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Let fX tg, t 2 R, be a stochastic process. Suppose that the process may not be continuously observed,

yet an inference which is related to its probabilistic parameters, or to its sample path, is required. The

main purpose of this paper is to study sampling plans. A sampling plan is a method for deciding

about time instants T1, T2, . . . at which the process is observed. We study the effect of various

sampling plans and sampling rates on the expected time to an alarm in change-point problems (of the

mean). Our main effort is studying the asymptotic variance of the sum of the sampled observations

until time t. This variance determines asymptotically the expected time to an alarm. As a by-product,

we obtain the asymptotic variances of natural estimators for p � E(X t) and for St �
� t

0
X s ds.

Obviously, as the sampling rate is increased, a better estimation is possible. Our study enables us to

decide on the `right' sampling rate. This is analogous to the problem of deciding on the `right' sample

size in the case of independently and identically distributed observations.
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1. Introduction

Let fXtg, t 2 R, be a stochastic process observed only at the discrete points T1, T2, . . . :
Based on the sampled data, we want to estimate probabilistic parameters of the process such

as p � EX t, the time í at which there is a change in the mean, or quantities that are related

to the sample path such as St �
� t

0
X s ds. A decision at time t may be based only on

X T1
, X T2

, . . . , X Tk
, T1 < T2 < � � � < Tk < t. In this paper we discuss different sampling

plans, i.e. methods of choosing the instants T1, T2, . . . :
Our motivation comes from problems related to management of a fast network. Suppose

that the network has many users, and each user sends messages at random times. One could

be interested in the proportion of time accounted for by two users i and j communicating

between themselves, or one could be interested in the process de®ned by the busy and idle

periods of the network, etc. Sampling the network activity too often imposes an extra load

on the network and may be undesirable.

This leads us to investigate the model where at some instants T1, T2, . . . we obtain
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sampled information. The network example motivates us to put a special emphasis on 0±1

processes; for this reason we use the non-standard notation p for EX t.

There are other examples of processes, not necessarily 0±1, where the observations are

dependent; for example, fX tg may be the level of air pollution at time t. When deciding on

the frequency of the observation process or the sampling plan, one should obviously take

into account the dependence structure among the Xt. Thus, the additional information

gained from sampling every second rather than every 2 seconds is clearly negligible.

When the sampled data X T1
, X T2

, . . . are given, natural estimators for p � EX t and for St

are the sample average Pt and S t � tPt, respectively; see (2.1). As will be seen in Section 4,

the variance of the sampled sum S t affects the expected time to detect a change in the mean

of the process. In order to obtain minimum variance for those quantities we should space the

observations optimally. When the covariance structure of the process is completely known, an

optimal spacing is determined. Cases where the covariance structure and the probabilistic

mechanism of the process are known and sampling is still required, are when the unknown

quantity being estimated is related to the sample path and not to the probabilistic mechanism.

An example of an optimal design/spacing under such an approach in terms of minimizing

var(S t) is given in Theorem 3.6. If the probabilistic mechanism is not completely known or

(as in change-point problems) is expected to change, such an approach is usually impossible

or could be highly non-robust and misleading. Moreover, this approach violates the

randomization principle in experimental design, and may lead to systematic errors (see

Example 2.1). The above considerations lead us to study different types of sampling design,

in particular those in which the sampled instants are random. Robustness considerations lead

us to search for sampling plans with minimax properties (see Theorem 3.4).

In light of the above examples, if we want to estimate St, the accumulated amount of air

pollution in the time interval (0, t), we should determine the observational instants taking

into account the covariance structure, which may be reasonably assumed to be known from

long experience. When we want to estimate St, the accumulated busy time of one among

many current users of a network, it is unlikely that we will know the covariance structure

related to the process that is induced by this user.

The sampling designs that we study should be understood as routine surveillance

schemes. Thus the kind of asymptotics that seems relevant is as t approaches in®nity.

Our main interest is in considering different sampling methods, and studying the relation

between different sampling rates and the accuracy of their associated estimators. The study

of the asymptotic variance of the estimators enables us to determine the `right' sampling

rate. This is analogous to the problem of deciding on the `right' sampling size when

sampling independently and identically distributed (i.i.d.) observations. Such a decision is

usually based on the variance of the observations and their cost. The analogue in change-

point problems is less apparent; it will be better understood and demonstrated in Section 4.

There are three natural de®nitions for sampling plans, which we will discuss in an

increasing order of generalization.

1. Deterministic sampling plans. The instants T1, T2, . . . are ®xed numbers. An

important subclass is when the value of the increments fTi�1 ÿ Tig is a constant

independent of i.
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2. Random sampling plans. In this case the increments fTi�1 ÿ Tig are random variables

independent of the process. An important subclass is renewal sampling plans, that is,

where the increments are i.i.d. Another important subclass is of certain strati®ed

sampling plans.

3. Dynamic sampling plans. Here the next sampling instant Ti�1 is a random variable

whose distribution is a function of X T1
, . . . , X Ti

and T1, . . . , Ti.

In this paper we study only deterministic and random sampling plans, and postpone the study

of dynamic sampling plans to a future paper. See also Remark 4.2.

Sacks and Ylvisaker (1966) considered a design problem where we observe

fX t �
Pk

i�1âi f i(t)� å t, t 2 (0, 1)g, and wish to estimate the coef®cients â1, . . . , âk ; see

Ylvisaker (1987) for references. Cambanis and Masry (1983) investigated a similar problem,

testing X t � å t versus X t � f 1(t)� å t, t 2 (0, 1). In both models, the autocorrelation

function of the error terms and the functions f 1, . . . , f k are considered known. The related

design problem for prediction was considered by Schoenfelder and Cambanis (1982) and

Ylvisaker (1987). In a typical prediction design problem, points a , T1 , T2 , � � � , Tn , b

are selected such that
� b

a
X t dt can be estimated using the observations X T1

, . . . , X Tn
from

the random process fX tg. One main difference between these papers and our approach is

the type of asymptotics. They considered the case where the number of design points in a

given ®nite interval increases to in®nity, whereas we study the asymptotics where the time

interval approaches in®nity, while the number of design points per unit interval is kept

constant. A sample design similar to our strati®ed sampling, but for a different model and

different objectives, was investigated by Roll and Yadin (1986). Their motivation, however,

is relevant to our study; they considered a typical problem of industrial engineering where a

single `inspector' studies the long-run behaviour of many production inputs. Thus, instead of

a continuous perfect inspection of one production input, the inspector takes repeated

snapshots at random times from many production inputs.

Sampling from a stochastic process is related to Cochran's notion of sampling from a

superpopulation. For surveys about sampling techniques in such a context, see Bellhouse

(1988) and Murthy and Rao (1988). Finally, Brillinger (1973) studied asymptotic aspects of

sampling schemes in a manner similar to ours. He studied the asymptotic variance of S t for

general sampling plans that may be represented as stationary point processes.

In Section 2, we will consider a few examples. We will elaborate on the case where the

process fX tg is a homogeneous 0±1 Markovian process. Deterministic and random

sampling schemes will be examined according to the variances of their associated

estimators.

In Section 3, we will study properties of sampling plans. We will investigate plans with

i.i.d. increments and, in particular, exponential sampling plans, i.e., plans where fTi�1 ÿ Tig
are exponentially distributed with parameter ë, independent of each other and of the process

fX tg. The exponential distribution is an approximation to a situation in which there are

many channels, and at each sampling instance one of the channels is selected at random

and sampled. Another method that we will study is strati®cation, i.e. random sampling plans

that divide the time interval into subintervals of equal length, and sample one unit from
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each subinterval. We also elaborate on the case where fXtg is a Markov process which

takes 0±1 values and the sampling plan is deterministic (see also Example 2.3).

In Section 4 we will consider the change-point problem for detecting a change in

pt � EXt. Our asymptotic study that is based on a Brownian motion approximation of a

stationary process. Some references concerning change-point problems are Lorden (1971),

Shiryayev (1983), Siegmund (1985), Pollak (1987), Basseville and Nikiforov (1993) and

Brodsky and Darkhovsky (1993). The last two references are especially relevant to our work

since they deal with processes with dependent observations. Chapter 7 of Basseville and

Nikiforov considers change-point problems in parametric models of dependent observations

(like ARMA), rather than our nonparametric approach. In Chapter 4 of Brodsky and

Darkhovsky, there is a study of nonparametric cusum, which might be complementary to the

brief study that we do in Section 4. Neither of the above references on change-point

problems considers sampling plans; rather, they study sampling every observation (in

discrete time).

2. Examples

In the following, we will consider a few examples, which will help us to illustrate the

advantages and disadvantages of deterministic and random sampling plans.

Example 2.1. Consider the following process. Let a 2 [0, 1) be a constant, S be a Bernoulli

random variable, and let ô be distributed uniformly on [0, 1). Let X t � S for

t 2 [1n�0[2n� ô, 2n� a� ô), and 1ÿ S elsewhere. Hence the process is deterministic

given X ô.

To avoid trivialities, one may de®ne a non-deterministic version by letting the process

alternate at instant i only with a very high probability. However, it will be convenient to

think of the process as it was initially de®ned. Notice that for a � 1 the process is

stationary, but otherwise the process is not even weakly stationary.

Example 2.2. Consider the following Markov process. The process alternates between

intervals of 0 and 1, where the length of each `0 interval' is an exponential random variable

with mean ëÿ1
0 and the length of each `1 interval' is an exponential random variable with

mean ëÿ1
1 . Let X 0 � 1 with probability ë0=(ë1 � ë0):

We will now examine two deterministic sampling plans in the case of Example 2.1 (with

a � 1). The ®rst one samples every unit of time and the second every two units of time.

The natural estimator for p, based on the sample average, performs excellently in the ®rst

case and very poorly in the second case. The weakness demonstrated in the second case is

due to the violation of the randomization principle in experimental design or in sampling.

The way to prevent such phenomena is to use random sampling plans.

De®nition 2.1. Let T be a sampling plan. Let Nt � maxfijTi , tg be the number of

observations until time t. Suppose Nt=t!p ìÿ1. We then say that T has a sampling rate ìÿ1.
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Given a sampling plan, we will study the behaviour of

S t(X ; T) � X T1
� . . . � X TNt

,

Pt(X ; T) � S t(X ; T)=Nt, (2:1)

where, for the sake of de®niteness, 0=0 � 0. Those are the natural estimators for St and for

p � EXt.

We will compare sampling plans with the same sampling rate by comparing the

asymptotic variances of Pt and of S t.

The main purpose of this study is to determine the `right' sampling rate. Thus, we should

analyse the effect of increasing the sampling rate. Here is an example.

Example 2.3. Consider a Markovian process as described in Example 2.2. Consider the class

of deterministic sampling plans, where the increments Ti�1 ÿ Ti are of a ®xed size ì. Hence

the sampling rate is ìÿ1. Let ps
ij � P(X t�s � jjX t � i). It may be shown (see Karlin and

Taylor 1975, Exercise 7, p. 154) that

ps
ii �

ë1ÿi

ë0 � ë1

� ëi

ë0 � ë1

exp[ÿ(ë0 � ë1)s], i � 0, 1: (2:2)

Denote by ( p0, p1) the stationary distribution p0 � ë1=(ë1 � ë0), p1 � 1ÿ p0. Then it may

be veri®ed (see Good 1961) for the induced two-state Markov chain with transition

probabilities p
ì
ij that

var(S t) � t

ì
p0 p1

1� p
ì
11 ÿ p

ì
01

p
ì
10 � p

ì
01

� o(t)

� t

ì
p0 p1

1� exp(ÿ(ë0 � ë1)ì)

1ÿ exp(ÿ(ë0 � ë1)ì)
� o(t): (2:3)

(Henceforth, all o(t) and O(t) terms are as t!1.) Thus we have obtained a formula

relating the asymptotic variance of S t to the rate of the sampling plan.

3. Properties of sampling plans

Let fX tg be a stochastic process. De®ne

St � St(X ) �
� t

0

X s ds:

In the rest of this paper we will consider processes fX tg such that the above integral exists

with probability 1, and the variance of their associated process fStg satis®es, for some

constant B,

var(St) � Bt � o(t): (3:1)
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If the process is weakly stationary, i.e. R(s) � cov(X t, X t�s) is independent of t (as in the

case of stationary processes), (3.1) is equivalent to�1
0

R(s) ds � A ,1: (3:2)

The variance of the process then satis®es var(St) � 2At � o(t):
As will be seen in Section 4, the asymptotic variance of S t determines the asymptotic

expected time to an alarm in change-point problems. Thus minimizing var(S t) and

determining its magnitude for various sampling plans is our main goal. As a by-product,

under further conditions, we also obtain the asymptotic variance of Pt through the relation

in the following theorem. We also obtain E var(tPtjSt) asymptotically.

Here is a general result:

Theorem 3.1. Suppose ENt=t! ìÿ1, var(St) � O(t) and, for some á 2 (0, 1), P(jNt ÿ
t=ìj. tá) � o(tÿ1). Then

var(Pt) � (ì=t)2(var(S t)ÿ p2 var(Nt))� o(tÿ1):

Proof. Suppose, without loss of generality, that ì � 1. Then

var(Pt) � Ef(Pt ÿ p)21jNtÿ tj, î t
g � Ef(Pt ÿ p)21jNtÿ tj. î t

g,
where î t=t! 0 and î t=tá !1. The second term on the right is o(tÿ1) by assumption. Thus

E(S t ÿ Ntp)2

(t ÿ î t)2
> Ef(Pt ÿ p)21jNtÿ tj, î t

g >
E(S t ÿ Ntp)2

(t � î t)2
� o(tÿ1)

but

var(S t) � var(S t ÿ Ntp� Ntp) � var(S t ÿ Ntp)� p2 var(Nt):

h

Remark 3.1. When estimating St by tPt, the relevant quantity to study is var(tPtjSt) or, when

averaging, E var(tPtjSt). Notice that

var(tPt) � E var(tPtjSt)� var(E(tPtjSt)): (3:3)

Write E(tPtjSt) � St � Rt. In cases where

var(St � Rt) � var(St)� o(t) � Bt � o(t), (3:4)

we may derive the asymptotic value of E var(tPtjSt) through (3.3) and Theorem 3.1.

The results in this section are proved under two possible sets of conditions. For arbitrary

valued processes fXtg we will assume weak stationarity. When restricting ourselves to 0±1

processes fXtg, some of the results may be proved under weaker conditions, i.e. for a larger

set of 0±1 processes denoted X B, p. This is the set of all 0±1 processes satisfying EX t � p

and var(St) � Bt � o(t). In Example 2.1 for a 6� 1 the process is not weakly stationary but

it belongs to X B, p for a proper B.
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3.1. Renewal sampling plans

In the following we will study properties of renewal sampling plans, i.e. random sampling

plans with i.i.d. increments. We will ®rst give some de®nitions related to renewal theory.

Suppose fTi ÿ Tiÿ1g are distributed with distribution function F. Let F i(t) � P(Ti , t).

De®ne the renewal function U (t) �P1i�1 F i(t) � ENt. For some background on renewal

theory, see Siegmund (1985).

Theorem 3.2. Let fX tg be a process such that R(s) � cov(X t�s, X t) is independent of t.

Denote EX t � p. Let T be a random sampling method with i.i.d. increments, rate ìÿ1 and

renewal function U. Denote ó 2 � var(T1). Then

var(S t(X ; T)) � ìÿ1 t var(X0)� 2ìÿ1 t

�1
0

R(s) dU (s)� p2 var(Nt)� o(t)

� ìÿ1 t var(X0)� 2ìÿ1 t

�1
0

R(s) dU (s)� p2ó 2 tìÿ3 � o(t):

Proof. The proof follows by applying Theorem 5 in Brillinger (1973). See also a direct (but

similar) proof in Greenshtein and Ritov (1997). h

When the random variables (Ti�1 ÿ Ti) have a moment generating function a large-

deviation argument shows that the conditions of Theorem 3.1 are satis®ed. Thus the relation

var(Nt) � tó 2ìÿ3 � o(t) and Theorems 3.1 and 3.2 yield the asymptotic variance of Pt.

Among renewal sampling plans, the exponential sampling plan (i.e. (Ti�1 ÿ Ti),

i � 1, 2, . . . , are independent exponential random variables) is especially appealing. In

the case of exponential sampling plans, U (t) � t, and the asymptotic variance of S t(X ; T)

depends on the covariance structure of the process fXtg only through B �
var(St) � 2

�1
0

R(s) ds. Exponential sampling plans may serve as an approximation to

many other plans in cases where the sampling action succeeds only with small probability.

An explicit expression for the asymptotic variance of S t is given in the following.

Corollary 3.3. Let fX tg, t 2 R , be a weakly stationary process. Let T be an exponential

sampling plan. Then, for every real number k,

var(S t ÿ kNt) � ët var(X 0)� ë2 Bt � ( pÿ k)2ët � o(t):

Proof. The claim follows directly by applying Theorem 3.1 to the process ~S t � S t ÿ kNt,

which is induced by the process ~X t � (X t ÿ k), upon realizing that for an exponential

sampling plan dU (s) � ë ds. h

The above result holds for a 0±1 process in X B, p, even if it is not weakly stationary; see

Greenshtein and Ritov (1997).

In the case of exponential sampling plans the value of Rt in (3.4) is identically zero, thus
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(3.4) is trivially satis®ed. Hence the asymptotic variance of tPt conditional on St may be

evaluated. We believe that (3.4) is satis®ed under more general renewal sampling plans.

3.2. Strati®ed sampling plans

Another random sampling plan that we will study is the strati®ed sampling plan. Consider the

real line as a union of intervals or strata of length ì. A strati®ed plan with rate ìÿ1 is the

sampling plan that randomly samples a point from every stratum according to a uniform

distribution. The strati®ed plan has the following appealing minimax property.

Theorem 3.4. Let T be a strati®ed sampling plan with rate ìÿ1, and let ~T be any random

sampling plan with rate ìÿ1. Then

lim
t!1

var(S t(X ; T ))=t

p(1ÿ p)=ì� B=ì2
< 1, X 2 X B, p,

sup
X2XB, p

lim sup
t!1

var(S t(X ; ~T))=t

p(1ÿ p)=ì� B=ì2
> 1:

Hence, the strati®ed sampling plan is asymptotically minimax.

Proof. Let At � fs : Xs � 1, s , tg be the random set of indices s for which Xs � 1. Let

L(At) be the Lebesgue measure of At. Then

var(S t(X ; T)) � E(var(S tjAt))� var(E(S tjAt))

� E(var(S tjAt))� var(St=ì)

� E(var(S tjAt))I(L(At)=t 2 ( pÿ o(1), p� o(1)))� Bt=ì2 � o(t)

< p(1ÿ p)
t

ì
� Bt=ì2 � o(t):

The last inequality is obtained since

1

[t=ì]
var(S tjAt) <

1

[t=ì]

X[ t=ì]ÿ1

i�0

L(Ait)

ì
1ÿ l(Ait)

ì

� �

<
L(A9t)

ì[t=ì]
1ÿ L(A9t)

ì[t=ì]

� �
by the Cauchy±Schwarz inequality; here Ait � At \ [iì, (i� 1)ì), A9t � At \ [0, ì[t=ì]) and

[x] is the largest integer smaller than x.

We now prove the second claim by constructing a sequence of processes fX ng 2 X B, p

such that
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lim inf
n!1 lim sup

t!1
var(S t(X n; ~T))=t

p(1ÿ p)=ì� B=ì2
> 1

for any sampling plan with rate ì. The idea is simple. Different sampling plans with the

same sampling rate affect var(S t) only through the term E(var(S tjAt)). If the process fXtg
consists of i.i.d. Bernoulli( p) variables, then any sampling plan with rate ìÿ1 would have

var(S tjAt) � p(1ÿ p)t=ì� o(t). However, for such a process St is not de®ned, since the

sample path is not measurable. We will construct a stationary process that is close to i.i.d.

Bernoulli( p), but still have var(St) � Bt � o(t):
Formally, we need the following construction. Let W1 and Wi�1 ÿ Wi, i � 1, 2, . . . , be

i.i.d. exponential with mean âÿ1
n . Let N1, Ni�1 ÿ Ni, i � 1, 2, . . . , be i.i.d. geometric

random variables. Note that WNi�1
ÿ WNi

are i.i.d. exponential, with mean áÿ1
n . Let ðn

i ,

i � . . . , ÿ1, 0, 1, . . . , be i.i.d. random variables in (0, 1), with mean p and variance ó 2
n.

The process X n is constant in the intervals (Wi, Wi�1], its value in a given interval is

independent of its value in any other interval, and is equal to 1 with probability ðn
j where

Nj < i , N j�1.

The parameters án, ân and ó 2
n are selected so that X n 2 X B, p. Note that X n

0 and X n
t are

in the same `small interval' with probability eÿâ n t and not in the same `large interval' with

probability 1ÿ eÿán t. Hence the autocorrelation is equal to

Rn(t) � E(X (0)X (t))ÿ p2

� E(ðn
0 eÿâ n t � (ðn

0 )2(eÿá n t ÿ eÿâ n t)� ðn
0 p(1ÿ eÿá n t))ÿ p2

� ( pÿ p2 ÿ ó 2
n)eÿâ n t � ó 2

neÿán t:

The parameters therefore satisfy

B=2 �
�1

0

Rn(t) dt � ( pÿ p2 ÿ ó 2
n)=ân � ó 2

n=án:

We consider the limit where ân !1, án ! 0 and ó 2
n=án ! B=2.

Now

var(S t(X n; ~T)) > E var(S t(X n; ~T)j~T),

but

var(S t(X n; ~T)j~T � t) �
X

i

X
j

Rn(tj ÿ ti),

where t � (t1, t2, . . . , tm). Let ån ! 0, ån=án !1 be an arbitrary sequence of constants.

Then
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X1
j�1

Rn(tj ÿ ti) � Rn(0)� 2
X1
j�i�1

Rn(tj ÿ ti)

> p(1ÿ p)� 2ó 2
n

X1
j�i�1

eÿá n( tjÿ ti)

> p(1ÿ p)� 2ó 2
n

X1
m�0

eÿmån=án

X
tjÿ ti2 mån

á n
, (m�1)ån

án

� � eÿá n( tjÿ ti)�må n

> p(1ÿ p)� 2(1ÿ ån)
ó 2

n

ánì

X1
m�0

eÿmånån

! p(1ÿ p)� B=ì,

for i such that ti and t ÿ ti are large.

The second claim follows since if tnt
< t , tn t�1 thenXnt

i�1

Xnt

j�1

Rn(tj ÿ ti) � (1� o(1))
Xnt

i�1

X1
j�ÿ1

Rn(tj ÿ ti)

and nt=t! ìÿ1. h

Proposition 3.5. Let fX tg be a weakly stationary process. Let T be a strati®ed plan with rate

ìÿ1. Then

var(S t(X ; T)) � t

ì
var(X 0)� Bì t � o(t),

where Bì � 2ìÿ3
�1

0
(t ^ ì)R(t) dt and R(s) � cov(X t, X t�s).

Proof. The proof follows from the following calculation:X1
j�1

cov(X Ti
, X Ti� j

) � ìÿ2
X1
j�1

�ì
0

�( j�1)ì

jì
R(t ÿ s) dt ds

� ìÿ2

�ì
0

�1
ì

R(t ÿ s) dt ds:

� ìÿ2

�
(t ^ ì)R(t) dt:

h

Remark 3.2. It was pointed out by a referee that for the class of weakly stationary 0±1

processes with EXt � p and var(X t) � Bt � o(t), the ®rst part of Theorem 3.4 follows
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immediately from Proposition 3.5. This is since var(X0) � p(1ÿ p) and Bì < (2=ì2)B.

Notice, however, that our proof of the ®rst claim in Theorem 3.4 was for the wider class,

X B, p.

The conditions of Theorem 3.1 are trivially satis®ed for strati®ed sampling plans, hence

Theorem 3.1 may be used to evaluate the asymptotic variance of Pt. The value of Rt in

(3.4) is identically zero, thus (3.4) is trivially satis®ed and the asymptotic variance of tPt

conditional on St may be evaluated.

3.3. Optimal deterministic plans for 0±1 Markov processes

For the purpose of change-point problems, we want to design sampling plans such that

var(S t(X ; T)) is asymptotically minimized. When a speci®ed covariance structure R(s) �
cov(Xt, X t�s) is given, one may (try to) ®nd a sequence of points t0

1, t0
2, . . . satisfying

ti=ì � i� o(i), such that var(X T1
. . . , X TNt

) is asymptotically minimized among all

sequences ftig that satisfy ti=ì � i� o(i). Now consider the deterministic sampling plan

satisfying Ti � t0
i . Such a ®xed plan is good as long as the covariance structure of the process

does not change much; otherwise it may be very inef®cient. In any case, it has the weakness

of an experimental design that violates the randomization principle. One approach could be to

choose a sampling plan that is a mixture of the deterministic sampling plan described and

some random sampling plan. Still there are natural cases where a certain deterministic plan is

the most ef®cient for a class of possible processes; hence for this class the plan is robust.

This subsection shows that in a situation where it is known that the process fX tg is a

homogeneous 0±1 Markov process, the best among random sampling plans with rate ìÿ1, in

terms of var(X T1
. . . , X TNt

), is the deterministic plan with equal increments. This is implied

by the following Theorem 3.6. For related results see Blight (1973) and Theorem 4.1 in

Bellhouse (1988) which is attributed to J. HaÂjek.

Theorem 3.6. Let fXtg be a stationary 0±1 Markov process. Let T be a deterministic

sampling plan with equal increments of size ì. Let ~T be any random sampling plan satisfying

Nt=t!p ìÿ1. Then

var(S t(X ; T)) < var(S t(X ; ~T))� o(t):

To prove this theorem we require the following lemmas.

Lemma 3.7. Let R be a function on the real line. De®ne

hn(T1, . . . , Tn) �
X

i, j

R(Ti ÿ Tj):

Suppose R is symmetric around zero and convex on [0, 1). Then hn is convex on the convex

domain consisting of all the vectors (T1, . . . , Tn) satisfying 0 < T1 < T2 < � � � < Tn <1.
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The proof is omitted.

Lemma 3.8. Let hn and R be functions as de®ned in Lemma 3.7, where R is the convex

function R(s) � a exp(ÿbjsj). Suppose the minimum of hn, over 0 < T1 < � � � < Tn < nÿ 1,

is attained at the point (T0
1, . . . , T0

n). Then

hn(T0
1, . . . , T 0

n) � h(0, 1, 2, . . . , nÿ 1)� o(n):

Proof. Without loss of generality, let a � b � 1. We ®rst calculate the partial derivative of hn

at a coordinate i at the point (T1 � 0, . . . , Tn � nÿ 1):

@hn

@Ti

� ÿ
X
j , i

exp(ÿi� j)�
X
j . i

exp(ÿ j� i):

By symmetry, terms are cancelled and we obtain, for k log(n) , i , nÿ k log(n), that

j@hn=@Tij � O(expÿ [k log(n)]). Otherwise the partial derivative is of order O(1). Our next

step is to show that, for i , k log(n), jT0
i ÿ (iÿ 1)j, ���

n
p

(say). This follows since otherwise

we could ®nd j, j� 1 , k log(n), such that jT0
j ÿ T0

j�1j.
���
n
p

=k log(n). This leads to a

contradiction of the fact that (T0
1, . . . , T0

n) is the point where hn attains its minimum, and

may be seen as follows. There are indices l, l � 1 such that jT 0
l ÿ T 0

l�1j, 1. Thus the vector

(T1
1 . . . , T1

n) satisfying

T1
1 � T0

1, . . . , T 1
j � T0

j , T1
j�1 � (T0

j � T0
j�1)=2, T1

j�2 � T0
j�1, . . . , T1

l�1 � T0
l ,

T1
l�2 � T 0

l�2, . . . , T1
n � T 0

n

has a smaller value of hn. Similarly, we show for i . nÿ k log(n) that jTi
0 ÿ (iÿ 1)j, ���

n
p

.

Obviously jTi
0 ÿ (iÿ 1)j, n for every i. Now, by the Lagrange theorem,

hn(T 0
1, . . . , T0

n)ÿ h(0, . . . , nÿ 1) �
Xn

i�1

@hn

@Ti

(èi)(T
0
i ÿ (iÿ 1))

for points èi 2 (T 0
i , iÿ 1). By the convexity of hn and by the above discussion, the last

quantity is of an order of magnitude n2 expÿ (k log(n))� 2k log(n)
���
n
p � o(n) for k . 2.

h

Proof of Theorem 3.6. Without loss of generality, let ì � 1. Now

var(S t(X ; ~T)) � E
X

~Ti , ~T j , t

R(~Ti ÿ ~T j):

Here R(~Ti, ~T j) � cov(X ~Ti
, X ~T j

). It may be deduced from (2.2) in Example 2.3 that

R(s) � a exp(ÿbs), where a � (ë0=(ë0 � ë1))2 and b � ë0 � ë1. Now
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E
X

~Ti , ~T j , t

R( ~Ti ÿ ~T j) � EE
X

~Ti , ~T j , t

R(~Ti ÿ ~T j)jNt

 !

> E(Ntp0 p1)
1� p

t=Nt

11 ÿ p
t=Nt

01

p
t=Nt

10 � p
t=Nt

01

 !
� o(t) (3:5)

� t( p0 p1)
1� p1

11 ÿ p1
01

p1
01 � p1

01

 !
� o(t) (3:6)

� var(S t(X ; T))� o(t): (3:7)

Inequality (3.5) follows from (2.3) in Example 2.3 and from Lemma 3.8. Equality (3.7)

follows since Nt=t!p 1. Equality (3.7) follows, again, from (2.3). h

4. Sampling rate and expected time to alarm

In this section we will formulate and study a change-point problem related to our processes

fX tg. Suppose that at an unknown time í, there is a change in the stochastic mechanism of

the process, resulting in a change in the mean of its stationary distribution; in the case of a

0±1 process, this means that lim t!1P(X t � 1) 6� p. In such a case we want to declare an

alarm. Let T be a sampling plan. An alarm is a stopping rule ô, which at time t is a function

of X T1
, . . . , X TNt

and T1, . . . , TNt
. We are interested in the expectation of (ôÿ í)� under a

change and the expectation of ô when there is no change.

When doing routine sampling (or surveillance) in order to detect a change in the

stationary mean, obviously as the sampling rate becomes higher, more ef®cient stopping

rules may be designed. Here, more ef®cient rules should be understood as rules with

smaller expected time to an alarm and larger expected time to a false alarm. Still, as

discussed in the Introduction, high rates of sampling might be undesirable. Thus, a desired

rate is a compromise. In order to determine it we should study the relation between the

sampling rate and the expected time to alarm or false alarm.

Another relevant issue is the type of sampling plan to be chosen ± strati®ed, exponential,

deterministic, etc. Different considerations might apply as discussed in the Introduction.

When the covariance structure of the controlled process is known and no `dramatic' change

in it is expected after the change time í, we might design a deterministic sampling plan.

However, we might want to use types of randomized sampling plans for robustness reasons

and to avoid systematic errors. The issue of the type of sampling plan will not be discussed

further.

The main purpose of this section is to develop tools to evaluate and to decide on the

`right' sampling rate for a given type of plan.

We will study the asymptotic behaviour of sampling plans and its relation to their

sampling rate. In Section 4.1, the development is for general random sampling plans. In
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Sections 4.2 and 4.3, we elaborate on two cases: where T is an exponential sampling plan;

and where T is a strati®ed sampling plan.

4.1. General random sampling plans

We will study the cusum type of stopping rule, denoted ô � ô(k, b), and de®ned as follows.

Let ~ô0 � 0 and de®ne, for i > 1, the stopping rules ôi � ôi(k, b) by

~ôi � infft : t . ~ôiÿ1, 9s 2 (~ôiÿ1, t), S t ÿ Ss ÿ k(Nt ÿ Ns) =2 (0, b)g:
Now de®ne the stopping rule ô(k, b) to be

ô �
XN

i�1

~ôi: (4:1)

Here N is the ®rst index such that the stopping time of ~ôN occurs when

max t Nÿ1<s< tS t ÿ Ss ÿ k(Nt ÿ Ns) > b.

The choice of k and b in the above depends on the particular problem and constraints;

see the numerical examples below.

In the following, we give a formula relating the sampling rate and the expected time to

an alarm. We will approximate the process S t ÿ k Nt, de®ned by a stationary process fX tg
with a stationary mean p and a given sampling plan with rate ìÿ1, by a Brownian motion

with drift coef®cient è � ( pÿ k)ìÿ1 and variance coef®cient ó 2
k . To be more precise, we

assume that the processes SsT ÿ kNsT ÿ ( pÿ k)sT=(ìók

��
t
p

), s 2 (0, aT ), converge weakly

to a Brownian process, where X t is weakly stationary and aT !1. General conditions

under which such a functional central limit theorem is valid may be found in Ethier and

Kurtz (1986, Theorem 3.1, p. 351). A rigorous (yet straightforward) way of incorporating

these conditions into our problem may be found in Greenshtein and Ritov (1997); see also

related results in Chapter 4 of Brodsky and Darkhovsky (1993).

Notice that S t ÿ kNt � ~S t, where ~S t is induced by the stationary process ~X t � (X t ÿ k)

and the particular sampling plan. Thus the theory developed in the previous section may be

applied to evaluate the coef®cient ó 2
k � lim t!1 var(~S t)=t.

A straightforward adaptation of Theorem 3.6 and expression (2.57) in Siegmund (1985)

(see Greenshtein and Ritov 1997, for details) implies that the expected time to a false alarm

is

E(ô) �
1=2(è=ó k)ÿ2

�
exp ÿ 2èb

ó 2
k

� �
� 2èb

ó 2
k

ÿ 1

�
, è 6� 0,

b2

ó 2
k

, è � 0:

8>><>>: (4:2)

This is the expected time until a false alarm from time 0, or the time to alarm from the

change point in the worst case (see Lorden 1971). It may be seen, from the last equation, that

the dependence structure of the process fXtg affects the expected time to an alarm only

through the asymptotic variance coef®cient ó 2
k .
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4.2. Exponential sampling plans

In the following we will apply the above results to the case where T is an exponential

sampling plan. In order to apply formula (4.2), we need the expression for ó 2
k. The

expression is given in Corollary 3.3. In the development for exponential sampling plans we

denote ìÿ1 � ë.

In the following we illustrate the results that were obtained by a numerical study. For any

procedure that detects a change in a process, if the expected time to detect a change is

®nite, then the expected time until false alarm is ®nite as well. The cusum procedure is

de®ned by two parameters, b and k. Usually they are found so that the time to a (true)

alarm under a given value p1 of p is minimized, while the time to a (false) alarm when

p � p0 is constrained to a given value. This value represents the tolerable time to false

alarm under normal conditions. In Figure 1 we plotted equation (4.2) when the expected

time to false alarm was restricted to 10 000 under p � 0:1, and the parameters of the

procedure were chosen to minimize the detection time under p � 0:12. That is, we

essentially maximized the slope of the time to detection as a function of p. The equation is

plotted for two different values of B, 0.02 and 0.2, and four different values of ë. It can be

seen that the performance of the procedure hardly changes when the sampling rate is

increased from 1 to 10. It may also be seen that the advantage in increasing the sampling

rate is more signi®cant under B � 0:02 than under B � 0:2. The explanation for this is that

a large value of B means a strong positive dependence (see (3.1) and (3.2)) among the

variables Xt. Thus, the extra information in more frequent sampling is small.

Also plotted are Monte Carlo estimated times to false alarm of a 0±1 Markov process as

in Example 2.2, with the appropriate parameters. For example, p � 0:1 and B � 0:02

correspond to ë0 � 0:9 and ë1 � 8:1, and an average cycle time of 1.235. The value of ë,

the sampling intensity, was taken to be equal to 1. The estimates are based on 100

simulations. Since the distribution of the detection times is approximately exponential, the

standard error is approximately 10% of the mean time. Note that the estimated values for

the different values of p are highly correlated. It can be seen that the asymptotic

approximations are pretty good.

The Monte Carlo estimated times to detection were 9270, 216, 108, 71 and 52, for

p � 0:1, 0:2, . . . , 0:5, respectively. That is, the time to detection is approximately 180 times

longer under p � 0:1 than under p � 0:5.

4.3. Strati®ed sampling plans

In the following we will examine our general development in the case where T is a strati®ed

sampling plan. In this case ó 2
k is independent of k, since Nt is deterministic, and its value is

given in Proposition 3.5. In practice, when determining the sampling rate ìÿ1, we should

assume that under a change in the probabilistic mechanism of the process, which results in a

small change in the mean of its stationary distribution, the change in ó 2
k is negligible.

In the following, we take fXtg as a 0±1 Markovian process. Initially the process has the

parameters ë0 � 1 and ë1 � 1 (see Example 2.1). We study the performance of strati®ed
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sampling plans with four values of sampling rates under a change in ë1. As in the

numerical study of the exponential sampling plans, the time to false alarm was restricted to

10 000, and the parameters b and k were chosen to minimize the expected time to alarm at

the point ë1 � 0:98 under the restriction. The results may be seen in Figure 2.

Figure 1. Time to alarm as a function of p, for two different values of the variance coef®cient B and

four sampling rates ë. The lines are plots of equation (4.2), while the stars denote the average from

100 Monte Carlo experiments of a 0±1 Markov process with sampling intensity 1.
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We conclude with two remarks on generalizations and extensions of the results in this

section.

Remark 4.1. One generalization is to the case where there are errors in measurements ± i.e.

suppose that the experimenter observes the process ~X Ti
, where ~X Ti

� XTi
� åTi

, and fåTi
g are

i.i.d. random errors with mean 0.

A procedure that suggests itself is ®rst to estimate XTi
by X̂ t, where the estimator is

based on the previous observations ~X T1
, . . . , ~X TNt

and T1, . . . , TNt
. Then use the statistic

~S t ÿ kNt, where Ŵ t � X̂ T1
, . . . , X̂ TNt

, along the lines of Section 4. A naive estimator that

suggests itself is X̂ Ti
� ~X Ti

.

Remark 4.2. Another direction of generalization is to the case of dynamic sampling. It seems

plausible that a signi®cant improvement will result if we permit sampling plans with dynamic

sampling rate. It also seems plausible that the intensity of a `good' sampling plan will be

positively correlated with the `amount of evidence' in favour of the event that a change has

occurred. Such an approach will lead us to investigate more general diffusion approximations

Figure 2. Time to alarm as function of ë1 for four sampling rates ìÿ1. The lines are plots of equation

(4.2) for 0±1 Markov processes with parameters ëi, i � 1, 2.
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than used in this section. An approach somewhat similar in spirit may be found in Assaf and

Ritov (1989).

Acknowledgement

The research of the ®rst author was supported the fund for the promotion of research at

Technion. We are grateful to Michael Schurman for suggesting and describing the problem of

sampling from a network. The contribution of the referees and an Associate Editor to a

critical improvement of the presentation is acknowledged.

References

Assaf, D. and Ritov, Y. (1989) A dynamic sampling approach for detecting a change in the drift of

Brownian motion. A non-Bayesian model. Ann. Statist., 17, 793±800.

Basseville, M. and Nikiforov, I.V. (1993) Detection of Abrupt Changes: Theory and Application.

Englewood Cliffs, NJ: Prentice Hall.

Bellhouse, D.R. (1988) Systematic sampling. In P.R. Krishnaiah and C.R. Rao (eds), Handbook of

Statistics 6: Sampling, pp. 125±145. Amsterdam: North-Holland.

Blight, B.J.N. (1973) Sampling from an autocorrelated ®nite population. Biometrika, 60, 375±385.

Brillinger, R.D. (1973) Estimation of the mean of a stationary time series by sampling. J. Appl.

Probab., 10, 419±431.

Brodsky, B.E. and Darkhovsky, B.S. (1993) Nonparametric Methods in Change-Point Problems.

Dordrecht: Kluwer Academic Publishers.

Cambanis, S. and Masry, E. (1983) Sampling designs for the detection of signals in noise. IEEE

Trans. Inform. Theory, IT-29, 83±104.

Ethier, N.S. and Kurtz, T.G. (1986) Markov Processes. Characterization and Convergence. New York:

Wiley.

Good, J.I. (1961) The frequency count of a Markov chain and the transition to continuous time. Ann.

Math. Statist., 32, 41±48.

Greenshtein, E. and Ritov, Y. (1997) Sampling designs for detecting a change in the mean of a

stationary distribution. Technical Report, Dept. of Industrial Engineering, Technion.

Karlin, S. and Taylor, H.M. (1975) A First Course in Stochastic Processes. New York: Academic

Press.

Lorden, G. (1971) Procedures for reacting to a change in distribution. Ann. Math. Statist., 42, 1897±

1908.

Murthy, M.N. and Rao, T.J. (1988) Systematic sampling with illustrative examples. In P.R. Krishnaiah

and C.R. Rao (eds), Handbook of Statistics 6: Sampling, pp. 147±185. Amsterdam: North-

Holland.

Pollak, M. (1987) Average runlength of an optimal method of detecting a change in distribution. Ann.

Statist., 15, 749±779.

Roll, Y. and Yadin, M. (1986) Activity sampling in a stochastic environment. IIE Trans., 18, 343±349.

Sacks, J. and Ylvisaker, D. (1966) Designs for regression problems with correlated errors. Ann. Math.

Statist., 37, 66±89.

696 E. Greenshtein and Y. Ritov



Schoenfelder, C. and Cambanis, S. (1982) Random designs for estimating integrals of stochastic

processes. Ann. Statist., 10, 526±538.

Siegmund, D.O. (1985) Sequential Analysis. New York: Springer-Verlag.

Shiryayev, A.N. (1983) On optimal methods in earliest detection problems. Theory Probab. Appl., 8,

26±51.

Ylvisaker, D. (1987) Prediction and design. Ann. Statist., 15, 1±19.

Received October 1997 and revised December 1999

Sampling from a stationary process 697


