2ÿ1

j�i1

è j

Tj

T
ÿ x

� �
� öi2 (uÿ x)

����â j(T (uÿ x))

j(T )
1[Ti1ÿ1=T ,Ti1

=T ](x)1[Ti2ÿ1=T ,Ti2
=T](u)

converges, as T !1, to áÿ1 H(è, y; x, u)1[ yi1ÿ1, yi1
](x)1[ yi2ÿ1, yi2

](u), with H de®ned in (5.7).

The dominated convergence theorem applies because uÿ x is bounded away from zero and,

hence, for T large enough, f T (è, y; x, u) is uniformly bounded in T. This proves (5.17) for

l � 2.

We now turn to the proof of (5.18) for l � 2. Set

J2(T , è, y)ÿ ~J2(T , è, y) �
X
A2

(D1(T , i1, i2)� D2(T , i1, i2)) (5:19)

(we suppress the arguments è and y), where

D1(T , i1, i2) � ìÿ1
X

I T (i1,i2)

�x

xÿ1

�u

uÿ1

(jAT (x, u)jâ ÿ jAT (t, s)jâ) j(sÿ t) ds dt, (5:20)

D2(T , i1, i2) � ìÿ1
X

I T (i1,i2)

jAT (x, u)jâ
�x

xÿ1

�u

uÿ1

[ j(uÿ x)ÿ j(sÿ t)]ds dt (5:21)

and

AT (x, u) �
Xd

j�1

è j(Tj ^ uÿ x)�:

One can show that there is a constant d2 � d2(i1, i2), (i1, i2) 2A2, such that

max
I T (i1,i2)

sup
xÿ1< t<x
uÿ1<s<u

j jAT (x, u)jâ ÿ jAT (t, s)jâj < d2T (âÿ1)� (5:22)

and
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X
I (i1,i2)

�x

xÿ1

�u

uÿ1

j(sÿ t) ds dt <
X

I T (i1,i2)

(P(U � uÿ xÿ 1)� P(U � uÿ x)� P(U � uÿ x� 1)):

Using (5.15), we obtain, for example,

X
I T (i1,i2)

P(U � uÿ x) �
XTi1

x�Ti1ÿ1�1

[P(U . Ti2ÿ1 ÿ x)ÿ P(U . Ti2 ÿ x)]

�
XTi2ÿ1ÿTi1ÿ1ÿ1

x�Ti2ÿ1ÿTi1

P(U . x)ÿ
XTi2
ÿTi1ÿ1ÿ1

x�Ti2
ÿTi1

P(U . x) (5:23)

� (áÿ 1)ÿ1f(yi2ÿ1 ÿ yi1 )1ÿá ÿ (yi2ÿ1 ÿ yi1ÿ1)1ÿá ÿ (yi2 ÿ yi1 )1ÿá

� (yi2 ÿ yi1ÿ1)1ÿágT 1ÿáh(T ) (5:24)

as T !1 (with the usual interpretation (yi2 ÿ yi1 )1ÿá � 0 and (yi2 ÿ yi1ÿ1)1ÿá � 0 when

i2 � d � 1). Observe that the factor in braces in (5.24) is non-zero because (i1, i2) 2A2 (see

(4.8)). Hence there is a constant d92 � d92(i1, i2) such thatX
I (i1,i2)

�x

xÿ1

�u

uÿ1

j(sÿ t) ds dt < d92T 1ÿáh(T ) (5:25)

and therefore

D1(T , i1, i2) � O(T (â_1)ÿáh(T )): (5:26)

One also shows that there are constants d3 � d3(i1, i2) such that

max
I T (i1,i2)

jAT (x, u)jâ < d3T â

andX
I T (i1,i2)

�����x

xÿ1

�u

uÿ1

[ j(uÿ x)ÿ j(sÿ t)]ds dt

���� <
X

I T (i1,i2)

j(uÿ x)

�x

xÿ1

�u

uÿ1

sup
xÿ1< t<x
uÿ1<s<u

����1ÿ j(sÿ t)

j(uÿ x)

����ds dt

� o
X

I T (i1,i2)

j(uÿ x)

 !
� o(T 1ÿáh(T ))

as T !1, since (sÿ t)=(uÿ x) is bounded away from 0 in the relevant intervals. Thus,

D2(T , i1, i2) � o(T âÿá�1 h(T )): (5:27)

as T !1. Relations (5.19), (5.26) and (5.27) imply (5.18) for l � 2, which concludes the

proof of Proposition 5.3. h

Proof of Proposition 5.4. One must distinguish between the cases â < áÿ 1 and â.áÿ 1.

Suppose ®rst â < áÿ 1. Then J3 (see (5.14)) can be written
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J3(T , è, y) < c
Xd

i�1

(C1(T , i, i� 1)� C2(T , i, i� 1))

where c is a constant,

C1(T , i, i� 1) � jèijâ
X

I T (i,i�1)

(Ti ÿ x)âP(U � uÿ x)

and

C2(T , i, i� 1) � jöi�1jâ
X

I T (i,i�1)

(uÿ x)âP(U � uÿ x):

But

C1(T , i, i� 1) � jèijâ
XTi

x�Tiÿ1�1

(Ti ÿ x)âP(U . Ti ÿ x)ÿ
XTi

x�Tiÿ1�1

(Ti ÿ x)âP(U . Ti�1 ÿ x)

24 35:
(5:28)

The ®rst sum in (5.28) is asymptotic to
P1

x�1xâP(U . x) � O(1) either if â,áÿ 1 or if

â � áÿ 1 and
P1

x�1xÿ1 h(x) ,1, and to
� x

1
xÿ1 h(x) dx if â � áÿ 1 and

P1
x�1xÿ1 h(x) � 1.

The second sum in (5.28) is bounded byXTiÿTiÿ1ÿ1

x�0

xâP(U . Ti�1 ÿ Ti) � O(T âÿá�1 h(T )),

and has the same upper bounds as the ®rst sum. Estimates of the same type hold for C2 when

i < d ÿ 1. This concludes the proof for â < áÿ 1.

Consider now the case â.áÿ 1. We must prove (5.17) and (5.18) for l � 3. Relation

(5.17) holds with l � 3, because writing

~J3(T , è, y) �
Xd

i�1

~C(T , i, i� 1),

one can show that as T !1,

~C(T , i, i� 1) :� ìÿ1

�Ti

Tiÿ1

�Ti�1

Ti

jèi(Ti ÿ x)� öi�1(uÿ x)jâ j(uÿ x) du dx

� ìÿ1

� yi

yiÿ1

� yi�1

yi

jèi(yi ÿ x)� öi�1(uÿ x)jâá(uÿ x)ÿáÿ1 du dx

" #
T âÿá�1 h(T ):

Let us turn to (5.18) for l � 3 and â.áÿ 1. We are in the case (i1, i2) 2A3 (see

(4.8)), that is i1 � i, i2 � i� 1, 1 < i < d, which is particularly delicate because it implies

Ti2ÿ1 � Ti1 , in the de®nition (5.15) of I T (i1, i2). The estimation (5.23) is still valid but

(5.24) fails, because now (5.23) converges to the constant ì, and hence one obtains, as

T !1,
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D1(T , i, i� 1) � O(T (âÿ1)� ):

One also shows that

D2(T , i, i� 1) � o(T âÿá�1 h(T )),

which concludes the proof of Proposition 5.4. h

6. Stationarity of the increments

In this section, we use the structure of the (®nite-dimensional) characteristic function (2.11)

of Zâ to show that this process has stationary increments. Observe that (2.11) de®nes the

®nite-dimensional distributions of the process Zâ(y) for all y > 0.

Proposition 6.1. The processes fZâ(y), y > 0g have stationary increments.

Proof. We have to show that

fZâ(y� h)ÿ Zâ(h), y > 0g�D fZâ(y)ÿ Zâ(0), y > 0g

for all h . 0. Since Zâ(0) � 0, it is suf®cient to show that for any real è1, . . . , èd ,Xd

j�1

è j[Zâ(yj � h)ÿ Zâ(h)]�D
Xd

j�1

è j Zâ(yj): (6:1)

We will prove equality of the scale parameters. Since this is clearly the case when â < á (see

(2.12)), we can suppose â.á.

The âth power of the scale parameter of the left-hand side of (6.1) can be written

I(è, y, h)� J (è, y, h), where

I(è, y, h) �
�1

0

����ÿö1(h ^ x)�
Xd

j�1

è j[(yj � h) ^ x]

����âxÿá dx,

J (è, y, h) �
�1

0

�1
0

����ÿö1(h ^ uÿ x)� �
Xd

j�1

è j((yj � h) ^ uÿ x)�

����âá(uÿ x)ÿáÿ1
� du dx

and ö1 �
Pd

j�1è j. We thus have to show that

I(è, y, h)� J (è, y, h) � I(è, y, 0)� J (è, y, 0): (6:2)

Starting with the I-term, make the change of variables x! xÿ h to obtain

I(è, y, h) �
�1
ÿh

����ÿö1(h ^ (x� h))�
Xd

j�1

è j(yj ^ x)� ö1 h

����â(x� h)ÿá dx:

Write
�1
ÿh
� � 0

ÿh
� �1

0
and note that

� 0

ÿh
� 0, while the integral

�1
0

yields
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I(è, y, h) �
�1

0

����Xd

j�1

è j(yj ^ x)

����â(x� h)ÿá dx:

Let us now turn to the J-term and make the change of variables u! uÿ h, x! xÿ h. We

obtain

J (è, y, h) �
�1
ÿh

�1
ÿh

����ÿö1(0 ^ uÿ x)� �
Xd

j�1

è j(yj ^ uÿ x)�

����âá(uÿ x)ÿáÿ1 du dx

since, for example, (yj � h) ^ (u� h)ÿ (x� h) � yj ^ uÿ x. Now write�1
ÿh

�1
ÿh

�
�0

ÿh

�0

ÿh

�
�1

0

�0

ÿh

�
�1

0

�1
0

�
�0

ÿh

�1
0

and note that the ®rst two integrals are identically zero. The third integral equals J (è, y, 0),

while the fourth is�0

ÿh

�1
0

����ö1x�
Xd

j�1

è j(yj ^ uÿ x)

����âá(uÿ x)ÿáÿ1 du dx

�
�1

0

����Xd

j�1

è j(yj ^ u)

����â du

�0

ÿh

á(uÿ x)ÿáÿ1 dx

�
�1

0

����Xd

j�1

è j(yj ^ u)

����â[uÿá ÿ (u� h)ÿá]du

� I(è, y, 0)ÿ I(è, y, h):

This establishes (6.2) and proves that Zâ has stationary increments. h
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