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We show an approximation in law of the Brownian sheet by processes constructed from the Poisson

process in the plane. This result was inspired by a similar result of Stroock in the one-parameter

case.

Keywords: two-parameter Poisson process; two-parameter Wiener process; weak convergence

1. Introduction and main result

The purpose of this paper is to prove a weak convergence to the Brownian sheet result for

processes constructed from a two-parameter Poisson process. We seek an analogous result, in

the two-parameter case, of the following theorem proved by Stroock (1982).

Theorem. Consider a standard Poisson process, fN (t), t > 0g, and de®ne, for any å. 0, the

continuous processes

yå � yå(t) :� å

� t=å2

0

(ÿ1)N (s) ds, t 2 [0, T ]

( )
:

If (På) are the laws of the yå in the Banach space C ([0, T ]) of continuous functions on

[0, T ], then (På) converges weakly, as å tends to zero, towards the Wiener measure.

A motivation for proving results of this type is that they provide examples of processes

of ®nite variation that can be approximated in law by the Wiener process. These processes

have very different properties from the classical examples constructed from sums of

independent random variables and from stationary processes, which also converge in law to

the Wiener process.

Another point of interest is that they give a nice relationship between the two more

important processes.

Our result is the following:
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Theorem 1.1. De®ne

xå(s, t) :� å

� t=å

0

� s=å

0

�����
xy
p

(ÿ1)N(x, y) dx dy; (s, t) 2 [0, S] 3 [0, T ]

( )
,

where fN (x, y); x, y > 0g is a Poisson process in the plane.

Consider På the image law of xå in the Banach space C ([0, S] 3 [0, T ]) of continuous

functions on [0, S] 3 [0, T ]. Then, (På) converges weakly, as å tends to zero, towards the

law on C ([0, S] 3 [0, T ]) of a Brownian sheet.

The integrand (ÿ1)N (x, y) changes the sign very quickly if there are a lot of points around

it. So, when å tends to zero, (ÿ1)N (x=å, y=å) tends to something which has independent values

at each point and, properly normalized, is approximately white noise.

One might expect that the result in the two-parameter case was that the processes de®ned

by

Yå(s, t) :� å

� t=å

0

� s=å

0

(ÿ1)N (x, y) dx dy

converge weakly to the Brownian sheet. But it can be proved that the Yå(s, t) converge to

zero, as å tends to zero, in L2(Ù), for all (s, t) 2 [0, S] 3 [0, T ].

An intuitive reason for this apparent pathology is that the speed of convergence is not the

same for all points (x, y). It is slower near the origin than further away, and the square root

factor expresses that. Another reason is the following.

We can write the Stroock processes as

yå(t) �
� t

0

1

å
(ÿ1)N (s=å2) ds,

the process de®ned in Theorem 1.1 as

xå(s, t) �
� t

0

� s

0

1

å2

�����
xy
p

(ÿ1)N (x=å, y=å) dx dy

and

Yå(s, t) �
� t

0

� s

0

1

å
(ÿ1)N (x=å, y=å) dx dy:

If we consider the covariance function of the integrand process in the expression of yå,

Kå(t, t9) � E
1

å2
(ÿ1)N ( t=å2)(ÿ1)N( t9=å2)

� �
ÿ 1

å2
E[(ÿ1)N ( t=å2)]E[(ÿ1)N ( t9=å2)]

� 1

å2
exp ÿ 2jt ÿ t9j

å2

� �
ÿ 1

å2
exp ÿ 2(t � t9)

å2

� �
,

it is clear that, for any t . 0, as a function of t9, this covariance converges weakly, as å tends
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to zero, to ät, the unit mass measure at the point t (which is the `covariance function' of the

white noise).

On the other hand, if we compute the covariance for the integrand processes in the

expression of Yå and xå, we can see that K Y
å ((s, t), (s9, t9)) as a function of (s9, t9)

converges weakly to zero, while K x
å((s, t), (s9, t9)) tends weakly to ä(s, t). These two last

facts can be proved by similar arguments to those used in the proof of Lemma 4.4 below.

In order to simplify the notation we denote by Nì(x, y) the random variable

N (x
���
ì
p

, y
���
ì
p

). Then fNì(x, y); (x, y) 2 R2
�g is a Poisson process with intensity ì. Note

that

xå(s, t) � 1

å2

� t

0

� s

0

�����
xy
p

(ÿ1)
N

1=å2 (x, y)
dx dy:

Setting n � 1=å2, we are looking for the weak limit as n!1 of

xn(s, t) :� n

� t

0

� s

0

�����
xy
p

(ÿ1)Nn(x, y) dx dy, (1)

and we denote by Pn the image law of xn in the space C ([0, S] 3 [0, T ]).

The paper is organized as follows. Section 2 is devoted to some preliminaries on two-

parameter processes. The proof of tightness of the family of laws (Pn) is given in Section 3.

Finally, in Section 4, we identify all the possible weak limits of subsequences of (Pn) as the

Wiener measure.

A lot of the estimates in the paper contain constants (not depending on n). We use the

same letter, K, for these constants, although their actual value can vary from one expression

to the next.

2. Preliminaries

We will use the notation and de®nitions introduced in the basic work of Cairoli and Walsh

(1975) on stochastic calculus in the plane. We recall some of them here.

Let (Ù, F , P) be a complete probability space and let fF s, t; (s, t) 2 [0, S] 3 [0, T ]g be

a family of sub-ó-®elds of F such that:

(i) F s, t � F s9, t9 for any s < s9, t < t9;
(ii) F 0,0 contains all null sets of F ;

(iii) for each z 2 [0, S] 3 [0, T ], F z � \z , z9F z9, where z � (s, t) , z9 � (s9, t9) denotes

the partial order on [0, S] 3 [0, T ], meaning that s , s9 and t , t9.

Given (s, t) , (s9, t9), we denote by Äs, t X s9, t9 the increment of the process X over the

rectangle ((s, t), (s9, t9)], that is,

Äs, t X s9, t9 � X s9, t9 ÿ X s, t9 ÿ X s9, t � X s, t:

It is said that an F z-adapted process X � fX z; z 2 [0, S] 3 [0, T ]g is a martingale if

E(jXzj) ,1 for all z 2 [0, S] 3 [0, T ] and
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E(X s9, t9 ÿ Xs, tjF s, t) � 0, for any (s, t) ,(s9, t9):

It is said that an F z-adapted process X � fX z; z 2 [0, S] 3 [0, T ]g is a strong

martingale if E(jX zj) ,1 for all z 2 [0, S] 3 [0, T ], Xs,0 � X0,s � 0 for all s > 0 and

E(Äs, t X s9, t9jF S, t _ F s,T ) � 0, for any (s, t) , (s9, t9):

De®nition 2.1. An F s, t-Brownian sheet is a continuous, adapted process W � fWs, t;

(s, t) 2 [0, S] 3 [0, T ]g such that Ws,0 � W0, t � 0 almost surely (a.s.), for all

(s, t) < (s9, t9), the increment Äs, tWs9, t9 is independent of F S, t _ F s,T and is normally

distributed with zero mean and variance (s9ÿ s)(t9ÿ t).

If we do not specify the ®ltration, (F s, t) will be the ®ltration generated by the process

itself, completed with the null sets of F W � ófWs, t, (s, t) 2 [0, S] 3 [0, T ]g.

De®nition 2.2. Let fF s, tg be a family of sub-ó- ®elds of F satisfying the previous conditions

for all (s, t) 2 R2
�. An F s, t-Poisson process is an adapted, cadlag process N � fNs, t;

(s, t) 2 R2
�g, such that, Ns,0 � N0, t � 0 a.s., for all (s, t) < (s9, t9) the increment Äs, t Ns9, t9 is

independent of F 1, t _ F s,1 and has a Poisson law of parameter (s9ÿ s)(t9ÿ t). Here, we

are denoting F 1, t :� _s . 0F s, t and F s,1 :� _ t . 0F s, t.

If we do not specify the ®ltration, (F s, t) will be the ®ltration generated by the process

itself, completed with the nulls sets of F N � ófNs, t, (s, t) 2 R2
�g.

3. Proof of tightness

To prove Theorem 1.1, we have to check that the family Pn is tight and that any weakly

convergent subsequence converges to the law of a Brownian sheet. In this section we prove

that Pn is tight. Using the criterion given by Bickel and Wichura (1971), and that our

processes xn are null on the axes, it suf®ces to prove the following lemma.

Lemma 3.1. Let fxng be the family of processes de®ned by (1). There exists a constant K

such that, for any (s, t) , (s9, t9),

sup
n

E[(Äs, t xn(s9, t9))4] < K(s9ÿ s)2(t9ÿ t)2:

In order to prove Lemma 3.1 it will be useful to have the following result which we will

also utilize in Section 4.

Lemma 3.2. Let fxng be the family of processes de®ned by (1). Then if (s, t) , (s9, t9),

E[(Äs, t xn(s9, t9))2] < 4(s9ÿ s)(t9ÿ t):
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Proof.

E[(Äs, t xn(s9, t9))2] � n2E

� t9

t

� s9

s

�����
xy
p

(ÿ1)Nn(x, y) dx dy

 !2
24 35

� n2E
Y2

i�1

� t9

t

� s9

s

��������
xi yi

p
(ÿ1)Nn(xi, yi) dxi dyi

 !24 35
� n2

�
[s,s9]23[ t, t9]2

�����������������
x1x2 y1 y2

p
E[(ÿ1)Nn(x1, y1)�Nn(x2, y2)] dx1 dx2 dy1 dy2:

Observe that (ÿ1)
P2

i�1
Nn(xi , yi) � (ÿ1)

P2

i�1
Ä0,0 Nn(xi, yi), and this last sum is equal to the

sum of the increments of the Poisson process over some disjoint rectangles. Each one of

these last increments appears once or twice. Obviously the rectangles which contribute to

the value of (ÿ1)
P2

i�1
Ä0,0 Nn(xi , yi) are those that appear only once.

If we suppose that x1 < x2, there are two possible orders in the plane for the points

(x1, y1), (x2, y2). (See Figure 1, where the black zones correspond to the rectangles that

appear only once in the sum
P2

i�1Ä0,0 Nn(xi, yi).)

Now, using the fact that the Poisson process has independent increments, and that if

Z � Poiss(ë) then E[(ÿ1) Z]) � exp(ÿ2ë), we obtain that

E[(Äs, t xn(s9, t9))2] � 2(I1 � I2),

where

Figure 1. The two possible orders of two points in the plane.
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I1 � n2

�
[s,s9]23[ t, t9]2

�����������������
x1x2 y1 y2
p

exp[ÿ2n(x2 y2 ÿ x1 y1)]Ifx1<x2g If y1< y2g dx1 dx2 dy1 dy2,

I2 � n2

�
[s,s9]23[ t, t9]2

�����������������
x1x2 y1 y2

p
exp[ÿ2n(x2 ÿ x1)y2 ÿ 2n(y1 ÿ y2)x1]

3 Ifx1<x2g If y2< y1g dx1 dx2 dy1 dy2:

By doing a change of variables in order to obtain y1 < y2, it is easy to see that I1 < I2.

Then,

E[(Äs, t xn(s9, t9))2] < 4n2

�
[s,s9]23[ t, t9]2

�����������������
x1x2 y1 y2

p
exp[ÿ2n(x2 ÿ x1)y1 ÿ 2n(y2 ÿ y1)x1]

3 Ifx1<x2g If y1< y2g dx1 dx2 dy1 dy2:

By using the fact that x2 < s9, y2 < t9 and then integrating with respect to these two

variables, we obtain that the last expression is less than or equal to����
s9
p ����

t9
p � s9

s

1�����
x1
p dx1

� t9

t

1�����
y1
p dy1 � 4

����
s9
p

(
����
s9
p
ÿ ���

s
p

)
����
t9
p

(
����
t9
p
ÿ ��

t
p

)

< 4(s9ÿ s)(t9ÿ t):

h

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. By arguments of additivity it is enough to prove the lemma for the case

where s and t are strictly positive, and t9ÿ t , t and s9ÿ s , s.

We have that

E[(Äs, t xn(s9, t9))4] � n4E

� t9

t

� s9

s

�����
xy
p

(ÿ1)Nn(x, y) dx dy

 !4
24 35

� n4E
Y4

i�1

� t9

t

� s9

s

��������
xi yi

p
(ÿ1)Nn(xi yi) dxi dyi

 !24 35:
Observe that (ÿ1)

P4

i�1
Nn(xi, yi) � (ÿ1)

P4

i�1
Ä0,0 Nn(xi, yi), and thatX4

i�1

Ä0,0 Nn(xi, yi) �
X4

i�1

Äs, t Nn(xi, yi)�
X4

i�1

Äs,0 Nn(xi, t)�
X4

i�1

Ä0, t Nn(s, yi)� 4Ä0,0 Nn(s, t):

So,

(ÿ1)
P4

i�1
Ä0,0 Nn(xi , yi) � (ÿ1)

P4

i�1
Äs, t Nn(xi, yi)(ÿ1)

P4

i�1
Äs,0 Nn(xi , t)(ÿ1)

P4

i�1
Ä0, t Nn(s, yi),
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and these three factors are independent. If we suppose x1 < x2 < x3 < x4 and y1 < y2 <
y3 < y4, we have that

E[(ÿ1)
P4

i�1
Äs,0 Nn(xi, t)]E[(ÿ1)

P4

i�1
Ä0, t Nn(s, yi)]

� exp[ÿ2nt[(x4 ÿ x3)� (x2 ÿ x1)] exp[ÿ2ns[(y4 ÿ y3)� (y2 ÿ y1)];

by using the fact that 2t . t9 and 2s . s9, the last expression is less than or equal to

exp[ÿnt9[(x4 ÿ x3)� (x2 ÿ x1)] exp[ÿns9[(y4 ÿ y3)� (y2 ÿ y1)]

< exp[ÿn[(x4 ÿ x3)y3 � (x2 ÿ x1)y1] exp[ÿn[(y4 ÿ y3)x3 � (y2 ÿ y1)x1]:

Finally, we can bound E[(ÿ1)
P4

i�1
Äs, t Nn(xi, yi)] by 1. So,

E[(Äs, t xn(s9, t9))4] < Kn4

�
[s,s9]43[ t, t9]4

Y4

i�1

��������
xi yi

p
exp[ÿn(x4 ÿ x3)y3 � n(x2 ÿ x1)y1]

3 Ifx1<x2<x3<x4g exp[ÿn(y4 ÿ y3)x3 � n(y2 ÿ y1)x1]If y1< y2< y3< y4g dx1 . . . dy4

< K n2

�
[s,s9]23[ t, t9]2

�����������������
x1x2 y1 y2

p
exp[ÿn(x2 ÿ x1)y1 ÿ n(y2 ÿ y1)x1]

�
3 Ifx1<x2g If y1< y2g dx1 dx2 dy1 dy2

�2

< K n2

�
[s
2
,s9

2
]23[ t, t]2

�����������������
x1x2 y1 y2
p

exp[ÿ2n(x2 ÿ x1)y1 ÿ 2n(y2 ÿ y1)x1]

 

3 Ifx1<x2g If y1< y2g dx1 dx2 dy1 dy2

�2
:

Using the computations of Lemma 3.2, the last expression is bounded by K(t9ÿ t)2(s9ÿ s)2.

h

4. Identi®cation of the limit law

We have proved that the family Pn is tight. Now, we must show that the law of all possible

weak limits is the law of a Brownian sheet.

Let fPni
gi be a subsequence of fPngn (which we will also denote by fPng) weakly

convergent to some probability P. We want to show that P is the Wiener measure, that is,

the canonical process fXs, t(x) �: x(s, t)g is a Brownian sheet under the probability P.

There exist various possible characterizations of a Brownian sheet; see, for example,

Tudor (1980) or Florit and Nualart (1996). In particular, in Theorem 2.2 of Florit and

Nualart (1996) necessary and suf®cient conditions for a process to be a Brownian motion,

with respect to an arbitrary ®ltration, are proved. If we just consider the case in with the

underlying ®ltration is the natural one, we realize that we can weaken the hypotheses of
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Theorem 2.2 of Florit and Nualart (1996). Then, we obtain the following characterization of

the two-parameter Wiener process.

Theorem 4.1. Let X � fXs, t; (s, t) 2 [0, S] 3 [0, T ]g be a continuous process such that

Xs,0 � X0, t � 0. And let (F s, t) be the natural ®ltration of X.

Then, the following statements are equivalent:

(i) X is a Brownian sheet.

(ii) For any 0 , s < s9, 0 , t < t9, E(Äs, t Xs9, t9jF S, t _ F s,T ) � 0 and E[(Äs, t Xs9, t9)
2j

F S, t _ Fs,T ] � (s9ÿ s)(t9ÿ t).

The difference between this theorem and Theorem 2.2 of Florit and Nualart (1996) is that

in order to obtain a Brownian sheet (with respect to its natural ®ltration) we need only to

check the properties of strong martingale and `quadratic variation' for increments over

rectangles without intersection with axes.

So, in order to prove that the limit law is the Wiener measure, it suf®ces to prove the

following two propositions.

Proposition 4.2. Suppose that fPng are the laws in C ([0, S] 3 [0, T ]) of the processes xn

de®ned by (1), and assume that fPni
g is a subsequence weakly convergent to P. Let X be the

canonical process and let fF s, tg be its natural ®ltration. Then for any 0 , s < s9, 0 , t < t9,
EP(Äs, t Xs9, t9jF S, t _ F s,T ) � 0.

Proposition 4.3. Under the hypotheses of the above proposition, we have that

EP[(Äs, t Xs9, t9)
2jF S, t _ F s,T ] � (s9ÿ s)(t9ÿ t), for any 0 , s < s9, 0 , t < t9:

Proof of Proposition 4.2. We only need to prove that for any (s1, t1), . . . , (sm, tm) and ä. 0,

with si < S, ti < t ÿ ä or si < sÿ ä, ti < T , for i � 1, . . . , m, and for any bounded

continuous j : Rm ! R,

EP[j(Xs1, t1
, . . . , Xs m, t m

)(Äs, t Xs9, t9)] � 0:

Since Pn)
w

P, and taking into account Lemma 3.1, we have that

lim
n!1EPn

[j(x(s1, t1), . . . , x(sm, tm))(Äs, t x(s9, t9))] � EP[j(x(s1, t1), . . . , x(sm, tm))(Äs, t x(s9, t9))]:

Thus, it suf®ces to prove that

lim
n!1EPn

[j(x(s1, t1), . . . , x(sm, tm))(Äs, t x(s9, t9))] � 0:

We have that
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jEPn
[j(x(s1, t1), . . . , x(sm, tm))(Äs, t x(s9, t9))]j
� jE[j(xn(s1, t1), . . . , xn(sm, tm))(Äs, t xn(s9, t9))]j
� jE[j(xn(s1, t1), . . . , xn(sm, tm))E[Äs, t xn(s9, t9)jG n

s, t,ä]]j

< (E[j2(xn(s1, t1), . . . , xn(sm, tm))]1=2(E[Y 2
n])1=2 < K(E[Y 2

n])1=2,

where G n
s, t,ä � F n

S, tÿä _ F n
sÿä,T and

Yn :� E n

�
[s,s9]3[ t, t9]

�����
xy
p

(ÿ1)Nn(x, y) dx dyjG n
s, t,ä

� �
:

Thus, it suf®ces to prove that Yn converges to zero in L2 when n goes to in®nity.

Observe that Äsÿä, tÿäNn(s, t) is independent of G n
s, t,ä, and

E n

�
[s,s9]3[ t, t9]

�����
xy
p

(ÿ1)Nn(x, y) dx dyjG n
s, t,ä

� �
� E[(ÿ1)Äsÿä, tÿä Nn(s, t)]E n

�
[s,s9]3[ t, t9]

�����
xy
p

(ÿ1)Nn(x, y)ÿÄsÿä, tÿä Nn(s, t) dx dyjG n
s, t,ä

� �
,

which clearly goes to zero in L2 because the conditional expectation is L2-bounded by

Lemma 3.2, and E[(ÿ1)Äsÿä, tÿä Nn(s, t)] � exp[ÿ2ä2 n] which tends to zero as n!1. h

Proof of Proposition 4.3. We have to prove that for all (s1, t1), . . . , (sm, tm) with si < S,

ti < t or si < s, ti < T , for i � 1, . . . , m, and for all bounded continuous j : Rm ! R,

EP[j(Xs1, t1
, . . . , Xs m, t m

)((Äs, t Xs9, t9)
2 ÿ (s9ÿ s)(t9ÿ t))] � 0:

Recall that it suf®ces to prove it for s, t . 0.

Since Pn converges weakly to P and using Lemma 3.1 it is enough to check that

E[j(xn(s1, t1), . . . , xn(sm, tm))((Äs, t xn(s9, t9))2 ÿ (s9ÿ s)(t9ÿ t))]

converges to zero when n tends to in®nity. But this last expression is equal to

E[j(xn(s1, t1), . . . , xn(sm, tm))(E[(Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T ]ÿ (s9ÿ s)(t9ÿ t))]:

Finally, in order to prove that this expression tends to zero, it suf®ces to show that,

E[(Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T ]!L
2

(s9ÿ s)(t9ÿ t) as n!1: (2)

This last convergence can be done using the following two facts.

Fact 1. E[E[(Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T ]] � E[(Äs, t xn(s9, t9))2]! (s9ÿ s)(t9ÿ t), as n !
1.

This result is proved in Lemma 4.4.
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Fact 2. There exist some constants Cn converging to (s9ÿ )2(t9ÿ t)2, when n goes to in®nity,

such that

E[E[(Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T ]]2 < Cn:

This result is proved in Lemma 4.5.

Facts 1 and 2 imply the convergence stated in (2) because if we assume that they are

true,

0 < E[E[(Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T ]ÿ (s9ÿ s)(t9ÿ t)]2

< Cn ÿ 2(s9ÿ s)(t9ÿ t)E[(Äs, t xn(s9, t9))2]� (s9ÿ s)2(t9ÿ t)2,

and the right-hand side of this expression obviously converges to 0. This ®nishes the proof of

Proposition 4.3. h

Lemma 4.4. In the previous situation

lim
n!1E[(Äs, t xn(s9, t9))2] � (s9ÿ s)(t9ÿ t):

Proof. In the proof of Lemma 3.2 we have shown that

E[(Äs, t xn(s9, t9))2] � 2(I1 � I2),

where

I1 � n2

�
[s,s9]23[ t, t9]2

�����������������
x1x2 y1 y2
p

exp[ÿ2n(x2 y2 ÿ x1 y1)]Ifx1<x2g If y1< y2g dx1 dx2 dy1 dy2,

I2 � n2

�
[s,s9]23[ t, t9]2

�����������������
x1x2 y1 y2

p
exp[ÿ2n(x2 ÿ x1)y1 ÿ 2n(y2 ÿ y1)x1]

3 Ifx1<x2g If y1< y2g dx1 dx2 dy1 dy2:

We can write the integral I2 as

I2 �
� s9

s

1

2
�����
x1
p

� t9

t

1

2
�����
y1
p

� t9

y1

(2nx1 exp[ÿ2nx1(y2 ÿ y1)])
�����
y2

p
dy2

"

3

� s9

x1

(2ny1 exp[ÿ2ny1(x2 ÿ x1)])
�����
x2

p
dx2

�
dy1 dx1:

The last integral tends to
�����
x1
p

because 2ny1 exp[ÿ2ny1(x2 ÿ x1)] is a probability density that

gives an approximation of the identity as n!1, and the penultimate tends to
�����
y1
p

as

n!1. The convergence is bounded, because the two integrals are bounded by
����
s9
p

and
����
t9
p

respectively and 1=
���������
x1 y1
p

is integrable, so, by the dominated convergence theorem, we obtain
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lim
n!1 I2 � 1

4

� s9

s

� t9

t

dy1 dx1 � (s9ÿ s)(t9ÿ t)

4
:

In the same way,

I1 �
� s9

s

1

2
�����
x2
p

� t9

t

1

2
�����
y1
p

� t9

y1

(2nx2 exp[ÿ2nx2(y2 ÿ y1)])
�����
y2

p
dy2

"

3

�x2

s

(2ny1 exp[ÿ2ny1(x2 ÿ x1)])
�����
x1

p
dx1

�
dy1 dx2,

and we have

lim
n!1 I1 � (s9ÿ s)(t9ÿ t)

4
:

h

Lemma 4.5. In the previous situation there exist some constants Cn converging to

(s9ÿ s)2(t9ÿ t)2 when n tends to in®nity, such that

E[E((Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T )]2 < Cn:

Proof. We recall that it suf®ces to prove the case s, t . 0. Thus, we will suppose from now

on that s, t . 0. By measurability and independence, we have that

E((Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T )

� n2

�
[s,s9]23[ t, t9]2

(ÿ1)
P2

i�1
(Ä0, t Nn(s, yi)�Äs,0 Nn(xi, t)) 3

Y2

i�1

��������
xi yi

p
E[(ÿ1)

P2

i�1
Äs, t Nn(xi, yi)] dx1 . . . dy2;

then

E[E((Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T )]2

� E n4

�
[s,s9]43[ t, t9]4

(ÿ1)
P4

i�1
(Ä0, t Nn(s, yi)�Äs,0 Nn(xi, t))

�

3
Y4

i�1

��������
xi yi

p
E[(ÿ1)

P2

i�1
Äs, t Nn(xi, yi)]E[(ÿ1)

P4

i�3
Äs, t Nn(xi , yi)] dx1 . . . dy4

#
:

By the arguments of the proof of Lemma 3.2, we have that

E[(ÿ1)
P2

i�1
Äs, t Nn(xi , yi)] < exp[ÿ2n(jx2 ÿ x1j(minfy1, y2g ÿ t)� jy2 ÿ y1j(minfx2, x2g ÿ s))],

(3)

and that
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E[(ÿ1)
P4

i�3
Äs, t Nn(xi , yi)] < exp[ÿ2n(jx4 ÿ x3j(minfy3, y4g ÿ t)� jy4 ÿ y3j(minfx3, x4g ÿ s))]:

(4)

Then,

E[E((Äs, t xn(s9, t9))2jF n
S, t _ F n

s,T )]2

< 16n4

�
[s,s9]43[ t, t9]4

jE(ÿ1)
P4

i�1
(Ä0, t Nn(s, yi)�Äs,0 Nn(xi, t))j

3
Y4

i�1

��������
xi yi

p
exp[ÿ2n((x2 ÿ x1)(y1 ÿ t)(y2 ÿ y1)(x1 ÿ s))] (5)

3 exp[ÿ2n((x4 ÿ x3)(y3 ÿ t)� (y4 ÿ y3)(x3 ÿ s))]

3 Ifx1<x2g If y1< y2g Ifx3<x4g If y3< y4g dx1 . . . dy4:

We can divide the last integral in two parts: the integral over A � (fy1 < y2 < y3 < y4g
[ fy3 < y4 < y1 < y2g) \ (fx1 < x2 < x3 < x4g [ fx3 < x4 < x1 < x2g); and the integral

over Ac.

If we integrate over A,

jE(ÿ1)
P4

i�1
(Ä0, t Nn(s, yi)�Äs,0 Nn(xi , t))j

� exp[ÿ2ns[(y4 ÿ y3)� (y2 ÿ y1)]ÿ 2nt[(x4 ÿ x3)� (x2 ÿ x1)]],

and the integral given in (5), over A, can be bounded by

16 n2

�
[s,s9]23[ t, t9]2

Y2

i�1

��������
xi yi

p
exp[ÿ2n(x2 ÿ x1)y1 ÿ 2n(y2 ÿ y1)x1]Ifx1<x2g If y1< y2g dx1 . . . dy2

 !2

which, as we have shown in Lemma 4.4, converges to

16
(s9ÿ s)(t9ÿ t)

4

� �2

� (s9ÿ s)2(t9ÿ t)2:

When we integrate over Ac, the integral converges to zero. Indeed, if we have

y1 < y3 < y2 < y4 (or y1 < y3 < y4 < y2) we can bound (3) by exp[ÿ2n(y2 ÿ y3)(x1 ÿ s)]

(or exp[ÿ2n(y4 ÿ y3)(x1 ÿ s)]) and (4) by 1.

If we have y3 < y1 < y4 < y2 (or y3 < y1 < y2 < y4) we likewise bound (4) by

exp[ÿ2n(y4 ÿ y1)(x3 ÿ s)] (or exp[ÿ2n(y2 ÿ y1)(x3 ÿ s)]) and (3) by 1.

Then, by doing a change of variables in order to obtain x1 < x2 < x3 < x4 and

y1 < y2 < y3 < y4, we majorize the integral given in (5), over (fy1 < y2 < y3 < y4g [
fy3 < y4 < y1 < y2g)c, by
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Kn4

�
[s,s9]43[ t, t9]4

Y4

i�1

��������
xi yi

p
exp[ÿ2nt[(x4 ÿ x3)� (x2 ÿ x1)]ÿ 2ns[(y4 ÿ y3)� (y2 ÿ y1)]

ÿ 2n(y3 ÿ y2)(x1 ÿ s)]Ifx1<x2<x3<x4g If y1< y2< y3< y4g dx1 . . . dy4:

Finally, using the fact that s, t . 0, this integral equals to

K
1

s2 t2

� s9

s

�����
x1

p � s9

s

�����
x3

p � t9

t

�����
y2

p � t9

y2

�����
y3

p � s9

x3

2nt exp[ÿ2nt(x4 ÿ x3)]
�����
x4

p
dx4

(

3

� s9

x1

2nt exp[ÿ2nt(x2 ÿ x1)]
�����
x2

p
dx2

� t9

y3

2ns exp[ÿ2ns(y4 ÿ y3)]
�����
y4
p

dy4

3

� y2

t

2ns exp[ÿ2ns(y2 ÿ y1)]
�����
y1
p

dy1

�
exp[ÿ2n(y3 ÿ y2)(x1 ÿ s)] dy3 dy2 dx3 dx1,

which goes to zero by dominated convergence.

Interchanging the roles of the variables xi and the yi for i � 1, . . . , 4, we will obtain a

similar integral.

This completes the proof. h
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